
CHAPTER 82 

NEAR-BOTTOM VELOCITIES  IN WAVES WITH A CURRENT 
H 2) 

by W.T.   Bakker '   and Th.  van Doom 

0 Abstract 

Bakker (1974) developed a mathematical model concerning the sand 
concentration and velocity distribution in an oscillatory turbulent flow, 
with or without resultant current. 

The flow is assumed to be uniform in horizontal direction. The pres- 
ent paper reports on an experimental verification of this theory. 
Furthermore, the numerical accuracy of the model has been investigated 
and diagrams are presented which enable the computation by hand of global 
velocity profiles. 

1 Introduction 

This paper deals with a numerical theory on the near-bottom veloci- 
ty pattern in parallel-directed waves and current and with the compari- 
son of theory and measurements. The paper is a sequence to an earlier 
paper (Bakker, 1974); the numerical theory concerning the velocity field 
developed herein is further refined and, in some respects, revised. For 
the sake of physical understanding an additional paper, dealing with an 
approximate analytical theory is in preparation (Bakker, 1979). 

Furthermore, a Report is in preparation (Bakker and Van Doom, 1979) 
which comprises as well the analytical and the numerical theory, and 
which goes further into details. This study has to be placed in a gener- 
al scope of investigations, mentioned in the preceding paper (Bakker, 
1974). 

The necessary assumptions are mentioned in Ch. 2; in Ch. 3 the math- 
ematical formulation is given. Because several aspects differ from those 
in the earlier paper, most of the derivations from this paper are repeat- 
ed for convenience. Ch. 4 deals with the investigations on numerical ac- 
curacy. In Ch. 5 experiments are described, carried out in the Delft Hy- 
draulics Laboratory (DHL). Comparison between theory and experimental 
data is made in Ch. 6. The present theory and the theory of Lundgren 
(1972) are compared in Ch. 7. After the conclusions (Ch. 8) the acknowl- 
edgements (Ch. 9), the literature and the symbols are mentioned. 

The theory was developed by the first author; the experimental ver- 
ification was carried out by the second author, who also reported on 
this subject. 

2 Assumptions 

The following assumptions are made: 
a.. Apart from turbulent fluctuations a horizontally directed and hori- 

zontally uniform current pattern is assumed. The current u is assumed 
to be only a function of the vertical coordinate z and the time t, 
but no function of the horizontal coordinate x. 
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VELOCITIES IN WAVES 1395 

b_. In the fluid a turbulent shear stress is assumed, according to the as- 
sumptions of Prandtl (1931) equal to: 

„2 9ui 8ui ..... 
dz'dz' 

in which T is the shear stress, positive when acting in positive di- 
rection from the upper layer on the lower layer, p is the specific 
density of the fluid and I  is the mixing length. 

c_.  A reasonable assumption on this mixing length and the distribution of 
the shear stress as a function of the height is obtained as follows. 
The equation of motion reads: 

n  du  3x   Pr ,„. 
p-3t = 3F_3i- (2) 

in which p denotes the fluid pressure. A periodical water motion with 
period T is assumed. By Fourier analysis, one finds that the left-hand 
side of Eq. (2) will be zero when averaged over period T. 
Then one finds from (2): 

dT  1   3p real _  r 
dz  ~ 3x (3) 

The bar above the symbol indicates the averaging over the wave period 
T; the subscript "real" of x serves as a distinction from the schemat- 
ized T, mentioned later on. 
Assuming, that the_mean pressure gradient is constant over the height h, 
one may write for T: 

W - (h"z) 35T (4) 

If only a stationary and no periodic motion would occur, according to 
well-known methods one finds a logarithmic velocity distribution, 
starting from a mixing length I      .. according to: 

J>    = KZ / 1 - # (5) real h 

where K is the Von Karman constant. 
For a stationary current, this logarithmic velocity distribution is 
found also, if the shear stress T is schematized as a constant (i.e. 
uniform over the height): 

3p 
x - h ^ (6) 

and the mixing length according to: 

. I  = KZ (7) 

As the investigated features occur quite near to the bottom, where (4) 
and (6) on one hand and (5) and (7) on the other hand look very much 
the same, in the following the relationships (6) and (7) will be as- 
sumed. 
Starting from a mixing length according to (7), generally it will be 
assumed, that the pressure gradient grad (p ) is horizontally direct- 
ed, i.e. that the pressure is only a function of x and t. 
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e:.  The mean velocity, when averaged over  the water depth and  the wave 
period is  called U .   It is  further assumed  that the water mass  far 
from the bottom is  in oscillatory motion according to: 

U        =0,   sinCwt-Y.)   + ft,  sin(20)t-1i'o)   + ft,  sin(3wt-Y„)   +   ... (8) 
OSC 1 12 I i j 

U   , U. , U„, U.,, ¥., ¥_ and T- can be arbitrary chosen. Connected 
with the solution, a small parasitary fourth harmonic is found, being 
5 to 10% of the first one. 
A solution with U    equal to zero can only be found, when also U 
is zero (as all higher even harmonics). In this case, a parasitary 
fifth harmonic of the order of 5 to 10% of the first one is found. 

_f. A hydraulically rough bottom is assumed. The velocity at a height z 
above the theoretical bottom level is assumed to be zero; it is as- 
sumed that z  equals 1/33 times the Nikuradse roughness r. 

3 Computation of water velocities and shear stress 

Define a rather arbitrary height z   above the bottom, in this-way, 
that the periodical changes of the shear stress_are attenuated at that 
height. For z 2 z   the shear stress T equals x, being assumed constant 
over the height (assumption c). Thus one finds from (2): 

,*     3p . du _    r  ,    . Ias p srr = - -s— for z ^ z (9) 
dt    9x max 

Let the velocity at z = z   be U. Thus Eq. (9) remains valid, when u is 
replaced by U; let Eq. (9afbe Eq. (9) for u = U. 
Define a "defect velocity" u, as: 

ud = u - U (10) 

According to assumption d, subtracting Eq. (9a) from Eq. (9) yields: 

-5-£ = 0  for z >,  z (11) 9t max 

In (1), one may replace u by u,, because U is no function of z. 
Thus, from (1) and (7) can be derived: 

u ="_Uii j>n _±—  for z 5 z (12) 
d   K     z max max 

Consider now the area where z < z  . Subtracting Eq. (9a) from Eq. 
(2) and substituting u, from (10) yields: 

This equation can be transferred in an equation with the shear 
stress velocity p as independent variable. 
Define p as: 

p = sign (T) . /|x/p|' (14) 

Inversely, this implies: 

T = p p|p| (15) 
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From  (1)   and   (7)   it  shows: 

p = KZ |H (16) 
dz 

In (16) one may replace u by u ,. Differentiation of (13) to z and 
multiplying with Kz yields: 

ff-Kz 32(P1PI> (17) 
3z 

For method of computation of u from p is referred to Bakker (1974). 
The following mainly deals with deviations from this paper. From p, one 
can find u, with the aid of (10), which can be written as: 

,  z 
1 , max p , , _. 

ud=--/    £dz (18) 
z 

Eq. (17) can be made dimensionless by introducing the following di- 
mensionless variables: 

P* = P/Pb] 

t* - t/T ,   (J9) 

T z* = z/Z, with Z = Kp, 

u* = u/p\ ,   (see note ')) 
D I 

in which p  is the amplitude of the first harmonic of the shear stress 
velocity at the bottom (the index "b" refers to "bottom"). 

Thus one obtains from (17): 

J£ = z. iVklli (20) 
8t* dz*2 

As  lower boundary condition is  assumed: 

p,     + sin2TTt    + p,„     sin(4Trt -$  )   + p sin(6fTt -<{)„) 

for z* = 0 
(21) 

If Umean equals zero, p,  and p, „  are assumed zero; to the choice 
— #  **#  ^,* 

of the variables pj,, Pt2> Pb3 ' $2  an^ ^1  wl^ ^e referred. 
The upper boundary condition is determined by the fact that T should 

remain constant over the height according to (6)2); Averaging Eqs. (13) 
and (17) over the wave period (in which case the left-hand side becomes 
zero, as can be seen by decomposing u, and p in harmonics) one finds that 

Generally, the velocities denoted by a symbol with an added star have 
been divided by p, . . 

J. van Overeem drew the attention of the author to the fact, that this 
condition was not fulfilled by the solution for waves and currents, 
given by Bakker (1974). Therefore the solution in the present paper 
contains a revision of last-mentioned paper with respect to the case 
of waves with a current. 
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the solution of these equations fulfills this condition automatically, 
if the upper boundary condition is properly chosen. At the upper boundary 
the shear stress velocity p  should be equal to /f/p: 

P* = /pf |p? I   for z* = z* (22) r    rb ' b ' max 

In the case of an oscillatory flow without current (22) degenerates 
to p* = 0 for z* = z*  . In the computer program, initially an approxima- 
tion is chosen according to: 

/ 
"A 

•rrp */4  for z* = z   (initially) (23) rb max J 

This approximation follows from analytical considerations (Bakker, 1979). 
In the course of the computations, the real value of the right-hand 
side of (22) is calculated;after each period the upper boundary condi- 
tion is adapted. This condition changes, because after some periods pt* , 
pA , pA. , <i>2  and 't'o are adapted by means of an iterative procedure'), 
in this way that the upper boundary condition (8) (in dimensionless 
shape) is fulfilled as good as possible. 
In order to check the accuracy of this upper boundary condition, from 
the shear stress velocity p* the value of U* is calculated after some 
periods by means of numerical integration') with the aid of (18), which 
clearly keeps its validity in the dimensionless shape. 

In the following, some attention will be paid to the results with 
respect to the first harmonic and the mean velocity profile. This gives 
just a general scope: solutions, which fit rather closely to the wanted 
boundary conditions can be found by application of the computer program. 

With respect to the first harmonic, the dimensionless relationship 
between u*  (the amplitude of the first harmonic of the dimensionless 
defect velocity) and z* can be transferred into a dimensionless relation- 
ship between a kind of friction coefficient P-ui/U, and a./r, in which a. 
equals U.T/21T and r the Nikuradse roughness. This can be performed as 
follows. 

Consider a certain defect velocity field u*. , which has been calcu- 
lated, starting from certain bottom boundary conditions, defined by har- 
monics of p* . 

In principle every level z  (at which ut has been calculated) can 
be taken as a bottom boundary level z* , where u* is assumed zero. 
Therefore according to (10) the choice of zj determines U*, the dimen- 
sionless velocity far from the bottom (at z* = z* ). Thus one computa- 
tion of u* determines a great number of velocity fields u with various 
upper boundary conditions and various values of z* . Neglecting (just 
for the general scope) non-linear interactions between the harmonics of 
p*, in first approximation the relationship between_dimensionless first 
harmonic U.  and z* can be investigated by taking p* , p*„ and p*„ in 

^cf. Bakker (1974) and Bakker and Van Doom (1979) 
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(21) equal to zero and calculating u* under these conditions. On the ef- 
fect of non-linear interaction will be returned in Ch. 4. 

From assumption f_ and (19) the following relationship can be deter- 
mined: 

— = 77— • 0*/z* (24) r   66TTK   1  o v 

which in turn can be written, using (10): 
a,   , 
— = TT— Q* (z*)/z* (25) 
r   66TTK  dl  O'  O 

where u,.(z*) denotes  u^^ at the height z*. 
Now the ratio p /U. , relating the amplitude of the first harmonic 

of the bottom shear stress velocity to the amplitude of the first har- 
monic of the oscillatory motion U   far from the bottom, equals 1/0  , 
according to (19) which in turn can be written as 1/u* (z* ). According 
to a similar reason, the phase lag ¥. between p, . and D. equals minus 
the phase lag between p*  and u*  (z* ). Thus, from the computer re- 
sults with the mentioned bottom boundary conditions, the choice of a 
value of z* gives a relationship between a value a,/r and the belonging 
values of p ./U. and y..  By using z* as a parameter, the general rela- 
tionship between a./r and the last mentioned parameters can be obtained; 
this is shown in Fig. 1. The same results are plotted in another way in 
Fig. 2, giving 0* (= u,. at z*) and ¥ as a function of z* . 

Now the attention will be turned to the mean velocity profile u as 
function of z. From (10) and (18) for the upper part of the mean velocity 
profile is found: 

u = u + ^iS. in ——  for z > z (26) 
K    z max 

max 
where U is the mean velocity at z = z  . Averaging (16) over the wave 
period and integrating, one finds in tne vicinity of the bottom, where p 
3 V 

— Pb    z 
u ~ — £n —  (near the bottom) (27) 

o 
Therefore, plotting u on the horizontal scale versus Jin z on the verti- 
cal scale, the upper part will be a straight line with a gradient arctan 
(K//f/p), where the curve tends to a straight line with gradient arctan 
(K/p, ) near the bottom. The last-mentioned gradient is larger than the 
first-mentioned one: the ratio p,//T/pwill be called (3 , and equals ap- 
proximately /irp* /41 (for p* « lj; this follows from substitution of„.„. 
p, = p, + p, . sincot into (15) and approximating in an analytical way   . 

This has been done earlier by Bakker (1974). In the present paper the 
conception is left of a coefficient "f ", occurring in the former paper, 
which relates the top-bottom shear stress to the top-orbital velocity. 
Because of the effect of higher harmonics, this coefficient obscures 
rather than enlightens the mechanism. 

2) 
This result has already been used for the transition from (22) to (23). 

3 Bakker (1979); Bakker and Van Doom (1979). 
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Thus it shows, that the velocity profile consists of two logarithmic 
parts with a transition zone between. 

With respect to this transition between the bottom and z = zmax, an 
analytical approximation!) suggests the occurrence of a universal func- 
tion f(z*) in this way, that for small values of z* the following rela- 
tionship holds: 

£± = f(z*) - f (z* ) (28) 
pb 

When z* is plotted on a vertical, logarithmic scale and Ku/p, on a 
linear horizontal scale so that 1 on the horizontal scale corresponds 
with Jin e on the vertical scale, the lower part of the curve f(z*) degen- 
erates to a line under an angle of 45 . Thus this part corresponds with 
the lower logarithmic part of the velocity profile mentioned before. The 
curve f(z ) also gives the transition zone; the upper logarithmic part 
of the velocity profile can be found by drawing the tangent to f(z*) 
with a gradient /up* /4vwith the horizontal (inset Fig. 3). 

From the computer results the curve f(z*) can be found. Starting 
from certain values of p,  and assuming p, „ and p, „ equal to zero, the 
velocity field u* , and thus u, , can be calculated; starting from a 
certain, rather arbitrary^) value of z* , one can find u*, and thus 
Ku /p, , equal to Ku7p, . Indeed it shows, that the lower part of the re- 
sultant curves for various values of p,  coincide, and that the lower 
part gives a straight line under 45 , whereas the upper parts show a 
gradient /irp* /4k (Fig. 3a). 

The question remains how p. can be determined from U   , the veloc- 
j     ^L    . ,  b „     .,  ,  .. ,   mean' lty averaged over the period as well over the depth h. 

Without an oscillatory motion, the relationship would exist: 
KU 

p, = -= TT-I N-  (without oscillatory motion) (29) 
*b  In  (h/ez ) J 

0 .3) 
which can be derived in the same manner as the Chezy relationship 

With oscillatory motion, an approximate, calculation of U    from 
p, (or inversely: of p, from Umean ) could be made by neglecting the ef- 
fect of the transition zone and the lower logarithmic curve on the mean 
velocity and extrapolating the upper logarithmic curve in downward di- 
rection (Fig. 4). However, this extrapolated line will intersect the 
(vertical) line of zero-velocity, in a point higher than z = z , say z = 
az  (Fig. 4). Thus it shows, that the effect of the oscillatory motion 
is an enlargement of the apparent roughness with a factor a. Furthermore, 
p in (29) should be replaced by /T/pN, which makes a difference of a 
factor 6 , , as stated before in this Chapter. Thus, in case of oscilla- 
tory flow, (29) changes into: 

g , K U 
- _ ob mean <"3n\ 
Pb ~ In  (h/e azQ) 

(M> 

''Bakker (1979); Bakker and Van Doom (1979) 

Only should be conditioned, that z* is so small, that it gives a point 
on the lower straight section (under 45 ) of the f(z )-curve. 

3) This can be easily seen by multiplying both sides of Eq. (29) with 
(1/K) In  (h/ez ). 
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in which B . ~ /irp* /4' '' and in which a is derived with the aid of the 
computer program in the following way. 

Analogous to the case with the first harmonic, each level z* can be 
considered as a lower boundary condition z  , which determines a./r. Fig. 
4 shows that a can be found from the following relationship: 

z*    g , K 
„     „  max   ob _* , ».                          „.> 
Jin a = In —i -=rz— . u, (z )                        (31) 

z*   p* d 

where u  (z*) denotes u* at the level z*. In this way, with one computer 
calculation -starting from a bottom boundary condition with a certain 
value of p*  and assuming pV*.  and p*  equal to zero- one may find the 
value of o for a great number of values a /r. Fig. 5 shows a as a func- 
tion of aj/r and p^ . 

Now the following rough way of calculation of the mean velocity 
profile is advised: 
a_. Determine a,/r, using a, = U]T/2TT 
b^. Determine p^j from the ratio p^j/Uj, found in Fig. 1 
c. Calculate p{* from (30), which may be written as: 

TT         mean .       2), ,-„,, 
T • \~r*—T~\—5 m rl   (see note  ) (32) 4 L^pbrK) ln (n/eazo)J 

Here a has to be determined iteratively: assuming for instance first 
a = 1, finding p* from (32), finding a better estimation of a from Fig. 
5 until the wanted accuracy of p* is reached. 
d. The lower part of the profile is a straight line on single-logarithmic 

paper under an angle arctan (K/P^,) through the point (u,z) = (o,z ) 
. the upper part is a straight line on single-logarithmic paper under 
an angle arctan (3 , ^/PO or> approximately arctan (K/TT/ (4p, p, .)s) 

. the transition can be found from Fig. 3a. 
As mentioned, more accurate results can be obtained by using the 

computer program directly; in this case a first estimation,of p,  follows 
from (32). 

4 Numerical accuracy 

A number of computations has been carried out in order to check the 
numerical accuracy. For the details is referred to Bakker and Van Doom 
(1979); here the following results may be mentioned. 
a. In the computer program an initial condition can be introduced, which 

may be different from the one, following from the periodical bottom 
boundary condition. After 4 periods running, the effect of this ini- 
tial condition vanished up to l°/oo of p^j 3). 

b_.  The effect of the upper boundary condition on the ratio Pj,i/U] is 
small, as long as z^ax is 1.5 at least. 

For p* > . 5 this approximation becomes inaccurate, in which case is 
referred to Bakker (1979) or Bakker and Van Doom (1979). 

2) In (32) the denominator between the brackets shows a hypothetical 
mean velocity over the profile, which would occur when the bottom shear 
stress velocity would have been p^|, instead of (a mean value of) /f/p\ 
and when the roughness would have been ar instead of r. 

3) The ratio between pi,i and Uj can be found from Fig. 1. 
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c.  The greatest traceable source of numerical error in the program is 
found to be caused by the fact, that the present iteration procedure 
does not extend up to the fourth and fifth harmonic; when the real 
fourth and fifth harmonic of U are zero, the error is of the order of 
20% of pbj. Because of this error, the accuracy is not effectively 
enlarged by taking more than 6 grids (using zmax = 1.5). The differ- 
ences in D, between the use of respectively 3, 4, 5 grids compared 
with using 6 grids is respectively 4, 2, 1, 0.3% of Uj when aj/r = 
129 !). The raising of the grid number by 1 increases the computer 
time about a factor 2. 

d_.   Considering the case without resultant current, the effect of a third 
harmonic of p^ (being so large, that Uo becomes zero) on the first 
harmonic U] is small (about 1% of Uj). 

£. The effect of pt^ (i.e. resultant current) on the first^harmonic u<j] 
is relatively small for large values of aj/r (2.5% of Uj when aj/r = 
129 and pf = .23). For smaller values of aj/r the effect is larger 
(6% of U, whenaj/r =3.5 and p£  = .23). 

5 Experiments 

The bottom boundary layer under periodic progressive water waves, 
without and with a superimposed current has been investigated at the 
Delft Hydraulics Laboratory (DHL). The results of these experiments on 
the velocity distribution are compared with the present theory. In the 
theory, assumptions are made for the case of a horizontally oscillating 
flow such as can be realized in a horizontally pulsating water tunnel. 
The results of the present investigations, with free surface waves, will 
in future be compared with results from similar tests, in the Oscillating 
Water Tunnel of the DHL. 

Water surface elevation (r|) and horizontal water velocity component 
in the direction of wave propagation (u) have been measured simultaneous- 
ly in the same cross-section in a 30 m long, 0.5 m wide and 0.5 m high 
glass-walled flume of the DHL (Fig. 6). 

Periodic waves were generated by a flat wave board oscillating hor- 
izontally with adjustable amplitudes at the lower and upper side. The 
wave trains applied in the experiments, obtained by starting the wave 
generator always from the same position were very well reproducible. In 
all experiments, the still-water depth (h) was 0.30 m, the wave period 
(T) with respect to a fixed point 2.0 s and the wave height (H) at the 
measuring station 0.12 m. Steady currents can be generated by circulating 
the water (Fig. 6). In view of the presence of secondary waves, the meas- 
uring stations were chosen so that the ratio of the amplitudes of the 
first and second harmonic components of the surface waves approximately 
showed a maximum. In order to obtain a turbulent boundary layer at the 
bottom, two-dimensional roughness elements (2 mm high at 15 mm centers) 
were applied (Fig. 6). 

In the present program z* may differ from Az*. This is a facility, 
plugged in the computer program after Appendix A of Bakker (1974) was 
written. In this way the value of Uj belonging to an arbitrary 
value of aj/r can be calculated, independent of the number of grids. 
For details, cf. Bakker and Van Doom (1979). 
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The experimental study has been performed in two phases. In the 
first phase 1), waves without a current were considered. The inflow pro- 
vision in the flume was covered. The artificial bottom roughness was ap- 
plied only over a distance of 1.5 m at the measuring section. 
In the second phase of the experiments 2)t  roughness elements were ap- 
plied over a distance of 15 m next to the water inlet and currents were 
generated in the same direction as the wave propagation. The mean current 
velocities (averaged over the height) were approximately 0.10 m/s (test 
code V10) and 0.20 m/s (test code V20). In this second phase, tests with- 
out a current (test code V00), but with open inlet were repeated for com- 
parison. 

For each condition, velocities in two verticals have been measured 
viz. in between two roughness elements (code RA) and just above one (code 
RB). In this way, tests series were performed with codes RA, RB (first 
phase) and VOORA, VOORB, V10RA, V10RB, V20RA, V20RB (second phase). 

Figure 3b shows the distribution along the vertical of measured cur- 
rent velocities (time average values). It is noted that in the experi- 
ments the speed of the pump was the same for the current only and for 
current with waves, whereas the theory on oscillatory flow with resultant 
current starts from a given gradient of the mean water level which is sup- 
posed to be the same for "current only" and for "current with waves". 

For the analysis, only the waves from a wave train were used after 
the start-up transients and before the first reflected wave reached the 
measuring station. Three wave trains were applied for every level at 
which velocities have been measured, from which as an average a more ac- 
curate orbital velocity could be determined. In the case of waves with a 
current, n and u are measured also without waves. 

The water surface elevation was measured with a resistance-type 
wave gauge. The velocities were measured at a series of successive levels 
above the bottom with a laser-doppler velocity meter (LDV). The applica- 
tion of this technique with its general advantage of measuring accurately 
and contactless in very small measuring volumes, was highly satisfactory. 
The error in positioning the level of the LDV was less than +/- 0.1 mm. 
The reference distance to the bottom, determined:by means of a measuring 
rule is less accurate; the error is estimated less than +/- 0.3 mm. 

The signals from the wave gauge and the LDV were recorded simulta- 
neously on paper and on an analog magnetic tape. From the tape recorder 
the signals have been processed in two steps: 
a.. Digitization by synchronized sampling, exactly 72 times per wave peri- 

od, i.e. a sampling frequency of 36 Hz. From every wave train, the 
measured signals have been sampled over the same time interval after 
the start of the wave generator, so phase relations between velocities 
measured at different levels could be maintained. In the first phase 
of the experiments, the accuracy of digitizing was +/- 0.025 cm and 
+/- 0.15 cm/s for the signals of the surface waves and the velocities 
respectively. In the second phase, these values were 10 times smaller. 

b_. Harmonic analysis of the digital signals. The results obtained from 
harmonic analysis of the average wave (i.e. also velocities) of the 
three wave trains were used for comparison with theory. 
Table 1 shows the most important parameters deduced from the tests. 

'Van Doom and Godefroy (1978) 

'Van Doom (1979) 
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TEST (0 
U 

(2) 

al 
(3) 

a,/r 

(4) 

Z 

(5) 

5bl 
(6) 

?b 
(7) 

6ob 
(8) 

5b2 
(9) 

?b3 
(10) (11) 

*2 
(12) 

f3 
(13) 

(cm/s) (cm/s) (mm) fan) (cm/s) (cm/s) (cm/s) (deer.) (degr.) (degr.) 

RA        I 

RB        i 
29.83 -2.6 95.0 4.11 49.8 6.22 -0.054 1.33 1.03 49.5 191.i 0.2 

VOORA     j 

VOORB     1 
26.5 -3.0 84.5 3.65 45.8 5.72 

VIORA     i 

VIORB     i 
25.7 9.6 31.8 3.54 44.7 5.58 0.0315 0.095 1.46 1.18 53.1 196.7 343.7 

V20RA     ) 

V20RB     ) 
24.3 22.7 77.3 3.35 41.5 5.19 0.1807 0.329 1.35 1.23 52.7 193.1 331.3 

JONSSON ('63) 
(cf. Ch. 6) 

211 0.5 2850 112.8 697.8 20.79 0.0121 0.96 1.49 25.4 305.6 76.3 

(1) Uj « amplitude of the 1st harmonic of the velocity just outside the boundary layer 
(2) U - mean velocity at z - ^ax  " 1-5 Z 
(3) ai - UIT/2TT; (4) r - 33 z0;  ?5) Z - K pb]T 
(6)-(]3) These values have been adopted from the numerical solution 
(8) eob - th//m> 

Table 1   Test parameters 

6 Comparison between theory and measurements• 

Comparison is made between the theory and the measured mean velocity 
profiles V10RA and V20RA. The results are plotted in Fig. 3b. 

The theoretical curves (found from the computer program) differ from 
the ones which can be interpolated, using Fig. 3a, because of the effect 
of the strong second harmonic U2 (about 1/3 of the first harmonic U[) on 
T, which is not taken into account in the derivation of Fig. 3a. 

With respect to the comparison of the first harmonic, apart from the 
experiments, mentioned in Ch. 5, also the measurements of Jonsson (1963) 
(see also Jonsson and Carlsen, 1976) will be taken into consideration for 
the comparison between theory and measurements. The experimental data, as 
derived from the literature are added to Table 1. 

For the various experiments, the dimensionless amplitude and the 
phase of the defect velocity have been calculated and plotted against the 
dimensionless height above the bottom. The results are shown in Fig. 2. 
With respect to the amplitude of the defect velocity there is a rather 
good agreement between measurements and theory, whereas the phases still 
show discrepances. 

The comparison between the instantaneous velocity profiles according 
to the theory and the measurements (starting from a given upper boundary 
condition) is given in Figure 7. 

The general trend is rather well predicted, although the "overshoot" 
velocity tends to be higher according to the measurements than according 
to theory. Fig. 8 shows a(u)/p, , as function of the dimensionless dis- 
tance z* above the bottom for the various tests, a(u) being the standard 
deviation between the theoretical and measured values of the instantane- 
ous velocities at a certain height. The mean value a  of a(u), averaged 



1408 COASTAL ENGINEERING—1978 

-30.00 -10.00      ^.00 10.00 20.00 30. ( 
*CM/S   =   VELOCITY 

Fig.7a.    V10RA    a= 2.39  cm/s 

EXPLANATION: 

MEASURED PROFILE, AT t'-^-T 
THEORETICAL PROFILE 

i.oo      -'10.00    ^b'.oo ib. oo       20.00       30.00       40.00 -20.00      -'10.00    %oo 10.no       <?o.oo       so. 00 
MCM/S   =   VELOCITY *CM/S   =   VELOCITY 

00    50.00 

Fig.7b.  V20RA o=  2.27 cm/s 

Fig.7.  Instantaneous velocity profiles according to 
theory and measurements. 
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30.00 10.OQ 

Fie.7c.     RA      o= 4.71   cm/s 

EXPLANATION : 

•   MEASURED PROFILE, AT l.iT 
THEORETICAL PROFILE 

Fig.7d.  J0NSS0N (1963)   o= 10.79 cm/s 

Fig.7.  Instantaneous velocity profiles according to 
theory and measurements. 
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• HA —  5;4,71cm/a 
o JOH$SON<1963) d'lOJScm/s 

o 

< m 

> .A 
9  9, o%< • •* *. • 

° • vtORA d--2.39cm/s 
oV20ftA  o-2.27cm/s 

L..   1.     T 

• 
0 

• 
• 
• „ 

0 

>.  °° 

*<..*>• 
0 

8 »» \ » 
0.1    0.2   0.3   0.4    0.S   0.S   0.7    0.S   OS    1.0 

 ^. DIMENSIONLESS STANDARD 
DEVIATION a* :0(v)/pb, 

0.2    0.3    0.4    0.5    0.5    0.7 

     DIMENSIONLESS STANDARD 
DEVIATION 0*:0(u)/pb1 

Fig.8.  Dimensionless standard deviation as function 
of the dimensionless distance above the bottom. 

SMALL CONTRIBUTION 
OF OSCILLATION TO 

MEAN SHEAR STRESS 

Fig.9.  Comparison of the velocity defect according 
to Lundgren and the present theory. 
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over the considered levels within the boundary layer, has also been given 
in Figs. 7 and 8. 

7 The mean velocity profile according to the present theory and according 
to Lundgren 

Lundgren (1972) defines a shear stress velocity "Uj" (Eq. (19) of his 
paper), equal to xcw/p, in which "xcw" is the period-average of the bottom 
shear caused by waves and current. Thus "Uj" equals Pv./S0t, i

n tne present 
notation. 

Lundgren's equation ((23) of his paper) for the mean velocity profile 
reads, in the notation of the present paper: 

-  *V 1   z u = TC-<-T ia I" " A) (33) 
P
ob K   Zo 

in which he calls A the "velocity defect". 
In the present theory, the upper part of the velocity profile is given 

by: - 
pb    z u = -s-5- In — (z » z ) (34) 

6 , K   az        v     o 
ob      o 

Therefore "A" equals (Jlna)/K. In his Fig. 2 Lundgren presents as re- 
sult of his calculations^the value of A as function of "xcw/pU?", being in 
the present notation T/pUT, or in dimensionless notation      (Pb/^obU*) • 

In the computer program, p£/S0v> is known from the upper boundary con- 
dition (22). In the computer program for given values of p£ as well A as 
x/(pUj) can be calculated as function of aj/r; therefore Fig. 2 according 
to the lay-out of Lundgren may be reproduced according to the present the- 
ory. In Fig. 9 the lines of constant "A" as function of aj/r and x/pU? ac- 
cording to Lundgren and the present theory are drawn together. 

8 Summary and conclusions 

a. Bakker (1974) presented a numerical mathematical model of the turbulent 
bottom boundary layer in periodic waves with (or without) resultant cur- 
rent in the direction of wave propagation. This model starts from the 
Prandtl assumptions with respect to the relationship between shear 
stress and the instantaneous velocity gradient. Non-linear interactions 
are taken into account. 

b. In the present paper the mathematical model has been improved and has 
been compared with experimental investigations at the Delft Hydraulics 
Laboratory (DHL). Velocities at a series of successive levels above the 
bottom under free surface waves without, respectively with resultant 
current in a wave flume were measured with a laser-doppler velocity 
meter. 

c. The mathematical model predicts reality rather well although the phases 
of the first harmonic of the "defect velocity" in model and reality show 
discrepances. With respect to the resultant velocity is referred to Fig. 
3, with respect to the amplitude and phase of the first harmonic of the 
defect velocity to Fig. 2 and with respect to the instantaneous velocity 
profiles to Fig. 7. In Fig. 8 the standard deviation between measure- 
ments and theory is given as a function of the height ahove the bottom 
in a dimensionless graph. For this, p^j has been^used as reference ve- 
locity (the ratio between p^j and the amplitude Uj of the first har- 
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monic^of the velocity outside the boundary layer is given in Fig. 1) 
and KPuiT as a reference height. 

d. The shear stress, exerted at the bottom according to this model and ac- 
cording to the investigation of Lundgren (1972) appears to be of the 
same order of magnitude (Fig. 9), although the problem is approached 
from a different angle. 

e. In the future, the mathematical model will be improved by including 
higher harmonics than the third in the upper boundary conditions; the 
measurements will be continued with similar tests in the Oscillating 
Water Tunnel of the DHL; a (less accurate) analytical theory will be 
presented, giving more insight in the physics of the matter. 
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LIST OF SYMBOLS 

1 

f(z') 
h 
I 
^real 
P 

Pr 
r 
t 
T 
u 

U 
ud 

K 

P 
T 
Treal 

H,0) Km 
w 

Other_ 

x 
» 

X 

xb 
;i.(2) 

,(3) 

stroke length UJT/2TT 
basic number of neperian logarithms 
universal function, from which Ku/p, can be found (vide (28)) 
water depth 
mixing length (schematized according to (7)) 
more realistic value of mixing length 
internal shear stress velocity (/x/p) in the fluid 
(instantaneous value of the) water pressure 
Nikuradse roughness 
time 
wave period 
horizontally directed water velocity (uniform in horizontal 
direction), after averaging turbulent fluctuations 
velocity u at z = zmax 

"defect velocity" u - U 
mean velocity, averaged over both wave period T and water depth 
h 
oscillatory water motion above the boundary layer (assumed uni- 
form over the height), i.e. u - u for z i  zmax 
horizontal coordinate 
vertical coordinate 
r/33, the theoretical level where the velocity is assumed to be 
zero 
height, at which the variations of the internal shear stress 
are attenuated 
multiplication factor of the apparent roughness, caused by the 
addition of the oscillation to the current  
ratio between p and v^r/p (about equal to Ap^/4 if p^ « 1 and 
if U2)... « Uj) 
Von Karman constant 
specific density 
internal shear stress in the fluid 
more realistic approximation of the shear stress averaged over 
the wave period than f (vide (4)) 
phase angle of harmonics of the shear stress velocity p 
phase angle of harmonics of the velocity U at height z = zmax 
above the boundary layer 
angular frequency of first harmonic of oscillation (2ir/T) 

1*1 
sign(x 
X(x) 

svmbols_added_to a_variable_x: 

average value of x during period T 
"dimensionless variable", i.e. velocity divided by Pup or 
height divided by Kp^jT, or time, divided by T 
value of x at the bottom (z = 0) 
subscript applies to first, (second), (third) harmonic of x 
amplitude of harmonic x (always in combination with subscript 
1, 2 or 3) 
absolute value of x 
"+1" if x is positive, "-1" if x is negative 
value of variable X at height x 

,(3) 


