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Chapter 1
Information Theory Basics

1.1 Issues in Information Theory

The ultimate aim of telecommunications is to communicate information between two geo-

graphically separated locations via a communications channel with adequate quality. The the-

oretical foundations of information theory accrue from Shannon’s pioneering work [24–27],

and hence most tutorial interpretations of his work over the past fifty years rely fundamentally

on [24–27]. This chapter is no exception in this respect. Throughout this chapter we make

frequent references to Shannon’s seminal papers and to the work of various authors offering

further insights into Shannonian information theory. Since this monograph aims to provide

an all-encompassing coverage of video compression and communications, we begin by ad-

dressing the underlying theoretical principles using a light-hearted approach, often relying on

worked examples.

Early forms of human telecommunications were based on smoke, drum or light signals,

bonfires, semaphores, and the like. Practical information sources can be classified as analog

and digital. The output of an analog source is a continuous function of time, such as, for

example, the air pressure variation at the membrane of a microphone due to someone talk-

ing. The roots of Nyquist’s sampling theorem are based on his observation of the maximum

achievable telegraph transmission rate over bandlimited channels [28]. In order to be able to

satisfy Nyquist’s sampling theorem the analogue source signal has to be bandlimited before

sampling. The analog source signal has to be transformed into a digital representation with

the aid of time- and amplitude-discretization using sampling and quantization.

The output of a digital source is one of a finite set of ordered, discrete symbols often

referred to as an alphabet. Digital sources are usually described by a range of characteristics,

such as the source alphabet, the symbol rate, the symbol probabilities, and the probabilistic

interdependence of symbols. For example, the probability of u following q in the English

language is p = 1, as in the word “equation.” Similarly, the joint probability of all pairs of

consecutive symbols can be evaluated.

In recent years, electronic telecommunications have become prevalent, although most

information sources provide information in other forms. For electronic telecommunications,
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the source information must be converted to electronic signals by a transducer. For example,

a microphone converts the air pressure waveform p(t) into voltage variation v(t), where

v(t) = c · p(t − τ), (1.1)

and the constant c represents a scaling factor, while τ is a delay parameter. Similarly, a video

camera scans the natural three-dimensional scene using optics and converts it into electronic

waveforms for transmission.

The electronic signal is then transmitted over the communications channel and converted

back to the required form, which may be carried out, for example, by a loudspeaker. It is im-

portant to ensure that the channel conveys the transmitted signal with adequate quality to the

receiver in order to enable information recovery. Communications channels can be classified

according to their ability to support analog or digital transmission of the source signals in a

simplex, duplex, or half-duplex fashion over fixed or mobile physical channels constituted by

pairs of wires, Time Division Multiple Access (TDMA) time-slots, or a Frequency Division

Multiple Access (FDMA) frequency slot.

The channel impairments may include superimposed, unwanted random signals, such as

thermal noise, crosstalk via multiplex systems from other users, man-made interference from

car ignition, fluorescent lighting, and other natural sources such as lightning. Just as the

natural sound pressure wave between two conversing persons will be impaired by the acous-

tic background noise at a busy railway station, similarly the reception quality of electronic

signals will be affected by the above unwanted electronic signals. In contrast, distortion man-

ifests itself differently from additive noise sources, since no impairment is explicitly added.

Distortion is more akin to the phenomenon of reverberating loudspeaker announcements in a

large, vacant hall, where no noise sources are present.

Some of the channel impairments can be mitigated or counteracted; others cannot. For ex-

ample, the effects of unpredictable additive random noise cannot be removed or “subtracted”

at the receiver. Its effects can be mitigated by increasing the transmitted signal’s power, but

the transmitted power cannot be increased without penalties, since the system’s nonlinear

distortion rapidly becomes dominant at higher signal levels. This process is similar to the

phenomenon of increasing the music volume in a car parked near a busy road to a level where

the amplifier’s distortion becomes annoyingly dominant.

In practical systems, the Signal-to-Noise Ratio (SNR) quantifying the wanted and un-

wanted signal powers at the channel’s output is a prime channel parameter. Other important

channel parameters are its amplitude and phase response, determining its usable bandwidth

(B), over which the signal can be transmitted without excessive distortion. Among the most

frequently used statistical noise properties are the probability density function (PDF), cumu-

lative density function (CDF), and power spectral density (PSD).

The fundamental communications system design considerations are whether a high-fidelity

(HI-FI) or just acceptable video or speech quality is required from a system, which predeter-

mines, among other factors, its cost, bandwidth requirements, as well as the number of chan-

nels available, and has implementational complexity ramifications. Equally important are

the issues of robustness against channel impairments, system delay, and so on. The required

transmission range and worldwide roaming capabilities, the maximum available transmission

speed in terms of symbols/sec, information confidentiality, reception reliability, convenient
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Figure 1.1: Basic transmission model of information theory.

lightweight, solar-charged design, are similarly salient characteristics of a communications

system.

Information theory deals with a variety of problems associated with the performance lim-

its of the information transmission system, such as that depicted in Figure 1.1. The compo-

nents of this system constitute the subject of this monograph; hence they will be treated in

greater depth later in this volume. Suffice it to say at this stage that the transmitter seen in

Figure 1.1 incorporates a source encoder, a channel encoder, an interleaver, and a modulator

and their inverse functions at the receiver. The ideal source encoder endeavors to remove as

much redundancy as possible from the information source signal without affecting its source

representation fidelity (i.e., distortionlessly), and it remains oblivious of such practical con-

straints as a finite delay and limited signal processing complexity. In contrast, a practical

source encoder will have to retain a limited signal processing complexity and delay while

attempting to reduce the source representation bit rate to as low a value as possible. This

operation seeks to achieve better transmission efficiency, which can be expressed in terms of

bit-rate economy or bandwidth conservation.

The channel encoder re-inserts redundancy or parity information but in a controlled man-

ner in order to allow error correction at the receiver. Since this component is designed to

ensure the best exploitation of the re-inserted redundancy, it is expected to minimize the error
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probability over the most common channel, namely, the so-called Additive White Gaussian

Noise (AWGN) channel, which is characterized by a memoryless, random distribution of

channel errors. However, over wireless channels, which have recently become prevalent, the

errors tend to occur in bursts due to the presence of deep received signal fades induced by the

distructively superimposed multipath phenomena. This is why our schematic of Figure 1.1

contains an interleaver block, which is included in order to randomize the bursty channel er-

rors. Finally, the modulator is designed to ensure the most bandwidth-efficient transmission

of the source- and channel encoded, interleaved information stream, while maintaining the

lowest possible bit error probability. The receiver simply carries out the corresponding in-

verse functions of the transmitter. Observe in the figure that besides the direct interconnection

of the adjacent system components there are a number of additional links in the schematic,

which will require further study before their role can be highlighted. Thus, at the end of this

chapter we will return to this figure and guide the reader through its further intricate details.

Some fundamental problems transpiring from the schematic of Figure 1.1, which were

addressed in depth by a range of references due to Shannon [24–27], Nyquist [28], Hart-

ley [29], Abramson [30], Carlson [31], Raemer [32], and Ferenczy [33] and others are as

follows:

• What is the true information generation rate of our information sources? If we know

the answer, the efficiency of coding and transmission schemes can be evaluated by

comparing the actual transmission rate used with the source’s information emission

rate. The actual transmission rate used in practice is typically much higher than the

average information delivered by the source, and the closer these rates are, the better is

the coding efficiency.

• Given a noisy communications channel, what is the maximum reliable information

transmission rate? The thermal noise induced by the random motion of electrons is

present in all electronic devices, and if its power is high, it can seriously affect the

quality of signal transmission, allowing information transmission only at low-rates.

• Is the information emission rate the only important characteristic of a source, or are

other message features, such as the probability of occurrence of a message and the

joint probability of occurrence for various messages, also important?

• In a wider context, the topic of this whole monograph is related to the blocks of Fig-

ure 1.1 and to their interactions, but in this chapter we lay the theoretical foundations of

source and channel coding as well as transmission issues and define the characteristics

of an ideal Shannonian communications scheme.

Although numerous excellent treatises are available on these topics, which treat the same

subjects with a different flavor [31, 33, 34], our approach is similar to that of the above clas-

sic sources; since the roots are in Shannon’s work, references [24–27, 35, 36] are the most

pertinent and authoritative sources.

In this chapter we consider mainly discrete sources, in which each source message is

associated with a certain probability of occurrence, which might or might not be dependent on

previous source messages. Let us now give a rudimentary introduction to the characteristics

of the AWGN channel, which is the predominant channel model in information theory due

to its simplicity. The analytically less tractable wireless channels will be modeled mainly by

simulations in this monograph
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1.2 Additive White Gaussian Noise Channel

1.2.1 Background

In this section, we consider the communications channel, which exists between the trans-

mitter and the receiver, as shown in Figure 1.1. Accurate characterization of this channel

is essential if we are to remove the impairments imposed by the channel using signal pro-

cessing at the receiver. Here we initially consider only fixed communications links whereby

both terminals are stationary, although mobile radio communications channels, which change

significantly with time, are becoming more prevalent.

We define fixed communications channels to be those between a fixed transmitter and a

fixed receiver. These channels are exemplified by twisted pairs, cables, wave guides, optical

fiber and point-to-point microwave radio channels. Whatever the nature of the channel, its

output signal differs from the input signal. The difference might be deterministic or random,

but it is typically unknown to the receiver. Examples of channel impairments are dispersion,

nonlinear distortions, delay, and random noise.

Fixed communications channels can often be modeled by a linear transfer function, which

describes the channel dispersion. The ubiquitous additive Gaussian noise (AWGN) is a fun-

damental limiting factor in communications via linear time-invariant (LTI) channels. Al-

though the channel characteristics might change due to factors such as aging, temperature

changes, and channel switching, these variations will not be apparent over the course of a

typical communication session. It is this inherent time invariance that characterizes fixed

channels.

An ideal, distortion-free communications channel would have a flat frequency response

and linear phase response over the frequency range of −∞ . . . +∞, although in practice it is

sufficient to satisfy this condition over the bandwidth (B) of the signals to be transmitted, as

seen in Figure 1.2. In this figure, A(ω) represents the magnitude of the channel response at

frequency w, and φ(w) = wT represents the phase shift at frequency w due to the circuit

delay T .

Practical channels always have some linear distortions due to their bandlimited, nonflat

frequency response and nonlinear phase response. In addition, the group-delay response of

the channel, which is the derivative of the phase response, is often given.

1.2.2 Practical Gaussian Channels

Conventional telephony uses twisted copper wire pairs to connect subscribers to the local ex-

change. The bandwidth is approximately 3.4 kHz, and the waveform distortions are relatively

benign.

For applications requiring a higher bandwidth, coaxial cables can be used. Their atten-

uation increases approximately with the square root of the frequency. Hence, for wideband,

long-distance operation, they require channel equalization. Typically, coaxial cables can pro-

vide a bandwidth of about 50 MHz, and the transmission rate they can support is limited by

the so-called skin effect.

Point-to-point microwave radio channels typically utilize high-gain directional transmit

and receive antennas in a line-of-sight scenario, where free-space propagation conditions may

be applicable.
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Figure 1.2: Ideal, distortion-free channel model having a linear phase and a flat magnitude

response.

1.2.3 Gaussian Noise

Regardless of the communications channel used, random noise is always present. Noise can

be broadly classified as natural or man-made. Examples of man-made noise are those due to

electrical appliances, and fluorescent lighting, and the effects of these sources can usually be

mitigated at the source. Natural noise sources affecting radio transmissions include galactic

star radiations and atmospheric noise. There exists a low-noise frequency window in the

range of 1–10 GHz, where the effects of these sources are minimized.

Natural thermal noise is ubiquitous. This is due to the random motion of electrons, and

it can be reduced by reducing the temperature. Since thermal noise contains practically all

frequency components up to some 1013 Hz with equal power, it is often referred to as white

noise (WN) in an analogy to white light containing all colors with equal intensity. This WN

process can be characterized by its uniform power spectral density (PSD) N(ω) = N0/2
shown together with its autocorrelation function (ACF) in Figure 1.3.

The power spectral density of any signal can be conveniently measured by the help of

a selective narrowband power meter tuned across the bandwidth of the signal. The power

measured at any frequency is then plotted against the measurement frequency. The autocor-

relation function R(τ) of the signal x(t) gives an average indication of how predictable the

signal x(t) is after a period of τ seconds from its present value. Accordingly, it is defined as

follows:

R(τ) = lim
T→∞

1

T

∫ ∞

−∞

x(t)x(t + τ)dt. (1.2)

For a periodic signal x(t), it is sufficient to evaluate the above equation for a single period

T0, yielding:

R(τ) =
1

T0

∫ T0/2

−T0/2

x(t)x(t + τ)dt. (1.3)
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Figure 1.3: Power spectral density and autocorrelation of WN.

The basic properties of the ACF are:

• The ACF is symmetric: R(τ) = R(−τ).
• The ACF is monotonously decreasing: R(τ) ≤ R(0).
• For τ = 0 we have R(0) = x2(t), which is the signal’s power.

• The ACF and the PSD form a Fourier transform pair, which is formally stated as the

Wiener-Khintchine theorem, as follows:

R(τ) =
1

2π

∫ ∞

−∞

N(ω)ejωτdω

=
1

2π

∫ ∞

−∞

N0e
jωτ

2
dω

=
1

2π

N0

2

∫ ∞

−∞

ejωτdω =
N0

2
δ(τ), (1.4)

where δ(τ) is the Dirac delta function. Clearly, for any timed-domain shift τ > 0, the noise

is uncorrelated.

Bandlimited communications systems bandlimit not only the signal but the noise as well,

and this filtering limits the rate of change of the time-domain noise signal, introducing some

correlation over the interval of ±1/2B. The stylized PSD and ACF of bandlimited white

noise are displayed in Figure 1.4.
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Figure 1.4: Power spectral density and autocorrelation of bandlimited WN.

After bandlimiting, the autocorrelation function becomes:

R(τ) =
1

2π

∫ B

−B

N0

2
ejωτdω =

N0

2

∫ B

−B

ej2πfτdf

=
N0

2

[
ej2πfτ

j2πτ

]B

−B

=
1

j2πτ
[cos 2πBτ + j sin 2πBτ − cos 2πBτ + j sin 2πBτ ]

= N0B
sin(2πBτ)

2πBτ
, (1.5)

which is the well-known sinc-function seen in Figure 1.4.

In the time-domain, the amplitude distribution of the white thermal noise has a normal

or Gaussian distribution, and since it is inevitably added to the received signal, it is usually

referred to as additive white Gaussian noise (AWGN). Note that AWGN is therefore the

noise generated in the receiver. The probability density function (PDF) is the well-known

bell-shaped curve of the Gaussian distribution, given by

p(x) =
1

σ
√

2π
e−(x−m)/2σ2

, (1.6)

where m is the mean and σ2 is the variance. The effects of AWGN can be mitigated by

increasing the transmitted signal power and thereby reducing the relative effects of noise. The

signal-to-noise ratio (SNR) at the receiver’s input provides a good measure of the received

signal quality. This SNR is often referred to as the channel SNR.

1.3 Information of a Source

Based on Shannon’s work [24–27, 35, 36], let us introduce the basic terms and definitions

of information theory by considering a few simple examples. Assume that a simple 8-bit
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analog-to-digital (ADC) converter emits a sequence of mutually independent source symbols

that can take the values i = 1, 2, . . .256 with equal probability. One may wonder, how

much information can be inferred upon receiving one of these samples? It is intuitively clear

that this inferred information is definitely proportional to the “uncertainty” resolved by the

reception of one such symbol, which in turn implies that the information conveyed is related

to the number of levels in the ADC. More explicitly, the higher the number of legitimate

quantization levels, the lower the relative frequency or probability of receiving any one of

them and hence the more “surprising,” when any one of them is received. Therefore, less

probable quantized samples carry more information than their more frequent, more likely

counterparts.

Not suprisingly, one could resolve this uncertainty by simply asking a maximum of 256

questions, such as “Is the level 1?” “Is it 2? . . .” “Is it 256?” Following Hartley’s ap-

proach [29], a more efficient strategy would be to ask eight questions, such as: “Is the level

larger than 128?” No. “Is it larger than 64?” No. . . . “Is it larger than 2?” No. “Is it

larger than 1?” No. Clearly, the source symbol emitted was of magnitude one, provided that

the zero level was not used. We could therefore infer that log2 256 = 8 “Yes/No” binary

answers were needed to resolve any uncertainty as regards the source symbol’s level.

In more general terms, the information carried by any one symbol of a q-level source,

where all the levels are equiprobable with probabilities of pi = 1/q, i = 1 . . . q, is defined

as

I = log2q. (1.7)

Rewriting Equation 1.7 using the message probabilities pi = 1
q yields a more convenient

form:

I = log2

1

pi
= −log2pi, (1.8)

which now is also applicable in case of arbitrary, unequal message probabilities pi, again,

implying the plausible fact that the lower the probability of a certain source symbol, the

higher the information conveyed by its occurrence. Observe, however, that for unquantized

analog sources, where as regards to the number of possible source symbols we have q → ∞
and hence the probability of any analog sample becomes infinitesimally low, these definitions

become meaningless.

Let us now consider a sequence of N consecutive q-ary symbols. This sequence can take

qN number of different values, delivering qN different messages. Therefore, the information

carried by one such sequence is:

IN = log2(q
N ) = N log2q, (1.9)

which is in perfect harmony with our expectation, delivering N times the information of a

single symbol, which was quantified by Equation 1.7. Doubling the sequence length to 2N
carries twice the information, as suggested by:

I2N = log2(q
2N ) = 2N · log2q. (1.10)

Before we proceed, let us briefly summarize the basic properties of information following

Shannon’s work [24–27, 35, 36]:
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• If for the probability of occurrences of the symbols j and k we have pj < pk, then as

regards the information carried by them we have: I(k) < I(j).
• If in the limit we have pk → 1, then for the information carried by the symbol k we

have I(k) → 0, implying that symbols, whose probability of occurrence tends to unity,

carry no information.

• If the symbol probability is in the range of 0 ≤ pk ≤ 1, then as regards the information

carried by it we have I(k) ≥ 0.

• For independent messages k and j, their joint information is given by the sum of their

information: I(k, j) = I(k) + I(j). For example, the information carried by the

statement “My son is 14 years old and my daughter is 12” is equivalent to that of the

sum of these statements: “My son is 14 years old” and “My daughter is 12 years old.”

• In harmony with our expectation, if we have two equiprobable messages 0 and 1 with

probabilities, p1 = p2 = 1
2 , then from Equation 1.8 we have I(0) = I(1) = 1 bit.

1.4 Average Information of Discrete

Memoryless Sources

Following Shannon’s approach [24–27, 35, 36], let us now consider a source emitting one of

q possible symbols from the alphabet s = s1, s2, . . . si . . . sq having symbol probabilities

of pi, i = 1, 2, . . . q. Suppose that a long message of N symbols constituted by symbols

from the alphabet s = s1, s2, . . . sq having symbol probabilities of pi is to be transmitted.

Then the symbol si appears in every N -symbol message on the average pi · N number of

times, provided the message length is sufficiently long. The information carried by symbol

si is log21/pi and its pi · N occurrences yield an information contribution of

I(i) = pi · N · log2

1

pi
. (1.11)

Upon summing the contributions of all the q symbols, we acquire the total information carried

by the N -symbol sequence:

I =

q
∑

i=1

piN · log2

1

pi
[bits]. (1.12)

Averaging this over the N symbols of the sequence yields the average information per sym-

bol, which is referred to as the source’s entropy [25] :

H =
I

N
=

q
∑

i=1

pi · log2

1

pi
= −

q
∑

i=1

pilog2pi [bit/symbol]. (1.13)

Then the average source information rate can be defined as the product of the information

carried by a source symbol, given by the entropy H and the source emission rate Rs:

R = Rs · H [bits/sec]. (1.14)



1.4.1. Maximum Entropy of a Binary Source 21

Observe that Equation 1.13 is analogous to the discrete form of the first moment or in other

words the mean of a random process with a probability density function (PDF) of p(x), as in

x =

∫ ∞

−∞

x · p(x)dx, (1.15)

where the averaging corresponds to the integration, and the instantaneous value of the random

variable x represents the information log2 pi carried by message i, which is weighted by its

probability of occurrence pi quantified for a continuous variable x by p(x).

1.4.1 Maximum Entropy of a Binary Source

Let us assume that a binary source, for which q = 2, emits two symbols with probabilities

p1 = p and p2 = (1 − p), where the sum of the symbol probabilities must be unity.

In order to quantify the maximum average information of a symbol from this source as a

function of the symbol probabilities, we note from Equation 1.13 that the entropy is given by:

H(p) = −p · log2p − (1 − p) · log2(1 − p). (1.16)

As in any maximization problem, we set ∂H(p)/∂p = 0, and upon using the differentiation

chain rule of (u ·v)′ = u′ ·v +u ·v′ as well as exploiting that (logax)′ = 1
x logae we arrive

at:

∂H(p)

∂p
= −log2p − p

p
· log2e + log2(1 − p) +

(1 − p)

(1 − p)
log2e = 0

log2p = log2(1 − p)

p = (1 − p)

p = 0.5.

This result suggests that the entropy is maximum for equiprobable binary messages. Plotting

Equation 1.16 for arbitrary p values yields Figure 1.5, in which Shannon suggested that the

average information carried by a symbol of a binary source is low, if one of the symbols has

a high probability, while the other a low probability.

Example: Let us compute the entropy of the binary source having message probabili-

ties of p1 = 1
8 , p2 = 7

8 .

The entropy is expressed as:

H = −1

8
log2

1

8
− 7

8
log2

7

8
.

Exploiting the following equivalence:

log2(x) = log10(x) · log2(10) ≈ 3.322 · log10(x) (1.17)

we have:

H ≈ 3

8
− 7

8
· 3.322 · log10

7

8
≈ 0.54 [bit/symbol],
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Figure 1.5: Entropy versus message probability p for a binary source. c©Shannon [25], BSTJ,

1948.

again implying that if the symbol probabilities are rather different, the entropy becomes

significantly lower than the achievable 1 bit/symbol. This is because the probability of

encountering the more likely symbol is so close to unity that it carries hardly any infor-

mation, which cannot be compensated by the more “informative” symbol’s reception.

For the even more unbalanced situation of p1 = 0.1 and p2 = 0.9 we have:

H = −0.1 log2 0.1 − 0.9 · log2 0.9

≈ −(0.3322 · log10 0.1 + 0.9 · 3.322 · log10 0.9)

≈ 0.3322 + 0.1368

≈ 0.47 [bit/symbol].

In the extreme case of p1 = 0 or p2 = 1 we have H = 0. As stated before, the

average source information rate is defined as the product of the information carried

by a source symbol, given by the entropy H and the source emission rate Rs, yielding

R = Rs ·H [bits/sec]. Transmitting the source symbols via a perfect noiseless channel

yields the same received sequence without loss of information.

1.4.2 Maximum Entropy of a q-ary Source

For a q-ary source the entropy is given by:

H = −
q

∑

i=1

pi log2 pi, (1.18)

where, again, the constraint
∑

pi = 1 must be satisfied. When determining the extreme

value of the above expression for the entropy H under the constraint of
∑

pi = 1, the
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following term has to be maximized:

D =

q
∑

i=1

−pi log2 pi + λ ·
[

1 −
q

∑

i=1

pi

]

, (1.19)

where λ is the so-called Lagrange multiplier. Following the standard procedure of maximiz-

ing an expression, we set:

∂D

∂pi
= − log2 pi −

pi

pi
· log2 e − λ = 0

leading to

log2 pi = −(log2 e + λ) = Constant for i = 1 . . . q,

which implies that the maximum entropy of a q-ary source is maintained, if all message

probabilities are identical, although at this stage the value of this constant probability is not

explicit. Note, however, that the message probabilites must sum to unity, and hence:

q
∑

i=1

pi = 1 = q · a, (1.20)

where a is a constant, leading to a = 1/q = pi, implying that the entropy of any q-ary

source is maximum for equiprobable messages. Furthermore, H is always bounded according

to:

0 ≤ H ≤ log2 q. (1.21)

1.5 Source Coding for a Discrete

Memoryless Source

Interpreting Shannon’s work [24–27, 35, 36] further, we see that source coding is the process

by which the output of a q-ary information source is converted to a binary sequence for

transmission via binary channels, as seen in Figure 1.1. When a discrete memoryless source

generates q-ary equiprobable symbols with an average information rate of R = Rs log2 q,

all symbols convey the same amount of information, and efficient signaling takes the form

of binary transmissions at a rate of R bps. When the symbol probabilities are unequal, the

minimum required source rate for distortionless transmission is reduced to

R = Rs · H < Rs log2 q. (1.22)

Then the transmission of a highly probable symbol carries little information and hence as-

signing log2 q number of bits to it does not use the channel efficiently. What can be done to

improve transmission efficiency? Shannon’s source coding theorem suggests that by using

a source encoder before transmission the efficiency of the system with equiprobable source

symbols can be arbitrarily approached.
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Algorithm 1 (Shannon-Fano Coding) This algorithm summarizes the Shannon-Fano cod-

ing steps. (See also Figure 1.6 and Table 1.1.)

1. The source symbols S0 . . . S7 are first sorted in descending
order of probability of occurrence.

2. Then the symbols are divided into two subgroups so that
the subgroup probabilities are as close to each other as
possible. This is symbolized by the horizontal divisions
in Table 1.1.

3. When allocating codewords to represent the source
symbols, we assign a logical zero to the top subgroup
and logical one to the bottom subgroup in the appropriate
column under ‘‘coding steps.’’

4. If there is more than one symbol in the subgroup, this
method is continued until no further divisions are
possible.

5. Finally, the variable-length codewords are output to the
channel.

Coding efficiency can be defined as the ratio of the source information rate and the av-

erage output bit rate of the source encoder. If this ratio approaches unity, implying that

the source encoder’s output rate is close to the source information rate, the source encoder is

highly efficient. There are many source encoding algorithms, but the most powerful approach

suggested was Shannon’s method [24], which is best illustrated by means of the following

example, portrayed in Table 1.1, Algorithm 1, and Figure 1.6.

1.5.1 Shannon-Fano Coding

The Shannon-Fano coding algorithm is based on the simple concept of encoding frequent

messages using short codewords and infrequent ones by long codewords, while reducing

the average message length. This algorithm is part of virtually all treatises dealing with

information theory, such as, for example, Carlson’s work [31]. The formal coding steps listed

in Algorithm 1 and in the flowchart of Figure 1.6 can be readily followed in the context of a

simple example in Table 1.1. The average codeword length is given by weighting the length

of any codeword by its probability, yielding:

(0.27 + 0.2) · 2 + (0.17 + 0.16) · 3 + 2 · 0.06 · 4 + 2 · 0.04 · 4 ≈ 2.73 [bit].
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Stop, output encoded symbols
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Figure 1.6: Shannon-Fano Coding Algorithm (see also Table 1.1 and Algorithm 1).

Symb. Prob. Coding Steps Codeword

1 2 3 4

S0 0.27 0 0 00

S1 0.20 0 1 01

S2 0.17 1 0 0 100

S3 0.16 1 0 1 101

S4 0.06 1 1 0 0 1100

S5 0.06 1 1 0 1 1101

S6 0.04 1 1 1 0 1110

S7 0.04 1 1 1 1 1111

Table 1.1: Shannon-Fano Coding Example Based on Algorithm 1 and Figure 1.6
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Algorithm 2 (Huffman Coding) This algorithm summarizes the Huffman coding steps.

1. Arrange the symbol probabilities pi in decreasing order
and consider them as ‘‘leaf-nodes,’’ as suggested by
Table 1.2.

2. While there is more than one node, merge the two nodes
having the lowest probability and assign 0/1 to the
upper/lower branches, respectively.

3. Read the assigned ‘‘transition bits’’ on the branches
from top to bottom in order to derive the codewords.

The entropy of the source is:

H = −
∑

i

pi log2 pi (1.23)

= −(log2 10)
∑

i

pi log10 pi

≈ −3.322 · [0.27 · log10 0.27 + 0.2 · log10 0.2

+0.17 · log10 0.17 + 0.16 · log10 0.16

+2 · 0.06 · log10 0.06 + 2 · 0.04 · log10 0.04]

≈ 2.691 [bit/symbol].

Since the average codeword length of 2.73 bit/symbol is very close to the entropy of 2.691

bit/symbol, a high coding efficiency is predicted, which can be computed as:

E ≈ 2.691

2.73
≈ 98.6 %.

The straightforward 3 bit/symbol binary coded decimal (BCD) assignment gives an effi-

ciency of:

E ≈ 2.691

3
≈ 89.69 %.

In summary, Shannon-Fano coding allowed us to create a set of uniquely invertible mappings

to a set of codewords, which facilitate a more efficient transmission of the source symbols,

than straightforward BCD representations would. This was possible with no coding impair-

ment (i.e., losslessly). Having highlighted the philosophy of the Shannon-Fano noiseless or

distortionless coding technique, let us now concentrate on the closely related Huffman coding

principle.

1.5.2 Huffman Coding

The Huffman Coding (HC) algorithm is best understood by referring to the flowchart of

Figure 1.7 and to the formal coding description of Algorithm 2, while a simple practical

example is portrayed in Table 1.2, which leads to the Huffman codes summarized in Table 1.3.

Note that we used the same symbol probabilities as in our Shannon-Fano coding example,
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Symb. Prob. Step 1 & 2 Step 3 & 4 Group Code

Code Prob. Code Prob.

S0 0.27 S0 -

S1 0.20 S1 -

S2 0.17 0 0.33 S23 0

S3 0.16 1 1

S4 0.06 0 0.12 0 00

S5 0.06 1 0 0.20 S4567 01

S6 0.04 0 0.08 1 10

S7 0.04 1 1 11

Symb. Prob. Step 5 & 6 Step 7 Codeword

Code Prob. Code Prob.

S23 0.33 0 0.6 0 00

S0 0.27 1 1.0 01

S1 0.20 0 0.4 1 10

S4567 0.20 1 11

Table 1.2: Huffman Coding Example Based on Algorithm 2 and Figure 1.7 (for final code

assignment see Table 1.3)

Symbol Probability BCD Huffman Code

S0 0.27 000 01

S1 0.20 001 10

S2 0.17 010 000

S3 0.16 011 001

S4 0.06 100 1100

S5 0.06 101 1101

S6 0.04 110 1110

S7 0.04 111 1111

Table 1.3: Huffman Coding Example Summary of Table 1.2
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Figure 1.7: Huffman coding algorithm (see also Algorithm 2 and Table 1.2).

but the Huffman algorithm leads to a different codeword assignment. Nonetheless, the code’s

efficiency is identical to that of the Shannon-Fano algorithm.

The symbol-merging procedure can also be conveniently viewed using the example of

Figure 1.8, where the Huffman codewords are derived by reading the associated 1 and 0

symbols from the end of the tree backward, that is, toward the source symbols S0 . . . S7.

Again, these codewords are summarized in Table 1.3.

In order to arrive at a fixed average channel bit rate, which is convenient in many com-

munications systems, a long buffer might be needed, causing storage and delay problems.

Observe from Table 1.3 that the Huffman coding algorithm gives codewords that can be

uniquely decoded, which is a crucial prerequisite for its practical employment. This is be-

cause no codeword can be a prefix of any longer one. For example, for the following sequence
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Figure 1.8: Tree-based Huffman coding example.
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of codewords . . . , 00, 10, 010, 110, 1111, . . . the source sequence of . . . S0, S1, S2, S3, S8 . . .
can be uniquely inferred from Table 1.3.

In our discussions so far, we have assumed that the source symbols were completely in-

dependent of each other. Such a source is usually referred to as a memoryless source. By

contrast, sources where the probability of a certain symbol also depends on what the previous

symbol was are often termed sources exhibiting memory. These sources are typically ban-

dlimited sample sequences, such as, for example, a set of correlated or “similar-magnitude”

speech samples or adjacent video pixels. Let us now consider sources that exhibit memory.

1.6 Entropy of Discrete Sources Exhibiting Memory

Let us invoke Shannon’s approach [24–27,35,36] in order to illustrate sources with and with-

out memory. Let us therefore consider an uncorrelated random white Gaussian noise (WGN)

process, which was passed through a low-pass filter. The corresponding autocorrelation func-

tions (ACF) and power spectral density (PSD) functions were portrayed in Figures 1.3 and

1.4. Observe in the figures that through low-pass filtering a WGN process introduces corre-

lation by limiting the rate at which amplitude changes are possible, smoothing the amplitude

of abrupt noise peaks. This example suggests that all bandlimited signals are correlated over

a finite interval. Most analog source signals, such as speech and video, are inherently corre-

lated, owing to physical restrictions imposed on the analog source. Hence all practical analog

sources possess some grade of memory, a property that is also retained after sampling and

quantization. An important feature of sources with memory is that they are predictable to a

certain extent, hence, they can usually be more efficiently encoded than unpredictable sources

having no memory.

1.6.1 Two-State Markov Model for Discrete

Sources Exhibiting Memory

Let us now introduce a simple analytically tractable model for treating sources that exhibit

memory. Predictable sources that have memory can be conveniently modeled by Markov

processes. A source having a memory of one symbol interval directly “remembers” only

the previously emitted source symbol and depending on this previous symbol it emits one

of its legitimate symbols with a certain probability, which depends explicitly on the state

associated with this previous symbol. A one-symbol-memory model is often referred to as

a first-order model. For example, if in a first-order model the previous symbol can take

only two different values, we have two different states, and this simple two-state first-order

Markov model is characterized by the state transition diagram of Figure 1.9. Previously, in

the context of Shannon-Fano and Huffman coding of memoryless information sources, we

used the notation of Si, i = 0, 1, . . . for the various symbols to be encoded. In this section,

we are dealing with sources exhibiting memory and hence for the sake of distinction we use

the symbol notation of Xi, i = 1, 2, . . .. If, for the sake of illustration, the previous emitted

symbol was X1, the state machine of Figure 1.9 is in state X1, and in the current signaling

interval it can generate one of two symbols, namely, X1 and X2, whose probability depends

explicitly on the previous state X1. However, not all two-state Markov models are as simple

as that of Figure 1.9, since the transitions from state X1 to X2 are not necessarily associated

with emitting the same symbol as the transitions from state X2 to X1. Thus more elaborate

example will be considered later in this chapter.
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Observe in Figure 1.9 that the corresponding transition probabilities from state X1 are

given by the conditional probabilities p12 = P (X2/X1) and p11 = P (X1/X1) = 1 −
P (X2/X1). Similar findings can be observed as regards state X2. These dependencies can

also be stated from a different point of view as follows. The probability of occurrence of

a particular symbol depends not only on the symbol itself, but also on the previous symbol

emitted. Thus, the symbol entropy for state X1 and X2 will now be characterized by means of

the conditional probabilities associated with the transitions merging in these states. Explicitly,

the symbol entropy for state Xi, i = 1, 2 is given by:

Hi =
2∑

j=1

pij · log2

1

pij
i = 1, 2

= pi1 · log2

1

pi1
+ pi2 · log2

1

pi2
, (1.24)

yielding the symbol entropies, that is, the average information carried by the symbols emitted

in states X1 and X2, respectively, as:

H1 = p11 · log2

1

p11
+ p12 · log2

1

p12

H2 = p21 · log2

1

p21
+ p22 · log2

1

p22
. (1.25)

Both symbol entropies, H1 and H2, are characteristic of the average information conveyed

by a symbol emitted in state X1 and X2, respectively. In order to compute the overall entropy

H of this source, they must be weighted by the probability of occurrence, P1 and P2, of these

states:

H =

2∑

i=1

PiHi

=

2∑

i=1

Pi

2∑

j=1

pij log2

1

pij
. (1.26)

Assuming a highly predictable source having high adjacent sample correlation, it is plau-

sible that once the source is in a given state, it is more likely to remain in that state than to

traverse into the other state. For example, assuming that the state machine of Figure 1.9 is

in state X1 and the source is a highly correlated, predictable source, we are likely to observe

long runs of X1. Conversely, once in state X2, long strings of X2 symbols will typically

follow.

1.6.2 N -State Markov Model for Discrete Sources

Exhibiting Memory

In general, assuming N legitimate states, (i.e., N possible source symbols) and following

similar arguments, Markov models are characterised by their state probabilities P (Xi), i = 1 . . .N ,

where N is the number of states, as well as by the transition probabilities pij = P (Xi/Xj),
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Figure 1.9: Two-state first-order Markov model.

where pij explicitly indicates the probability of traversing from state Xj to state Xi. Their

further basic feature is that they emit a source symbol at every state transition, as will be

shown in the context of an example presented in Section 1.7. Similarly to the two-state

model, we define the entropy of a source having memory as the weighted average of the en-

tropy of the individual symbols emitted from each state, where weighting is carried out taking

into account the probability of occurrence of the individual states, namely Pi. In analytical

terms , the symbol entropy for state Xi, i = 1 . . .N is given by:

Hi =
N∑

j=1

pij · log2

1

pij
i = 1 . . .N. (1.27)

The averaged, weighted symbol entropies give the source entropy:

H =

N∑

i=1

PiHi

=

N∑

i=1

Pi

N∑

j=1

pij log2

1

pij
. (1.28)

Finally, assuming a source symbol rate of vs, the average information emission rate R of the

source is given by:

R = vs · H [bps]. (1.29)
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Figure 1.10: Two-state Markov model example.

1.7 Examples

1.7.1 Two-State Markov Model Example

As mentioned in the previous section, we now consider a slightly more sophisticated Markov

model, where the symbols emitted upon traversing from state X1 to X2 are different from

those when traversing from state X2 to X1. More explicitly:

• Consider a discrete source that was described by the two-state Markov model of Fig-

ure 1.9, where the transition probabilities are

p11 = P (X1/X1) = 0.9 p22 = P (X2/X2) = 0.1

p12 = P (X1/X2) = 0.1 p21 = P (X2/X1) = 0.9,

while the state probabilities are

P (X1) = 0.8 and P (X2) = 0.2. (1.30)

The source emits one of four symbols, namely, a, b, c, and d, upon every state transi-

tion, as seen in Figure 1.10. Let us find

(a) the source entropy and

(b) the average information content per symbol in messages of one,

two, and three symbols.

• Message Probabilities

Let us consider two sample sequences acb and aab. As shown in Figure 1.10, the

transitions leading to acb are (1 ❀ 1), (1 ❀ 2), and (2 ❀ 2). The probability

of encountering this sequence is 0.8 · 0.9 · 0.1 · 0.1 = 0.0072. The sequence aab
has a probability of zero because the transition from a to b is illegal. Further path

(i.e., message) probabilities are tabulated in Table 1.4 along with the information of

I = − log2 P of all the legitimate messages.
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Message Probabilities
Information conveyed

(bit/message)

Pa = 0.9 × 0.8 = 0.72 Ia = 0.474
Pb = 0.1 × 0.2 = 0.02 Ib = 5.644
Pc = 0.1 × 0.8 = 0.08 Ic = 3.644
Pd = 0.9 × 0.2 = 0.18 Id = 2.474
Paa = 0.72 × 0.9 = 0.648 Iaa = 0.626
Pac = 0.72 × 0.1 = 0.072 Iac = 3.796
Pcb = 0.08 × 0.1 = 0.008 Icb = 6.966
Pcd = 0.08 × 0.9 = 0.072 Icd = 3.796
Pbb = 0.02 × 0.1 = 0.002 Ibb = 8.966
Pbd = 0.02 × 0.9 = 0.018 Ibd = 5.796
Pda = 0.18 × 0.9 = 0.162 Ida = 2.626
Pdc = 0.18 × 0.1 = 0.018 Idc = 5.796

Table 1.4: Message Probabilities of Example

• Source Entropy

– According to Equation 1.27, the entropy of symbols X1 and X2 is computed as

follows:

H1 = −p12 · log2p12 − p11 · log2p11

= 0.1 · log2 10 + 0.9 · log2

1

0.9
≈ 0.469 bit/symbol (1.31)

H2 = −p21 · log2p21 − p22 · log2p22

≈ 0.469 bit/symbol (1.32)

– Then their weighted average is calculated using the probability of occurrence of

each state in order to derive the average information per message for this source:

H ≈ 0.8 · 0.469 + 0.2 · 0.469 ≈ 0.469 bit/symbol.

– The average information per symbol I2 in two-symbol messages is computed

from the entropy h2 of the two-symbol messages as follows:

h2 =

8∑

1

Psymbol · Isymbol

= Paa · Iaa + Pac · Iac + . . . + Pdc · Idc

≈ 1.66 bits/2 symbols, (1.33)

giving I2 = h2/2 ≈ 0.83 bits/symbol information on average upon receiving a

two-symbol message.
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– There are eight two-symbol messages; hence, the maximum possible information

conveyed is log2 8 = 3 bits/2 symbols, or 1.5 bits/symbol. However, since the

symbol probabilities of P1 = 0.8 and P2 = 0.2 are fairly different, this scheme

has a significantly lower conveyed information per symbol, namely, I2 ≈ 0.83
bits/symbol.

– Similarly, one can find the average information content per symbol for arbitrarily

long messages of concatenated source symbols. For one-symbol messages we

have:

I1 = h1 =

4∑

1

Psymbol · Isymbol

= Pa · Ia + . . . + Pd · Id

≈ 0.72 × 0.474 + . . . + 0.18 × 2.474

≈ 0.341 + 0.113 + 0.292 + 0.445

≈ 1.191 bit/symbol. (1.34)

We note that the maximum possible information carried by one-symbol messages

is h1max = log2 4 = 2 bit/symbol, since there are four one-symbol messages in

Table 1.4.

• Observe the important tendency, in which, when sending longer messages of dependent

sources, the average information content per symbol is reduced. This is due to the

source’s memory, since consecutive symbol emissions are dependent on previous ones

and hence do not carry as much information as independent source symbols. This

becomes explicit by comparing I1 ≈ 1.191 and I2 ≈ 0.83 bits/symbol.

• Therefore, expanding the message length to be encoded yields more efficient coding

schemes, requiring a lower number of bits, if the source has a memory. This is the

essence of Shannon’s source coding theorem.

1.7.2 Four-State Markov Model for a 2-Bit Quantizer

Let us now augment the previously introduced two-state Markov-model concepts with the

aid of a four-state example. Let us assume that we have a discrete source constituted by a

2-bit quantizer, which is characterized by Figure 1.11. Assume further that due to bandlimi-

tation only transitions to adjacent quantization intervals are possible, since the bandlimitation

restricts the input signal’s rate of change. The probability of the signal samples residing in

intervals 1–4 is given by:

P (1) = P (4) = 0.1, P (2) = P (3) = 0.4.

The associated state transition probabilities are shown in Figure 1.11, along with the quan-

tized samples a, b, c, and d, which are transmitted when a state transition takes place, that is,

when taking a new sample from the analog source signal at the sampling-rate fs.

Although we have stipulated a number of simplifying assumptions, this example attempts

to illustrate the construction of Markov models in the context of a simple practical problem.
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Figure 1.11: Four-state Markov model for a 2-bit quantizer.

Next we construct a simpler example for augmenting the underlying concepts and set aside

the above four-state Markov-model example as a potential exercise for the reader.

1.8 Generating Model Sources

1.8.1 Autoregressive Model

In evaluating the performance of information processing systems, such as encoders and pre-

dictors, it is necessary to have “standardized” or easily described model sources. Although

a set of semistandardized speech and images test sequences is widely used by researchers

in codec performance testing, in contrast to analytical model sources, real speech or image

sources cannot be used in analytical studies. A widely used analytical model source is the

Autoregressive (AR) model. A zero mean random sequence y(n) is called an AR process of

order p, if it is generated as follows:

y(n) =

p
∑

k=1

aky(n − k) + ε(n), ∀n, (1.35)
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where ε(n) is an uncorrelated zero-mean, random input sequence with variance σ2; that is,

E{ε(n)} = 0

E{ε2(n)} = σ2

E{ε(n) · y(m)} = 0. (1.36)

From Equation 1.35 we surmise that an AR system recursively generates the present output

from p number of previous output samples given by y(n − k) and the present random input

sample ε(n).

1.8.2 AR Model Properties

AR models are very useful in studying information processing systems, such as speech and

image codecs, predictors, and quantizers. They have the following basic properties:

1. The first term of Equation 1.35, which is repeated here for convenience,

ŷ(n) =

p
∑

k=1

aky(n − k)

defines a predictor, giving an estimate ŷ(n) of y(n), which is associated with the min-

imum mean squared error between the two quantities.

2. Although ŷ(n) and y(n) depend explicitly only on the past p number of samples of

y(n), through the recursive relationship of Equation 1.35 this entails the entire past of

y(n). This is because each of the previous p samples depends on their predecessors.

3. Then Equation 1.35 can be written in the form of:

y(n) = ŷ(n) + ε(n), (1.37)

where ε(n) is the prediction error and ŷ(n) is the minimum variance prediction esti-

mate of y(n).
4. Without proof, we state that for a random Gaussian distributed prediction error se-

quence ε(n) these properties are characteristic of a pth order Markov process portrayed

in Figure 1.12. When this model is simplified for the case of p = 1, we arrive at the

schematic diagram shown in Figure 1.13.

5. The power spectral density (PSD) of the prediction error sequence ε(n) is that of a

random “white-noise” sequence, containing all possible frequency components with

the same energy. Hence, its autocorrelation function (ACF) is the Kronecker delta

function, given by the Wiener-Khintchine theorem:

E{ε(n) · ε(m)} = σ2δ(n − m). (1.38)

1.8.3 First-Order Markov Model

A variety of practical information sources are adequately modeled by the analytically tractable

first-order Markov model depicted in Figure 1.13, where the prediction order is p = 1. With
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Figure 1.13: First-order Markov model.

the aid of Equation 1.35 we have

y(n) = ε(n) + ay(n − 1),

where a is the adjacent sample correlation of the process y(n). Using the following recursion:

y(n − 1) = ε(n − 1) + a1y(n − 2)

...
...

...

y(n − k) = ε(n − k) + a1y(n − k − 1) (1.39)
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Figure 1.14: Predictive run-length codec scheme. c©Carlson [31].

we arrive at:

y(n) = ε(n) + a1[ε(n − 1) + ay(n − 2)]

= ε(n) + a1ε(n − 1) + a2y(n − 2),

which can be generalized to:

y(n) =

∞∑

j=0

ajε(n − j). (1.40)

Clearly, Equation 1.40 describes the first-order Markov process by the help of the adjacent

sample correlation a1 and the uncorrelated zero-mean random Gaussian process ε(n).

1.9 Run-Length Coding for Discrete Sources Exhibiting Memory

1.9.1 Run-Length Coding Principle [31]

For discrete sources having memory, (i.e., possessing intersample correlation), the coding ef-

ficiency can be significantly improved by predictive coding, allowing the required transmis-

sion rate and hence the channel bandwidth to be reduced. Particularly amenable to run-length

coding are binary sources with inherent memory, such as black and white documents, where

the predominance of white pixels suggests that a Run-Length-Coding (RLC) scheme, which

encodes the length of zero runs, rather than repeating long strings of zeros, provides high

coding efficiency.

Following Carlson’s interpretation [31], a predictive RLC scheme can be constructed ac-

cording to Figure 1.14. The q-ary source messages are first converted to binary bit format.
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Length of 0-run Encoder Output Decoder Output

l (n-bit codeword)

0 00 · · · 000 1

1 00 · · · 001 01

2 00 · · · 010 001

3 00 · · · 011 0001
...

...
...

N − 1 11 · · · 110 00 · · · 01

≥ N = 2n − 1 11 · · · 111 00 · · · 00

Table 1.5: Run-length Coding Table c© Carlson, 1975 [31]

For example, if an 8-bit analog-digital converter (ADC) is used, the 8-bit digital samples are

converted to binary format. This bit-stream, x(i), is then compared with the output signal

of the predictor, x̂(i), which is fed with the prediction error signal e(i). The comparator

is a simple mod-2 gate, outputting a logical 1, whenever the prediction fails; that is, the

predictor’s output is different from the incoming bit x(i). If, however, x(i) = x̂(i), the com-

parator indicates this by outputting a logical 0. For highly correlated signals from sources

with significant memory the predictions are usually correct, and hence long strings of 0 runs

are emitted, interspersed with an occasional 1. Thus, the prediction error signal e(i) can be

efficiently run-length encoded by noting and transmitting the length of zero runs.

The corresponding binary run-length coding principle becomes explicit from Table 1.5

and from our forthcoming coding efficiency analysis.

1.9.2 Run-Length Coding Compression Ratio [37]

Following Jain’s interpretation [37], let us now investigate the RLC efficiency by assuming

that a run of r successive logical 0s is followed by a 1. Instead of directly transmitting these

strings, we represent such a string as an n-bit word giving the length of the 0-run between

successive logical ones. When a 0-run longer than N = 2n−1 bits occurs, this is signaled as

the all 1 codeword, informing the decoder to wait for the next RLC codeword before releasing

the decoded sequence. Again, the scheme’s operation is characterized by Table 1.5. Clearly,

data compression is achieved if the average number of 0 data bits per run d is higher than the

number of bits, n, required to encode the 0-run length. Let us therefore compute the average

number of bits per run without RLC. If a run of r logical zeros are followed by a 1, the run-

length is (r + 1). The expected or mean value of (r + 1), namely, d = (r + 1), is calculated

by weighting each specific (r + 1) with its probability of occurrence that is, with its discrete

PDF c(r) and then averaging the weighted components, in:

d = (r + 1) =
N−1∑

r=0

(r + 1) · c(r) + Nc(N). (1.41)
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Figure 1.15: CDF and PDF of the geometric distribution of run-length l.

The PDF of a run of r zeros followed by a 1 is given by:

c(r) =

{
pr(1 − p) 0 ≤ r ≤ N − 1
pN r = N,

(1.42)

since the probability of N consecutive zeros is pN if r = N , while for shorter runs the

joint probability of r zeros followed by a 1 is given by pr · (1 − p). The PDF and CDF of

this distribution are shown in Figure 1.15 for p = 0.9 and p = 0.1, where p represents the

probability of a logical zero bit. Substituting Equation 1.42 in Equation 1.41 gives:

d = N · pN +

N−1∑

r=0

(r + 1) · pr · (1 − p)

= N · pN + 1 · p0 · (1 − p) + 2 · p · (1 − p) + . . . + N · pN−1 · (1 − p)

= N · pN + 1 + 2p + 3p2 + . . . + N · pN−1 − p − 2p2 . . . − N · pN

= 1 + p + p2 + · · · pN−1. (1.43)

Equation 1.43 is a simple geometric progression, given in closed form as:

d =
1 − pN

1 − p
. (1.44)

RLC Example: Using a run-length coding memory of M = 31 and a zero symbol

probability of p = 0.95, characterize the RLC efficiency.

Substituting N and p into Equation 1.44 for the average run-length we have:

d =
1 − 0.9531

1 − 0.95
≈ 1 − 0.204

0.05
≈ 15.92. (1.45)
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The compression ratio C achieved by RLC is given by:

C =
d

n
=

1 − pN

n(1 − p)
≈ 15.92

5
≈ 3.18. (1.46)

The achieved average bit rate is

B =
n

d
≈ 0.314 bit/pixel,

and the coding efficiency is computed as the ratio of the entropy (i.e., the lowest possi-

ble bit rate and the actual bit rate). The source entropy is given by:

H ≈ −0.95 · 3.322 · log10 0.95 − 0.05 · 3.322 · log10 0.05

≈ 0.286 bit/symbol, (1.47)

giving a coding efficiency of:

E = H/B ≈ 0.286/0.314 ≈ 91%.

This concludes our RLC example.

1.10 Information Transmission via

Discrete Channels

Let us now return to Shannon’s classic references [24–27, 35, 36] and assume that both the

channel and the source are discrete, and let us evaluate the amount of information transmitted

via the channel. We define the channel capacity characterizing the channel and show that

according to Shannon nearly error-free information transmission is possible at rates below

the channel capacity via the binary symmetric channel (BSC). Let us begin our discourse

with a simple introductory example.

1.10.1 Binary Symmetric Channel Example

Let us assume that a binary source is emitting a logical 1 with a probability of P (1) =
0.7 and a logical 0 with a probability of P (0) = 0.3. The channel’s error probability is

pe = 0.02. This scenario is characterized by the binary symmetric channel (BSC) model of

Figure 1.16. The probability of error-free reception is given by that of receiving 1, when a

logical 1 is transmitted plus the probability of receiving a 0 when 0 is transmitted, which is

also plausible from Figure 1.16. For example, the first of these two component probabilities

can be computed with the aid of Figure 1.16 as the product of the probability P (1) of a

logical 1 being transmitted and the conditional probability P (1/1) of receiving a 1, given the

condition that a 1 was transmitted:

P (Y1, X1) = P (X1) · P (Y1/X1) (1.48)

P (1, 1) = P (1) · P (1/1) = 0.7 · 0.98 = 0.686.
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Figure 1.16: The binary symmetric channel. c©Shannon [26], BSTJ, 1948.

Similarly, the probability of the error-free reception of a logical 0 is given by:

P (Y0, X0) = P (X0) · P (Y0/X0)

P (0, 0) = P (0) · P (0/0) = 0.3 · 0.98 = 0.294,

giving the total probability of error-free reception as:

Pcorrect = P (1, 1) + P (0, 0) = 0.98.

Following similar arguments, the probability of erroneous reception is also given by two

components. For example, using Figure 1.16, the probability of receiving a 1 when a 0 was

transmitted is computed by multiplying the probability P (0) of a logical 0 being transmitted

by the conditional probability P (1/0) of receiving a logical 1, given the fact that a 0 is known

to have been transmitted:

P (Y1, X0) = P (X0) · P (Y1/X0)

P (1, 0) = P (0) · P (1/0) = 0.3 · 0.02 = 0.006.

Conversely,

P (Y0, X1) = P (X1) · P (Y0/X1)

P (0, 1) = P (1) · P (0/1) = 0.7 · 0.02 = 0.014,

yielding a total error probability of:

Perror = P (1, 0) + P (0, 1) = 0.02,

which is constituted by the above two possible error events.
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Viewing events from a different angle, we observe that the total probability of receiving

1 is that of receiving a transmitted 1 correctly plus a transmitted 0 incorrectly:

P1 = P (1) · (1 − pe) + P (0) · pe (1.49)

= 0.7 · 0.98 + 0.3 · 0.02 = 0.686 + 0.006 = 0.692.

On the same note, the probability of receiving 0 is that of receiving a transmitted 0 correctly

plus a transmitted 1 incorrectly:

P0 = P (0) · (1 − pe) + P (1) · pe (1.50)

= 0.3 · 0.98 + 0.7 · 0.02 = 0.294 + 0.014 = 0.308.

In the next example, we further study the performance of the BSC for a range of different

parameters in order to gain a deeper insight into its behavior.

Example: Repeat the above calculations for P (1) = 1, 0.9, 0.5, and pe = 0, 0.1, 0.2, 0.5
using the BSC model of Figure 1.16. Compute and tabulate the probabilities P (1, 1),
P (0, 0), P (1, 0), P (0, 1), Pcorrect, Perror, P1, and P0 for these parameter combina-

tions, including also their values for the previous example, namely, for P (1) = 0.7,

P (0) = 0.3 and pe = 0.02. Here we neglected the details of the calculations and sum-

marized the results in Table 1.6. Some of the above quantities are plotted for further

study in Figure 1.17, which reveals the interdependency of the various probabilities for

the interested reader.

Having studied the performance of the BSC, the next question that arises is, how much

information can be inferred upon reception of a 1 and a 0 over an imperfect (i.e., error-prone)

channel. In order to answer this question, let us first generalize the above intuitive findings in

the form of Bayes’ rule.

1.10.2 Bayes’ Rule

Let Yj represent the received symbols and Xi the transmitted symbols having probabilities of

P (Yj) and P (Xi), respectively. Let us also characterize the forward transition probabilities

of the binary symmetric channel as suggested by Figure 1.18.

Then in general, following from the previous introductory example, the joint probability

P (Yj , Xi) of receiving Yj , when the transmitted source symbol was Xi, is computed as the

probability P (Xi) of transmitting Xi, multiplied by the conditional probability P (Yj/Xi) of

receiving Yj , when Xi is known to have been transmitted:

P (Yj , Xi) = P (Xi) · P (Yj/Xi), (1.51)

a result that we have already intuitively exploited in the previous example. Since for the joint

probabilities P (Yj , Xi) = P (Xi, Yj) holds, we have:

P (Xi, Yj) = P (Yj) · P (Xi/Yj)

= P (Xi) · P (Yj/Xi). (1.52)
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Equation 1.52 is often presented in the form:

P (Xi/Yj) =
P (Xi, Yj)

P (Yj)

=
P (Yj) · P (Xi/Yj)

P (Yj)
, (1.53)

which is referred to as Bayes’ rule.

Logically, the probability of receiving a particular Yj = Yj0 is the sum of all joint proba-

bilities P (Xi, Yj0) over the range of Xi. This corresponds to the probability of receiving the

transmitted Xi correctly, giving rise to the channel output Yj0 plus the sum of the probabilities

of all other possible transmitted symbols giving rise to Yj0 :

P (Yj) =
∑

X

P (Xi, Yj) =
∑

X

P (Xi)P (Yj/Xi). (1.54)

Similarly:

P (Xi) =
∑

Y

P (Xi, Yj) =
∑

Y

P (Yj)P (Xi/Yj). (1.55)

1.10.3 Mutual Information

In this section, we elaborate further on the ramifications of Shannon’s information theory [24–

27, 35, 36]. Over nonideal channels impairments are introduced, and the received informa-

tion might be different from the transmitted information. In this section, we quantify the

amount of information that can be inferred from the received symbols over noisy channels.

In the spirit of Shannon’s fundamental work [24] and Carlson’s classic reference [31], let

us continue our discourse with the definition of mutual information. We have already used

the notation P (Xi) to denote the probability that the source symbol Xi was transmitted and

P (Yi) to denote the probability that the symbol Yj was received. The joint probability that

Xi was transmitted and Yj was received had been quantified by P (Xi, Yj), and P (Xi/Yj)
indicated the conditional probability that Xi was transmitted, given that Yj was received,

while P (Yj/Xi) was used for the conditional probability that Yj was received given that Xi

was transmitted.

In case of i = j, the conditional probabilities P (Yj/Xj)j = 1 · · · q represent the error-

free transmission probabilities of the source symbols j = 1 · · · q. For example, in Figure 1.18

the probabilities P (Y0/X0) and P (Y1/X1) are the probabilities of the error-free reception of

a transmitted X0 and X1 source symbol, respectively. The probabilities P (Yj/Xi)j 6= i, on

the other hand, give the individual error probabilities, which are characteristic of error events

that corrupted a transmitted symbol Xi to a received symbol of Yj . The corresponding error

probabilities in Figure 1.18 are P (Y0/X1) and P (Y1/X0).
Let us define the mutual information of Xi and Yj as:

I(Xi, Yj) = log2

P (Xi/Yj)

P (Xi)
= log2

P (Xi, Yj)

P (Xi) · P (Yj)
= log2

P (Yj/Xi)

P (Yj)
bits, (1.56)
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which quantifies the amount of information conveyed, when Xi is transmitted and Yj is re-

ceived. Over a perfect, noiseless channel, each received symbol Yj uniquely identifies a

transmitted symbol Xi with a probability of P (Xi/Yj) = 1. Substituting this probability in

Equation 1.56 yields a mutual information of:

I(Xi, Yj) = log2

1

P (Xi)
, (1.57)

which is identical to the self-information of Xi and hence no information is lost over the

channel. If the channel is very noisy and the error probability becomes 0.5, then the received

symbol Yj becomes unrelated to the transmitted symbol Xi, since for a binary system upon

its reception there is a probability of 0.5 that X0 was transmitted and the probability of X1 is

also 0.5. Then formally Xi and Yj are independent and hence

P (Xi/Yj) =
P (Xi, Yj)

P (Yj)
=

P (Xi) · P (Yj)

P (Yj)
= P (Xi), (1.58)

giving a mutual information of:

I(Xi, Yj) = log2

P (Xi)

P (Xi)
= log2 1 = 0, (1.59)

implying that no information is conveyed via the channel. Practical communications channels

perform between these extreme values and are usually characterized by the average mutual

information defined as:

I(X, Y ) =
∑

x,y

P (Xi, Yj) · I(Xi, Yj)

=
∑

x,y

P (Xi, Yj) · log2

P (Xi/Yj)

P (Xi)
[bit/symbol].

(1.60)

Clearly, the average mutual information in Equation 1.60 is computed by weighting each

component I(Xi, Yj) by its probability of occurrence P (Xi, Yj) and summing these contri-

butions for all combinations of Xi and Yj . The average mutual information I(X, Y ) defined

above gives the average amount of source information acquired per received symbol, as dis-

tinguished from that per source symbol, which was given by the entropy H(X). Let us now

consolidate these definitions by working through the following numerical example.

1.10.4 Mutual Information Example

Using the same numeric values as in our introductory example as regards to the binary sym-

metric channel in Section 1.10.1, and exploiting that from Bayes’ rule in Equation 1.53, we

have:

P (Xi/Yj) =
P (Xi, Yj)

P (Yj)
.
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The following probabilities can be derived, which will be used at a later stage, in order to

determine the mutual information:

P (X1/Y1) = P (1/1) =
P (1, 1)

P1
=

0.686

0.692
≈ 0.9913

and

P (X0/Y0) = P (0/0) =
P (0, 0)

P0
=

0.294

0.3080
≈ 0.9545,

where P1 = 0.692 and P0 = 0.3080 represent the total probability of receiving 1 and 0,

respectively, which is the union of the respective events of error-free and erroneous receptions

yielding the specific logical value concerned. The mutual information from Equation 1.56 is

computed as:

I(X1, Y1) = log2

P (X1/Y1)

P (X1)

≈ log2

0.9913

0.7
≈ 0.502 bit (1.61)

I(X0, Y0) ≈ log2

0.9545

0.3
≈ 1.67 bit. (1.62)

These figures must be contrasted with the amount of source information conveyed by the

source symbols X0, X1:

I(0) = log2

1

0.3
≈ log2 3.33 ≈ 1.737 bit/symbol (1.63)

and

I(1) = log2

1

0.7
≈ log2 1.43 ≈ 0.5146 bit/symbol. (1.64)

The amount of information “lost” in the noisy channel is given by the difference between

the amount of information carried by the source symbols and the mutual information gained

upon inferring a particular symbol at the noisy channel’s output. Hence, the lost information

can be computed from Equations 1.61, 1.62, 1.63, and 1.64, yielding (1.737 - 1.67) ≈ 0.067

bit and (0.5146 - 0.502) ≈ 0.013 bit, respectively. These values may not seem catastrophic,

but in relative terms they are quite substantial and their values rapidly escalate, as the channel

error probability is increased. For the sake of completeness and for future use, let us compute

the remaining mutual information terms, namely, I(X0, Y1) and I(X1, Y0), which necessitate
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the computation of:

P (X0/Y1) =
P (X0, Y1)

P (Y1)

P (0/1) =
P (0, 1)

P1
=

0.3 · 0.02

0.692
≈ 0.00867

P (X1/Y0) =
P (X1, Y0)

P (Y0)

P (1/0) =
P (1, 0)

P0
=

0.7 · 0.02

0.308
≈ 0.04545

I(X0, Y1) = log2

P (X0/Y1)

P (X0)
≈ log2

0.00867

0.3
≈ −5.11 bit (1.65)

I(X1, Y0) = log2

P (X1/Y0)

P (X1)
≈ log2

0.04545

0.7
≈ −3.945 bit, (1.66)

where the negative sign reflects the amount of “misinformation” as regards, for example,

X0 upon receiving Y1. In this example we informally introduced the definition of mutual

information. Let us now set out to formally exploit the benefits of our deeper insight into the

effects of the noisy channel.

1.10.5 Information Loss via Imperfect Channels

Upon rewriting the definition of mutual information in Equation 1.56, we have:

I(Xi, Yj) = log2

P (Xi/Yj)

P (Xi)

= log2

1

P (Xi)
− log2

1

P (Xi/Yj)

= I(Xi) − I(Xi/Yj). (1.67)

Following Shannon’s [24–27, 35, 36] and Ferenczy’s [33] approach and rearranging Equa-

tion 1.67 yields:

I(Xi)
︸ ︷︷ ︸

Source Inf.

− I(Xi, Yj)
︸ ︷︷ ︸

Inf. conveyed to rec.

= I(Xi/Yj)
︸ ︷︷ ︸

Inf. loss

. (1.68)

Briefly returning to figure 1.18 assists the interpretation of P (Xi/Yj) as the probability or

certainty/uncertainty that Xi was transmitted, given that Yj was received, which justifies the

above definition of the information loss. It is useful to observe from this figure that, as it

was stated before, P (Yj/Xi) represents the probability of erroneous or error-free reception.

Explicitly, if j = i, then P (Yj/Xi) = P (Yj/Xj) is the probability of error-free reception,

while if j 6= i, then P (Yj/Xi) is the probability of erroneous reception.
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With the probability P (Yj/Xi) of erroneous reception in mind, we can actually associate

an error information term with it:

I(Yj/Xi) = log2

1

P (Yj/Xi)
. (1.69)

Let us now concentrate on the average mutual information’s expression in Equation 1.60 and

expand it as follows:

I(X, Y ) =
∑

X,Y

P (Xi, Yj) · log2

1

P (Xi)

−
∑

X,Y

P (Xi, Yj) log2

1

P (Xi/Yj)
. (1.70)

Considering the first term at the right-hand side (rhs) of the above equation and invoking

Equation 1.55, we have:

∑

X

[
∑

Y

P (Xi, Yj)

]

log2

1

P (Xi)
=

∑

X

P (Xi) log2

1

P (Xi)
= H(X).

(1.71)

Then rearranging Equation 1.70 gives:

H(X) − I(X, Y ) =
∑

X,Y

P (Xi, Yj) log2

1

P (Xi/Yj)
, (1.72)

where H(X) is the average source information per symbol and I(X, Y ) is the average con-

veyed information per received symbol.

Consequently, the rhs term must be the average information per symbol lost in the noisy

channel. As we have seen in Equation 1.67 and Equation 1.68, the information loss is given

by:

I(Xi/Yj) = log2

1

P (Xi/Yj)
. (1.73)

The average information loss H(X/Y ) equivocation, which Shannon [26] terms is computed

as the weighted sum of these components:

H(X/Y ) =
∑

X

∑

Y

P (Xi, Yj) · log2

1

P (Xi/Yj)
. (1.74)

Following Shannon, this definition allowed us to express Equation 1.72 as:

H(X)
︸ ︷︷ ︸

(av. source inf/sym.)

− I(X, Y )
︸ ︷︷ ︸

(av. conveyed inf/sym.)

= H(X/Y )
︸ ︷︷ ︸

(av. lost inf/sym.)

(1.75)
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1.10.6 Error Entropy via Imperfect Channels

Similarly to our previous approach and using the probability P (Yj/Xi) of erroneous recep-

tion associated with the information term of:

I(Yj/Xi) = log2

1

P (Yj/Xi)
(1.76)

we can define the average “error information” or error entropy. Hence, the above error infor-

mation terms in Equation 1.76 are weighted using the probabilities P (Xi, Yj) and averaged

for all X and Y values, defining the error entropy:

H(Y/X) =
∑

X

∑

Y

P (Xi, Yj) log2

1

P (Yj/Xi)
. (1.77)

Using Bayes’ rule from Equation 1.52, we have

P (Xi/Yj) · P (Yj) = P (Yj/Xi) · P (Xi)

P (Xi/Yj)

P (Xi)
=

P (Yj/Xi)

P (Yj)
. (1.78)

Following from this, for the average mutual information in Equation 1.56 we have:

I(X, Y ) = I(Y, X), (1.79)

which, after interchanging X and Y in Equation 1.75, gives:

H(Y )
︸ ︷︷ ︸

destination entropy

− I(Y, X)
︸ ︷︷ ︸

conveyed inf

= H(Y/X)
︸ ︷︷ ︸

error entropy

. (1.80)

Subtracting the conveyed information from the destination entropy gives the error entropy,

which is nonzero, if the destination entropy and conveyed information are not equal due to

channel errors. Let us now proceed following Ferenczy’s approach [33] and summarize the

most important definitions for future reference in Table 1.7 before we attempt to augment

their physical interpretations using the forthcoming numerical example.

Example Using the BSC model of Figure 1.16, as an extension of the worked exam-

ples of Subsections 1.10.1 and 1.10.4 and following Ferenczy’s interpretation [33] of

Shannon’s elaborations [24–27, 35, 36], let us compute the following range of system

characteristics:

(a) The joint information, as distinct from the mutual information introduced ear-

lier, for all possible channel input/output combinations.

(b) The entropy, i.e., the average information of both the source and the sink.

(c) The average joint information H(X, Y ).
(d) The average mutual information per symbol conveyed.

(e) The average information loss and average error entropy.
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Quantity Definition

Source inf. I(Xi) = − log2 P (Xi)
Received inf. I(Yj) = − log2 P (Yj)
Joint inf. IXi,Yj

= − log2 P (Xi, Yj)

Mutual inf. I(Xi, Yj) = log2
P (Xi/Yj)

P (Xi)

Av. Mut. inf. I(X, Y ) =
∑

X

∑

Y P (XiYj) log2
P (Xi/Yj)

P (Xi)

Source entropy H(X) = −∑

X P (Xi) · log2 P (Xi)
Destination entr. H(Y ) = −∑

Y P (Yj) log2 P (Yj)
Equivocation H(X/Y ) = −∑

X

∑

Y P (Xi, Yj) log2 P (Xi/Yj)
Error entropy H(Y/X) = −∑

X

∑

Y P (XiYj) log2 P (Yj/Xi)

Table 1.7: Summary of Definitions c©Ferenczy [33]

With reference to Figure 1.16 and to our introductory example from Section 1.10.1

we commence by computing further parameters of the BSC. Recall that the source

information was:

I(X0) = log2

1

0.3
≈ 3.322 log10 3.333 ≈ 1.737 bit

I(X1) = log2

1

0.7
≈ 0.515 bit.

The probability of receiving a logical 0 was 0.308 and that of logical 1 was 0.692, of

whether 0 or 1 was transmitted. Hence, the information inferred upon the reception of

0 and 1, respectively, is given by:

I(Y0) = log2

1

0.308
≈ 3.322 log10 3.247 ≈ 1.699 bit

I(Y1) = log2

1

0.692
≈ 0.531 bit.

Observe that because of the reduced probability of receiving a logical 1 from 0.7 →
0.692 as a consequence of channel-induced corruption, the probability of receiving a

logical 0 is increased from 0.3 → 0.308. This is expected to increase the average

destination entropy, since the entropy maximum of unity is achieved, when the sym-

bols are equiprobable. We note, however, that this does not give more information

about the source symbols, which must be maximized in an efficient communications

system. In our example, the information conveyed increases for the reduced probabil-

ity logical 1 from 0.515 bit → 0.531 bit and decreases for the increased probability

0 from 1.737 bit → 1.699 bit. Furthermore, the average information conveyed is

reduced, since the reduction from 1.737 to 1.699 bit is more than the increment from

0.515 to 0.531. In the extreme case of an error probability of 0.5 we would have

P (0) = P (1) = 0.5, and I(1) = I(0) = 1 bit, associated with receiving equiprobable

random bits, which again would have a maximal destination entropy, but a minimal in-

formation concerning the source symbols transmitted. Following the above interesting
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introductory calculations, let us now turn our attention to the computation of the joint

information.

a/ The joint information, as distinct from the mutual information introduced earlier

in Equation 1.56, of all possible channel input/output combinations is computed from

Figure 1.16 as follows:

IXi,Yj
= − log2 P (Xi, Yj) (1.81)

I00 = − log2(0.3 · 0.98) ≈ −3.322 · log10 0.294 ≈ 1.766 bit

I01 = − log2(0.3 · 0.02) ≈ 7.381 bit

I10 = − log2(0.7 · 0.02) ≈ 6.159 bit

I11 = − log2(0.7 · 0.98) ≈ 0.544 bit.

These information terms can be individually interpreted formally as the information

carried by the simultaneous occurrence of the given symbol combinations. For exam-

ple, as it accrues from their computation, I00 and I11 correspond to the favorable event

of error-free reception of a transmitted 0 and 1, respectively, which hence were simply

computed by formally evaluating the information terms. By the same token, in the

computation of I01 and I10, the corresponding source probabilities were weighted by

the channel error probability rather than the error-free transmission probability, leading

to the corresponding information terms. The latter terms, namely, I01 and I10, repre-

sent low-probability, high-information events due to the low channel error probability

of 0.02.

Lastly, a perfect channel with zero error probability would render the probability of

the error-events zero, which in turn would assign infinite information contents to the

corresponding terms of I01 and I10, while I00 and I11 would be identical to the self-

information of the 0 and 1 symbols. Then, if under zero error probability we evaluate

the effect of the individual symbol probabilities on the remaining joint information

terms, the less frequently a symbol is emitted by the source, the higher its associated

joint information term becomes and vice versa, which is seen by comparing I00 and

I11. Their difference can be equalized by assuming an identical probability of 0.5

for both, which would yield I00=I11= 1-bit. The unweighted average of I00 and I11

would then be lower than in case of the previously used probabilities of 0.3 and 0.7,

respectively, since the maximum average would be associated with the case of 0 and 1,

where the associated log2 terms would be 0 and −∞, respectively. The appropriately

weighted average joint information terms will be evaluted under paragraph c/ during

our later calculations. Let us now move on to evaluate the average information of the

source and sink.
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b/ Calculating the entropy, that is, the average information for both the source and the

sink, is quite straightforward and ensues as follows:

H(X) =

2∑

i=1

P (Xi) · log2

1

P (Xi)

≈ 0.3 · log2 3.333 + 0.7 · log2 1.429

≈ 0.5211 + 0.3605

≈ 0.8816 bit/symbol. (1.82)

For the computation of the sink’s entropy, we invoke Equations 1.49 and 1.50, yielding:

H(Y ) = 0.308 · log2

1

0.308
+ 0.692 log2

1

0.692
≈ 0.5233 + 0.3676

≈ 0.8909 bit/symbol. (1.83)

Again, the destination entropy H(Y ) is higher than the source entropy H(X) due to the

more random reception caused by channel errors, approaching H(Y ) = 1 bit/symbol

for a channel bit error rate of 0.5. Note, however, that unfortunately this increased

destination entropy does not convey more information about the source itself.

c/ Computing the average joint information H(X, Y ) gives:

H(X, Y ) = −
2∑

i=1

2∑

j=1

P (Xi, Yj) log2 P (Xi, Yj)

= −
2∑

i=1

2∑

j=1

P (Xi, Yj)IXi,Yj
. (1.84)

Upon substituting the IXi,Yj
values calculated in Equation 1.81 into Equation 1.84, we

have:

H(X, Y ) ≈ 0.3 · 0.98 · 1.766 + 0.3 · 0.02 · 7.381

+ 0.7 · 0.02 · 6.159 + 0.7 · 0.98 · 0.544

≈ 0.519 + 0.044 + 0.086 + 0.373

≈ 1.022 bit/symbol-combination.

In order to interpret H(X, Y ), let us again scrutinize the definition given in Equa-

tion 1.84, which weights the joint information terms of Equation 1.81 by their prob-

ability of occurence. We have argued before that the joint information terms corre-

sponding to erroneous events are high due to the low error probability of 0.02. Ob-

serve, therefore, that these high-information symbol combinations are weighted by

their low-probability of occurrence, causing H(X, Y ) to become relatively low. It

is also instructive to consider the above terms in Equation 1.84 for the extreme cases of
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zero and 0.5 error probabilities and for different source emission probabilities, which

are left for the reader to explore. Here we proceed considering the average conveyed

mutual information per symbol.

d/ The average conveyed mutual information per symbol was defined in Equation 1.60

in order to quantify the average source information acquired per received symbol,

which is repeated here for convenience as follows:

I(X, Y ) =
∑

X

∑

Y

P (Xi, Yj) log2

P (Xi/Yj)

P (Xi)

=
∑

X

∑

Y

P (Xi, Yj) · I(Xi, Yj).

Using the individual mutual information terms from Equations 1.61–1.66 in Section 1.10.4,

we get the average mutual information representing the average amount of source in-

formation acquired from the received symbols, as follows:

I(X, Y ) ≈ 0.3 · 0.98 · 1.67 + 0.3 · 0.02 · (−5.11)

+ 0.7 · 0.02 · (−3.945) + 0.7 · 0.98 · 0.502

≈ 0.491 − 0.03066− 0.05523 + 0.3444

≈ 0.7495 bit/symbol. (1.85)

In order to interpret the concept of mutual information, in Section 1.10.4 we noted

that the amount of information “lost” owing to channel errors was given by the differ-

ence between the amount of information carried by the source symbols and the mutual

information gained upon inferring a particular symbol at the noisy channel’s output.

These were given in Equations 1.61–1.64, yielding (1.737 - 1.67) ≈ 0.067 bit and

(0.5146 - 0.502) ≈ 0.013 bit, for the transmission of a 0 and 1, respectively. We also

noted that the negative sign of the terms corresponding to the error-events reflected

the amount of misinformation as regards, for example, X0 upon receiving Y1. Over

a perfect channel, the cross-coupling transitions of Figure 1.16 are eliminated, since

the associated error probabilities are 0, and hence there is no information loss over the

channel. Consequently, the error-free mutual information terms become identical to the

self-information of the source symbols, since exactly the same amount of information

can be inferred upon reception of a symbol, as much is carried by its appearance at the

output of the source.

It is also instructive to study the effect of different error probabilities and source symbol

probabilities in the average mutual information definition of Equation 1.84 in order to

acquire a better understanding of its physical interpretation and quantitative power as

regards the system’s performance. It is interesting to note, for example, that assuming

an error probability of zero will therefore result in average mutual information, which

is identical to the source and destination entropy computed above under paragraph b/.

It is also plausible that I(X, Y ) will be higher than the previously computed 0.7495

bits/symbol, if the symbol probabilities are closer to 0.5, or in general in case of q-ary
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sources closer to 1/q. As expected, for a binary symbol probability of 0.5 and error

probability of 0, we have I(X, Y )=1 bit/symbol.

e/ Lastly, let us determine the average information loss and average error entropy,

which were defined in Equations 1.74 and 1.80 and are repeated here for convenience.

Again, we will be using some of the previously computed probabilities from Sec-

tions 1.10.1 and 1.10.4, beginning with computation of the average information loss

of Equation 1.74:

H(X/Y ) = −
∑

X

∑

Y

P (Xi, Yj) log2 P (Xi/Yj)

= −P (X0, Y0) log2 P (X0/Y0) − P (X0, Y1) log2 P (X0/Y1)

−P (X1, Y0) log2 P (X1/Y0) − P (X1, Y1) log2 P (X1/Y1)

= P (0, 0) · log2 P (0/0) + P (0, 1) · log2 P (0/1)

P (1, 0) · log2 P (1/0) + P (1, 1) · log2 P (1/1)

≈ −0.3 · 0.98 · log2 0.9545− 0.3 · 0.02 · log2 0.00867

−0.7 · 0.02 · log2 0.04545− 0.7 · 0.98 · log2 0.9913

≈ 0.0198 + 0.0411 + 0.0624 + 0.0086

≈ 0.132 bit/symbol.

In order to augment the physical interpretation of the above-average information loss

expression, let us examine the main contributing factors in it. It is expected to decrease

as the error probability decreases. Although it is not straightforward to infer the clear

effect of any individual parameter in the equation, experience shows that as the error

probability increases, the two middle terms corresponding to the error events become

more dominant. Again, the reader may find it instructive to alter some of the parameters

on a one-by-one basis and study the way its influence manifests itself in terms of the

overall information loss.
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Moving on to the computation of the average error entropy, we find its definition equa-

tion is repeated below, and on inspecting Figure 1.16 we have:

H(Y/X) = −
∑

X

∑

Y

P (Xi, Yj) · log2 P (Yj/Xi)

= −P (X0, Y0) log2 P (Y0/X0) − P (X0, Y1) log2 P (Y1/X0)

−P (X1, Y0) log2 P (Y0/X1) − P (X1, Y1) log2 P (Y1/X1)

P (Y0/X0) = 0.98

P (Y0/X1) = 0.02

P (Y1/X0) = 0.02

P (Y1/X1) = 0.98

H(Y/X) = P (0, 0) · log2 P (0/0) + P (0, 1) · log2 P (0/1)

P (1, 0) · log2 P (1/0) + P (1, 1) · log2 P (1/1)

= −0.294 · log2 0.98 − 0.014 · log2 0.02

−0.006 · log2 0.02 − 0.686 · log2 0.98

≈ 0.0086 + 0.079 + 0.034 + 0.02

≈ 0.141 bit/symbol.

The average error entropy in the above expression is expected to fall as the error proba-

bility is reduced and vice versa. Substituting different values into its definition equation

further augments its practical interpretation. Using our previous results in this section,

we see that the average loss of information per symbol or equivocation denoted by

H(X/Y ) is given by the difference between the source entropy of Equation 1.82 and

the average mutual information of Equation 1.85, yielding:

H(X/Y ) = H(X) − I(X, Y ) ≈ 0.8816− 0.7495 ≈ 0.132 bit/symbol,

which according to Equation 1.75, is identical to the value of H(X/Y ) computed

earlier. In harmony with Equation 1.80, the error entropy can also be computed as the

difference of the average entropy H(Y ) in Equation 1.83 of the received symbols and

the mutual information I(X, Y ) of Equation 1.85, yielding:

H(Y ) − I(X, Y ) ≈ 0.8909− 0.7495 ≈ 0.141 bit/symbol,

as seen above for H(Y/X).

Having defined the fundamental parameters summarized in Table 1.7 and used in the

information-theoretical characterization of communications systems, let us now embark on

the definition of channel capacity. Initially, we consider discrete noiseless channels, leading

to a brief discussion of noisy discrete channels, and then we proceed to analog channels,

before exploring the fundamental message of the Shannon-Hartley law.
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1.11 Capacity of Discrete Channels [26, 33]

Shannon [26] defined the channel capacity C of a channel as the maximum achievable infor-

mation transmission rate at which error-free transmission can be maintained over the channel.

Every practical channel is noisy, but transmitting at a sufficiently high power the channel

error probability pe can be kept arbitrarily low, providing us with a simple initial channel

model for our further elaborations. Following Ferenczy’s approach [33], assume that the

transmission of symbol Xi requires a time interval of ti, during which an average of

H(X) =

q
∑

i=1

P (Xi) log2

1

P (Xi)

bit

symbol
(1.86)

information is transmitted, where q is the size of the source alphabet used. This approach

assumes that a variable-length coding algorithm, such as the previously described Shannon-

Fano or the Huffman coding algorithm may be used in order to reduce the transmission rate

to as low as the source entropy. Then the average time required for the transmission of a

source symbol is computed by weighting ti with the probability of occurrence of symbol

Xi, i = 1 . . . q:

tav =

q
∑

i=1

P (Xi)ti
sec

symbol
· (1.87)

Now we can compute the average information transmission rate v by dividing the average

information content of a symbol by the average time required for its transmission:

v =
H(X)

tav

bit

sec
. (1.88)

The maximum transmission rate v as a function of the symbol probability P (Xi) must be

found. This is not always an easy task, but a simple case occurs when the symbol duration

is constant; that is, we have ti = t0 for all symbols. Then the maximum of v is a function

of P (Xi) only and we have shown earlier that the entropy H(X) is maximized by equiprob-

able source symbols, where P (Xi) = 1
q . Then from Equations 1.86 and 1.87 we have an

expression for the channel’s maximum capacity:

C = vmax =
H(X)

tav
=

log2q

t0

bit

sec
. (1.89)

Shannon [26] characterized the capacity of discrete noisy channels using the previously

defined mutual information describing the amount of average conveyed information, given

by:

I(X, Y ) = H(Y ) − H(Y/X), (1.90)

where H(Y ) is the average amount of information per symbol at the channel’s output, while

H(Y/X) is the error entropy. Here a unity symbol-rate was assumed for the sake of simplicity.

Hence, useful information is transmitted only via the channel if H(Y ) > H(Y/X). Via a

channel with pe = 0.5, where communication breaks down, we have H(Y ) = H(Y/X),
and the information conveyed becomes I(X, Y ) = 0. The amount of information conveyed
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Figure 1.19: BSC model.

is maximum if the error entropy H(Y/X) = 0. Therefore, Shannon [26] defined the noisy

channel’s capacity as the maximum value of the conveyed information I(X, Y ):

C = I(X, Y )MAX = [H(Y ) − H(Y/X)]MAX , (1.91)

where the maximization of Equation 1.91 is achieved by maximizing the first term and mini-

mizing the second term.

In general, the maximization of Equation 1.91 is an arduous task, but for the BSC seen

in Figure 1.19 it becomes fairly simple. Let us consider this simple case and assume that the

source probabilities of 1 and 0 are P (0) = P (1) = 0.5 and the error probability is pe. The

entropy at the destination is computed as:

H(Y ) = −1

2
log2

1

2
− 1

2
log2

1

2
= 1 bit/symbol,

while the error entropy is given by:

H(Y/X) = −
∑

X

∑

Y

P (Xi, Yj) · log2 P (Yj/Xi). (1.92)

In order to be able to compute the capacity of the BSC as a function of the channel’s error

probability, let us substitute the required joint probabilities of:

P (0, 0) = P (0)(1 − pe)

P (0, 1) = P (0)pe

P (1, 0) = P (1)pe

P (1, 1) = P (1)(1 − pe). (1.93)
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and the conditional probabilities of:

P (0/0) = (1 − pe)

P (0/1) = pe

P (1/0) = pe

P (1/1) = (1 − pe). (1.94)

into Equation 1.92, yielding:

H(Y/X) = −[P (0)(1 − pe) · log2(1 − pe) + P (0) · pe log2 pe

+P (1) · pe log2 pe + P (1)(1 − pe) log2(1 − pe)]

= −[P (0) + P (1)](1 − pe) log2(1 − pe)

+[P (0) + P (1)]pe log2 pe

= −(1 − pe) · log2(1 − pe) − pe · log2 pe. (1.95)

Finally, upon substituting H(Y ) and H(Y/X) from above into Equation 1.91, the BSC’s

channel capacity becomes:

C = 1 + (1 − pe) log2(1 − pe) + pe log2 pe. (1.96)

Following Ferenczy’s [33] interpretation of Shannon’s lessons [24–27, 35, 36], the graphic

representation of the BSC’s capacity is depicted in Figure 1.20 using various pe error proba-

bilities.

Observe, for example, that for pe = 10−2 the channel capacity is C ≈ 0.9 bit/symbol,

that is, close to its maximum of C = 1 bit/symbol, but for higher pe values it rapidly

decays, falling to C = 0.5 bit/symbol around pe = 10−1. If pe = 50%, we have C =
0 bit/symbol; since no useful information transmission takes place, the channel delivers

random bits. Notice also that if P (0) 6= P (1) 6= 0.5, then H(Y ) < 1 bit/symbol and hence

C < Cmax = 1 bit/symbol, even if pe = 0.

1.12 Shannon’s Channel Coding Theorem [30, 38]

In the previous section, we derived a simple expression for the capacity of the noisy BSC in

Equation 1.96, which was depicted in Figure 1.20 as a function of the channel’s error proba-

bility pe. In this section, we focus on Shannon’s channel coding theorem, which states that as

long as the information transmission rate does not exceed the channel’s capacity, the bit error

rate can be kept arbitrarily low [35, 36]. In the context of the BSC channel capacity curve of

Figure 1.20, this theorem implies that noise over the channel does not preclude the reliable

transmission of information; it only limits the rate at which transmission can take place. Im-

plicitly, this theorem prophesies the existence of an appropriate error correction code, which

adds redundancy to the original information symbols. This reduces the system’s useful infor-

mation throughput but simultaneously allows error correction coding. Instead of providing a

rigorous proof of this theorem, following the approach suggested by Abramson [30], which

was also used by Hey and Allen [38] in their compilation of Feyman’s lectures, we will make

it plaussible.
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Figure 1.20: Channel capacity versus pe for the BSC.

The theorem is stated more formally as follows. Let us assume that a message of K useful

information symbols is transmitted by assigning it to an N -symbol so-called block code,

where the symbols are binary and the error probability is pe. Then, according to Shannon,

upon reducing the coding rate R = K
N beyond every limit, the error probability obeys the

following relationship:

R =
K

N
≤ C = 1 + (1 − pe) log2(1 − pe) + pe · log2 pe. (1.97)

As Figure 1.20 shows upon increasing the bit error rate pe, the channel capacity reduces

gradually toward zero, which forces the channel coding rate R = K
N to zero in the limit. This

inequality therefore implies that an arbitrarily low BER is possible only when the coding rate

R tends to zero, which assumes an infinite-length block code and an infinite coding delay. By

scrutinizing Figure 1.20, we can infer that, for example, for a BER of 10−1 an approximately

R = K
N ≈ 1

2 so-called half-rate code is required in order to achieve asymptotically perfect

communications, while for BER = 10−2 an approximately R ≈ 0.9 code is required.

Shannon’s channel coding theorem does not specify how to create error correction codes,

which can achieve this predicted performance; it merely states their existence. Hence, the
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error correction coding community has endeavored over the years to create such good codes

but until 1993 had only limited success. Then in that year Berrou et al. [39] invented the

family of iteratively decoded turbo-codes, which are capable of approaching the Shannonian

predictions within a fraction of a dB.

Returning to the channel coding theorem, Hey and Feynman [38] offered a witty approach

to deepening the physical interpretation of this theorem, which we briefly highlight below.

Assuming that the block-coded sequences are long, in each block on the average there are

t = pe · N number of errors. In general, t number of errors can be allocated over the block

of N positions in

Ct
N =

(
N

t

)

=
N !

t!(N − t)!

different ways, which are associated with the same number of error patterns. The number

of additional parity bits added during the coding process is P = (N − K), which must

be sufficiently high for identifying all the Ct
N number of error patterns, in order to allow

inverting (i.e., correcting) the corrupted bits in the required positions. Hence, we have [38]:

N !

t!(N − t)!
≤ 2(N−K). (1.98)

Upon exploiting the Stirling formula of

N ! ≈
√

2πN ·
(

N

e

)N

=
√

2π ·
√

N · NN · e−N

and taking the logarithm of both sides, we have:

loge N ! ≈ loge

√
2π +

1

2
loge N + N loge N − N.

Furthermore, when N is large, the first and second terms are diminishingly small in compar-

ison to the last two terms. Thus, we have:

loge N ! ≈ N loge N − N.

Then, after taking the logarithm, the factorial expression on the left-hand side (L) of Equa-

tion 1.98 can be written as:

L ≈ [N loge N − N ] − [t loge t − t] − [(N − t) loge(N − t) − (N − t)] .
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Now taking into account that t ≈ pe · N , we have [38]:

L ≈ [N loge N − N ] − [peN loge(peN) − peN ]

− [(N − peN) loge(N − peN) − (N − peN)]

≈ [N loge N − N ] − [peN loge pe + peN loge N − peN ]

− [N loge(N(1 − pe)) − peN loge(N(1 − pe)) − (N − peN)]

≈ [N loge N − N ] − [peN loge pe + peN loge N − peN ]

− [N loge N + N loge(1 − pe) − peN loge N

− peN loge(1 − pe) − (N − peN)]

≈ N [loge N − 1 − pe loge pe − pe loge N + pe

− loge N − loge(1 − pe) + pe loge N

+ pe loge(1 − pe) + 1 − pe]

≈ N [−pe loge pe − loge(1 − pe) + pe loge(1 − pe)]

≈ N [−pe loge pe − (1 − pe) loge(1 − pe)].

If we consider that loge a = log2 a · loge 2, then we can convert the loge terms to log2 as

follows [38]:

L ≈ N loge 2[−pe log2 pe − (1 − pe) log2(1 − pe)].

Finally, upon equating this term with the logarithm of the right-hand side expression of Equa-

tion 1.98, we arrive at:

N loge 2[−pe log2 pe − (1 − pe) log2(1 − pe)] ≤ (N − K) loge 2,

which can be simplified to:

−pe log2 pe − (1 − pe) log2(1 − pe) ≤ 1 − K

N

or to a form, identical to Equation 1.97:

K

N
≤ 1 + (1 − pe) log2(1 − pe) + pe log2 pe.

1.13 Capacity of Continuous Channels [27, 33]

During our previous discussions, it was assumed that the source emitted discrete messages

with certain finite probabilities, which would be exemplified by an 8-bit analog-to-digital

converter emitting one of 256 discrete values with a certain probability. However, after digi-

tal source encoding and channel encoding according to the basic schematic of Figure 1.1 the

modulator typically converts the digital messages to a finite set of bandlimited analog wave-

forms, which are chosen for maximum “transmission convenience.” In this context, trans-

mission convenience can imply a range of issues, depending on the communications channel.

Two typical constraints are predominantly power-limited or bandwidth-limited channels, al-

though in many practical scenarios both of these constraints become important. Because
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of their limited solar power supply, satellite channels tend to be more severely power-limited

than bandlimited, while typically the reverse situation is experienced in mobile radio systems.

The third part of Shannon’s pioneering paper [27] considers many of these issues. Thus,

in what follows we define the measure of information for continuous signals, introduce a con-

cept for the continuous channel capacity, and reveal the relationships among channel band-

width, channel capacity, and channel signal-to-noise ratio, as stated by the Shannon-Hartley

theorem. Finally, the ideal communications system transpiring from Shannon’s pioneering

work is characterized, before concluding with a brief discussion of the ramifications of wire-

less channels as regards the applicability of Shannon’s results.

Let us now assume that the channel’s analog input signal x(t) is bandlimited and hence

that it is fully characterized by its Nyquist samples and by its probability density function

(PDF) p(x). The analogy of this continuous PDF and that of a discrete source are character-

ized by P (Xi) ≈ p(Xi)∆X , which reflects the practical way of experimentally determining

the histogram of a bandlimited analog signal by observing the relative frequency of events,

when its amplitude resides in a ∆X wide amplitude bin-centered around Xi. As an analogy

to the discrete average information or entropy expression of:

H(X) = −
∑

i

P (Xi) · log2 P (Xi), (1.99)

Shannon [27] introduced the entropy of analog sources, as it was also noted and exploited,

for example, by Ferenczy [33], as follows:

H(x) = −
∫ ∞

−∞

p(x) log2 p(x)dx. (1.100)

For our previously used discrete sources, we have shown that the source entropy is max-

imized for equiprobable messages. The question that arises is whether this is also true for

continuous PDFs. Shannon [27] derived the maximum of the analog signal’s entropy under

the constraints of:

∫ ∞

−∞

p(x)dx = 1 (1.101)

σ2
x =

∫ ∞

−∞

x2 · p(x)dx = Constant (1.102)

based on the calculus of variations. He showed that the entropy of a signal x(t) having a

constant variance of σ2
x is maximum, if x(t) has a Gaussian distribution given by:

p(x) =
1√
2πσ

e−(x2/2σ2). (1.103)

Then the maximum of the entropy can be derived upon substituting this PDF into the

expression of the entropy. Let us first take the natural logarithm of both sides of the PDF and

convert it to base two logarithm by taking into account that loge a = log2 a · loge 2, in order

to be able to use it in the entropy’s log2 expression. Then the PDF of Equation 1.103 can be
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written as:

− log2 p(x) = + log2

√
2πσ + (x2/2σ2) · 1

loge 2
, (1.104)

and upon exploiting that loge 2 = 1/ log2 e, the entropy is expressed according to Shan-

non [27] and Ferenczy [33] as:

Hmax(x) = −
∫

p(x) · log2 p(x)dx

=

∫

p(x) · log2

√
2πσdx +

∫

p(x)
x2 · log2 e

2σ2
dx

= log2

√
2πσ

∫

p(x)dx +
log2 e

2σ2

∫

x2p(x)dx

︸ ︷︷ ︸

σ2

= log2

√
2πσ +

σ2

2σ2
log2 e

= log2

√
2πσ +

log2 e

2

= log2

√
2πσ +

1

2
log2 e

= log2

√
2πeσ. (1.105)

Since the maximum of the entropy is proportional to the logarithm of the signal’s average

power Sx = σ2
x, upon quadrupling the signal’s power the entropy is increased by one bit

because the range of uncertainty as regards where the signal samples can reside is expanded.

We are now ready to formulate the channel capacity versus channel bandwidth and ver-

sus channel SNR relationship of analog channels. Let us assume white, additive, signal-

independent noise with a power of N via the channel. Then the received (signal+noise)

power is given by:

σ2
y = S + N. (1.106)

By the same argument, the channel’s output entropy is maximum if its output signal y(t) has

a Gaussian PDF and its value is computed from Equation 1.105 as:

Hmax(y) =
1

2
log2(2πeσ2

y) =
1

2
log2 2πe(S + N). (1.107)

We proceed by taking into account the channel impairments, reducing the amount of infor-

mation conveyed by the amount of the error entropy H(y/x) giving:

I(x, y) = H(y) − H(y/x), (1.108)

where again the noise is assumed to be Gaussian and hence:

H(y/x) =
1

2
log2(2πeN). (1.109)
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Upon substituting Equation 1.107 and Equation 1.109 in Equation 1.108, we have:

I(x, y) =
1

2
log2

(
2πe(S + N)

2πeN

)

=
1

2
log2

(

1 +
S

N

)

, (1.110)

where, again, both the channel’s output signal and the noise are assumed to have Gaussian

distribution.

The analog channel’s capacity is then calculated upon multiplying the information con-

veyed per source sample by the Nyquist sampling rate of fs = 2 · fB , yielding [35]:

C = fB · log2

(

1 +
S

N

)
bit

sec
. (1.111)

Equation 1.111 is the well-known Shannon-Hartley law,1 establishing the relationship among

the channel capacity C, channel bandwidth fB , and channel signal-to-noise ratio (SNR).

Before analyzing the consequences of the Shannon-Hartley law following Shannon’s de-

liberations [35], we make it plausible from a simple practical point of view. As we have seen,

the root mean squared (RMS) value of the noise is
√

N , and that of the signal plus noise at

the channel’s output is
√

S + N . The receiver has to decide from the noisy channel’s output

signal what signal has been input to the channel, although this has been corrupted by an ad-

ditive Gaussian noise sample. Over an ideal noiseless channel, the receiver would be able to

identify what signal sample was input to the receiver. However, over noisy channels it is of

no practical benefit to identify the corrupted received message exactly. It is more beneficial to

quantify a discretized version of it using a set of decision threshold values, where the resolu-

tion is dependent on how corrupted the samples are. In order to quantify this SNR-dependent

receiver dynamic range resolution, let us consider the following argument.

Having very densely spaced receiver detection levels would often yield noise-induced

decision errors, while a decision-level spacing of
√

N according to the RMS noise-amplitude

intuitively seems a good compromise between high information resolution and low decision

error rate. Then assuming a transmitted sample, which resides at the center of a
√

N wide

decision interval, noise samples larger than
√

N/2 will carry samples across the adjacent

decision boundaries. According to this spacing, the number of receiver reconstruction levels

is given by:

q =

√
S + N√

N
=

(

1 +
S

N

) 1

2

, (1.112)

which creates a scenario similar to the transmission of equiprobable q-ary discrete symbols

via a discrete noisy channel, each conveying log2 q amount of information at the Nyquist

sampling rate of fs = 2 · fB . Therefore, the channel capacity becomes [35]:

C = 2 · fB · log2 q = fB · log2

(

1 +
S

N

)

, (1.113)

1Comment by the Authors: Although the loose definition of capacity is due to Hartley, the underlying relationship

is entirely due to Shannon.
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Figure 1.21: Graphical representation of the Shannon-Hartley law. c©Ferenczy [33].

as seen earlier in Equation 1.111.

1.13.1 Practical Evaluation of the Shannon-Hartley Law

The Shannon-Hartley law of Equation 1.111 and Equation 1.113 reveals the fundamental

relationship of the SNR, bandwidth, and channel capacity. This relationship can be further

studied following Ferenczy’s interpretation [33] upon referring to Figure 1.21.

Observe from the figure that a constant channel capacity can be maintained, even when

the bandwidth is reduced, if a sufficiently high SNR can be guaranteed. For example, from

Figure 1.21 we infer that at fB = 10 KHz and SNR = 30 dB the channel capacity is as

high as C = 100 kbps. Surprisingly, C ≈ 100 kbps can be achieved even for fB = 5 KHz,

if SNR = 60 dB is guaranteed.

Figure 1.22 provides an alternative way of viewing the Shannon-Hartley law, where the

SNR is plotted as a function of fB, parameterized with the channel capacity C. It is important

to notice how dramatically the SNR must be increased in order to maintain a constant channel

capacity C, as the bandwidth fB is reduced below 0.1 · C, where C and fB are expressed

in kbit/s and Hz, respectively. This is due to the log2(1 + SNR) function in Equation 1.111,

where a logarithmically increasing SNR value is necessitated to compensate for the linear

reduction in terms of fB .
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[33].

From our previous discourse, the relationship between the relative channel capacity C/fB

expressed from Equation 1.113, and the channel SNR now becomes plausible. This rela-

tionship is quantified in Table 1.8 and Figure 1.23 for convenience. Notice that due to the

logarithmic SNR scale expressed in dBs, the C/fB

[
bps
Hz

]

curve becomes near-linear, allow-

ing a near-linearly proportional relative channel capacity improvement upon increasing the

channel SNR. A very important consequence of this relationship is that if the channel SNR

is sufficiently high to support communications using a high number of modulation levels, the

channel is not exploited to its full capacity upon using C/fB values lower than is afforded by

the prevailing SNR. Proposing various techniques in order to exploit this philosophy was the

motivation of reference [40].

The capacity C of a noiseless channel with SNR = ∞ is C = ∞, although noiseless

channels do not exist. In contrast, the capacity of an ideal system with fB = ∞ is finite [31,

34]. Assuming additive white Gaussian noise (AWGN) with a double-sided power spectral

density (PSD) of η/2, we have N = η
2 · 2 · fB = η · fB , and applying the Shannon-Hartley
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SNR C/fB

Ratio dB bit/sec/Hz

1 0 1

3 4.8 2

7 8.5 3

15 11.8 4

31 14.9 5

63 18.0 6

127 21.0 7

Table 1.8: Relative Channel Capacity versus SNR

Figure 1.23: Relative channel capacity (C/fB) versus SNR (dB).
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law gives [31]:

C = fB · log2

(

1 +
S

ηfB

)

=

(
S

η

) (
ηfB

S

)

log2

(

1 +
S

ηfB

)

=

(
S

η

)

log2

(

1 +
S

ηfB

) ηfB
S

. (1.114)

Our aim is now to determine C∞ = limfB→∞C. Upon exploiting that:

limx→0(1 + x)
1

x = e (1.115)

where x = S/(η · fB), we have

C∞ = limfB→∞C =
S

η
log2 e = 1.45 ·

(
S

η

)

, (1.116)

which is the capacity of the channel with fB = ∞. The practically achievable transmis-

sion rate R is typically less than the channel capacity C, although complex turbo-coded

modems [39] can approach its value. For example, for a telephone channel with a signal-to-

noise ratio of S/N = 103 = 30 dB and a bandwidth of B = 3.4 kHz from Equation 1.113,

we have C = 3.4 · log2(1 + 103)kbit
sec ≈ 3.4 · 10 = 34 kbit/s, which is fairly close to

the rate of the V.34 CCITT standard 28.8 kbit/s telephone-channel modem that was recently

standardized.

In this chapter, we have been concerned with various individual aspects of Shannon’s

information theory [24–27, 35, 36]. Drawing nearer to concluding our discourse on the foun-

dations of information theory, let us now outline in broad terms the main ramifications of

Shannon’s work [24–27].

1.13.2 Shannon’s Ideal Communications System

for Gaussian Channels

The ideal Shannonian communications system shown in Figure 1.24 has the following char-

acteristics. The system’s information-carrying capacity is given by the information rate

C = fB log2(1 + S/N), while as regards its error rate we have pe → 0. The transmitted and

received signals are bandlimited Gaussian random variables, which facilitate communicating

at the highest possible rate over the channel.

Information from the source is observed for T seconds, where T is the symbol duration

and encoded as equiprobable M -ary symbols with a rate of R =
log

2
M

T . Accordingly, the

signaling waveform generator of Figure 1.24 assigns a bandlimited AWGN representation

having a maximum frequency of fB from the set of M = 2RT possible waveforms to the

source message, uniquely representing the signal x(t) to be transmitted for a duration of T .

The noisy received signal y(t) = x(t) + n(t) is compared to all M = 2RT prestored wave-

forms at the receiver, and the most “similar” is chosen to identify the most likely transmitted

source message. The observation intervals at both the encoder and decoder amount to T ,
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Figure 1.24: Shannon’s ideal communications system for AWGN channels.

yielding an overall coding delay of 2T . Signaling at a rate equal to the channel capacity is

only possible, if the source signal’s observation interval is infinitely long, that is, T → ∞.

Before concluding this chapter, we offer a brief discussion of the system-architectural

ramifications of transmitting over wireless channels rather than over AWGN channels.

1.14 Shannon’s Message for Wireless Channels

In wireless communications over power- and bandlimited channels it is always of prime con-

cern to maintain an optimum compromise in terms of the contradictory requirements of low

bit rate, high robustness against channel errors, low delay, and low complexity. The mini-

mum bit rate at which distortionless communications is possible is determined by the entropy

of the speech source message. Note, however, that in practical terms the source rate corre-

sponding to the entropy is only asymptotically achievable as the encoding memory length or

delay tends to infinity. Any further compression is associated with information loss or coding

distortion. Note that the optimum source encoder generates a perfectly uncorrelated source-

coded stream, where all the source redundancy has been removed; therefore, the encoded

symbols are independent, and each one has the same significance. Having the same signif-

icance implies that the corruption of any of the source-encoded symbols results in identical

source signal distortion over imperfect channels.

Under these conditions, according to Shannon’s pioneering work [24], which was ex-

panded, for example, by Hagenauer [41] and Viterbi [42], the best protection against trans-

mission errors is achieved if source and channel coding are treated as separate entities. When

using a block code of length N channel coded symbols in order to encode K source symbols

with a coding rate of R = K/N , the symbol error rate can be rendered arbitrarily low, if N
tends to infinity and the coding rate to zero. This condition also implies an infinite coding

delay. Based on the above considerations and on the assumption of additive white Gaus-

sian noise (AWGN) channels, source and channel coding have historically been separately

optimized.

Mobile radio channels are subjected to multipath propagation and so constitute a more

hostile transmission medium than AWGN channels, typically exhibiting path-loss, log-normal

slow fading and Rayleigh fast-fading. Furthermore, if the signaling rate used is higher than

the channel’s coherence bandwidth, over which no spectral-domain linear distortion is ex-

perienced, then additional impairments are inflicted by dispersion, which is associated with
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frequency-domain linear distortions. Under these circumstances the channel’s error distri-

bution versus time becomes bursty, and an infinite-memory symbol interleaver is required

in Figure 1.1 in order to disperse the bursty errors and hence to render the error distribu-

tion random Gaussian-like, such as over AWGN channels. For mobile channels, many of

the above mentioned, asymptotically valid ramifications of Shannon’s theorems have limited

applicability.

A range of practical limitations must be observed when designing mobile radio speech or

video links. Although it is often possible to further reduce the prevailing typical bit rate of

state-of-art speech or video codecs, in practical terms this is possible only after a concomitant

increase of the implementational complexity and encoding delay. A good example of these

limitations is the half-rate GSM speech codec, which was required to approximately halve

the encoding rate of the 13 kbps full-rate codec, while maintaining less than quadrupled

complexity, similar robustness against channel errors, and less than doubled encoding delay.

Naturally, the increased algorithmic complexity is typically associated with higher power

consumption, while the reduced number of bits used to represent a certain speech segment

intuitively implies that each bit will have an increased relative significance. Accordingly,

their corruption may inflict increasingly objectionable speech degradations, unless special

attention is devoted to this problem.

In a somewhat simplistic approach, one could argue that because of the reduced source

rate we could accommodate an increased number of parity symbols using a more powerful,

implementationally more complex and lower rate channel codec, while maintaining the same

transmission bandwidth. However, the complexity, quality, and robustness trade-off of such

a scheme may not always be attractive.

A more intelligent approach is required to design better speech or video transceivers for

mobile radio channels [41]. Such an intelligent transceiver is portrayed in Figure 1.1. Perfect

source encoders operating close to the information-theoretical limits of Shannon’s predic-

tions can only be designed for stationary source signals, a condition not satisfied by most

source signals. Further previously mentioned limitations are the encoding complexity and

delay. As a consequence of these limitations the source-coded stream will inherently contain

residual redundancy, and the correlated source symbols will exhibit unequal error sensitivity,

requiring unequal error protection. Following Hagenauer [41], we will refer to the additional

knowledge as regards the different importance or vulnerability of various speech-coded bits

as source significance information (SSI). Furthermore, Hagenauer termed the confidence as-

sociated with the channel decoder’s decisions as decoder reliability information (DRI). These

additional links between the source and channel codecs are also indicated in Figure 1.1. A

variety of such techniques have successfully been used in robust source-matched source and

channel coding.

The role of the interleaver and de-interleaver seen in Figure 1.1 is to rearrange the channel

coded bits before transmission. The mobile radio channel typically inflicts bursts of errors

during deep channel fades, which often overload the channel decoder’s error correction capa-

bility in certain speech or video segments. In contrast other segments are not benefiting from

the channel codec at all, because they may have been transmitted between fades and hence are

error-free even without channel coding. This problem can be circumvented by dispersing the

bursts of errors more randomly between fades so that the channel codec is always faced with

an “average-quality” channel, rather than the bimodal faded/nonfaded condition. In other
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words, channel codecs are most efficient if the channel errors are near-uniformly dispersed

over consecutive received segments.

In its simplest manifestation, an interleaver is a memory matrix filled with channel coded

symbols on a row-by-row basis, which are then passed on to the modulator on a column-by-

column basis. If the transmitted sequence is corrupted by a burst of errors, the de-interleaver

maps the received symbols back to their original positions, thereby dispersing the bursty

channel errors. An infinite memory channel interleaver is required in order to perfectly ran-

domize the bursty errors and therefore to transform the Rayleigh-fading channel’s error statis-

tics to that of a AWGN channel, for which Shannon’s information theoretical predictions

apply. Since in interactive video or speech communications the tolerable delay is strictly

limited, the interleaver’s memory length and efficiency are also limited.

A specific deficiency of these rectangular interleavers is that in case of a constant ve-

hicular speed the Rayleigh-fading mobile channel typically produces periodic fades and error

bursts at traveled distances of λ/2, where λ is the carrier’s wavelength, which may be mapped

by the rectangular interleaver to another set of periodic bursts of errors. Hence a range of ran-

dom interleaving algorithms have been proposed in the literature.

Returning to Figure 1.1, the soft-decision information (SDI) or channel state information

(CSI) link provides a measure of confidence with regard to the likelihood that a specific

symbol was transmitted. Then the channel decoder often uses this information in order to

invoke maximum likelihood sequence estimation (MLSE) based on the Viterbi algorithm

and thereby improve the system’s performance with respect to conventional hard-decision

decoding. Following this rudimentary review of Shannon’s information theory, let us now

turn our attention to the characterization of wireless communications channels.

1.15 Summary and Conclusions

An overview of Shannonian information theory has been given, in order to establish a firm

basis for our further discussions throughout the book. Initially we focussed our attention

on the basic Shannonian information transmission scheme and highlighted the differences

between Shannon’s theory valid for ideal source and channel codecs as well as for Gaussian

channels and its ramifications for Rayleigh channels. We also argued that practical finite-

delay source codecs cannot operate at transmission rates as low as the entropy of the source.

However, these codecs do not have to operate losslessly, since perceptually unobjectionable

distortions can be tolerated. This allows us to reduce the associated bit rate.

Since wireless channels exhibit bursty error statistics, the error bursts can only be random-

ized with the aid of infinite-length channel interleavers, which are not amenable to real-time

communications. Although with the advent of high-delay turbo channel codecs it is possible

to operate near the Shannonian performance limits over Gaussian channels, over bursty and

dispersive channels different information-theoretical channel capacity limits apply.

We considered the entropy of information sources both with and without memory and

highlighted a number of algorithms, such as the Shannon-Fano, the Huffman and run-length

coding algorithms, designed for the efficient encoding of sources exhibiting memory. This

was followed by considering the transmission of information over noise-contaminated chan-

nels leading to Shannon’s channel coding theorem. Our discussions continued by consider-

ing the capacity of communications channels in the context of the Shannon-Hartley law. The
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chapter was concluded by considering the ramifications of Shannon’s messages for wireless

channels.

1.16 Structure and novel aspects of the book

In this section we provide an overview of the remainder of this book and summarise its novel

aspects.

In Chapter 1 we provide a rudimentary introduction to information theory, in order to

lay the foundations for the rest of the book, while in Chapter 2, we provide a brief overview

of the system components and techniques used throughout the monograph.

In Chapter 6 we demonstrate the application of IrVLCs for the joint source and channel

coding of video information, as described in Section 4.1.2. The proposed scheme employs

the serial concatenation and iterative decoding of a video codec with a channel codec, in the

manner detailed in Section 4.3.3.2. Our novel video codec represents the video information

using Variable Dimension Vector Quantisation (VDVQ) tiles, which are similar to the VQ

tiles described in Section 4.2.1, but having various dimensions. The VDVQ tiles employed

are represented using the corresponding RVLC codewords selected from the VDVQ/RVLC

codebook, as described in Section 4.2.5. However, the legitimate use of the VDVQ tiles

and their corresponding RVLC codewords is limited by a number of code constraints, which

ensure that the VDVQ tiles employed perfectly tessellate, among other desirable design ob-

jectives. As a result, different sub-sets of the RVLC codewords are available at different

points during the encoding of the video information and the proposed approach adopts an

IrVLC philosophy.

In the video codec of Chapter 6, the VDVQ/RVLC-induced code constraints are uniquely

and unambiguously described by a novel VDVQ/RVLC trellis structure, which resembles

the symbol-based VLEC trellis [1, 2] described in Section 4.2.6.3. Hence, the employment

of the VDVQ/RVLC trellis structure allows the consideration of all legitimate transmission

frame permutations. This fact is exploited in the video encoder in order to perform novel

MMSE VDVQ/RVLC encoding, using a variant of the Viterbi algorithm [3] described in

Section 4.2.6.2.

Additionally, the employment of the VDVQ/RVLC trellis structure during video decoding

guarantees the recovery of legitimate – although not necessarily error-free – video informa-

tion. As a result, the video decoder never has to discard video information. This is unlike in

conventional video decoders, where a single transmission error may render an entire trans-

mission frame invalid. Furthermore, the novel modification of the BCJR algorithm [4] of

Section 4.3.2.2 is employed during APP SISO VDVQ/RVLC decoding in order to facilitate

the iterative exchange of soft information with the serially concatenated channel decoder and

in order to perform the soft MMSE reconstruction of the video sequence. Finally, since the

VDVQ/RVLC trellis structure describes the complete set of VDVQ/RVLC-induced code con-

straints, all of the associated redundancy is beneficially exploited with the aid of the modified

BCJR algorithm.

Owing to its aforementioned benefits and its employment of a joint source and channel

coding philosophy, the video transmission scheme of Chapter 6 is shown to outperform the

corresponding benchmarkers employing a separate source and channel coding philosophy.

Our findings were originally published in [5, 6].
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In Chapter 7, we investigate the application of IrVLCs to UEP, as described in Sec-

tion 4.1.3. Here, a number of component VLC codebooks having different error correction

capabilities are employed to encode various fractions of the source symbol frame. In the case

where the various fractions of the source symbol frame have different error sensitivities, this

approach may be expected to yield a higher reconstruction quality than equal protection, as

noted in [7–9], for example.

Chapter 7 also investigates the application of IrVLCs to near-capacity operation, as de-

scribed in Section 4.1.1. Here, a number of component VLC codebooks having different

inverted Extrinsic Information Transfer Chart (EXIT) functions are employed to encode var-

ious fractions of the source symbol frame. We show that the inverted IrVLC EXIT function

may be obtained as a weighted average of the inverted component VLC EXIT functions, as

described in Section 4.4. Additionally, the EXIT chart matching algorithm [10] described in

Section 4.4 is employed to shape the inverted IrVLC EXIT function to match the EXIT func-

tion of a serially concatenated inner channel code and to create a narrow but still open EXIT

chart tunnel. In this way, iterative decoding convergence to an infinitesimally low probability

of error is facilitated at near capacity SNRs, as described in Section 4.3.4.4.

Furthermore, in Chapter 7, the UEP and near-capacity operation of the described scheme

is assessed using novel plots that characterise the computational complexity of iterative de-

coding. More specifically, the average number of ACS operations required to reconstruct each

source symbol with a high quality is plotted against the channel SNR. These plots are em-

ployed to compare the novel IrVLC-based scheme with a suitably designed IrCC and regular

VLC based benchmarkers, quantifying the advantages of the IrVLCs Furthermore, these plots

demonstrate that the complexity associated with the bit-based VLEC trellis of Section 4.2.6.1

is significantly lower than that of the symbol-based trellis described in Section 4.2.6.3. Our

findings were originally published in [11,12] and we proposed attractive near-capacity IrVLC

schemes in [13–18].

In Chapter 8 we introduce a novel RV-FDM as an alternative to the IV-FD lower bound of

(4.8) for the characterisation of the error correction capability that is associated with VLEC

codebooks. Unlike the IV-FD lower bound, the RV-FDM assumes values from the real-valued

domain, hence allowing the comparison of the error correction capability of two VLEC code-

books having equal IV-FD lower bounds, as described in Section 4.2.6.4. Furthermore, we

show that a VLEC codebook’s RV-FDM affects the number of inflection points that appear

in the corresponding inverted EXIT function. This complements the property [19] that the

area below an inverted VLEC EXIT function equals the corresponding coding rate, as well as

the property that a free distance of at least two yields an inverted VLEC EXIT function that

reaches the top right hand corner of the EXIT chart, as described in Section 4.3.4.4.

These properties are exploited by a novel GA in order to design beneficial VLEC code-

books having arbitrary inverted EXIT function shapes. This is in contrast to the methods

of [20–22], which are incapable of designing codebooks having specific EXIT function

shapes without imposing a significant level of ‘trial-and-error’ based human interaction, as

described in Section 4.4. This novel GA is shown to be attractive for the design of IrVLC

component codebooks for EXIT chart matching, since Chapter 8 also demonstrates that our

ability to create open EXIT chart tunnels at near-capacity channel SNRs depends on the avail-

ability of a suite of component codes having a wide variety of EXIT function shapes.
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Finally, a suite of component VLEC codebooks designed by the novel GA is found to

facilitate higher-accuracy EXIT chart matching than a benchmarker suite designed using the

state-of-the-art method of [22]. Our novel RV-FDM and GA were originally published in

[15, 16].

In Chapter 9, we propose a novel modification to the EXIT chart matching algorithm

of [10] that additionally seeks a reduced APP SISO decoding complexity by considering

the complexities associated with each of the component codes. Furthermore, another novel

modification of Chapter 9 facilitates the EXIT chart matching of irregular codes that employ

a suite of component codes having the same coding rate. This is achieved by removing the

EXIT chart matching constraint of (4.30), facilitating the design of a novel IrURC.

Additionally, Chapter 9 demonstrates the joint EXIT chart matching of two serially con-

catenated irregular codecs, namely an outer IrVLC and an inner IrURC. This is achieved by

iteratively matching the inverted outer EXIT function to the inner EXIT function and vice

versa. By employing an irregular inner code, in addition to an irregular outer code, we can

afford a higher degree of design freedom than the proposals of [10], which employ a reg-

ular inner code. Hence, the proposed approach is shown to facilitate even nearer-capacity

operation, which is comparable to that of IrLDPC and irregular turbo codes, as described in

Section 4.4. Our findings were originally published in [17, 18] and we additionally demon-

stated the joint EXIT chart matching of serially concatenated irregular codecs in [23].

Finally, in Chapter 10, we compare the results and findings of the previous chapters and

draw our conclusions.

In summary, the novel aspects of this research monograph are:

• a novel VDVQ/RVLC-TCM scheme for the iterative joint source and channel decoding

of video information;

• its VDVQ/RVLC trellis structure;

• the adaptation of the Viterbi algorithm for MMSE VDVQ/RVLC encoding;

• the adaptation of the BCJR algorithm for APP SISO VDVQ/RVLC decoding and

MMSE video reconstruction;

• IrVLC schemes for near-capacity operation;

• complexity versus channel SNR plots which are parameterised by the reconstruction

quality;

• the RV-FDM for characterising the error correction capability of VLECs having the

same IV-FD;

• the characterisation of the relationship between a VLEC’s RV-FDM and the shape of

its inverted EXIT function;

• a GA for designing VLECs having specific EXIT functions;

• a suite of VLECs that are suitable for a wide range of IrVLC applications;

• the adaptation of the EXIT chart matching algorithm to facilitate the use of component

codes having the same coding rate;

• the adaptation of the EXIT chart matching algorithm to additionally seek a reduced

APP SISO decoding computational complexity;

• the joint EXIT chart matching algorithm for designing schemes employing a serial

concatenation of two irregular codecs;

• an IrVLC-IrURC scheme for very near capacity joint source and channel coding.



Chapter 7
Irregular Variable Length Codes

for EXIT Chart Matching

7.1 Introduction

As demonstrated in Section 6.6, a serially concatenated [131] transmission scheme is capable

of achieving iterative decoding [132] convergence to an infinitesimally low probability of

error at near-capacity Signal to Noise Ratios (SNRs), if the EXtrinsic Information Transfer

(EXIT) functions of the inner and outer codecs are well matched. This motivated the design

of Irregular Convolutional Coding (IrCC) schemes in [10], as described in Section ??.

The inverted EXIT function of an outer IrCC channel codec can be specifically shaped

in order to match the EXIT function of a serially concatenated inner codec. This is possible,

because IrCCs amalgamate a number of component Convolutional Codes (CC) [51] having

different coding rates, each of which is employed to generate a specific fraction of the IrCC-

encoded bit stream. As described in Section ??, the composite inverted IrCC EXIT function

is given as a weighted average of the inverted EXIT functions of the individual component

CCs, where each weight is given by the particular fraction of the IrCC-encoded bit stream that

is generated by the corresponding component CC. Hence, it is the specific selection of these

fractions that facilitates the shaping of the inverted composite IrCC EXIT function. Using the

EXIT chart matching algorithm of [10], the inverted IrCC EXIT chart may be matched to the

EXIT function of the inner codec in this way. This facilitates the creation of an open EXIT

chart tunnel [158] at low channel SNRs, which approach the channel’s capacity bound.

However, the constituent bit-based CCs [51] of the IrCC codec of [10] are unable to ex-

ploit the unequal source symbol occurrence probabilities that are typically associated with

audio, speech, image and video sources [61, 62]. Note that unequal source symbol occur-

rence probabilities were exemplified in Section 6.3.2. Since the exploitation of all available

redundancy is required for near-capacity operation [24], the Huffman source encoder [65] of

Chapter 1 must be employed to remove this source redundancy before IrCC encoding com-

mences. However, the reconstruction of the Huffman encoded bits with a particularly low

Bit Error Ratio (BER) is required in order that Huffman decoding [65] can achieve a low
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Symbol Error Ratio (SER), owing to its high error sensitivity, which often leads to loss of

synchronisation.

This motivates the application of the Variable Length Error Correction (VLEC) code

[89] and Reversible Variable Length Coding (RVLC) [99] classes of Variable Length Codes

(VLCs) as an alternative to the concatenated Huffman and CC coding of sequences of source

symbols having values with unequal probabilities of occurrence. Unlike CCs, these joint

source and channel coding VLC schemes are capable of exploiting unequal source symbol oc-

currence probabilities, as described in Chapter ??. More specifically, source symbols having

indices of k ∈ [1 . . .K] and associated with unequal probabilities of occurrence {P (k)}K
k=1

are mapped to binary codewords of varying lengths {Ik}K
k=1 from a K-entry codebook VLC

during VLC encoding. Typically, the more frequently a particular source symbol value oc-

curs, the shorter its VLC codeword, resulting in a reduced average codeword length of

L(VLC) =

K∑

k=1

P (k) · Ik. (7.1)

In order that each valid VLC codeword sequence may be uniquely decoded, a lower bound

equal to the source entropy of

E = −
K∑

k=1

P (k) · log2(P (k)) (7.2)

is imposed upon the average codeword length L(VLC). Any discrepancy between L(VLC)
and E is quantified by the coding rate of

R(VLC) =
E

L(VLC)
(7.3)

and may be attributed to the intentional introduction of redundancy into the VLEC or RVLC

codewords. Naturally, this intentionally introduced redundancy imposes code constraints

that limit the set of legitimate sequences of VLC-encoded bits. Like the code constraints

of CCs [51], the VLC code constraints may be exploited for providing an error correcting

capability during VLC decoding [89]. Note that the lower the VLC coding rate, the higher

the associated potential error correction capability, as described in Chapter ??. Furthermore,

unlike in CC decoding, any redundancy owing to the unequal occurrence probabilities of the

source symbol values may also be exploited during VLC decoding [89].

Depending on the coding rate R(VLC) of the VLECs or RVLCs, the associated code

constraints render their decoding substantially less sensitive to bit errors than Huffman de-

coding is, as described in Chapter ??. Hence, a coding gain of 1 dB at an SER of 10−5

has been observed by employing VLEC coding having a particular coding rate instead of a

concatenated Huffman and Bose-Chaudhuri-Hocquenghem (BCH) [198,199] coding scheme

having the same coding rate [89].

Hence the application of EXIT chart matching invoking Irregular Variable Length Cod-

ing (IrVLC) is motivated for the sake of near-capacity joint source and channel coding of

source symbol sequences having values exhibiting unequal occurrence probabilities. In this
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chapter, we therefore employ a novel IrVLC scheme as our outer source codec, which we

serially concatenate [131,132] with an inner channel codec for the sake of exchanging extrin-

sic information. As shown in Figure 7.1, instead of the component CCs employed in IrCC

schemes, the proposed IrVLC scheme employs component VLC codebooks. These have dif-

ferent coding rates and are used for encoding appropriately selected fractions of the input

source symbol stream. In this way, the resultant composite inverted EXIT function may be

shaped for ensuring that it does not cross the EXIT function of the inner channel codec.

Characterise
candidate
component

codes

component
codes

Select Design
component
fractionscodes

component
candidate
Design

Figure 7.1: Conventional irregular coding design process. This chapter presents modifica-

tions to the aspects of this process that are indicated using a bold box.

Note that the proposed scheme has an Unequal Error Protection (UEP) capability [200],

since different fractions of the input source symbol stream are protected by different VLC

codebooks having different coding rates and, hence, different error correction capabilities. In

a manner similar to that of [7–9] for example, this UEP capability may be employed to appro-

priately protect audio-, speech-, image- and video-encoded bit sequences, which are typically

generated using diverse encoding techniques and exhibit various error sensitivities. For ex-

ample, video coding typically achieves compression by employing Motion Compensation

(MC) [64] to exploit the characteristic inter-frame redundancy of video information and the

Discrete Cosine Transform (DCT) [63] to exploit the intra-frame redundancy, as described

in Section 6.1. As noted in [61], typically a higher degree of video reconstruction distortion

typically results from transmission errors that affect the MC-generated motion vectors than

from those inflicted on the DCT-encoded information. Hence, the proposed scheme’s UEP

capability may be employed to protect the MC-encoded information with a relatively strong

error correction capability, whilst employing a relatively weak error correction code to protect

the DCT-encoded information. This approach may hence be expected to yield a lower degree

of video reconstruction distortion than equal protection, as noted in [7–9], for example.

The rest of this chapter is outlined as follows. In Section 7.2, we propose iteratively de-

coded schemes, in which we opt for serially concatenating IrVLC with Trellis Coded Modula-

tion (TCM) [129]. Furthermore, Section 7.2 additionally introduces our benchmark schemes,

where IrVLC is replaced by regular VLCs having the same coding rate. The design and EXIT

chart aided characterisation of these schemes is detailed in Section 7.3. In Section 7.4, we

quantify the attainable performance improvements offered by the proposed IrVLC arrange-

ments compared to the regular VLC benchmarker schemes. Furthermore, in Section 7.4 we

additionally consider a Huffman coding and IrCC based benchmarker. Section 7.4 also em-

ploys a novel method of quantifying the computational complexity required for the schemes

considered in order to achieve different source sample reconstruction qualities at a range of

Rayleigh fading channel SNRs. This method is employed to select our preferred scheme and

to characterise the benefits of UEP. Finally, we offer our conclusions in Section 7.5.
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7.2 Overview of proposed schemes

In this section we provide an overview of a number of serially concatenated [131] and iter-

atively decoded [132] joint source and channel coding schemes. Whilst the novel schemes

introduced in this paper may be tailored for operating in conjunction with any inner channel

codec, we opt for employing TCM [129] in each of our considered schemes. This provides

error protection without any bandwidth expansion or effective bit-rate reduction by accommo-

dating the additional redundancy by transmitting more bits per channel symbol. The choice of

TCM is further justified, since A Posteriori Probability (APP) TCM Soft-In Soft-Out (SISO)

decoding, similarly to APP SISO IrVLC decoding, operates on the basis of Add-Compare-

Select (ACS) operations within a trellis structure. Hence, the APP SISO IrVLC and TCM

decoders can share resources in systolic-array based chips, facilitating a cost effective imple-

mentation. Furthermore, we will show that TCM exhibits attractive EXIT characteristics in

the proposed IrVLC context even without requiring TTCM- or BICM-style internal iterative

decoding [197].

Our considered schemes differ in their choice of the outer source codec. Specifically,

we consider a novel IrVLC codec and an equivalent regular VLC-based benchmarker in this

role. In both cases we employ both Symbol-Based (SB) [2] and Bit-Based (BB) [90] VLC

decoding, resulting in a total of four different configurations. We refer to these four schemes

as the SBIrVLC-, BBIrVLC-, SBVLC- and BBVLC-TCM arrangements, as appropriate. A

schematic that is common to each of these four considered schemes is provided in Figure 7.2.
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Figure 7.2: Schematic of the SBIrVLC-, BBIrVLC-, SBVLC- and BBVLC-TCM schemes.

In the IrVLC schemes, the M number of VLC encoders, APP SISO decoders and MAP

sequence estimators are each based upon one of N number of component VLC codebooks.

By contrast, in the VLC benchmarkers, all of the M number of VLC encoders, decoders and

sequence estimators are based upon the same VLC codebook.
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7.2.1 Joint source and channel coding

The schemes considered are designed for facilitating the near-capacity detection of source

samples received over an uncorrelated narrowband Rayleigh fading channel. We consider

the case of independent identically distributed (i.i.d.) source samples, which may represent

the prediction residual error that remains following the predictive coding of audio, speech,

image or video information [61,62], for example. Note that this was exemplified in the novel

video codec of Chapter 6, in which Frame Differencing (FD) was employed, as depicted in

Figure 6.1. A Gaussian source sample distribution is assumed here, since this has widespread

applications owing to the wide applicability of the central limit theorem [201]. Additionally,

a zero mean and unity source sample variance was assumed, resulting in the Probability

Distribution Function (PDF) shown in Figure 7.3. Note however that with the aid of suitable

adaptation, the techniques proposed in this chapter may be just as readily applied to arbitrary

source sample distributions.
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Figure 7.3: Gaussian PDF for unity mean and variance. The x axis is labelled with the

K = 16 Lloyd-Max quantisation levels {êk}K
k=1 as provided in [74]. The decision boundaries

are employed to decompose the Gaussian PDF into K = 16 sections. The integral of the PDF

between each pair of adjacent decision boundaries is provided.

In the block Q of the transmitter depicted in Figure 7.2, each real-valued source sample

of the source sample frame e is quantised [74, 75] to one of the K = 16 quantisation levels

{êk}K
k=1 provided in Figure 7.3. In each case, the selected quantisation level is that which

represents the source sample with the minimum squared error. Figure 7.3 provides decision

boundaries, which are located halfway between each adjacent pair of quantisation levels.

Each pair of adjacent decision boundaries specifies the range of source sample values that

are quantised to the quantisation level at the centre of gravity of this interval, resulting in the

minimum squared error. Following quantisation, each source sample in the source sample
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frame e is represented by a symbol in the source symbol frame s that represents the index of

the selected quantisation level êk and has a value of k ∈ [1 . . .K].
Owing to the lossy nature of quantisation, distortion is imposed upon the reconstructed

source sample frame ê that is obtained following inverse quantisation in the block, as de-

scribed in Section ??. Note that the set of quantisation levels depicted in Figure 7.3 represents

those of Lloyd-Max quantisation [74,75]. This employs the K-means algorithm [98] to search

for the set of quantisation levels that minimises the expected quantisation distortion. In the

case of the quantisation levels seen in Figure 7.3, the expected Signal to Quantisation Noise

Ratio (SQNR) is about 20 dB. Note however that again, with the aid of suitable adaptation,

the techniques advocated in this chapter may be just as readily applied to arbitrary quantisers.

Also note that Lloyd-Max quantisation results in a large variation in the occurrence prob-

abilities of the resultant source symbol values. These occurrence probabilities are given by

integrating the source PDF between each pair of adjacent decision boundaries, resulting

in the values provided in Figure 7.3. These source symbol values’ occurrence probabili-

ties {P (k)}K
k=1 are repeated in Table 7.1 and can be seen to vary by more than an order

of magnitude. These probabilities correspond to the varying source symbol informations

{− log2(P (k))}K
k=1 provided in Table 7.1, motivating the application of VLC and giving a

source entropy of E = 3.77 bits per source symbol, according to (7.2).

In the transmitter of the proposed scheme, the Lloyd-Max quantised source symbol frame

s is decomposed into M = 300 sub-frames {sm}M
m=1, as shown in Figure 7.2. In the case

of the SBIrVLC- and SBVLC-TCM schemes, this decomposition is necessary for the sake

of limiting the computational complexity of VLC decoding, since the number of transitions

in the symbol-based VLC trellis is inversely proportional to the number of sub-frames in

this case [2], as described in Section ??. We opt for employing the same decomposition of

the source symbol frames into sub-frames in the case of the BBIrVLC- and BBVLC-TCM

schemes for the sake of ensuring that we make a fair comparison with the SBIrVLC- and

SBVLC-TCM schemes. This is justified, since the decomposition considered benefits the

performance of the BBIrVLC- and BBVLC-TCM schemes, as will be detailed below. Each

source symbol sub-frame sm comprises J = 100 source symbols. Hence, the total number of

source symbols in a source symbol frame becomes M ·J = 30 000. As described above, each

Lloyd-Max quantised source symbol in the sub-frame sm has a K-ary value sm
j ∈ [1 . . .K],

where we have j ∈ [1 . . . J ].
As described in Section 7.1, we employ N number of component VLC codebooks to

encode the source symbols, where we opted for N = 15 for the SBIrVLC and BBIrVLC

schemes and N = 1 for the regular SBVLC and BBVLC schemes. Each Lloyd-Max quan-

tised source symbol sub-frame sm is VLC-encoded using a single component VLC codebook

VLCn, where we have n ∈ [1 . . .N ]. In the case of the SBIrVLC and BBIrVLC schemes,

the particular fraction Cn of the set of source symbol sub-frames that is encoded by the

specific component VLC codebook VLCn is fixed and will be derived in Section 7.3. The

specific Lloyd-Max quantised source symbols having the value of k ∈ [1 . . .K] and encoded

by the specific component VLC codebook VLCn are represented by the codeword VLCn,k,

which has a length of In,k bits. The J = 100 VLC codewords that represent the J = 100
Lloyd-Max quantised source symbols in each source symbol sub-frame sm are concatenated
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k P (k) − log2(P (k)) Ik Huffk

1 0.0082 6.93 7 0000000
2 0.0244 5.35 6 000001
3 0.0427 4.55 5 00010
4 0.0605 4.05 4 0010
5 0.0762 3.72 4 0100
6 0.0887 3.49 4 0110
7 0.0974 3.36 3 101
8 0.1019 3.29 3 110
9 0.1019 3.29 3 111
10 0.0974 3.36 3 100
11 0.0887 3.49 4 0111
12 0.0762 3.72 4 0101
13 0.0605 4.05 4 0011
14 0.0427 4.55 5 00011
15 0.0244 5.35 5 00001
16 0.0082 6.93 7 0000001

Table 7.1: The probabilities of occurrence P (k) and informations − log2(P (k)) of the

K = 16 source symbol values k ∈ [1 . . .K] that result from the Lloyd-Max quantisation of

Gaussian distributed source samples. The corresponding source symbol entropy is E = 3.77
bits per source symbol, according to (7.2). Also provided is the composition of the K = 16
codewords in the corresponding Huffman codebook Huff = {Huffk}K

k=1 [65], having the

codeword lengths {Ik}K
k=1. According to (7.1), the average Huffman codeword length is

L(Huff) = 3.81 bits per source symbol, which corresponds to a Huffman coding rate of

RHuff = 0.99, according to (7.3).

to provide the transmission sub-frame

um = {VLCn,sm
j }J

j=1.

Owing to the variable lengths of the VLC codewords, each of the M = 300 transmission

sub-frames typically comprises a different number of bits. In order to facilitate the VLC

decoding of each transmission sub-frame um, it is necessary to explicitly convey its length

Im =
J∑

j=1

In,sm
j

to the receiver. Furthermore, this highly error sensitive side information must be reliably

protected against transmission errors. This may be achieved using a low rate block code, for

example. For the sake of avoiding obfuscation, this is not shown in Figure 7.2. Note that the

choice of the specific number of sub-frames M in each frame constitutes a trade-off between

the computational complexity of SBVLC decoding or the performance of BBVLC decoding
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and the amount of side information that must be conveyed. In Section 7.3, we shall comment

on the amount of side information that is required for reliably conveying the specific number

of bits in each transmission sub-frame to the decoder.

In the scheme’s transmitter, the M = 300 number of transmission sub-frames {um}M
m=1

are concatenated. As shown in Figure 7.2, the resultant transmission frame u has a length of
∑M

m=1 Im bits.

In the proposed scheme, the VLC codec is protected by a serially concatenated TCM

codec. Following VLC encoding, the bits of the transmission frame u are interleaved using

the function π in order to provide the interleaved transmission frame u′, which is TCM en-

coded in order to obtain the channel’s input symbols x, as shown in Figure 7.2. These are

transmitted over an uncorrelated narrowband Rayleigh fading channel and are received as the

channel’s output symbols y, as seen in Figure 7.2.

7.2.2 Iterative decoding

In the receiver, APP SISO TCM- and VLC-decoding are performed iteratively, as shown

in Figure 7.2. Both of these decoders invoke the Bahl-Cocke-Jelinek-Raviv (BCJR) algo-

rithm [4] on the basis of their trellises. Symbol-based trellises are employed in the case of

TCM [129], SBIrVLC and SBVLC [2] decoding, whilst BBIrVLC and BBVLC decoding

rely on bit-based trellises [90]. All BCJR calculations are performed in the logarithmic prob-

ability domain and using an eight-entry lookup table for correcting the Jacobian approxima-

tion in the Log-MAP algorithm [197]. The proposed approach requires only Add, Compare

and Select (ACS) computational operations during iterative decoding, which will be used as

our complexity measure, since it is characteristic of the complexity/area/speed trade-offs in

systolic-array based chips.

As usual, extrinsic soft information, represented in the form of Logarithmic Likelihood

Ratios (LLRs) [124], is iteratively exchanged between the TCM and VLC decoding stages

for the sake of assisting each other’s operation [131,132], as described in Section ??. In Fig-

ure 7.2, L(·) denotes the LLRs of the bits concerned (or the log-APPs of the specific symbols

as appropriate), where the superscript i indicates inner TCM decoding, while o corresponds

to outer VLC decoding. Additionally, a subscript denotes the dedicated role of the LLRs

(or log-APPs), with a, p and e indicating a priori, a posteriori and extrinsic information,

respectively.

During each decoding iteration, the inner TCM decoder is provided with a priori LLRs

pertaining to the interleaved transmission frame Li
a(u′), as shown in Figure 7.2. These LLRs

are obtained from the most recent operation of the outer VLC decoding stage, as will be

highlighted below. In the case of the first decoding iteration, no previous VLC decoding has

been performed and hence the a priori LLRs Li
a(u′) provided for TCM decoding are all zero-

valued, corresponding to a probability of 0.5 for both ‘0’ and ‘1’. Given the channel’s output

symbols y and the a priori LLRs Li
a(u

′), the BCJR algorithm is employed for obtaining the

a posteriori LLRs Li
p(u

′), as shown in Figure 7.2.

During iterative decoding, it is necessary to prevent the re-use of already exploited infor-

mation, since this would limit the attainable iteration gain [197], as described in Section ??.

This is achieved following TCM decoding by the subtraction of Li
a(u

′) from Li
p(u

′), as

shown in Figure 7.2. The resultant extrinsic LLRs Li
e(u

′) are de-interleaved in the block
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π−1 and forwarded as a priori LLRs for VLC decoding. As described in Section ??, inter-

leaving is employed in order to mitigate correlation within the a priori LLR frames. This is

necessary since the BCJR algorithm assumes that all a priori LLRs that can influence any

particular decoding decision are uncorrelated.

Just as M = 300 separate VLC encoding processes are employed in the proposed scheme’s

transmitter, M = 300 separate VLC decoding processes are employed in its receiver. In par-

allel to the composition of the bit-based transmission frame u from its M = 300 sub-frames,

the a priori LLRs Lo
a(u) are decomposed into M = 300 sub-frames, as shown in Figure 7.2.

This is achieved with the aid of the explicit side information that conveys the number of bits

Im in each transmission sub-frame um. Each of the M = 300 VLC decoding processes is

provided with the a priori LLR sub-frame Lo
a(um) and in response it generates the a pos-

teriori LLR sub-frame Lo
p(u

m), m ∈ [1 . . .M ]. These a posteriori LLR sub-frames are

concatenated in order to provide the a posteriori LLR frame Lo
p(u), as shown in Figure 7.2.

Following the subtraction of the a priori LLRs Lo
a(u), the resultant extrinsic LLRs Lo

e(u) are

interleaved and forwarded as a priori information to the next TCM decoding iteration.

In the case of SBIrVLC and SBVLC decoding, each of the M = 300 VLC decoding

processes additionally provides log-APPs pertaining to the corresponding source symbol sub-

frame Lo
p(s

m). This comprises a set of K number of log-APPs for each source symbol sm
j

in the sub-frame sm, where j ∈ [1 . . . J ]. Each of these log-APPs provides the logarithmic

probability that the corresponding source symbol sm
j has the particular value k ∈ [1 . . .K].

In the receiver of Figure 7.2, the source symbols’ log-APP sub-frames are concatenated to

provide the source symbol log-APP frame Lo
p(s). By inverse-quantising this soft information

in the block Q−1, we may obtain a frame of Minimum Mean Squared Error (MMSE) source

sample estimates ẽ, which approximates the reconstructed source sample frame ê described

in Section 7.2.1. More specifically, each source sample estimate is obtained by using the

corresponding set of K source symbol value probabilities to find the weighted average of the

K number of quantisation levels {êk}K
k=1.

Conversely, in the case of BBIrVLC and BBVLC decoding, no symbol-based a posteriori

output is available. In this case, each source symbol sub-frame sm is estimated from the cor-

responding a priori LLR sub-frame Lo
a(u

m). This may be achieved by employing Maximum

A posteriori Probability (MAP) sequence estimation operating on a bit-based trellis struc-

ture, as shown in Figure 7.2. Unlike in APP SISO SBIrVLC and SBVLC decoding, bit-based

MAP sequence estimation cannot exploit the knowledge that each sub-frame sm comprises

J = 100 source symbols. For this reason, the resultant hard decision estimate s̃m of each

source symbol sub-frame sm may or may not contain J = 100 source symbols. In order that

we may prevent the loss of synchronisation that this would imply, source symbol estimates

are removed from, or appended to the end of each source symbol sub-frame estimate s̃m for

ensuring that they each comprise exactly J = 100 source symbol estimates. Note that it is the

decomposition of the source symbol frame s into sub-frames that provides this opportunity

to mitigate the loss of synchronisation that is associated with bit-based MAP VLC sequence

estimation. Hence the decomposition of the source symbol frame s into sub-frames benefits

the performance of the BBIrVLC- and BBVLC-TCM schemes, as mentioned above.

Following MAP sequence estimation, the adjusted source symbol sub-frame estimates

s̃m are concatenated for the sake of obtaining the source symbol frame estimate s̃. This may

be inverse-quantised in order to obtain the source sample frame estimate ẽ. Note that for the
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reconstruction of a source sample frame estimate ẽ from a given a priori LLR frame Lo
a(u),

a higher level of source distortion may be expected in the BBIrVLC- and BBVLC-TCM

schemes than in the corresponding SBIrVLC- and SBVLC-TCM schemes. This is due to

the BBIrVLC- and BBVLC-TCM schemes’ reliance on hard decisions as opposed to the soft

decisions of the SBIrVLC- and SBVLC-TCM schemes. However, this reduced performance

substantially benefits us in terms of a reduced complexity, since the bit-based VLC decoding

trellis employed during APP SISO BBIrVLC and BBVLC decoding and MAP sequence esti-

mation contains significantly less transitions than the symbol-based VLC decoding trellis of

APP SISO SBIrVLC and SBVLC decoding, as described in Section ??.

In the next section we detail the design of our IrVLC scheme and characterise each of

the SBIrVLC-, BBIrVLC-, SBVLC- and BBVLC-TCM schemes with the aid of EXIT chart

analysis.

7.3 Parameter design for the proposed schemes

7.3.1 Scheme hypothesis and parameters

As described in Section 7.1, the SBIrVLC and BBIrVLC schemes may be constructed by

employing a number of component VLC codebooks having different coding rates, each of

which encodes an appropriately chosen fraction of the input source symbols. We opted for

using N = 15 component VLC codebooks {VLCn}15
n=1, that were specifically designed for

encoding K = 16-level Lloyd-Max quantised Gaussian i.i.d. source samples. As shown in

Figure 7.1, these N = 15 component VLC codebooks were selected from a large number of

candidates using a significant amount of ‘trial-and-error’ based human interaction in order to

provide a suite of ‘similarly-spaced’ EXIT functions. More specifically, the N = 15 com-

ponent VLC codebooks comprised 13 different Variable Length Error Correcting (VLEC)

designs having various so-called minimum block-, convergence- and divergence-distances as

defined in Section ??, complemented by a Symmetric Reversible Variable Length Coding

(SRVLC) and an Asymmetric Reversible Variable Length Coding (ARVLC) design. These

codebooks were designed using Algorithms C and E of Section ??.

As described in Section ??, the free distance lower bound of a VLC codebook VLCn

can be calculated as

d̄free(VLCn) = min(dbmin
(VLCn), ddmin

(VLCn) + dcmin
(VLCn)),

where dbmin
(VLCn) is defined as the minimum block distance between any pair of equal-

length codewords in the VLC codebook VLCn, whilst ddmin
(VLCn) and dcmin

(VLCn)
are the minimum divergence and convergence distances between any pair of unequal-length

codewords, respectively. In all codebooks, a free distance lower bound of d̄free(VLCn) ≥ 2
was employed, since this supports iterative decoding convergence to an infinitesimally low

probability of error [161], as described in Section ??. The resultant average VLC codeword

lengths were found to range from 3.94 to 12.18 bits/symbol, according to (7.1). When com-

pared to the source symbol entropy of E = 3.77 bits per source symbol, these correspond

to coding rates spanning the range of 0.31 to 0.96, according to (7.3). The properties and

composition of the N = 15 component VLC codebooks {VLCn}15
n=1 are summarised in

Table 7.2.
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VLCn Properties Composition

VLC1 (VLEC,2,1,1,2,0.96) 6,6,5,5,4,4,3,3,3,3,4,4,5,5,6,6,

857E1FD3074A55133A
VLC2 (ARVLC,2,1,1,2,0.91) 6,6,5,5,4,4,4,3,3,4,4,4,5,5,6,6,

1EB624C9A1D58F6E4A1
VLC3 (SRVLC,2,1,1,2,0.86) 7,6,6,5,5,4,4,3,3,4,4,5,5,6,6,7,

7D9C248FCAAC0EDBC641
VLC4 (VLEC,3,1,1,2,0.81) 8,7,7,6,6,5,4,2,3,3,4,5,6,7,7,8,

81F6F9E86322ACEDE0E77E
VLC5 (VLEC,4,1,1,2,0.75) 8,8,7,6,6,5,4,2,3,4,5,6,7,7,8,8,

36EF61EB5BA44D179F5D7E81
VLC6 (VLEC,2,2,1,2,0.70) 8,7,7,6,6,6,4,4,4,4,6,6,6,7,7,8,

E6C99FCADB9035628FF0E2EA
VLC7 (VLEC,3,2,1,3,0.64) 8,8,7,7,6,6,6,4,5,5,6,6,7,7,7,9,

7FDE5CD3E65403625A267AAD7C
VLC8 (VLEC,3,2,2,3,0.60) 9,8,8,7,7,6,6,4,6,6,6,6,7,8,8,9,

696F594FCBA5A03159B3F8B35583
VLC9 (VLEC,5,2,2,4,0.57) 10,10,9,8,8,7,6,4,5,5,6,7,8,9,9,10,

126307A57CE367501B2AAC9A69CF9ED
VLC10 (VLEC,4,3,2,4,0.52) 11,10,9,8,8,7,7,6,6,6,7,7,8,9,9,11,

1673E8F0CB2DAAA401F9CC68CD55E37BF
VLC11 (VLEC,4,3,3,4,0.47) 11,11,10,9,9,8,7,6,6,7,8,8,9,10,10,12,

11FA38AB9536B72B800F4D67B3355A655663
VLC12 (VLEC,7,3,3,6,0.43) 12,12,11,10,10,9,8,6,7,7,8,9,11,11,12,13,

2F696B8EC5D38F93A5007715A363233BBA2B899
VLC13 (VLEC,5,4,3,5,0.39) 13,12,11,10,10,9,9,8,9,9,9,10,10,11,11,14,

17455A1FFED72B7CC9380079C479A5F32C9555A
A4D

VLC14 (VLEC,9,4,4,8,0.35) 15,14,14,12,12,11,10,8,9,9,10,11,13,13,14,15,

18DA499F59CAB71C9B55C9C003DE1361552D2CD
7ACFB4D3B

VLC15 (VLEC,8,5,5,8,0.31) 16,15,15,13,13,12,12,10,10,11,12,12,14,14,15,16,

31D97570AE9A5A9C6A59664D4003FE87CE53537
C671CE53464F3A

Table 7.2: Properties and composition of the 15 component VLC codebooks {VLCn}15
n=1.

The properties of each component VLC codebook VLCn are provided using the format

(Type, dbmin
(VLCn), ddmin

(VLCn), dcmin
(VLCn), d̄free(VLCn), R(VLCn)). The com-

position of each component VLC codebook VLCn is specified by providing the K = 16
codeword lengths {In,k}K

k=1, together with the hexadecimal representation of the ordered

concatenation of the K = 16 VLC codewords in the codebook.
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As will be detailed below, our SBIrVLC and BBIrVLC schemes were designed under the

constraint that they have an overall coding rate of RIrVLC = 0.52. This value was chosen,

since it is the coding rate of the VLC codebook VLC10, which we employ in our SBVLC

and BBVLC benchmarkers using N = 1 codebook. This coding rate results in an average

interleaver length of M · J · E/RIrVLC = 217 500 bits for all the schemes considered.

Note that this interleaver length is nearly three times longer than any of those considered in

Chapter 6.

Each of the schemes considered employs the same TCM codec, having the Linear Feed-

back Shift Register (LFSR) schematic of Figure 6.9. As shown in Figure 6.9, the TCM

encoder generates a set of four bits to represent each set of three input bits, giving a coding

rate of RTCM = 3/4. Three of the four output bits are systematic replications of the three

input bits, whilst the fourth output bit is generated with the aid of the LTCM = 6 modulo-2

memory elements. Note that the TCM codec is a recursive component having an infinite im-

pulse response, since feedback is employed in the shift register of Figure 6.9. As a result, the

TCM codec supports iterative decoding convergence to an infinitesimally low probability of

error [159], as is the case for our component VLC codebooks, as described above. Hence, we

may expect the proposed scheme to achieve iterative decoding convergence to an infinitesi-

mally low probability of error, provided that the channel quality is sufficiently high to create

an open EXIT chart tunnel and the iterative decoding trajectory approaches the inner and

outer codecs’ EXIT functions sufficiently closely, as discussed in Section ??. Furthermore,

Figure 6.10 provides the constellation diagram for the MTCM = 16-ary set-partitioned [129]

QAM scheme of the TCM codec. This was employed together with In-phase Quadrature-

phase (IQ)-interleaving [196] for transmission over an uncorrelated narrowband Rayleigh

fading channel.

Ignoring the modest bitrate contribution of conveying the side information, the effective

throughput of the schemes considered is η = RIrVLC · RTCM · log2(MTCM) = 1.56 bits

per channel use. This implies that iterative decoding convergence to an infinitesimally low

probability of error cannot be achieved when channel capacities of less than 1.56 bits per

channel use [24] are attained at low Ec/N0 values, where Ec is the transmit energy per

Rayleigh fading channel use and N0 is the average noise energy. Note that the uncorrelated

narrowband Rayleigh fading channel’s capacity for 16QAM is less than 1.56 bits per channel

use for Eb/N0 values below 2.6 dB [116], where Eb = Ec/η is the transmit energy per bit

of source entropy. Given this point on the corresponding channel capacity versus Eb/N0

function, we will be able to quantify how closely the proposed schemes may approach this

ultimate limit.

Recall from Section 7.2 that it is necessary to convey the length of each transmission

sub-frame um to the receiver in order to facilitate its VLC decoding. The amount of side

information required may be determined by considering the range of transmission sub-frame

lengths that can result from VLC encoding using each of the N = 15 component codebooks.

When all J = 100 source symbols in a particular source symbol sub-frame sm are repre-

sented by the codeword from the component VLC codebook VLCn having the maximal

length maxk∈[1...K] I
n,k, a maximal transmission sub-frame length of

In
max = J · max

k∈[1...K]
In,k
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results. Similarly, a minimal transmission sub-frame length of

In
min = J · min

k∈[1...K]
In,k

results, when all source symbols are represented by the minimal length VLC codeword. A

transmission sub-frame um encoded using the component VLC codebook VLCn will there-

fore have one of (In
max − In

min + 1) number of lengths in the range Im ∈ [In
min . . . In

max].
Hence, the length of the transmission sub-frame Im can be represented using a fixed-length

codeword comprising ⌈log2(I
n
max − In

min + 1)⌉ number of bits. When considering the VLC

codeword lengths provided in Table 7.2, it was found for all schemes that a single 10-bit

fixed-length codeword of side information is sufficient for conveying the length of each of

the M = 300 transmission sub-frames um in each transmission frame u. As suggested in

Section 7.2, this error sensitive side information may be protected by a low-rate block code

in order to ensure its reliable transmission. Using a Rrep = 1/3-rate repetition code results

in a total of 10 · M/Rrep = 9 000 bits of side information per frame, which represents an

average of just 4% of the transmitted information, when appended to the transmission frame

u, which has an average length of M · J · E/RIrVLC = 217 500 bits for all of the schemes

considered.

7.3.2 EXIT chart analysis and optimisation

We now consider the EXIT characteristics of the various components of our various schemes.

In all cases, EXIT functions were generated using uncorrelated Gaussian distributed a pri-

ori LLRs and all mutual information measurements were made using the histogram-based

approximation of the LLR PDFs [152].

In Figures 7.4 and 7.5, we provide the EXIT functions Ii
e(I

i
a, Eb/N0) of the TCM scheme

for a number of Eb/N0 values above the channel capacity bound of 2.6 dB. Note that owing to

its recursive nature, the APP SISO TCM decoder can be seen to achieve unity extrinsic mutual

information Ii
e for unity a priori mutual information Ii

a [159]. Additionally, the inverted

EXIT functions Io,n
a (Io

e ) plotted for the N = 15 component VLC codebooks, together with

their coding rates R(VLCn), are given in Figure 7.4 for symbol-based APP SISO VLC

decoding and in Figure 7.5 for bit-based APP SISO VLC decoding. Similarly to APP SISO

TCM decoding, APP SISO VLC decoding achieves unity extrinsic mutual information Io
e for

unity a priori mutual information Io
a in all cases, owing to the employment of codebooks

having a free distance lower bound of d̄free ≥ 2 [161], as discussed in Section ??. Note

that the EXIT functions obtained for symbol- and bit-based APP SISO VLC decoding are

slightly different. This is because unlike the bit-based APP SISO VLC decoder, the symbol-

based APP SISO VLC decoder is capable of exploiting the knowledge that there are J = 100
source symbols in each source symbol sub-frame sm, as described in Section ??.

The inverted EXIT function of an IrVLC scheme Io
a(Io

e ) can be obtained as the appropri-

ately weighted superposition of the N = 15 component VLC codebooks’ EXIT functions,

Io
a(Io

e ) =

N∑

n=1

αnIo,n
a (Io

e ), (7.4)
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TCM Eb/N0 = 3.2 dB

TCM Eb/N0 = 3.7 dB

SBIrVLC RIrV LC = 0.52

VLC15 (0.31, 0.00, 0.00)

VLC14 (0.35, 0.00, 0.00)

VLC13 (0.39, 0.06, 0.08)

VLC12 (0.43, 0.00, 0.00)

VLC11 (0.47, 0.65, 0.72)

VLC10 (0.52, 0.00, 0.00)

VLC9 (0.57, 0.00, 0.00)

VLC8 (0.60, 0.00, 0.00)

VLC7 (0.64, 0.00, 0.00)
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Figure 7.4: Inverted VLC EXIT functions, which were obtained using symbol-based APP

SISO VLC decoding. The inverted EXIT function is provided for the corresponding

SBIrVLC arrangement, together with TCM EXIT functions for a number of Eb/N0 values.

Decoding trajectories are provided for the SBIrVLC-TCM scheme at a channel Eb/N0 value

of 3.2 dB, as well as for the SBVLC-TCM scheme at a channel Eb/N0 value of 3.7 dB. In-

verted VLC EXIT functions are labelled using the format VLCn (R(VLCn), Cn
SB , αn

SB).
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TCM Eb/N0 = 3.2 dB

TCM Eb/N0 = 3.7 dB

BBIrVLC RIrV LC = 0.52

VLC15 (0.31, 0.05, 0.08)

VLC14 (0.35, 0.00, 0.00)

VLC13 (0.39, 0.00, 0.00)
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VLC9 (0.57, 0.00, 0.00)

VLC8 (0.60, 0.00, 0.00)

VLC7 (0.64, 0.00, 0.00)

VLC6 (0.70, 0.00, 0.00)

VLC5 (0.75, 0.32, 0.22)

VLC4 (0.81, 0.00, 0.00)

VLC3 (0.86, 0.00, 0.00)

VLC2 (0.91, 0.00, 0.00)

VLC1 (0.96, 0.00, 0.00)

I i
a,I

o
e

I
i e
,I

o a

10.90.80.70.60.50.40.30.20.10

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 7.5: Inverted VLC EXIT functions, which were obtained using bit-based APP SISO

VLC decoding. The inverted EXIT function is provided for the corresponding BBIrVLC

arrangement, together with TCM EXIT functions for a number of Eb/N0 values. Decoding

trajectories are provided for the BBIrVLC-TCM scheme at a channel Eb/N0 value of 3.2 dB,

as well as for the BBVLC-TCM scheme at a channel Eb/N0 value of 3.7 dB. Inverted VLC

EXIT functions are labelled using the format VLCn (R(VLCn), Cn
BB , αn

BB).
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where αn is the fraction of the transmission frame u that is generated by the specific compo-

nent codebook VLCn. Note that since all of the N = 15 component VLC codebooks’ EXIT

functions achieve unity extrinsic mutual information Io
e for unity a priori mutual information

Io
a , the same is true for the composite IrVLC EXIT function. Also note that the values of αn

are subject to the constraints

N∑

n=1

αn = 1, αn ≥ 0 ∀ n ∈ [1 . . .N ]. (7.5)

The specific fraction of source symbol sub-frames sm that should be encoded by the specific

component codebook VLCn in order that it generates a fraction αn of the transmission frame

u, is given by

Cn = αn · R(VLCn)/RIrVLC, (7.6)

where RIrVLC = 0.52 is the desired overall coding rate. Again, the specific values of Cn are

subject to the constraints

N∑

n=1

Cn =

N∑

n=1

αn · R(VLCn)/RIrVLC = 1, Cn ≥ 0 ∀ n ∈ [1 . . .N ]. (7.7)

As described in Section ??, an open EXIT chart tunnel [158] can be achieved at suffi-

ciently high channel Eb/N0 values, since both the VLC and the TCM APP SISO decoders

support iterative decoding convergence to unity mutual information. Hence, beneficial values

of {Cn}N
n=1 may be chosen by ensuring that there is an open EXIT chart tunnel between

the inverted IrVLC EXIT function and the EXIT function of TCM at an Eb/N0 value that

is close to the channel capacity bound. This may be achieved using the iterative EXIT-chart

matching process of [10] to adjust the values of {Cn}N
n=1 under the constraints of (7.5) and

(7.7) for the sake of minimising the error function

{Cn}N
n=1 = argmin

{Cn}N
n=1

(∫ 1

0

e(I)2dI

)

, (7.8)

where

e(I) = Ii
e(I, Eb/N0) − Io

a(I) (7.9)

is the difference between the inverted IrVLC EXIT function and the EXIT function of TCM

at a particular target Eb/N0 value. Note that in order to ensure that the design results in an

open EXIT tunnel, we must impose the additional constraint of

e(I) > 0 ∀ I ∈ [0, 1]. (7.10)

Open EXIT tunnels were found to be achievable for both the SBIrVLC- and the BBIrVLC-

TCM schemes at a threshold Eb/N0 value of 3.1 dB, which is just 0.5 dB from the channel

capacity bound of 2.6 dB. The inverted SBIrVLC EXIT function is shown in Figure 7.4,

which is slightly different from the BBIrVLC EXIT function shown in Figure 7.5, owing to

the slight differences in the EXIT functions obtained for bit- and symbol-based APP SISO
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decoding, as described above. The corresponding values of Cn and αn are provided for both

the SBIrVLC- and the BBIrVLC-TCM schemes in Figures 7.4 and 7.5, respectively, and il-

lustrated in Figures 7.6 and 7.7, respectively. Note that in the case of both the SBIrVLC- and

BBIrVLC-TCM schemes, there are just three activated component VLC codebooks, which

have corresponding values of Cn and αn that are higher than zero.

The source symbol frame s and the transmission frame u are depicted in Figures 7.6 and

7.7. Note that in both cases, the horizontal bar representing the source symbol frame s is

RIrVLC = 0.52 times as long as that representing the transmission frame u, since an overall

coding rate of RIrVLC = 0.52 is employed. Each bar is decomposed into three sections,

representing the three activated component VLCs, namely VLC5, VLC11 and VLC13 in

the case of the SBIrVLC-TCM scheme and VLC5, VLC11 and VLC15 in the case of the

BBIrVLC-TCM scheme. The length of each section corresponds to the fraction Cn of the

source symbol frame s or the fraction αn of the transmission frame u that is coded using the

associated component VLC codebook.

α13

SB = 0.08

u:

s:

RIrV LC = 0.52

α5

SB = 0.20 α11

SB = 0.72

R(VLC11) = 0.47

C5

SB = 0.29 C11

SB = 0.65 C13

SB = 0.06

R(VLC5) = 0.75 R(VLC13) = 0.39

Figure 7.6: Illustration depicting the corresponding fractions of the source symbol frame s

and the transmission frame u that are encoded using the three component VLC codebooks

VLC5, VLC11 and VLC13 in the SBIrVLC-TCM scheme.
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Figure 7.7: Illustration depicting the corresponding fractions of the source symbol frame s

and the transmission frame u that are encoded using the three component VLC codebooks

VLC5, VLC11 and VLC15 in the BBIrVLC-TCM scheme.

In the case of the SBVLC- and BBVLC-TCM benchmarkers, an open EXIT chart tunnel

between the inverted EXIT function of their only component VLC codebook VLC10 and the

TCM EXIT function was only found to be achieved for Eb/N0 values above a threshold value

of 3.6 dB. This Eb/N0 value is 1.0 dB from the channel capacity bound of 2.6 dB, a discrep-

ancy that is twice that of the SBIrVLC- and BBIrVLC-TCM schemes’ 0.5 dB value. We can
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therefore expect our SBIrVLC- and BBIrVLC-TCM schemes to be capable of operating sig-

nificantly closer to the channel’s Eb/N0 capacity bound in comparison to our benchmarkers,

achieving a gain of about 0.5 dB.

7.4 Simulation results

In this section, we discuss our findings when communicating over an uncorrelated narrow-

band Rayleigh fading channel having a range of Eb/N0 values above the channel capacity

bound of 2.6 dB. In all simulations, we considered the transmission of a single source sample

frame e, since this comprises a sufficiently large number of samples, namely M ·J = 30 000.

7.4.1 IrCC-based benchmarker

In addition to the proposed SBIrVLC-, BBIrVLC-, SBVLC- and BBVLC-TCM schemes, in

this section we also consider the operation of an additional benchmarker which we refer to as

the Huffman-IrCC-TCM scheme, as depicted in the schematic of Figure 7.8. In contrast to the

SBIrVLC-, BBIrVLC-, SBVLC- and BBVLC-TCM schemes of Figure 7.2, in the Huffman-

IrCC-TCM scheme the transmission frame u is generated by both Huffman and concatenated

IrCC encoding the source symbol frame s, rather than by invoking VLC encoding.

In the Huffman-IrCC-TCM scheme, Huffman coding is employed on a sub-frame by sub-

frame basis, as described in Section 7.2. Table 7.1 provides the composition of the K = 16
codewords in the Huffman codebook Huff = {Huffk}K

k=1, having the codeword lengths of

{Ik}K
k=1. Compared to the source symbol entropy of E = 3.77 bits per source symbol, the

average Huffman codeword length is L(Huff) = 3.81 bits per source symbol and the coding

rate is RHuff = 0.99, according to (7.1) and (7.3), respectively.

As shown in Figure 7.8, the frame of Huffman encoded bits v is protected by the N = 17-

component IrCC scheme of [175], which employs a coding memory of LIrCC = 4. The

inverted EXIT functions of the N = 17 component CC codes are provided in Figure 7.9.

The EXIT chart matching algorithm of [10] was employed to design the IrCC scheme. This

was tailored to have an overall coding rate of RIrCC = 0.525 so that the combined Huffman

coding and IrCC coding rate RHuff · RIrCC = 0.52 equals that of the outer codecs in the

SBIrVLC-, BBIrVLC-, SBVLC- and BBVLC-TCM schemes. Just like the SBIrVLC and

BBIrVLC designs detailed in Section 7.3, an open EXIT chart tunnel was found to be achiev-

able between the inverted IrCC EXIT function and the TCM EXIT function at an Eb/N0

value of 3.1 dB, resulting in the inverted IrCC EXIT function of Figure 7.9.

In the Huffman-IrCC-TCM receiver, iterative APP SISO IrCC and TCM decoding pro-

ceeds, as described in Section 7.2. Note that in addition to the a posteriori LLR frame Lo
p(u)

pertaining to the transmission frame u, the APP SISO IrCC decoder can additionally provide

the a posteriori LLR frame Lo
p(v) pertaining to the frame of Huffman encoded bits v. It is

on the basis of this that bit-based MAP Huffman sequence estimation may be invoked on a

sub-frame by sub-frame basis in order to obtain the source symbol frame estimate s̃, as shown

in Figure 7.8.

7.4.2 Iterative decoding convergence performance

For each of our schemes and for each value of Eb/N0 investigated, we consider the recon-

structed source sample frame ẽ and evaluate the SNR associated with the ratio of the source

signal’s energy and the reconstruction error energy that may be achieved following iterative

decoding convergence. This relationship is plotted for each of the SBIrVLC-, BBIrVLC-,
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Figure 7.8: Schematic of the Huffman-IrCC-TCM scheme. All of the M number of Huffman

encoders and MAP sequence estimators are based upon the same Huffman coding codebook.

SBVLC- and BBVLC-TCM schemes, as well as for the Huffman-IrCC-TCM scheme, in

Figure 7.10.

As shown in Figure 7.10, the source sample reconstruction SNR attained following the

achievement of iterative decoding convergence increases, as the channel’s Eb/N0 value in-

creases for all schemes considered. This may be explained by considering the associated

EXIT chart tunnels, which gradually open and become wider as the Eb/N0 value is increased

from the channel’s capacity bound, allowing the iterative decoding trajectory to progress fur-

ther, as explained in Section ??. Note that an open EXIT chart tunnel implies that iterative

decoding convergence to an infinitesimally low probability of error can be achieved, provided

that the iterative decoding trajectory approaches the inner and outer codecs’ EXIT functions

sufficiently closely, as described in Section ??. However, it can be seen in Figure 7.10 that

high source sample reconstruction SNRs were not achieved at the threshold Eb/N0 values,

for which open EXIT chart tunnels may be created. This is because our 217 500-bit inter-

leaver is unable to entirely eradicate the correlation within the a priori LLR frames Lo
a(u)

and Li
a(u′), which the BCJR algorithm assumes to be uncorrelated [4]. As a result, the it-

erative decoding trajectory does not perfectly match with the inner and outer codecs’ EXIT

functions and the EXIT chart tunnel must be further widened before the iterative decoding

trajectory can reach the top right hand corner of the EXIT chart, which is associated with an

infinitesimally low probability of error, as described in Section ??.

For sufficiently high Eb/N0 values, the iterative decoding trajectory of all considered

schemes was found to approach the top right hand corner of the EXIT chart, yielding source

sample reconstruction SNRs of 20 dB. As described in Section 7.2.1, this represents the in-

finitesimally low probability of error scenario, where quantisation noise provides the only

significant degradation. As shown in Figure 7.10, source sample reconstruction SNRs of

20 dB may be achieved by the SBIrVLC- and BBIrVLC-TCM schemes at Eb/N0 values

above 3.2 dB, which is just 0.1 dB from the corresponding threshold Eb/N0 value of 3.1 dB,

as described in Section 7.3.2. In the case of the SBVLC- and BBVLC-TCM schemes, Fig-

ure 7.10 also shows a 0.1 dB discrepancy between the threshold Eb/N0 value of 3.6 dB and

the lowest Eb/N0 value, for which a source sample reconstruction SNR of 20 dB may be

achieved, namely 3.7 dB. By contrast, Figure 7.10 shows a 0.3 dB discrepancy between the
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schemes, as well as for the Huffman-IrCC-TCM scheme, communicating over an uncorre-

lated narrowband Rayleigh fading channel following iterative decoding convergence.

threshold Eb/N0 value of 3.1 dB and the lowest Eb/N0 value for which the Huffman-IrCC-

TCM scheme may achieve a source sample reconstruction SNR of 20 dB, namely 3.4 dB.

For each of our schemes, the iterative decoding trajectory that reaches the (1, 1) point of

the EXIT chart at the lowest channel Eb/N0 value considered is provided in either Figure 7.4,

7.5 or 7.9, as appropriate. Note that the iterative decoding trajectories of the SBIrVLC-,

BBIrVLC-, SBVLC- and BBVLC-TCM schemes approach the corresponding inner and outer

EXIT functions fairly closely, facilitating iterative decoding convergence to the (1, 1) point of

the EXIT chart at a channel Eb/N0 value that is just 0.1 dB above the threshold value. This is

in contrast to the iterative decoding trajectories of Figure 6.11, which did not exhibit a close

match with the inner and outer EXIT functions, requiring an Eb/N0 value that is 0.5 dB

above the threshold value in order that the (1, 1) point of the EXIT chart may be reached.

The improved matching of the SBIrVLC-, BBIrVLC-, SBVLC- and BBVLC-TCM schemes’

iterative decoding trajectories is a benefit of employing an interleaver that is nearly three

times longer than any of those employed in Chapter 6, facilitating the improved mitigation

of correlation within the iteratively exchanged extrinsic information. However, the iterative

decoding trajectory of the Huffman-IrCC-TCM scheme does not approach the inner and outer

EXIT functions as closely as those of the SBIrVLC-, BBIrVLC-, SBVLC- and BBVLC-

TCM schemes. As a result, the channel’s Eb/N0 value must be increased by 0.3 dB beyond

the threshold Eb/N0 value before the EXIT chart tunnel becomes sufficiently wide for the

iterative decoding trajectory to reach the (1, 1) point of the EXIT chart. This may be attributed

to the APP SISO IrCC decoder’s relatively high sensitivity to any residual correlation within



276 7.4.3. Interleaver length and latency

the a priori LLR frame Lo
a(u) that was insufficiently mitigated by the 217 500-bit interleaver,

as will be detailed in Section 7.4.3.

7.4.3 Interleaver length and latency

As described in Section 7.2.2, interleaving is employed before the a priori LLR frame Lo
a(u)

is forwarded to the outer APP SISO decoder of each of the schemes considered. This is

necessary, since the BCJR algorithm employed by the APP SISO decoders assumes that all

a priori LLRs that can influence any particular decoding decision are uncorrelated, as de-

scribed in Section ??. However, despite the employment of a long average interleaver length

of 217 500 bits, APP SISO IrCC decoding applied to the Huffman-IrCC-TCM scheme is

still sensitive to the residual correlation within the a priori LLR frame Lo
a(u). As a result,

the Huffman-IrCC-TCM scheme suffers from a gradually eroding iterative decoding perfor-

mance, when the EXIT chart tunnel is narrow, as explained above. Let us now consider the

relatively high sensitivity of APP SISO IrCC decoding to the residual correlation within the

a priori LLR frame Lo
a(u) in greater detail.

In the IrCC encoder [175] of the Huffman-IrCC-TCM scheme, which employs a coding

memory of LIrCC = 4, each bit of the Huffman encoded frame v is encoded in conjunction

with the preceeding LIrCC = 4 bits, in order to generate an average of 1/RIrCC = 1.92 bits

for the transmission frame u [51]. Hence, each set of 1.92 bits in the transmission frame

u is directly influenced by the values of the preceeding LIrCC = 4 sets of 1.92 bits, which

are each in turn directly influenced by their preceeding LIrCC = 4 sets of 1.92 bits and so

on, providing indirect influences. Similarly, each set of 1.92 bits in the transmission frame

u has a direct influence upon the values of the following LIrCC = 4 sets of 1.92 bits, each

of which in turn has a direct influence upon their following LIrCC = 4 sets of 1.92 bits

and so on, providing further indirect influences. These dependencies between the sets of

1/RIrCC = 1.92 bits are illustrated in Figure 7.11.

Figure 7.11: Dependencies between sets of 1/RIrCC = 1.92 IrCC-encoded bits, for a coding

memory of LIrCC = 4.

The aforementioned influences amongst the bits in the transmission frame u are exploited

during APP SISO IrCC decoding, by employing the BCJR algorithm in order to consider the

a priori LLRs in the frame Lo
a(u) that pertain to both the preceeding and following bits of

u. However, the BCJR algorithm assumes that all a priori LLRs in the frame Lo
a(u) that can

influence a particular decoding decision are uncorrelated, as described in Section ??. Since

all bits in the transmission frame u are either directly or indirectly influenced by each other,

we could argue that APP SISO IrCC decoding is sensitive to all correlation within the a priori

LLR frame Lo
a(u). However, each set of 1.92 bits in the transmission frame u is only directly

influenced by the values of the preceeding LIrCC = 4 sets of 1.92 bits and only has direct

influence upon the values of the following LIrCC = 4 sets of 1.92 bits in the Huffman-IrCC-

TCM scheme. Hence, we can say that APP SISO IrCC decoding is only directly sensitive

to correlation within the sets of 1/RIrCC × LIrCC + 1/RIrCC + 1/RIrCC × LIrCC = 17.28
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consecutive a priori LLRs. We may therefore conclude that the sensitivity of APP SISO IrCC

decoding to correlation within the a priori LLR frame Lo
a(u) is dependent on both the IrCC

coding memory LIrCC and on the coding rate RIrCC. Note that this implies that a shorter

interleaver and latency may be afforded, provided that a higher IrCC coding rate and/or a

lower memory was employed.

By contrast, during VLC encoding in the context of the SBIrVLC-, BBIrVLC-, SBVLC-

and BBVLC-TCM schemes, the source symbols of the source symbol frame s are encoded in

isolation using VLC codewords having an average length of E/RIrVLC = 7.25 bits, which

are concatenated to provide the transmission frame u. During APP SISO VLC decoding us-

ing the BCJR algorithm, all a priori LLRs in the frame Lo
a(u) are considered for the sake of

investigating the lengths of the VLC codewords. Despite this however, we could argue that

only the a priori LLRs in the frame Lo
a(u) that pertain to a particular VLC codeword have

a direct influence upon its APP SISO decoding. We can therefore say that APP SISO VLC

decoding in the SBIrVLC-, BBIrVLC-, SBVLC- and BBVLC-TCM schemes is only particu-

larly sensitive to correlation within the sets of 7.25 consecutive a priori LLRs. Additionally,

we may conclude that the sensitivity of APP SISO VLC decoding to correlation within the a

priori LLR frame Lo
a(u) is dependent on only the VLC coding rate. Again, this implies that

a shorter interleaver and latency may be afforded, if a higher VLC coding rate was employed.

Whilst APP SISO VLC decoding applied in the context of the SBIrVLC-, BBIrVLC-,

SBVLC- and BBVLC-TCM schemes is only particularly sensitive to correlation within sets

of 7.25 consecutive a priori LLRs in the frame Lo
a(u), APP SISO IrCC decoding in the

Huffman-IrCC-TCM scheme is particularly sensitive to correlation within sets of 17.28 con-

secutive a priori LLRs, which are about 2.4 times longer. This therefore explains the obser-

vation that the Huffman-IrCC-TCM scheme would require a longer interleaver and latency

to achieve iterative decoding convergence to an infinitesimally low probability of error for

channel Eb/N0 values between 3.2 dB and 3.4 dB.

7.4.4 Performance during iterative decoding

The achievement of iterative decoding convergence requires the completion of a sufficiently

high number of decoding iterations. Clearly, each decoding iteration undertaken is associated

with a particular computational complexity, the sum of which represents the total computa-

tional complexity of the iterative decoding process. Hence, the completion of a sufficiently

high number of decoding iterations in order to achieve iterative decoding convergence may

be associated with a high computational complexity. In order to quantify how this computa-

tional complexity scales as iterative decoding proceeds, we recorded the total number of ACS

operations performed per source sample during APP SISO decoding and MAP sequence es-

timation.

Furthermore, the performance of the considered schemes was also assessed during the

iterative decoding process, not only after its completion once convergence has been achieved.

This was achieved by evaluating the source sample reconstruction SNR following the com-

pletion of each decoding iteration. The total computational complexity associated with this

SNR was calculated as the sum of the computational complexities associated with all decod-

ing iterations completed so far during the iterative decoding process. Clearly, as more and

more decoding iterations are completed, the resultant source sample reconstruction SNR can
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be expected to increase until iterative decoding convergence is achieved. However, the asso-

ciated total computational complexity will also increase as more and more decoding iterations

are completed. Hence, this approach allows the characterisation of the tradeoff between re-

construction quality and computational complexity.

For each considered Rayleigh channel Eb/N0 value, a set of source sample reconstruction

SNRs and their corresponding computational complexities was obtained, as described above.

Note that the size of these sets was equal to the number of decoding iterations required to

achieve iterative decoding convergence at the particular Eb/N0 value. It would therefore be

possible to display the source sample reconstruction SNR versus both the Eb/N0 and the

computational complexity in a three-dimensional surface plot, for each of the SBIrVLC-,

BBIrVLC-, SBVLC- and BBVLC-TCM schemes. For clarity however, these surfaces are

projected in the direction of the source sample reconstruction SNR axis into two dimensions

in the novel plot of Figure 7.12. We employ contours of constant source sample reconstruc-

tion SNR, namely 15 dB and 20 dB, to parameterise the relationship between the Rayleigh

fading channel’s Eb/N0 value and the associated computational complexity. Note that the

plot of Figure 7.10 may be thought of as a cross-section through the surfaces represented by

Figure 7.12, perpedicular to the computational complexity axis at 1 · 107 ACS operations per

source sample. Note that this particular value of computational complexity is sufficiently high

to achieve iterative decoding convergence at all values of Eb/N0, in each of the considered

schemes.

Note that the SBIrVLC and SBVLC decoders have a computational complexity per source

sample that depends on the number of symbols in each source symbol sub-frame sm, namely

J . This is because the number of transitions in their symbol-based trellises is proportional

to J2 [2], as described in Section ??. Hence the results provided in Figure 7.12 for the

SBIrVLC- and SBVLC-TCM schemes are specific to the J = 100 scenario. By contrast, the

TCM, BBIrVLC, BBVLC and IrCC decoders have a computational complexity per source

sample that is independent of the number of symbols in each source symbol sub-frame sm,

namely J . This is because the number of transitions in their trellises is proportional to J
[106,129,197], as described in Section ??. Hence the results for the BBIrVLC- and BBVLC-

TCM schemes, as well as for the Huffman-IrCC-TCM scheme, provided in Figure 7.12 are

not specific for the J = 100 case.

As shown in Figure 7.12, source sample reconstruction SNRs of up to 20 dB can be

achieved within 0.6 dB of the channel’s Eb/N0 capacity bound of 2.6 dB for the SBIrVLC-

and BBIrVLC-TCM schemes, within 1.1 dB for the SBVLC- and BBVLC-TCM schemes

and within 0.8 dB for the Huffman-IrCC-TCM scheme. Note that these findings agree with

those of the EXIT chart analysis and the asymptotic performance analysis.

7.4.5 Complexity analysis

We now comment on the computational complexities of the considered schemes and select

our preferred arrangement.

In all considered schemes and at all values of Eb/N0, a source sample reconstruction SNR

of 15 dB can be achieved at a lower computational complexity than an SNR of 20 dB can, as

shown in Figure 7.12. This is because a reduced number of decoding iterations is required

for achieving the extrinsic mutual information value associated with a lower reconstruction

quality, as stated above. However, for all considered schemes operating at high values of
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Figure 7.12: Computational complexity versus Eb/N0 for a Gaussian source using K = 16-

level Lloyd-Max quantisation for the SBIrVLC-, BBIrVLC-, SBVLC- and BBVLC-TCM

schemes, as well as for the Huffman-IrCC-TCM scheme, communicating over an uncorre-

lated narrowband Rayleigh fading channel, parameterised with the source sample reconstruc-

tion SNR.
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Eb/N0, this significant 5 dB reduction in source sample reconstruction SNR facilitates only

a relatively modest reduction of the associated computational complexity, which was between

9% in the case of the Huffman-IrCC-TCM scheme and 36% for the BBIrVLC-TCM scheme.

Hence we may conclude that the continuation of iterative decoding until near-perfect conver-

gence is achieved can be justified at all values of Eb/N0.

Additionally, it may be seen that a given source sample reconstruction SNR may be

achieved at a reduced computational complexity for all considered schemes as the Eb/N0

value increases. This may be explained by the widening of the EXIT chart tunnel, as the

Eb/N0 value increases. As a result, less decoding iterations are required for reaching the

extrinsic mutual information that is associated with a specific source sample reconstruction

SNR considered.

In each of the considered schemes it was found that VLC and CC decoding is associ-

ated with a higher contribution to the total computational complexity than TCM decoding.

Indeed, in the case of the SBIrVLC- and SBVLC-TCM schemes, it was found that VLC de-

coding accounts for about 97% of the numbers of ACS operations per source sample, having

a complexity of about 32.3 times higher than that of TCM decoding. By contrast, in the

BBIrVLC- and BBVLC-TCM schemes, VLC decoding accounts for only 70% of the opera-

tions, having a complexity of about 2.3 times that of TCM decoding. Similarly, CC decoding

accounts for only 60% of the ACS operations in the Huffman-IrCC-TCM scheme, having a

complexity of about 1.4 times that of TCM decoding.

The high complexity of the SBIrVLC and SBVLC decoders may be attributed to the

specific structure of their trellises, which contain significantly more transitions than those of

the BBIrVLC, BBVLC and IrCC decoders [2], as described in Section ??. As a result, the

SBIrVLC- and SBVLC-TCM schemes have a complexity that is about an order of magnitude

higher than that of the BBIrVLC- and BBVLC-TCM schemes, as well as the Huffman-IrCC-

TCM scheme, as shown in Figure 7.12. In the light of this, the employment of the SBIrVLC-

and SBVLC-TCM schemes cannot be readily justified.

Observe in Figure 7.12 that at high Eb/N0 values, the SBIrVLC- and BBIrVLC-TCM

schemes have a higher computational complexity than the corresponding SBVLC- or BBVLC-

TCM scheme. This is due to the influence of their low rate component VLC codebooks.

These codebooks comprise codewords with many different lengths, which introduce many

transitions, when represented in a trellis structure, as described in Section ??. The observed

computational complexity discrepancy is particularly high in the case of the schemes that

employ the symbol-based VLC trellis, owing to its particular nature. For this reason, the

SBIrVLC-TCM scheme has a computational complexity that is 240% higher than that of the

SBVLC-TCM scheme.

By contrast, we note that at high values of Eb/N0 the BBIrVLC-TCM scheme has only

about a 60% higher computational complexity than the BBVLC-TCM scheme. Similarly, the

BBIrVLC-TCM scheme has only twice the computational complexity of the Huffman-IrCC-

TCM scheme. Coupled with the BBIrVLC-TCM scheme’s ability to operate within 0.6 dB

of the Rayleigh fading channel’s Eb/N0 capacity bound, we are able to identify this as our

preferred arrangement.
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7.4.6 Unequal error protection performance

Let us now examine the UEP performance of our preferred BBIrVLC-TCM scheme. As

described in Section 7.1, the UEP capability of IrVLC is manifested because different frac-

tions of the source symbol frame s are encoded with different component VLC codebooks

having a variety of coding rates and, hence, error correction capabilities. More specifically,

the lower the coding rate of a component VLC codebook, the higher the associated potential

error correction capability, as described in Section ??.

As argued above, the composite source sample reconstruction SNR was evaluated follow-

ing the completion of each decoding iteration during our simulations. The total computational

complexity associated with this SNR was calculated as the sum of the computational com-

plexities associated with all decoding iterations completed so far during the iterative decoding

process. These computational complexities were plotted against Eb/N0 and parameterised

by the source sample reconstruction SNR in Figure 7.12. Note that the composite BBIrVLC-

TCM ACS-complexity verses Eb/N0 plots are repeated in Figure 7.13. In addition to record-

ing the composite source sample reconstruction SNR after each decoding iteration, we also

recorded the reconstruction SNRs associated with the fractions of the source sample frame

e that were protected by each of the three activated component VLC codebooks VLC5,

VLC11 and VLC15. For each case, the associated computational complexities are plotted

against Eb/N0 and parameterised by the source sample reconstruction SNR in Figure 7.13.

As shown in Figure 7.13, the lower the coding rate R(VLCn) of the component VLC

codebook VLCn that is employed to protect a fraction Cn
BB of the source sample frame

e, the lower the computational complexity that is required to reconstruct it with a particular

reconstruction SNR at a particular Eb/N0 value. Indeed, at high Eb/N0 values the complex-

ity associated with reconstructing the fraction of the source sample frame e that is protected

by the R(VLC5) = 0.75 coding rate component VLC codebook VLC5 is about twice as

high as that associated with the R(VLC11) = 0.47 coding rate component VLC codebook

VLC11. This is, in turn, about 1.5 times as high as that associated with the component VLC

codebook VLC15, having a coding rate of R(VLC11) = 0.31. In the scenario, where only

a limited iterative decoding computational complexity can be afforded at the receiver, the

fractions of the source sample frame e that are protected by the different component VLC

codebooks would be reconstructed with SNRs that are commensurate with the associated

coding rates, demonstrating the UEP capability of the BBIrVLC-TCM scheme.

As described in Section 7.1, each of the activated component VLC codebooks VLC5,

VLC11 and VLC15 in the BBIrVLC-TCM scheme is employed to protect a different frac-

tion of the source sample frame e. More specifically, the component VLC codebooks VLC5,

VLC11 and VLC15 each protect a fraction C5
BB = 0.32, C11

BB = 0.63 and C15
BB = 0.05 of

the source sample frame e, respectively. Note that the composite computational complexity

versus Eb/N0 plots depend on each of the component plots. Furthermore, we may expect the

composite plots to be dominated by the components plots associated with the largest fraction

of the source sample frame. Specifically, these are the component plots associated with the

component VLC codebook VLC11, which is employed to protect a fraction C11
BB = 0.63 of

the source sample frame e. However, Figure 7.13 shows that the composite plots are actually

dominated by the component plots associated with the component VLC codebook VLC5,

which is employed to protect only a fraction C5
BB = 0.32 of the source sample frame e. This

may be explained as follows.
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Figure 7.13: Computational complexity versus Eb/N0 for a Gaussian source using K = 16-

level Lloyd-Max quantisation for the BBIrVLC-TCM scheme, communicating over an un-

correlated narrowband Rayleigh fading channel, parameterised with the source sample re-

construction SNR. Separate plots are provided for the quantised source samples that are VLC

encoded using each of the component VLC codebooks VLC5, VLC11 and VLC15, to-

gether the composite BBIrVLC-TCM plots of Figure 7.12. Components are labelled using

the format VLCn (R(VLCn), Cn
BB , αn

BB).
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A composite error-free reconstruction SNR of 20 dB can only be achieved if error free

reconstruction is attained for all three of the fractions of the source sample frame e that are

protected by the three activated component VLC codebooks VLC5, VLC11 and VLC15.

Hence, the composite computational complexity versus Eb/N0 plot that is parameterised by

an error-free reconstruction SNR of 20 dB is dominated by that associated with the specific

component VLC codebook having the weakest error correction capability, namely VLC5, as

shown in Figure 7.13 and observed above. Note that the component VLC codebook VLC5

has the weakest error correction capability of the three activated codebooks, since it has the

highest coding rate of R(VLC5) = 0.75, as shown in Figure 7.13. This effect may also

explain the domination of the composite plot that is parameterised by a reconstruction SNR

of 15 dB corresponding to that associated with the component VLC codebook VLC5, despite

a relatively low fraction of C5 = 0.32 being protected by this codebook.

7.5 Summary and Conclusions

In this chapter, we have investigated the application of IrVLCs for EXIT chart matching. This

was prompted by the observation that the serially concatenated video transmission scheme

of Chapter 6 could have facilitated operation at channel Eb/N0 values that are closer to the

capacity bound, if the EXIT functions of its inner and outer codecs were better matched. More

specifically, this would have facilitated the creation of an open EXIT chart tunnel at near-

capacity Eb/N0 values, implying that iterative decoding convergence to an infinitesimally

low probability of error may be achieved, if the iterative decoding trajectory approaches the

inner and outer codecs’ EXIT functions sufficiently closely.

In analogy to IrCCs, the novel IrVLC scheme of this chapter employs a number of com-

ponent VLC codebooks having different coding rates for the sake of generating particular

fractions of the transmission frame, as described in Section 7.1. We demonstrated that this

provides a UEP capability, which may be employed to appropriately protect the various com-

ponents of audio-, speech-, image- and video-coded information, which typically have dif-

ferent error sensitivities. Furthermore, we showed in Figures 7.4 and 7.5 that the composite

inverted IrVLC EXIT function is given by a weighted average of the inverted EXIT functions

of the individual component VLC codebooks, where each weight is given by the specific

fraction of the transmission frame that is generated by the corresponding component. Finally,

we demonstrated that this inverted IrVLC EXIT function may be shaped to match the EXIT

function of a serially concatenated TCM codec using the EXIT chart matching algorithm

of [10].

It was noted that an IrVLC scheme’s component VLC codebooks should have a suite

of widely varying inverted EXIT functions in order that accurate EXIT chart matching can

be performed. Hence, a significant amount of ‘trial-and-error’ based human interaction was

required in order to select our component VLC codebooks. In Chapter 8 we shall therefore

propose and characterise an efficient technique for designing high quality suites of com-

ponent VLC codebooks that does not require ‘trial-and-error’ based human interaction. In

addition to this, Chapter 8 will investigate the relationship between the suite of component

VLC codebooks and the resultant IrVLC EXIT chart matching accuracy. Furthermore, the

application of IrVLCs for EXIT chart matching will be further explored in Chapter 9, where

the EXIT functions of IrVLCs and of novel Irregular Unity Rate Codes (IrURCs) will be
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jointly matched to each other, facilitating the creation of an open EXIT chart tunnel at chan-

nel Eb/N0 values that are even closer to the channel’s capacity bound.

During the EXIT chart matching investigations of this chapter, an open EXIT chart tunnel

was created in Figures 7.4 and 7.5 for the IrVLC-TCM schemes considered and in Figure 7.9

for the Huffman-IrCC-TCM benchmarker for channel Eb/N0 values above a threshold of

3.1 dB. This is just 0.5 dB from the Rayleigh fading channel’s Eb/N0 capacity bound of

2.6 dB, which corresponds to our schemes’ effective throughput of 1.56 bits per channel

use. By contrast, an open EXIT chart tunnel was only facilitated in Figures 7.4 and 7.5

for the conventional regular VLC-TCM benchmarkers for the increased channel Eb/N0 val-

ues in excess of a threshold of 3.6 dB, which is 1.0 dB from the channel’s capacity bound,

corresponding to twice the discrepancy of the IrVLC-TCM schemes. Note that the above-

mentioned discrepancy of the VLC-TCM benchmarkers is similar to the 1.29 dB discrepancy

of the VDVQ/RVLC-TCM scheme of Chapter 6, which also does not employ irregular coding

techniques.

The iterative decoding performance and computational complexity of the considered

schemes was investigated in a novel context using plots of the computational complexity

required to achieve particular source sample reconstruction SNRs as a function of the chan-

nel’s Eb/N0 value in Figure 7.12. Recall that we observed that the iteratively decoded video

transmission scheme of Chapter 6 would have been capable of achieving iterative decoding

convergence to an infinitesimally low probability of error at channel Eb/N0 values that are

closer to the threshold at which an open EXIT chart tunnel can be achieved, if a longer inter-

leaver was employed. This prompted the consideration of an interleaver having a length of

217 500 bits in this chapter, which is nearly three times longer than any of those considered

in Chapter 6. Indeed, it was found that the IrVLC- and VLC-TCM schemes were capable of

achieving a high-quality source sample reconstruction within 0.1 dB of the threshold chan-

nel Eb/N0 values, which were the lowest values at which an open EXIT chart tunnel was

achieveable.

However, in the case of the Huffman-IrCC-TCM scheme, high quality source sample

reconstruction was only achieveable for channel Eb/N0 values above 3.4 dB, which is 0.3 dB

above the threshold at which an open EXIT chart tunnel may be achieved. This was explained

in Section 7.4.3 by the relatively high sensitivity of the APP SISO IrCC decoder to any

residual correlation within the a priori LLRs, that was insufficiently mitigated by the 217 500-

bit interleaver. This resulted in a poor match between the iterative decoding trajectory and

the inverted IrCC EXIT function. More specifically, we concluded that an APP SISO IrCC

decoder’s sensitivity to this correlation depends on both its coding rate and, in particular,

its coding memory, which had the relatively high value of LIrCC = 4 in the IrCC scheme

considered. We additionally concluded that an APP SISO VLC decoder’s sensitivity to the

aforementioned correlation depends only on its coding rate and that shorter interleavers and

latencies could be afforded, if a higher coding rate was employed. Note that the effect of the

VLC coding rate upon its sensitivity to correlation within the a priori LLRs frame will be

investigated in Chapter 8, whilst the effect of the interleaver length upon iterative decoding

shall be investigated in greater detail in Chapter 9.

Recall that the outer APP SISO video decoder of the iteratively decoded video trans-

mission scheme of Chapter 6 operated on the basis of the trellis outlined in Section 6.3.4,

which is reminiscent of the symbol-based VLC trellis of [2]. This was the rationale of why
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this video transmission scheme was associated with a higher computational complexity than

the benchmarkers, which employed the bit-based VLC trellis of [90] as the basis of their

outer APP SISO decoders. Hence, in this chapter we characterised the computational com-

plexity associated with employing both symbol- and bit-based trellises as the basis of APP

SISO VLC decoding. In both cases, we concluded that the computational complexity as-

sociated with continuing iterative decoding until convergence is achieved is justified owing

to the significantly improved reconstruction quality that results. As predicted in Chapter 6,

the schemes that employed bit-based trellises for APP SISO VLC decoding were found to

achieve iterative decoding convergence with a significantly lower computational complexity

than the schemes employing symbol-based trellises in Figure 7.12.

Owing to its reduced iterative decoding computational complexity, the IrVLC-TCM scheme

employing the bit-based VLC trellis as the basis of APP SISO VLC decoding was identified

as our preferred arrangement in Section 7.4.5. Additionally, for this reason, only bit-based

trellises will be employed as the basis of APP SISO VLC decoding in Chapters 8 and 9. Note

that in this chapter, the source symbol frame was decomposed into M = 300 sub-frames in

order that the computational complexity associated with the symbol-based VLC trellis could

be limited. However, explicit side information was required in order to convey the length

of each of the corresponding transmission sub-frames to the receiver, resulting in a trade-

off between the computational complexity associated with the symbol-based VLC trellis and

the amount of side information required. Indeed, in all IrVLC-TCM parameterisations con-

sidered, the required side information was found to account for 4% of the total information

conveyed in Section 7.3. In this chapter, the source symbol frame was also decomposed into

M = 300 sub-frames, when the bit-based VLC trellis was employed, in order that a fair

comparison could be obtained. However, since Chapters 8 and 9 will only consider the em-

ployment of the bit-based VLC trellis rather than the symbol-based VLC trellis, a significant

reduction in the amount of required side information will be achieved by employing a single

source symbol sub-frame per activated component VLC codebook.



Chapter 10
Conclusions and Future Research

10.1 Chapter 1: Introduction

This chapter constitutes the general background of our studies throughout the book. More

specifically, a brief overview of the literature of source encoding and soft source decoding

was presented in Section ??. Then the development of iterative decoding techniques and

their convergence analysis was described in Section ??. Furthermore, as a special case of

iterative decoding, joint source-channel decoding was introduced and the main contributions

to the open literature were summarised in Section ??. Finally, the organisation of the book

was described in Section ??, while our novel contributions were highlighted in Section ??.

10.2 Chapter 1: Information Theory Basics

In this chapter we focussed our attention on the basic Shannonian information transmission

scheme and highlighted the differences between Shannon’s theory valid for ideal source and

channel codecs as well as for Gaussian channels and its ramifications for Rayleigh channels.

We also argued that practical finite-delay source codecs cannot operate at transmission rates

as low as the entropy of the source. However, these codecs do not have to operate losslessly,

since perceptually unobjectionable distortions can be tolerated. This allows us to reduce the

associated bit rate.

Since wireless channels exhibit bursty error statistics, the error bursts can only be ran-

domized with the aid of infinite-length channel interleavers, which are not amenable to real-

time interactive multimedia communications. Although with the advent of high-delay turbo

channel codecs it is possible to operate near the Shannonian performance limits over Gaus-

sian channels, over bursty and dispersive channels different information-theoretical channel

capacity limits apply.

We considered the entropy of information sources both with and without memory and

highlighted a number of algorithms, such as the Shannon-Fano, the Huffman and run-length

coding algorithms, designed for the efficient encoding of sources exhibiting memory. This
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was followed by considering the transmission of information over noise-contaminated chan-

nels leading to Shannon’s channel coding theorem. Our discussions continued by consider-

ing the capacity of communications channels in the context of the Shannon-Hartley law. The

chapter was concluded by considering the ramifications of Shannon’s messages for wireless

channels.

10.3 Chapter ??: Sources and Source Codes

Chapter ?? commenced with the description of general source models, among which a mem-

oryless source model having a known finite alphabet such as that described in Section ?? was

used throughout the monograph. Then various source codes such as Huffman codes, RVLCs

and VLEC codes were introduced in Section ??, along with their construction methods. An

important contribution of this chapter is that a generic algorithm was presented for the con-

struction of efficient RVLCs and VLEC codes. The philosophy of our proposed algorithm is

that we first construct an initial RVLC or VLEC code using existing methods such as those

described in [?, ?, ?], then we optimise the codeword length distribution of the resultant code

length-by-length. For example, Fig. 10.1 shows the evolution of the codeword length his-

tograms of the RVLC designed for the English Alphabet in Section ??. After 12 iterations of

optimisation, the best codeword length distribution is found, resulting in a RVLC having the

lowest average codeword length of AL = 4.18732.
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Figure 10.1: Evolution of the RVLC codeword length histograms. The RVLC is designed for

the English Alphabet and its detailed construction process is described in Section ??. The

codeword length distribution is optimised via a number of iterations for the sake of reducing

the average codeword length.

Consequently, as shown in Table ??, Table ?? and Table ??, for a variety of memoryless

sources, the proposed algorithm was capable of generating RVLCs of higher code efficiency

and/or shorter maximum codeword length than the algorithms previously disseminated in the

literature. Furthermore, as seen from Table ?? and Table ??, the proposed algorithm was also
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capable of constructing VLEC codes having similar code efficiency as those generated by the

existing algorithm [?], but incurring a significantly lower complexity.

In Section ??, various VLC decoding methods were presented. First, the source infor-

mation, such as the number of bits/symbols in the transmitted frames, and the constraints

imposed by a source code and formulated in terms of the corresponding codebook were trans-

lated into a trellis representation, such as the symbol-based trellis described in Section ?? or

the bit-based trellis described in Section ??. Then MAP/ML sequence estimation or MAP

decoding may be performed, which were introduced in Section ?? and Section ??, respec-

tively. It has been shown in Section ?? that trellis based soft-decoding provides an effective

way of capitalising on the available information as much as possible. In general, the more

information is utilised, the better the performance. This information can be explicit, such as

the transmission frame length information, or implicit, such as the code constraint of a VLC.

For example, soft-decoding generally outperforms hard-decoding, and the symbol-level trel-

lis based decoding outperforms the bit-level trellis based decoding. Furthermore, as expected,

VLCs having higher free distances outperform VLCs having lower free distances at the price

of a reduced system throughput. Fig. 10.2 provides some quantitative results, summarising

the conclusions of Section ??. It can be seen from Fig. 10.2a that soft-decision decoding sig-

nificantly outperforms hard-decision decoding and the attainable Eb/N0 gain improves upon

increasing the VLC’s free distance. Moreover, as seen from Fig. 10.2b, the performance of

soft ML decoding improves upon increasing the free distance of the VLC used.
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Figure 10.2: Comparison of the various VLC decoding schemes investigated in Section ??.

Fig. 10.2a compares the performance of soft-decision and hard-decision decoding based

schemes, where the Eb/N0 gain is defined as the difference of the minimum Eb/N0 values

required for achieving a SER of 10−5 for transmission over AWGN channels, when using

ML decoding. Fig. 10.2b demonstrates the effects of different VLC free distances, df = 1
(RVLC-1) and df = 2 (RVLC-2). The Huffman code (HUFF) based scheme is used as a

benchmarker, where the Eb/N0 gain is defined as the difference of the minimum Eb/N0

values required for achieving a SER of 10−5 for transmission over AWGN channels, when

using soft ML decoding.
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10.4 Chapter ??: Iterative Source/Channel Decoding

Chapter ?? provides an investigation of iterative source/channel decoding techniques. In

this chapter, the source code, the channel code and the ISI channel are viewed as a serially

concatenated system. Hence, iterative decoding may be performed, provided that the source

decoder, channel decoder and the channel equaliser designed for the ISI channel are all SISO

modules.

This chapter commenced with an overview of various concatenated schemes, as described

in Section ??. Then a SISO APP decoding algorithm was introduced in Section ??. This

algorithm provides a general description of any trellis-based APP decoding/detection scheme,

which can be applied to source decoding, channel decoding and channel equalisation. Hence

it constitutes the core module of iterative decoding schemes.

EXIT charts were introduced in Section ??. The mutual information between the data bits

at the transmitter and the soft values at the receiver was used for characterising the decoding

behaviour of a SISO APP module, resulting in the so-called EXIT functions. A histogram-

based algorithm and its simplified version were introduced in Section ?? in order to evaluate

the EXIT functions of a SISO APP module, followed by several examples of typical EXIT

functions of SISO APP modules embedded in different positions of a concatenation scheme.
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Figure 10.3: Free distance versus Eb/N0 gain and throughput, where the Eb/N0 gain is

based on the minimum SNR value required for achieving a SER of 10−4 for transmission

over AWGN channels and the scheme using the Huffman code (HUFF) is used as a bench-

marker. The system model is described in Fig. ??, where the transmitter is constituted by

a VLC encoder and a convolutional encoder, and the receiver is constituted by an APP con-

volutional decoder as well as an APP VLC decoder, which performs channel decoding and

source decoding iteratively.

Given the EXIT characteristics of the constituent modules of a concatenated scheme,

we may either predict or explain its convergence behaviour. This is carried out for iterative

source/channel decoding for transmission over non-dispersive AWGN channels in Section ??
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and for transmission over dispersive AWGN channels in Section ??. In the scenario of non-

dispersive AWGN channels, it was shown in Fig. ?? that the free distance of the source code

has to be larger than df = 2 in order that the iterative decoding scheme becomes capable of

converging to the perfect mutual-information point of (1,1), which implies attaining infinites-

imally low SERs. Furthermore, it was shown in Fig. ??-Fig. ?? that given a specific channel

code, the system’s convergence threshold decreases upon increasing the free distance of the

source code, resulting in an improved SER performance. Fig. 10.3 serves as a summary of

our main results provided in Section ??. It is worth noting that when the free distance of the

VLC code is increased from df = 1 to df = 2, i.e. when using the code RVLC-2 instead of

the code HUFF or RVLC-1, the system’s throughput is only slightly decreased, but a signifi-

cant Eb/N0 gain is attained. Further increasing the free distance will continue to increase the

attainable Eb/N0 gain, while incurring a considerable loss of throughput.

In the scenario of dispersive channels, it was shown by both our EXIT chart analysis

and our Monte Carlo simulations provided in Section ?? that the redundancy in the source

codes is capable of effectively eliminating the ISI imposed by the channel, provided that

channel equalisation and source decoding are performed jointly and iteratively. Furthermore,

the higher the free distance of the source code, the closer the SER performance approaches

the SER bound of non-dispersive AWGN channels.

Additionally, in Section ?? precoding was shown to be an effective way of ”modifying”

the EXIT characteristic of a channel equaliser. Most importantly, in conjunction with pre-

coding the EXIT function of a channel equaliser becomes capable of reaching the point of

(IA = 1, IE = 1) as shown in Fig. ??, which is critical for avoiding potential error floors at

the receiver’s output. It was demonstrated in Fig. ??-Fig. ?? that the choice of the precoder

depends on both the EXIT characteristics of the channel equaliser and that of the source de-

coder so that these two are matched to each other, hence achieving the lowest possible Eb/N0

convergence threshold.

Fig. 10.4 summarises the main results of Section ??. It can be seen from Fig. 10.4

that the SER performance of both the scheme using RVLC-2 and that using VLEC-3 can be

improved, when using appropriate precoders. However, although the precoder of 1 + D2 is

optimal for the scheme using RVLC-2, the precoder of 1 + D constitutes a better choice for

the scheme using VLEC-3.

Finally, the performance of a three-stage iterative receiver was evaluated in Section ??.

The receiver of Fig. ?? consists of a channel equaliser, a channel decoder and a source

decoder, where the extrinsic information is exchanged among all the three SISO modules,

which hence constitutes a joint source-channel decoding and equalisation scheme. It was

shown in Fig. ?? that by exploiting the source redundancy in the iterative decoding process,

the system’s performance was improved by 2 dB in terms of the Eb/N0 values required for

achieving the same SER, when compared to the separate source/channel decoding scheme.

The convergence behaviour of this scheme was analysed using EXIT charts in Section ?? after

we introduced the convergence analysis technique for multi-stage concatenated schemes in

Chapter ??.
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Figure 10.4: The effects of precoding and those of VLC free distances of df = 2 for the

RVLC-2 and df = 3 for the VLEC-3 schemes on the attainable SER performance, when

communicating over dispersive AWGN channels, where the Eb/N0 value is the minimum

SNR value required for achieving a SER of 10−4. The system model is described in Fig. ??

and Fig. ??, where the transmitter is constituted by a VLC encoder as well as a precoder if

precoding is employed, and the receiver is constituted by an APP channel equaliser as well as

an APP VLC decoder, which performs channel equalisation and source decoding iteratively.

10.5 Chapter ??: Three-Stage Serially Concatenated Turbo

Equalisation

Chapter ?? investigated the design of the three-stage serially concatenated turbo MMSE

equalisation scheme seen in Fig. ??, which consisted of an inner channel equaliser, a unity-

rate recursive intermediate channel code and an outer channel code. Firstly, a brief intro-

duction to SISO MMSE equalisation was offered in Section ??, followed by an example

of conventional two-stage turbo equalisation in Section ??. The main body of this chapter

focused on the optimisation of three-stage turbo equalisation schemes by using EXIT chart

analysis.

With the aid of the EXIT modules as proposed in Fig. ?? of Section ??, 3D EXIT chart

analysis may be simplified to 2D EXIT analysis as shown in Fig. ??, ?? and ?? of Section

??. It was also shown in Fig. ?? of Section ?? that by employing a unity-rate recursive

convolutional code as the intermediate constituent code, the three-stage scheme becomes

capable of converging to the perfect mutual information point.

Moreover, the outer constituent code was optimised in Section ?? for achieving the low-

est possible Eb/N0 convergence threshold. Interestingly, it was observed in Fig. ?? that

relatively weak codes having short memories resulted in a lower convergence threshold than

strong codes having long memories.

Additionally, the activation order of the component decoders was optimised in Section

?? for achieving the convergence at the lowest possible Eb/N0 value, while maintaining a
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low decoding complexity. It was found in Table ?? that by invoking the outer and interme-

diate decoder of Fig. ?? more frequently the total number of decoder activations is reduced,

resulting in a decreased decoding complexity.

The BER performance of the optimised scheme was evaluated in Section ??, which ver-

ified the EXIT chart analysis provided in Section ??. The iterative decoding process was

visualised using both 3D and 2D EXIT charts as shown in Fig. ??-?? of Section ??. Further-

more, the effects of different interleaver block lengths were discussed in Fig. ?? of Section

??. Generally, the longer the interleaver length, the closer the simulated performance matches

the EXIT chart analysis. It was found in Fig. ?? that an interleaver length on the order of

105 bits is sufficiently high for achieving a good match with the decoding trajectory recorded.

Fig. 10.5 provides some quantitative results summarised from Section ??. It can be seen from

Fig. 10.5 that when the interleaver depth is increased from L = 103 bits to L = 104 bits, a

significant coding gain may be attained. Further increasing the interleaver depth to L = 105

bits, however, results in a marginal increase of the coding gain. Naturally, the attainable

iteration gain is increased upon increasing the interleaver depth.
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Figure 10.5: Achievable coding gains at a BER of 10−4 for the three-stage turbo equalisa-

tion scheme of Fig. ?? using different interleaver depths. The turbo equalisation scheme

is constituted by a RSC(2,1,2) code as the outer code, a unity-rate RSC(1,1,2) code as the

intermediate code and an inner MMSE equaliser as described in Section ??.

In Section ??, the maximum achievable information rate of the three-stage turbo equali-

sation scheme of Fig. ?? was analysed. Then an IRCC was invoked as the outer constituent

code, whose EXIT function was optimised for matching that of the combined module of the

inner channel equaliser and the intermediate channel decoder, so that the EXIT tunnel-area

between these two EXIT functions was minimised. The Monte Carlo simulation results pro-

vided in Fig. ?? of Section ?? show that the performance of the resultant scheme is only 0.5

dB away from the channel capacity.
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Finally, the employment of non-unity rate intermediate codes was also considered in Sec-

tion ??. It was shown in Fig. ?? that as expected, the maximum achievable information rate

of such schemes was reduced in comparison to the schemes using unity-rate intermediate

codes. By contrast, the Eb/N0 convergence threshold may be decreased, when only regu-

lar convolutional codes are used. A number of optimised serially concatenated codes were

obtained and listed in Table ??.

As a summary, Fig. 10.6 compares the distance to capacity for the various MMSE turbo

equalisation schemes discussed in Chapter ??.
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Figure 10.6: Distance to capacity for the various MMSE turbo equalisation schemes of Chap-

ter ??, where the scheme of Sch-A represents the conventional two-stage turbo equalisation

scheme of Fig. ??. The schemes of Sch-B, Sch-C and Sch-D denotes the same three-stage

turbo equalisation scheme of Fig. ??, but differ in the channel codes used. The scheme of

Sch-B employs a unity-rate RSC(1,1,2) code as the intermediate code and a RSC(2,1,2) code

as the outer code. The scheme of Sch-C uses a SCC of SCC-A2 described in Table ??, which

is constituted by a rate-3/4 RSC(3,4,2) code as the intermediate code and a RSC(2,3,3) code

as the outer code. The scheme of Sch-D employs the same unity-rate RSC(1,1,2) code used

in the scheme of Sch-B as the intermediate code, while using the IRCC described in Section

?? as the outer code.

In Part II of this book, we have introduced the novel concept of Irregular Variable Length

Coding (IrVLC) and investigated its applications, characteristics and performance in the con-

text of wireless telecommunications. As discussed throughout Part II of the book, IrVLCs

encode various components of the source signal with different sets of binary codewords, hav-

ing a range of appropriately selected lengths. Three particular applications of IrVLCs were

investigated in this volume, namely joint source and channel coding, EXtrinsic Information

Transfer (EXIT) chart matching and Unequal Error Protection (UEP). These are detailed in

the following sections, together with a discussion of our future work.
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10.6 Chapter 6: Joint source and channel coding

In Chapter 6 we exemplified the application of IrVLCs for the joint source and channel cod-

ing of video information. This application was motivated by the observation that Shannon’s

source and channel coding separation theorem [24] is invalid in the context of practical video

transmission. While source and channel coding can be performed in isolation without impos-

ing any performance loss, if the assumptions discussed in Section 6.1 apply, these conditions

are not fulfilled in the case of practical video transmission. We therefore proposed the novel

joint source and channel coding scheme of Section 6.2, which employs both Variable Dimen-

sion Vector Quantisation (VDVQ) [194] as a special case of Vector Quantisation (VQ) [80]

and the Reversible Variable Length Coding (RVLC) [99] class of Variable Length Codes

(VLCs).

Here, the employment of VDVQ tiles having a range of dimensions facilitates the effi-

cient representation of both large areas of the video frame that have a low luminance-variance

and small areas of high variance, as exemplified in Figure 6.5. Additionally, the employment

of RVLC codewords having various lengths facilitates the representation of more frequently

occurring VDVQ tiles with the aid of shorter codewords, giving a reduced average codeword

length and providing source coding. Furthermore, channel coding is provided by the redun-

dancy that is inherent in the RVLC codewords [99], facilitating an error correction capability

during RVLC decoding. The VDVQ/RVLC video codec advocated therefore employs a joint

source and channel coding philosophy.

In Section 6.3.3 we imposed a number of constraints governing the allocation of the

VDVQ tiles and RVLC codebooks in order to represent the various components of the video

source frame. More specifically, these code constraints enforced the legitimate tessellation

of the VDVQ tiles having a range of dimensions and ensured that the various fractions of

the source video frame were encoded using the same number of bits. Since the set of RVLC

codewords that can be employed during video encoding varies depending on which compo-

nent of the source video frame is being encoded, the VDVQ/RVLC video codec can be said

to employ IrVLCs.

In the VDVQ/RVLC video codec, the complete set of the above-mentioned code con-

straints was described by the novel trellis structure of Section 6.3.4, which is reminiscent of

a symbol-based VLC trellis [2]. Hence, the employment of this trellis structure facilitated

the consideration of all legitimate transmission frame permutations. This fact was exploited

in order to perform novel Minimum Mean Squared Error (MMSE) VDVQ/RVLC encoding

using a variation of the Viterbi algorithm [3], as described in Section 6.4.

Additionally, the employment of the trellis structure during VDVQ/RVLC decoding was

shown to guarantee the recovery of legitimate – although not necessarily error-free – video

information in Section 6.5. This ensured that useful video information was never discarded,

unlike in the conventional video decoders of [181,182], where a single transmission error may

render an entire video frame invalid. A novel modification of the Bahl-Cocke-Jelinek-Raviv

(BCJR) algorithm [4] was employed during A Posteriori Probability (APP) Soft-In Soft-Out

(SISO) VDVQ/RVLC decoding in order to facilitate the iterative exchange [132] of extrinsic

information with a serially concatenated APP SISO Trellis Coded Modulation (TCM) [129]

decoder, as well as to facilitate the soft MMSE reconstruction of the video sequence. Since

the VDVQ/RVLC trellis structure describes the complete set of VDVQ/RVLC-induced code
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constraints, all of the associated redundancy was beneficially exploited with the aid of the

modified BCJR algorithm.

In Section 6.6 the serially concatenated and iteratively decoded VDVQ/RVLC-TCM scheme

of Section 6.2 was shown to outperform two suitably designed separate source- and channel-

coding benchmarkers. This was attributed to the benefits of the VDVQ/RVLC codec de-

scribed above, which were realised owing to the joint source and channel coding philosophy

adopted. Indeed, Figure 6.12 shows that the VDVQ/RVLC-TCM scheme was capable of

achieving subjectively pleasing video reconstructions having a Peak Signal to Noise Ratio

(PSNR) of 29.5 dB at a channel Signal to Noise Ratio (SNR) that is 1.1 dB lower than that

of the VQ based benchmarker [181] and 1.6 dB lower than that of the MPEG-4 [68] based

benchmarker [182].

10.7 Chapters 7 – 9: EXIT chart matching

In Chapters 7 – 9 we considered the application of IrVLCs for EXIT chart matching. This was

motivated by the fact that an open EXIT chart tunnel was only created for the VDVQ/RVLC-

TCM scheme of Section 6.2, if the Rayleigh fading channel SNR was in excess of a threshold

that was 1.29 dB higher than the channel’s SNR capacity bound, as shown in Figure 10.1.

Note that as described in Section ??, an infinitesimally low probability of decoding error

can only be achieved, if the EXIT chart tunnel is open and if the iterative decoding trajec-

tory approaches the inner and outer EXIT functions sufficiently closely to facilitate itera-

tive decoding convergence to the (1, 1) point of the EXIT chart. Hence, operation closer

than 1.29 dB from the channel’s capacity bound was prevented for the VDVQ/RVLC-TCM

scheme, as shown in Figure 6.12. Note that similar discrepancies of 1 dB were obtained

for the SBVLC-TCM and BBVLC-TCM schemes of Section 7.3.2, as shown in Figure 10.1.

Like the VDVQ/RVLC-TCM scheme of Section 6.2, the SBVLC-TCM and BBVLC-TCM

schemes employed the serial concatenation and iterative decoding of a VLC-based outer

codec with a TCM inner codec and were not designed using EXIT chart matching. Further-

more, Figure 10.1 shows that a similar discrepancy of 1.4 dB between the threshold Eb/N0

value and the channel’s attainable capacity bound was obtained for the VLC-URC scheme

of Section 9.5.4, which employs Unity Rate Coding (URC) for the inner codec instead of

TCM. Instead of the capacity bound, the channel’s attainable capacity bound is considered

in this case, since it is this that imposes the fundamental limit on the VLC-URC scheme’s

operation, as described in Section 9.5.3. This is justified, since we will propose a solution

to the associated effective throughput loss in Section 10.12, outlining our future work. The

corresponding EXIT chart obtained for the VLC-URC scheme of Section 9.5.4 was provided

in Figure 9.10, together with those of the other schemes introduced in Section 9.5.4, which

are repeated for convenience in Figure 10.7.

In Section 6.6, we observed that open EXIT chart tunnels could have been created for

channel SNRs that are closer to the channel’s capacity bound, if the inverted VDVQ/RVLC

EXIT function of Figure 6.11 offered a better match with the TCM scheme’s EXIT function.

More specifically, this would have enabled the EXIT chart tunnel to remain open and be

further narrowed as the channel SNR was reduced towards the channel’s capacity bound.

The described observation of Section 6.6 may be explained by the area property of EXIT

charts [19], which states that the EXIT chart area enclosed by the threshold EXIT chart
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Chapter Scheme Outer codec Inner codec Modem Capacity Interleaver Capacity ACS complexity
Coding EXIT Coding EXIT bound – length bound – at 2 dB from

rate matched rate matched threshold [bits] operating capacity
Eb/N0 Eb/N0 bound

6 VDVQ/RVLC-TCM 0.667 No 0.75 No SP 16QAM 1.29 dB 1 485 3.04 dB N/A
74 250 1.79 dB N/A

7 SBVLC-TCM 0.52 No 0.75 No SP 16QAM 1.00 dB 217 500 1.10 dB 3.5 × 10
5

BBVLC-TCM 0.52 No 0.75 No SP 16QAM 1.00 dB 217 500 1.10 dB 4.7 × 10
4

SBIrVLC-TCM 0.52 Yes 0.75 No SP 16QAM 0.50 dB 217 500 0.60 dB 1.2 × 10
6

BBIrVLC-TCM 0.52 Yes 0.75 No SP 16QAM 0.50 dB 217 500 0.60 dB 8.1 × 10
4

Huffman-IrCC-TCM 0.52 Yes 0.75 No SP 16QAM 0.50 dB 217 500 0.80 dB 4.3 × 10
4

8 IrVLC-URC † 0.55 Yes 1 No BPSK 0.42 dB 100 000 1.41 dB 6.0 × 10
4

0.85 Yes 1 No BPSK 0.70 dB 100 000 1.15 dB 3.1 × 10
4

9 VLC-URC 0.53 No 1 No Gray-coded 1.40 dB ⋆ 100 000 1.60 dB ⋆ 5.0 × 10
4 ⋆

16QAM 1 000 000 1.45 dB ⋆ 5.0 × 10
4 ⋆

IrVLC-URC-high 0.53 Yes 1 No Gray-coded 0.54 dB ⋆ 100 000 0.76 dB ⋆ 5.6 × 10
4 ⋆

16QAM 1 000 000 0.63 dB ⋆ 5.6 × 10
4 ⋆

IrVLC-IrURC-high 0.53 Yes 1 Yes Gray-coded 0.04 dB ⋆ 100 000 0.57 dB ⋆ 8.6 × 10
4 ⋆

16QAM 1 000 000 0.22 dB ⋆ 8.6 × 10
4 ⋆

IrVLC-IrURC-low 0.53 Yes 1 Yes Gray-coded 0.04 dB ⋆ 100 000 0.67 dB ⋆ 6.1 × 10
4 ⋆

16QAM 1 000 000 0.17 dB ⋆ 6.1 × 10
4 ⋆

Table 10.1: Iterative decoding performance and complexity of the various schemes considered in Chapters 6 – 9. † The IrVLC comprises

the component VLEC codebooks {VLECn}22
n=12 of Table 8.6, which were designed using the GA of Section 8.3. ⋆ The channel’s

attainable Eb/N0 capacity bound is employed.
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Figure 10.7: EXIT charts for the schemes of Section 9.5.4. (d) VLC-URC arrangement. (c)

IrVLC-URC-high arrangement. (a) IrVLC-IrURC-high arrangement. (b) IrVLC-IrURC-low

arrangement. The inner EXIT functions are provided for the threshold channel Eb/N0 values,

as specified in Table 9.1.
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tunnel is commensurate with the discrepancy between the channel’s capacity bound and the

threshold SNR.

Hence, in Section 7.3.2 we demonstrated that the inverted EXIT function of an outer

IrVLC codec can be shaped to match with an inner EXIT function. Here, the IrVLC scheme

generated particular fractions of the IrVLC-encoded transmission frame using different com-

ponent VLC codebooks of either the RVLC or the Variable Length Error Correction (VLEC)

[89] class. We showed that the inverted EXIT function of the corresponding APP SISO

IrVLC decoder depends on the specifically chosen fractions of the IrVLC-encoded trans-

mission frame that are generated by each component VLC codebook. More explicitly, the

inverted IrVLC EXIT function may be obtained using the equation of (7.4), which employs

the described fractions as weights during the averaging of the component VLC codebooks’

inverted EXIT functions.

Section 7.3.2 showed that the EXIT chart matching algorithm of [10] may be employed

to design specific parameterisations of the SBIrVLC-TCM and BBIrVLC-TCM schemes de-

tailed in Section 7.2. Here, the algorithm of [10] was employed to shape the inverted IrVLC

EXIT functions to match the EXIT function of the serially concatenated TCM codec. This

facilitated the creation of open EXIT chart tunnels at channel Eb/N0 values in excess of a

threshold that is 0.5 dB from the channel’s capacity bound, as shown in Table 10.1. This is

equal to the 0.5 dB discrepancy shown in Table 10.1 that was obtained, when matching the

inverted EXIT function of an Irregular Convolutional Code (IrCC) [175] to the TCM EXIT

function during the parameterisation of the Huffman-IrCC-TCM scheme of Section 7.4.1.

Furthermore, Table 10.1 shows that the open EXIT chart tunnel of Figure 10.7b was

achieved at a similar Eb/N0 discrepancy of 0.54 dB from the channel’s attainable capacity

bound for the IrVLC-URC-high arrangement detailed Section 9.5.4. Note that this scheme

employed a serial concatenation of an IrVLC outer codec and a URC inner codec. A URC

inner codec was also employed by the IrVLC-URC scheme of Section 8.4. Discrepancies

of 0.42 dB and 0.7 dB are shown in Table 10.1 for parameterisations of this scheme that

employed IrVLC coding rates of 0.55 and 0.85, respectively. This suggests that an improved

EXIT chart matching was achieved when employing lower IrVLC coding rates, resulting in

open EXIT chart tunnels at channel Eb/N0 values that are closer to the channel’s capacity

bound, as shown in Figures 8.12 and 9.9.

Owing to the aforementioned benefits of EXIT chart matching, the observed discrepan-

cies in the range of 0.42 dB – 0.7 dB are lower than those obtained when EXIT chart matching

was not employed, which are in the range of 1 dB – 1.4 dB, as described above.

10.8 Chapter 8: GA-aided Design of Irregular VLC Components

Chapter 8 showed that our ability to perform EXIT chart matching and to achieve an open

EXIT chart tunnel at Eb/N0 values that are close to the channel’s capacity bound is com-

mensurate with the degree of diverse shapes exhibited by the inverted EXIT functions of the

component VLC codebook suite. For this reason, the conventional irregular coding design

process strives for obtaining a component VLC codebook suite having a wide variety of in-

verted EXIT functions, as shown in Figure 10.8. The component VLEC codebooks employed

by the IrVLC schemes of Chapters 7 and 8 were designed using Algorithm E of Section ??.

As discussed in Section 8.1, this algorithm attempts to design VLEC codebooks having max-

imal coding rates that satisfy particular specified distance criteria. However, this algorithm
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does not facilitate the direct control or prediction of the inverted EXIT function shapes that

correspond to the designed VLEC codebooks. Hence, in the conventional irregular coding

design process depicted in Figure 10.8, a significant amount of trial-and-error based human

interaction is required. This involves the design of a high number of candidate component

VLEC codebooks, the characterisation of their inverted EXIT functions and the selection of

a suite having a wide variety of inverted EXIT functions, as exemplified in Chapter 7.

Design
component
fractionscodes

component
candidate
Design Characterise

candidate
component

codes

component
codes

Select

Figure 10.8: Conventional irregular coding design process.

The trial-and-error efforts required to design a suite of IrVLC component codebooks us-

ing Algorithm E of Section ?? motivated the design of a novel Genetic Algorithm (GA) for

generating the VLEC codebooks of Section 8.3. Unlike Algorithm E of Section ??, this GA

was shown to facilitate the direct control and prediction of the inverted EXIT function shapes

that result for the designed VLEC codebooks, eliminating the trial-and-error efforts in the

irregular coding design process. While maintaining desirable VLEC-encoded bit entropies

and IrVLC decoding complexities, the GA of Section 8.3 seeks VLEC codebooks having

arbitrary coding rates and Real-Valued Free Distance Metrics (RV-FDMs).

This novel RV-FDM was proposed in Section 8.2 as an alternative to the Integer-Valued

Free Distance (IV-FD) lower bound of [89] for the characterisation of a VLEC codebook’s

error correction capability. Like the IV-FD lower bound of [89], the RV-FDM considers

the minimum number of differing bits in any pair of equal-length legitimate VLEC-encoded

bit sequences, characterising the probability of occurrence for the most likely undetectable

transmission error scenario, as described in Section 8.1. However, unlike the IV-FD lower

bound, the RV-FDM of Section 8.2 also considers how susceptible the VLEC-encoded bits

are to this transmission error scenario. As a result, the RV-FDM exists within the real domain,

allowing the comparison of the error correction capabilities of two VLEC codebooks having

equal IV-FD lower bounds. This facilitates its employment within the objective function of

the novel GA proposed in Section 8.3.

In Section 8.2, we showed that a VLEC codebook’s RV-FDM affects the number of in-

flection points appearing in the corresponding inverted EXIT function. More specifically, we

showed that high RV-FDMs are associated with ‘S’-shaped inverted EXIT functions having

up to two points of inflection, whilst low RV-FDMs result in inverted EXIT functions hav-

ing no more than one point of inflection. Furthermore, we showed that the inverted EXIT

function of a VLEC codebook will reach the top right hand corner of the EXIT chart if its

RV-FDM is at least equal to two [161]. These findings complement the property [19] that the

area below an inverted VLEC EXIT function equals the corresponding coding rate. There-

fore, since the inverted VLEC EXIT function shape of a VLEC codebook depends on both its

coding rate and RV-FDM, the GA of Section 8.3 facilitates the direct control and prediction

of the inverted EXIT function shapes that result for the designed VLEC codebooks.
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The employment of both the novel GA of Section 8.3 and Algorithm E of Section ?? to

design suites of IrVLC component codebooks was investigated in Section 8.5. The suite of

component VLEC codebooks designed in Section 8.5.1 by our novel GA had the wide variety

of inverted EXIT functions shown in Figure 8.8. This was obtained by seeking component

VLEC codebooks having a wide variety of coding rates and RV-FDMs. In some cases, high

RV-FDMs were sought, resulting in ‘S’-shaped inverted EXIT functions having up to two

points of inflection, whilst low RV-FDMs were sought for the remaining component VLEC

codebooks, which were associated with inverted EXIT functions having no more than one

point of inflection. Here, we found that more extreme RV-FDMs could be obtained for VLEC

codebooks having lower coding rates. This may be explained by the higher degree of design

freedom that is facilitated for lower coding rates owing to the longer codewords that this

implies.

Similarly to when the novel GA of Section 8.3 was employed to design component VLEC

codebooks, trial-and-error was not employed when Algorithm E of Section ?? was used, fa-

cilitating a fair comparison. Instead, a different IV-FD lower bound was sought for each

component VLEC codebook designed using Algorithm E of Section ??. However, the resul-

tant component VLEC codebooks were found to have relatively high RV-FDMs and only a

limited variety of coding rates, resulting in the limited variety of ‘S’-shaped inverted EXIT

functions shown in Figure 8.7.

Owing to its employment of a wider variety of coding rates and as a benefit of its both high

as well as low RV-FDMs, the suite of component VLEC codebooks designed by our novel

GA in Section 8.5.1 was found to be more suitable for use in EXIT chart matching than that

designed using Algorithm E of Section ??. More specifically, open EXIT chart tunnels could

be created for the IrVLC-URC scheme of Section 8.4 at channel Eb/N0 values within 1 dB of

the Rayleigh fading channel’s capacity bound for a wide range of effective throughputs, when

employing the suite of component VLEC codebooks generated using our GA, as shown in

Figure 8.12. By contrast, open EXIT chart tunnels could only be achieved when employing

the suite designed by Algorithm E of Section ?? for a limited range of effective throughputs

and within a significantly higher margin of 4.4 dB from the Eb/N0 capacity bound. This

confirmed the observation that our ability to perform EXIT chart matching depends on how

much variety is exhibited within the inverted EXIT functions of the suite of component VLEC

codebooks.

However, regardless of the component VLEC codebook suite employed, we observed

in Section 8.5.4 that the inverted IrVLC EXIT function can only be matched to the EXIT

functions of a regular inner codec with limited accuracy. This is because inverted outer EXIT

functions are constrained to starting from the (0, 0) point of the EXIT chart, while the inner

EXIT functions typically emerge from a relatively high point along the Ii
e axis of the EXIT

chart, as described in Section ??. As a result, we cannot create an arbitrarily narrow open

EXIT chart tunnel. Instead, a lower bound is imposed upon the enclosed EXIT chart area and,

hence, upon the discrepancy between the threshold Eb/N0 value and the channel’s capacity

bound, owing to the area property of EXIT charts [19].
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10.9 Chapter 9: Joint EXIT Chart Matching of IRVLCs and IRURCs

The above-mentioned findings motivated the introduction of novel Irregular Unity Rate Codes

(IrURC) in Chapter 9, which encode different fractions of the transmission frame using dif-

ferent component URCs, having various EXIT functions. In analogy to those of IrVLCs and

IrCCs, IrURC EXIT functions may be shaped by specifically selecting the fraction of the

transmission frame that is encoded by each component URC. In this way, the IrURC EXIT

function may be shaped to emerge from a point on the EXIT chart’s Ii
e axis that is closer to

the inverted outer EXIT function’s starting point of (0, 0).
The serial concatenation and iterative decoding of an IrVLC outer codec with an IrURC

inner codec was demonstrated in Section 9.4. Here, the IrVLC’s suite of component VLEC

codebooks was designed using the GA of Section 8.3 in order to generate the required di-

versity of inverted EXIT function shapes shown in Figure 9.5 and repeated for convenience

in Figure 10.9. By contrast, the EXIT functions shown in Figure 9.7 and repeated for con-

venience in Figure 10.10 were obtained by selecting the IrURC’s suite of component URCs

from a large number of candidates, as described in Section 9.5.2. In Section 9.3, we proposed

a novel method for jointly matching the EXIT functions of the two serially concatenated ir-

regular codecs. This method iteratively applies the EXIT chart matching algorithm of [10] to

alternately match the outer EXIT function to the inner and vice versa, simultaneously seek-

ing the highest coding rate that offers an open EXIT chart tunnel. Note however, that the

novel modification of Section 9.2 was required in order to allow the EXIT chart matching of

the IrURC EXIT function, since all component URCs have the same unity coding rate. The

joint EXIT chart matching algorithm of Section 9.3 was shown to be able to exploit the in-

creased degree of design freedom that is afforded by employing two irregular codecs in order

to create an EXIT chart tunnel that is narrow at all points along its length. This facilitated

the creation of the marginally open EXIT chart tunnels shown in Figures 10.7c and 10.7d for

the IrVLC-IrURC-high and IrVLC-IrURC-low arrangements of Section 9.5.4, respectively.

Owing to the area property of EXIT charts, these were obtained at Eb/N0 values that were

just 0.04 dB from the channel’s attainable capacity bound, as shown in Figure 10.1.

Note that an open EXIT chart tunnel implies that iterative decoding convergence to an

infinitesimally low probability of error can be achieved, provided that the iterative decoding

trajectory approaches the inner and outer EXIT functions sufficiently closely, as described in

Section ??. However, throughout this monograph we found that high quality reconstructions

could not be achieved at the threshold Eb/N0 values, where the EXIT chart tunnels open.

This is owed to the BCJR algorithm’s assumption [4] that all correlation within the LLR

frames exchanged by the APP SISO decoders is successfully mitigated by the intermediary

interleavers. If this is not the case, the iterative decoding trajectory will not match perfectly

with the inner and outer EXIT functions and the tunnel must be further widened before the

trajectory can reach the top right hand corner of the EXIT chart, which is associated with an

infinitesimally low probability of error, as described in Section ??. Since the interleaver’s

ability to mitigate the correlation is proportional to its length, longer interleavers can be

expected to yield lower discrepancies between the Eb/N0 value at which the EXIT chart

tunnel opens and that at which it is sufficiently widened to facilitate a high reconstruction

quality. Indeed, this relationship may be observed in Figure 10.11, which provides a scatter
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Figure 10.9: Inverted EXIT functions for the component VLEC codebooks employed by the

IrVLC-IrURC-high and IrVLC-IrURC-low arrangements of Section 9.5.4.
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Figure 10.10: EXIT functions corresponding to a Gray-coded 16QAM-modulated Rayleigh

fading channel SNR of 8 dB for the component URC codes employed by the IrVLC-IrURC-

high and IrVLC-IrURC-low arrangements of Section 9.5.4.
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plot of the discrepancies and interleaver lengths given in Table 10.1, as will be detailed in our

forthcoming discussions.
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Figure 10.11: Scatter plot of the interleaver lengths provided in Table 10.1 and the corre-

sponding discrepancies between the Eb/N0 value at which EXIT chart tunnel opens and that

at which it is sufficiently widened to facilitate a high reconstruction quality.

In Section 6.6, we characterised the discrepancy between the threshold Eb/N0 value at

which an open EXIT chart tunnel could be created for the VDVQ/RVLC-TCM video trans-

mission scheme and the operating Eb/N0 value at which it could achieve a high quality

reconstruction having a Peak Signal to Noise Ratio (PSNR) of 29.5 dB. This discrepancy was

found to be 1.75 dB, when the interleaver length was equal to that of a single encoded video

frame, namely 1 485 bits, as shown in Table 10.1. By contrast, when 50 encoded video frames

were concatenated to give an interleaver length of 74 250 bits, the discrepancy was reduced

to just 0.5 dB, facilitating operation at 1.79 dB from the channel’s Eb/N0 capacity bound.

However in Section 6.6, this scheme was shown to incur a 5 s latency, since the video frame

rate was 10 fps and because all 50 frames must be received before they can be deinterleaved.

The discrepancy between the threshold Eb/N0 value at which an open EXIT chart tunnel

could be created for the arrangements of Section 9.5.4 and the operating Eb/N0 value at

which they could achieve a BER of 10−5 was characterised in Section 9.6. When a 100 000-

bit interleaver was employed, the discrepancies for the VLC-URC and IrVLC-URC-high

arrangements were found to be 0.2 dB and 0.22 dB, respectively, as shown in Table 10.1.

However, these discrepancies were reduced to 0.05 dB and 0.09 dB, respectively, when we

employed a longer interleaver, having a length of 1 000 000 bits. Larger discrepancies were

observed for the IrVLC-IrURC-high and IrVLC-IrURC-low arrangements, owing to their

narrow EXIT chart tunnels, as discussed in Section 9.6. These were 0.53 dB and 0.67 dB,

respectively, when the 100 000-bit interleaver was employed, as compared to 0.18 dB and

0.13 dB, respectively, when the 1 000 000-bit interleaver was employed. Note that the IrVLC-

IrURC-low arrangement using the 1 000 000-bit interleaver could achieve a BER of less than

10−5 for Eb/N0 in excess of a limit that was just 0.17 dB from the channel’s attainable

capacity bound, as shown in Table 10.1. This is comparable to the 0.13 dB discrepancy
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demonstrated for Irregular Low Density Parity Check (IrLDPC) codes [58,166] and superior

to the 0.25 dB discrepancy found for irregular turbo codes [59].

In Section 7.4, we showed that the SBVLC-, BBVLC-, SBIrVLC- and BBIrVLC-TCM

schemes using a 217 500-bit interleaver could achieve a high quality source sample recon-

struction SNR of 20 dB for Eb/N0 values in excess of a limit that was 0.1 dB from the

threshold at which an open EXIT chart tunnel was created, as shown in Table 10.1. However,

in the case of the Huffman-IrCC-TCM scheme of Section 7.4.1, the corresponding discrep-

ancy was equal to the higher value of 0.3 dB. This was explained in Section 7.4.3 by the

relatively high sensitivity of the APP SISO IrCC decoder to any residual correlation within

the iteratively exchanged LLRs, that was insufficiently mitigated by the 217 500-bit inter-

leaver. This resulted in the poor correlation between the iterative decoding trajectory and

the inverted IrCC EXIT function. More specifically, we concluded that an APP SISO IrCC

decoder’s sensitivity to this correlation increased if its coding rate is reduced or if, in partic-

ular, we increase its coding memory. Hence, the high sensitivity of the Huffman-IrCC-TCM

scheme’s APP SISO IrCC decoder was attributed to its relatively high coding memory of 4.

Section 7.4.3 also concluded that an APP SISO VLC decoder’s sensitivity to the afore-

mentioned correlation depends only on its coding rate. Indeed, in Section 8.6, the APP SISO

IrVLC decoder’s sensitivity to this extrinsic information correlation was found to increase

as the IrVLC coding rate was reduced. As shown in Table 10.1, the IrVLC-URC scheme of

Section 8.4 using a 100 000-bit interleaver and an IrVLC coding rate of 0.85 could achieve

a BER of less than 10−5 for Eb/N0 values in excess of a limit that was 0.45 dB from the

threshold at which an open EXIT chart tunnel was created. However, this discrepancy grew

to 0.99 dB when the IrVLC coding rate was reduced to 0.55, as shown in Table 10.1.

Throughout this book we have considered receivers in which soft information is itera-

tively exchanged between APP SISO decoders and in which a final hard decision is made by

a MAP sequence estimator. These components of the receiver apply the BCJR algorithm [4]

and the Viterbi algorithm [3] to suitably designed trellises [52, 90]. These require only Add,

Compare and Select (ACS) operations if all calculations are performed in the logarithmic

probability domain and if a lookup table is employed for correcting the Jacobian approxima-

tion [197]. Since each individual ACS operation requires the same resources in a systolic-

array based chip, the number of ACS operations performed by a receiver may be employed

to characterise the complexity/area/speed trade-off required for its implementation.

In Section 7.4, we introduced the novel plot of Figure 7.12 for characterising the iterative

decoding complexity of a receiver. This plot provides the average number of ACS opera-

tions required per source symbol to achieve particular reconstruction qualities as a function

of the channel’s Eb/N0 value. This plot, as well as those of Figures 7.13, 8.17, 8.18 and 9.12,

showed that particular reconstruction qualities can be achieved with lower complexities as the

channel’s Eb/N0 value is increased. This may be explained by the associated widening of the

open EXIT chart tunnel, requiring fewer decoding iterations for the iterative decoding trajec-

tory to reach the particular point on the EXIT chart that is associated with the reconstruction

quality considered.

Additionally, Figures 7.12 and 7.13 showed that lower complexities may be maintained,

provided that lower reconstruction qualities can be tolerated, since less decoding iterations

are required for the iterative decoding trajectory to reach the particular point on the EXIT

chart that is associated with a lower reconstruction quality. However, Section 7.4.5 observed
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that in the approach of iterative decoding convergence, large reconstruction quality gains are

obtained for relatively small amounts of additional computational complexity. We concluded

that if the channel Eb/N0 value is sufficiently high to create an open EXIT chart tunnel, then

we can typically justify the computational complexity required for the iterative decoding tra-

jectory to reach the (1, 1) point of the EXIT chart, owing to the infinitesimally low probability

of error that results.

In Sections 7.4.5, 8.6 and 9.5.4 we showed that outer APP SISO decoding and MAP

sequence estimation are typically associated with significantly higher computational com-

plexities than inner APP SISO decoding. In the most extreme case considered in this volume,

the outer decoders of the SBVLC- and SBIrVLC-TCM schemes of Section 7.2 accounted for

about 97% of the ACS operations employed per source sample. By contrast, the outer de-

coders of the Huffman-IrCC-TCM scheme of Section 7.4.1 were responsible for about 60%

of the iterative decoding complexity, in the most balanced case considered.

In Table 10.1, we provide the average number of ACS operations required per source sym-

bol to achieve high quality reconstructions at an Eb/N0 value that is 2 dB from the channel’s

capacity bound for each of the schemes considered in Sections 7.2 and 8.5.4. Additionally,

for the schemes of Section 9.6, the complexity at an Eb/N0 value that is 2 dB from the

channel’s attainable capacity bound is provided in Table 10.1. Furthermore, Figure 10.12

plots the complexities of the aforementioned schemes for a range of Eb/N0 discrepancies

from the capacity bounds. While the complexities shown in Table 10.1 and Figure 10.12

for the schemes of Section 7.2 are associated with obtaining a high-quality source sample

reconstruction SNR of 20 dB, those provided for the schemes of Sections 8.5.4 and 9.6 are

associated with achieving a BER of 10−5. The comparison of the described complexities is

fair, since each of the schemes considered in Chapters 7 – 9 facilitates the transmission of

16-ary source symbols over an uncorrelated narrowband Rayleigh fading channel. Further-

more, in all cases, the source symbols have the probabilities of occurrence that result from

the Lloyd-Max quantisation [74, 75] of Gaussian distributed source samples, as described in

Section 7.2.1.

Note that Figure 10.12 illustrates the discrepancies between the channel’s appropriate

capacity bounds and the Eb/N0 values above which the schemes considered in Chapters 7

– 9 may achieve high quality reconstructions, confirming the discrepancies provided in Ta-

ble 10.1. Furthermore, at high discrepancies from the channel’s Eb/N0 capacity bounds,

Figure 10.12 shows that similar iterative decoding complexities may be observed for the

BBVLC-, BBIrVLC- and Huffman-IrCC-TCM schemes of Section 7.2 as well as for each

scheme introduced in Sections 8.5.4 and 9.6. Indeed, the corresponding ACS counts provided

in Table 10.1 can be seen to have similar values in the range of [3.1 × 104, 8.6 × 104]. This

similarity may be explained because all of these schemes employ bit-based trellises [52, 90]

as the basis of their outer APP SISO decoders and MAP sequence estimators. By contrast,

the SBVLC- and SBIrVLC-TCM schemes of Section 7.2 employed the symbol-based VLC

trellis of [2] as the basis of their APP SISO decoders. For these schemes, Table 10.1 pro-

vides ACS operation counts of 3.5× 105 and 1.2× 106, respectively, which are significantly

higher than those provided for the schemes employing bit-based trellises, as illustrated in

Figure 10.12. This increased complexity may be attributed to the number of trellis transitions

that are employed in symbol-based VLC trellises, which is typically significantly higher than

the number employed in their bit-based equivalents, as described in Section ??.
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Figure 10.12: Average number of ACS operations per source symbol required to achieve

high quality reconstructions at a range of Eb/N0 discrepancies from the appropriate capacity

bounds for the schemes of Chapters 7 – 9.
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The computational complexities provided in Figure 10.12 for the IrVLC-URC arrange-

ment of Section 8.5.4 having an IrVLC coding rate of 0.85 can be seen to be lower than that

associated with an IrVLC coding rate of 0.55. This may be explained by the higher number of

bit-based trellis transitions that are required to represent the longer codewords of the 0.55-rate

IrVLC, as discussed in Section 8.6. For this reason, we can expect lower computational com-

plexities to be associated with VLCs and IrVLCs having higher coding rates in general. This

is confirmed by the average numbers of ACS operations performed per source symbol that

are provided for VLEC codebooks having various coding rates in Figures 8.7 – 8.10 and 9.5.

These figures additionally show that VLEC codebooks having relatively low RV-FDMs are

also associated with low computational complexities. This was exploited during the design

of the IrVLC-IrURC-low arrangement of Section 9.5.4. More specifically, the novel modi-

fication of the EXIT chart matching algorithm [10] of Section 9.2 was employed to jointly

perform EXIT chart matching, while seeking a reduced IrVLC computational complexity by

invoking component VLEC codebooks having a low RV-FDM. As a result, in Table 10.1,

the computational complexity of the IrVLC-IrURC-low arrangement can be seen to be 25%

lower than that of the IrVLC-IrURC-high arrangement, which was designed without seeking

a reduced IrVLC computational complexity. Note that a reduced computational complexity

could not be achieved when the IrVLC’s EXIT function was matched to that of a regular

URC, as discussed in Section 9.5.4. This was found to be because, unlike the ‘S’-shaped

inverted EXIT functions of the component VLEC codebooks having a high RV-FDM, those

associated with a low RV-FDM do not rise rapidly enough to match with the URC EXIT

function, which starts from a high point along the EXIT chart’s Ii
e axis.

In Section 7.2.1, we showed that the number of transitions employed by a symbol-based

VLC trellis, and hence its computational complexity and memory requirement, scales with

the square of the number of source symbols that it simultaneously decodes. For this reason,

the total computational complexity and memory requirement can be reduced by decomposing

each source symbol frame into sub-frames, which are decoded separately. However, owing

to the nature of VLCs, the lengths of VLC-encoded transmission sub-frames typically vary

from frame-to-frame. In order to facilitate their decoding in the receiver, the transmitter must

convey the lengths of the sub-frames as explicit side information, which should be protected

using a low-rate channel code, owing to its error sensitive nature. Hence, the choice of how

many sub-frames to employ is a trade-off between the amount of side information required

and the computational complexity as well as the memory requirements per source symbol.

Note that the complexities provided in Table 10.1 and Figure 10.12 for the SBVLC- and

SBIrVLC-TCM schemes of Section 7.2 are therefore specific to the particular considered

case, in which each source symbol sub-frame comprised 100 symbols. In this arrangement,

the required side information was found to account for 4% of the total information conveyed

in Section 7.3.

By contrast, Section 7.2.1 showed that the number of transitions per source symbol em-

ployed by a bit-based trellis is independent of the number of source symbols that it simultane-

ously decodes. Hence, the total computational complexity and memory requirement cannot

be reduced by decomposing each source symbol frame into sub-frames in this case. However,

the memory required to decode each source symbol sub-frame will be reduced if more sub-

frames are employed. If the sub-frames are decoded sequentially, this memory can be reused

for each sub-frame and a lower-cost implementation will result. By contrast, the amount of
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memory required by an implementation that decodes all sub-frames concurrently will not be

affected by the number of sub-frames employed.

In the schemes of Sections 8.5.4 and 9.6, the amount of side information required was

significantly reduced by employing just a single source symbol sub-frame for each IrVLC

component code. Using this approach, we found that less side information was required when

a longer interleaver was employed, as described in Section 9.6. Indeed, the required side

information was reduced to just 0.006% of the total information conveyed when a 1 000 000-

bit interleaver was employed.

10.10 Chapter ??: Iteratively Decoded VLC Space-Time Coded

Modulation

In this chapter an iteratively decoded variable length space-time coded modulation design

was proposed. The joint design of source-coding, space-time coded modulation and iterative

decoding was shown to achieve both spatial diversity and multiplexing gain, as well as coding

and iteration gains at the same time. The variable length structure of the individual codewords

mapped to the maximum of Nt transmit antennas imposes no synchronisation and error prop-

agation problems. The convergence properties of the proposed VL-STCM-ID scheme were

analysed using 3D symbol-based EXIT charts as well as 2D EXIT chart projections. A signif-

icant iteration gain was achieved by the VL-STCM-ID scheme, which hence outperformed

both the non-iterative VL-STCM scheme as well as the FL-STCM benchmarker with the

aid of Nt unity-rate recursive feedback precoders. The VL-STCM-ID scheme attains a near

MIMO channel capacity performance.

10.11 Chapter ??: Iterative Detection of Three-Stage Concatenated

IrVLC FFH-MFSK

In this chapter we investigated a serially concatenated IrvLC/FFH-MFSK Transceiver oper-

ating in a Rayleigh fading channel, when the transmitted signal was also corrupted by PBNJ.

Our EXIT chart analysis demonstrated that a two-stage concatenated FFH-MFSK requires the

employment of an additional unity-rate precoder for the sake of making the channel to appear

recursive. For the sake of ensuring near-capacity operation, the IrVLC codec was specifically

designed to ensure that the inverted EXIT curve of the IrVLC decoder matches the EXIT

curve of the inner decoder. In this way, an open EXIT chart tunnel may be created even

at low SNR values, providing source-correlation-dependent additional performance gains of

up to 1.1dB over the regular VLC-based benchmark scheme. Since the employment of the

VLC involves non-identical occurence probabilities for the source symbols, it is not possible

to provide a comparison of the proposed scheme with the state-of-the-art in the context of

coded FFH-MFSK which traditionally employs equiprobable source symbols or bits. How-

ever, we have provided a comparison of the IrVLC scheme with a VLC scheme dispensing

with the precoder; consequently we noted that the precoder-aided schemes yield a Eb/N0

gain in excess of 7dB over the system dispensing with the precoder, which suffers from an

error floor when jamming is severe.

Moreover, we demonstrated that the 3-stage concatenation involving the demodulator,

the rate-1 decoder and the outer IrVLC decoder yields superior performance compared to

the 2-stage concatenation of the rate-1 decoder and the outer decoder. Naturally, the 3-stage
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scheme imposes a higher complexity. By contrast, we found that a precoder of memory 1 is

more suitable for the 3-stage IrVLC scheme, while the 2-stage scheme requires a precoder of

memory 3, thus the memory-3 rate-1 decoder imposes a somewhat higher complexity, than

its memory-1 counterpart.

In conclusion, the precoder-aided FFH-MFSK-VLC scheme constitutes a moderate-complexity

design option, which can be employed in systems communicating through channels contami-

nated by PBNJ for transmission of joint source and channel encoded audio or video signals. If

a higher complexity can be afforded, the IrVLC based scheme offers additional performance

improvements. In our future work, we will investigate more sophisticated three-stage itera-

tive decoding, exchanging extrinsic information amongst the demodulator, the rate-1 decoder

and the outer decoder.

10.12 Future work

As shown in Table 10.1, the schemes of Sections 6.2 and 7.2 employed a RTCM = 3/4-rate

TCM inner codec together with Set Partitioned (SP) MTCM = 16-ary Quadrature Ampli-

tude Modulation (16QAM) [129] to facilitate transmissions over an uncorrelated narrowband

Rayleigh fading channel. However, in these schemes the maximum effective throughput is

limited to RTCM · log2(MTCM) = 3 bits per channel use. Owing to the less-than-unity TCM

coding rate, an effective throughput loss occurs for high channel Eb/N0 values, where the

capacity of the 16QAM modulated channel will exceed the maximum effective throughput of

3 bits per channel use and will approach log2(MTCM) = 4 bits per channel use.

This motivated the employment of an inner URC codec in Section 8.4, which used MBPSK =
2 Binary Phase Shift Keying (BPSK) [116] to facilitate transmissions over an uncorrelated

narrowband Rayleigh fading channel, as shown in Figure 10.1. Here, the maximum effective

throughput was equal to the maximum capacity of log2(MBPSK) = 1 bit per channel use and

no effective throughput loss was incurred. Indeed, the areas beneath the URC EXIT functions

provided in Figure 8.13 were found to be equal to the corresponding channel capacities, as

predicted by the area property of EXIT charts [19].

In the scheme of Section 9.4, we opted for employing a URC-based inner codec together

with MQAM = 16QAM instead of BPSK, since this facilitates a higher maximum effective

throughput of log2(MQAM) = 4 bits per channel use. In Section 9.5.2 we showed that the

receiver of Figure 9.3 would benefit from the iterative extrinsic information exchange of the

16QAM demodulator and the inner APP SISO decoder. However, for the sake of obtaining an

implementational and computational complexity saving, the receiver of Figure 9.3 employed

only the ‘one-shot’ activation of the 16QAM demodulator. However, as a result, when mul-

tiplied by log2(MQAM) = 4, the average area beneath the URC EXIT functions exemplified

in Figure 9.7 did not equal the corresponding channel capacities.

In Section 9.5.3, we defined the attainable capacity of a channel having a particular

Eb/N0 value as being equal to the average area beneath the corresponding URC EXIT func-

tions, multiplied by log2(MQAM) = 4. We showed that the channel’s attainable capacity rep-

resents an upper bound to the maximum effective throughput for which an open EXIT chart

tunnel can be achieved. This is because a scheme’s effective throughput may be approximated

by multiplying the area beneath the inverted outer EXIT function by log2(MQAM) = 4 [19].

Since, this area must be lower than that beneath the inner EXIT function in order for an

open EXIT chart to be facilitated, iterative decoding convergence to an infinitesimally low
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probability of error is prevented when the effective throughput is higher than the channel’s

attainable capacity. The discrepancy between the channel’s capacity and its attainable capac-

ity therefore imposes an effective throughput loss.

Section 9.5.2 showed that this effective throughput loss was minimised by employing

Gray-coded 16QAM [141], since the corresponding EXIT function of Figure 9.8 is opti-

mised to emerge from the highest possible point on the EXIT chart’s Im
e axis. As shown in

Figure 9.9, the effective throughput loss resulted in a discrepancy of 0.29 dB between the

channel’s Eb/N0 capacity bound and its attainable capacity bound. Hence, the 0.17 dB dis-

crepancy between the channel’s attainable capacity bound and the Eb/N0 value at which the

IrVLC-IrURC-low arrangement could achieve a BER of 10−5 that is shown in Table 10.1,

represents a 0.46 dB discrepancy from the channel’s capacity bound.

In this section, we propose a method for mitigating the effective throughput loss of the

IrVLC-IrURC scheme detailed in Section 9.4. However, this solution does not employ

iterative extrinsic information exchange between the 16QAM demodulator and the inner

APP SISO decoder. Instead, the benefit of iterative demodulation is mitigated by replac-

ing the bit-based IrURC inner codec of Figure 9.3 with a Symbol Based Irregular Unity

Code (SBIrURC). Unlike a bit-based IrURC, this SBIrURC can directly employ the symbol

probabilities obtained for the demodulator’s MQAM = 16 constellation points without first

converting them into sets of log2(MQAM) = 4 bit probabilities. We refer to this proposed

solution as the IrVLC-SBIrURC scheme and Figure 10.13 provides its schematic, which is

reminiscent of the IrVLC-IrURC schematic provided in Figure 9.3.
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Figure 10.13: Schematic of the IrVLC-SBIrURC scheme.

In the IrVLC-SBIrURC scheme of Figure 10.13, IrVLC encoding, APP SISO decod-

ing and MAP sequence estimation are performed in exactly the same way as in the IrVLC-

IrURC scheme of Figure 9.3. Furthermore, the source symbol frame s, the transmission

frame u and the LLR frames Lo
a(u) as well as Lo

p(u) are composed of N number of sub-

frames, as in the IrVLC-IrURC scheme of Figure 9.3. Likewise, the interleaved transmis-

sion frame u′ and the LLR frames Li
a(u

′) as well as Li
p(u

′) are composed of R number of

sub-frames, as before. Additionally, iterative decoding is performed as in the IrVLC-IrURC

receiver of Figure 9.3, with the subtraction of the a priori LLR frames from the a posteriori

LLR frames and the interleaving π of the resultant extrinsic LLR frames, as shown in Fig-

ure 10.13. Finally, as in the IrVLC-IrURC scheme of Figure 9.3, the outer and inner EXIT
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functions of the IrVLC-SBIrURC scheme may be shaped by specifically selecting the frac-

tions, {αn}N
n=1 and {αr}R

r=1, of the frames, u and u′, that are composed by the sub-frames,

{un}N
n=1 and {u′r}R

r=1, respectively. The IrVLC-SBIrURC scheme of Figure 10.13 differs

from the IrVLC-IrURC scheme of Figure 9.3 in terms of the operation of the irregular inner

codec and the modem.

In the IrVLC-SBIrURC transmitter of Figure 10.13, each interleaved transmission sub-

frame u′r is decomposed into sets of log2(MQAM) = 4 consecutive bits, which are con-

verted into MQAM = 16-ary symbol values. In analogy with the IrVLC-IrURC scheme of

Figure 9.3, the MQAM = 16-ary symbol values corresponding to each interleaved transmis-

sion sub-frame u′r are encoded using a Symbol-Based Unity Rate Code (SBURC) having a

different symbol-based Linear Feedback Shift Register (LFSR) design. For example, these

LFSRs could employ the designs of Figure 9.6 if they were modified to employ modulo-16

additions and memory elements. Following SBURC encoding in the IrVLC-SBIrURC trans-

mitter, the sub-frame vr of SBURC-encoded MQAM = 16-ary symbol values is obtained, as

shown in Figure 10.13.

In the IrVLC-SBIrURC transmitter of Figure 10.13, the MQAM = 16-ary symbol val-

ues of each SBURC-encoded sub-frame vr are mapped to MQAM = 16QAM constellation

points in order to generate the corresponding channel input symbol sub-frame xr. How-

ever, a different mapping scheme may be employed for each SBURC-encoded sub-frame vr ,

facilitating irregular modulation, as shown in Figure 10.13. Suitable MQAM = 16QAM map-

ping schemes include Gray coding [116], SP [129], Modified Set Partitioning (MSP) [206],

the mixed mapping of [206], the Maximum Squared Euclidean Weight (MSEW) mapping

of [207] and the M16a and M16r mappings of [208].

Following modulation, the resultant channel input symbol sub-frames {xr}R
r=1 are con-

catenated in order to obtain the channel input symbol frame x. This is transmitted over an

uncorrelated narrowband Rayleigh fading channel and received as the channel output sym-

bol frame y, as shown in Figure 10.13. In the IrVLC-SBIrURC receiver of Figure 10.13,

the channel output symbol frame y is decomposed into R number of sub-frames {yr}R
r=1,

each of which is interpreted by a different MQAM = 16QAM demodulator. More specifi-

cally, for each channel output symbol, the demodulators determine the probability that the

corresponding channel input symbol conveyed each of the MQAM = 16 constellation points.

Following this, the MQAM = 16 probabilities associated with each channel output symbol

in the sub-frame yr are provided as a priori information to the corresponding APP SISO

SBURC decoder by means of the Logarithmic A Posteriori Probability (Log-APP) sub-frame

Li
a(vr), as shown in Figure 10.13.

In the IrVLC-SBIrURC receiver of Figure 10.13, each a priori LLR sub-frame Li
a(u′r)

is decomposed into sets of log2(MQAM) = 4 consecutive LLRs, which are converted into

sets of MQAM = 16 Log-APPs in a manner similar to that of TCM [129]. The TCM symbol-

based trellis [129] is employed to interpret these Log-APPs, together with those of the Log-

APP sub-frame Li
a(vr) provided by the demodulator. Here, the BCJR algorithm [4] is em-

ployed to determine sets of MQAM = 16 a posteriori Log-APPs, which are converted into

sets of log2(MQAM) = 4 LLRs for the a posteriori LLR sub-frame Li
p(u

′r).
In addition to mitigating the effective throughput loss of the IrVLC-IrURC scheme of Fig-

ure 9.3, the IrVLC-SBIrURC scheme facilitates a higher degree of design freedom, owing to

its employment of irregular modulation. While a different EXIT function may be obtained for
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each component URC code in the IrVLC-IrURC scheme of Figure 9.3, the IrVLC-SBIrURC

scheme benefits from a different EXIT function for each combination of the component URC

code and component 16QAM mapping. As a result, a greater variety of inner EXIT function

shapes can be obtained, facilitating the improved joint matching of the inner and outer EXIT

functions, as described in Section 9.3.

Note however, that APP SISO SBURC decoders are associated with a significantly higher

computational complexity than their bit-based equivalents, owing to the significantly higher

number of trellis transitions that they employ [129]. For example, a MQAM = 16-ary SBURC

employing just one memory element in its LFSR is associated with a trellis that employs

MQAM = 16 transitions from each of MQAM = 16 states for each set of log2(MQAM) = 4
bits. By contrast, the equivalent bit-based URC employs two transitions from each of two

states for each bit. We can therefore expect the APP SISO decoder of the described SBURC to

have a 16 times higher complexity than that of the equivalent bit-based URC. With reference

to Table 9.7, we may observe that a 16 times increase in the inner APP SISO decoder’s

complexity would cause it to eclipse that of the outer APP SISO decoder and dominate the

iterative decoding complexity. This could be countered, however, by employing the novel

modification to the EXIT chart matching algorithm [10] of Section 9.2 for the sake of jointly

perform EXIT chart matching while seeking a reduced SBIrURC computational complexity.

In the light of these discussions, our future work will consider the design and characteri-

sation of the IrVLC-SBIrURC scheme of Figure 9.3.

10.13 Closing remarks

Throughout this book we have introduced novel IrVLC-aided wireless telecommunication

schemes and methodologies for their design, in the pursuit of near-capacity operation. In

Chapter 6, we developed a scheme without making any particular effort to facilitate its near-

capacity operation. Here, EXIT chart analysis was only employed in order to quantify how

close to capacity the scheme may operate. By contrast, EXIT chart analysis was employed as

an integral part of the design process in Chapter 7. More specifically, EXIT chart matching

was employed to shape the IrVLC EXIT function to match that of the serially concatenated

inner codec and hence to facilitate near-capacity operation. Further gains were achieved in

Chapter 8 by challenging the conventional irregular coding design process of Figure 10.8.

Instead of selecting a suite of IrVLC components having a wide variety of EXIT function

shapes from a set of many candidates, a suite was directly designed using the RV-FDM of

Section 8.2 and GA of Section 8.3. In Chapter 9, we invoked an irregular inner codec to

complement the IrVLC, facilitating a higher degree of design freedom. This was exploited

by the joint EXIT chart matching algorithm of Section 9.3 in order to match the IrVLC and

inner EXIT functions to each other, facilitating even ‘nearer-to-capacity’ operation. Finally,

in Section 10.12 outlining our future work, we proposed a method for mitigating the effective

throughput loss that was associated with the scheme of Chapter 9, as well as for facilitating

the employment of irregular modulation and for providing an even higher degree of design

freedom. With these benefits, we may expect to achieve ‘very-near-capacity’ operation.
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[175] M. Tüchler, “Design of serially concatenated systems depending on the block length,” IEEE

Transactions on Communications, vol. 52, no. 2, pp. 209–218, February 2004.

[176] A. Q. Pham, J. Wang, L.-L. Yang, and L. Hanzo, “An iterative detection aided unequal error

protection wavelet video scheme using irregular convolutional codes,” in Proceedings of the

IEEE Vehicular Technology Conference, vol. 5, Melbourne, Australia, May 2006, pp. 2484–

2488.

[177] O. Alamri, J. Wang, S. X. Ng, L.-L. Yang, and L. Hanzo, “Near-capacity three-stage turbo detec-

tion of irregular convolutional coded joint sphere-packing modulation and space-time coding,”

in Proceedings of the IEEE International Conference on Communications, Glasgow, UK, June

2007.



406 BIBLIOGRAPHY

[178] J. Wang, N. S. Othman, J. Kliewer, L.-L. Yang, and L. Hanzo, “Turbo-detected unequal error

protection irregular convolutional codes designed for the wideband advanced multirate speech

codec,” in Proceedings of the IEEE Vehicular Technology Conference, vol. 2, Dallas, TX, USA,

September 2005, pp. 927–931.

[179] S. Tan, J. Wang, S. X. Ng, S. Chen, and L. Hanzo, “Three-stage turbo MBER multiuser beam-

forming receiver using irregular convolutional codes,” to appear in IEEE Transactions on Vehic-

ular Technology.

[180] N. Wu, O. Alamri, S. X. Ng, and L. Hanzo, “Precoded sphere packing aided bit-interleaved dif-

ferential space-time coded modulation using iterative decoding,” to appear in IEEE Transactions

on Vehicular Technology.

[181] S. X. Ng, R. G. Maunder, J. Wang, L.-L. Yang, and L. Hanzo, “Joint iterative-detection of re-

versible variable-length coded constant bit rate vector-quantized video and coded modulation,” in

Proceedings of the European Signal Processing Conference, Vienna, Austria, September 2004,

pp. 2231–2234.

[182] S. X. Ng, J. Y. Chung, F. Guo, and L. Hanzo, “A turbo-detection aided serially concatenated

MPEG-4/TCM videophone transceiver,” in Proceedings of the IEEE Vehicular Technology Con-

ference, vol. 4, Los Angeles, CA, USA, September 2004, pp. 2606–2610.

[183] C. Bergeron and C. Lamy-Bergot, “Soft-input decoding of variable-length codes applied to the

H.264 standard,” in Proceedings of the IEEE Workshop on Multimedia Signal Processing, Siena,

Italy, September 2004, pp. 87–90.

[184] K. P. Subbalakshmi and Q. Chen, “Joint source-channel decoding for MPEG-4 coded video

over wireless channels,” in Proceeding of the IASTED International Conference on Wireless and

Optical Communications, Banff National Park, Canada, July 2002, pp. 617–622.

[185] Q. Chen and K. P. Subbalakshmi, “Trellis decoding for MPEG-4 streams over wireless channels,”

in Proceedings of SPIE Electronic Imaging: Image and Video Communications and Processing,

Santa Clara, CA, USA, January 2003, pp. 810–819.

[186] X. F. Ma and W. E. Lynch, “Iterative joint source-channel decoding using turbo codes for

MPEG-4 video transmission,” in Proceedings of the IEEE International Conference on Acous-

tics, Speech, and Signal Processing, vol. 4, Montreal, Quebec, Canada, May 2004, pp. 657–660.

[187] Q. Chen and K. P. Subbalakshmi, “Joint source-channel decoding for MPEG-4 video trans-

mission over wireless channels,” IEEE Journal on Selected Areas in Communications, vol. 21,

no. 10, pp. 1780–1789, December 2003.

[188] Y. Wang and S. Yu, “Joint source-channel decoding for H.264 coded video stream,” IEEE Trans-

actions on Consumer Electronics, vol. 51, no. 4, pp. 1273–1276, Novemeber 2005.

[189] Q. Chen and K. P. Subbalakshmi, “An integrated joint source-channel decoder for MPEG-4

coded video,” IEEE Vehicular Technology Conference, vol. 1, pp. 347–351, October 2003.

[190] K. Lakovic and J. Villasenor, “Combining variable length codes and turbo codes,” in Proceedings

of the IEEE Vehicular Technology Conference, vol. 4, Birmingham, AL, USA, May 2002, pp.

1719–1723.



BIBLIOGRAPHY 407

[191] M. Grangetto, B. Scanavino, and G. Olmo, “Joint source-channel iterative decoding of arithmetic

codes,” in Proceedings of the IEEE International Conference on Communications, vol. 2, Paris,

France, June 2004, pp. 886–890.

[192] H. Nguyen and P. Duhamel, “Iterative joint source-channel decoding of variable length encoded

video sequences exploiting source semantics,” in Proceedings of the International Conference

on Image Processing, vol. 5, Singapore, October 2004, pp. 3221–3224.

[193] H. Xiao and B. Vucetic, “Channel optimized vector quantization with soft input decoding,” in

Proceedings of the International Symposium on Signal Processing and Its Applications, vol. 2,

Gold Coast, Queensland, Australia, August 1996, pp. 501–504.

[194] D. J. Vaisey and A. Gersho, “Variable block-size image coding,” in Proceedings of the IEEE

International Conference on Acoustics, Speech, and Signal Processing, vol. 12, Dallas, TX,

USA, April 1987, pp. 1051–1054.

[195] A. Makur and K. P. Subbalakshmi, “Variable dimension VQ encoding and codebook design,”

IEEE Transactions on Communications, vol. 45, no. 8, pp. 897–899, August 1997.

[196] S. X. Ng and L. Hanzo, “Space-time IQ-interleaved TCM and TTCM for AWGN and Rayleigh

fading channels,” Electronics Letters, vol. 38, no. 24, pp. 1553–1555, 2002.

[197] L. Hanzo, T. H. Liew, and B. L. Yeap, Turbo Coding, Turbo Equalisation and Space Time Coding

for Transmission over Wireless Channels. Chichester, UK: Wiley, 2002.

[198] R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error-correcting binary group codes,” Infor-

mation and Control, vol. 3, pp. 68–79, March 1960.

[199] A. Hocquenghem, “Codes correcteurs d’erreurs,” Chiffres, vol. 2, pp. 147–156, September 1959.

[200] B. Masnick and J. Wolf, “On linear unequal error protection codes,” IEEE Transactions on In-

formation Theory, vol. 13, no. 4, pp. 600–607, October 1967.

[201] M. Rosenblatt, “A central limit theorem and a strong mixing condition,” Proceedings of the

National Academy of Sciences, no. 42, pp. 43–47, 1956.

[202] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Addison-

Wesley, 1989.

[203] G. Golub and C. van Loan, Matrix Computations. Baltimore: Johns Hopkins University Press,

1996.

[204] F. Gray, US Patent 2 632 058, March, 1953.

[205] S. ten Brink, “Code characteristic matching for iterative decoding of serially concatenated

codes,” Annals of Telecommunications, vol. 56, no. 7–8, pp. 394–408, July–August 2001.

[206] A. Chindapol and J. A. Ritcey, “Design, analysis, and performance evaluation for BICM-ID with

square QAM constellations in Rayleigh fading channels,” IEEE Journal on Selected Areas in

Communications, vol. 19, no. 5, pp. 944–957, May 2001.



408 BIBLIOGRAPHY

[207] J. Tan and G. L. Stuber, “Analysis and design of interleaver mappings for iteratively decoded

BICM,” in Proceedings of the IEEE International Conference on Communications, vol. 3, New

York, NY, USA, April 2002, pp. 1403–1407.
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