
Near Collision Attack on the Grain v1
Stream Cipher

Bin Zhang1(B), Zhenqi Li2(B), Dengguo Feng2, and Dongdai Lin1

1 State Key Laboratory of Information Security, IIE,
Chinese Academy of Sciences, Beijing 100093, China

2 IOS, Chinese Academy of Sciences, Beijing 100190, China
{zhangbin,lizhenqi}@is.iscas.ac.cn

Abstract. Grain v1 is one of the 7 finalists selected in the final portfolio
by the eSTREAM project. It has an elegant and compact structure, espe-
cially suitable for a constrained hardware environment. Though a number
of potential weaknesses have been identified, no key recovery attack on
the original design in the single key model has been found yet. In this
paper, we propose a key recovery attack, called near collision attack, on
Grain v1. The attack utilizes the compact NFSR-LFSR combined struc-
ture of Grain v1 and works even if all of the previous identified weak-
nesses have been sewed and if a perfect key/IV initialization algorithm
is adopted. Our idea is to identify near collisions of the internal states at
different time instants and restore the states accordingly. Combined with
the BSW sampling and the non-uniform distribution of internal state dif-
ferences for a fixed keystream difference, our attack has been verified on
a reduced version of Grain v1 in experiments. An extrapolation of the
results under some assumption indicates an attack on Grain v1 for any
fixed IV in 271.4 cipher ticks after the pre-computation of 273.1 ticks,
given 262.8-bit memory and 267.8 keystream bits, which is the best key
recovery attack against Grain v1 so far. Hopefully, it provides some new
insights on such compact stream ciphers.

Keywords: Stream ciphers · Cryptanalysis · Grain · Near collision

1 Introduction

Grain v1, designed by Hell et al. [13], is a stream cipher for restricted hardware
environments. It uses 80-bit key and 64-bit IV and consists of two combined
registers, one NFSR and one LFSR, filtered together by a non-linear function.

This work was supported by the National Grand Fundamental Research 973 Program
of China (Grant No. 2013CB338002), the Strategic Priority Research Program of the
Chinese Academy of Sciences (Grant No. XDA06010701), IIE’s Research Project on
Cryptography (Grant No. Y3Z0016102) and the programs of the National Natural
Science Foundation of China (Grant No. 60833008, 60603018, 61173134, 91118006,
61272476).

S. Moriai (Ed.): FSE 2013, LNCS 8424, pp. 518–538, 2014.
DOI: 10.1007/978-3-662-43933-3 27, c© Springer-Verlag Berlin Heidelberg 2014

Near Collision Attack on the Grain v1 Stream Cipher 519

During the eSTREAM competition, Grain v1 has successfully withstood huge
cryptanalytic efforts and in April 2008, it was selected into the final portfolio by
the eSTREAM project, as it has pushed the state of the art of stream ciphers
in terms of compact implementation [10].

Grain v1 has a compact structure with carefully chosen tap positions, feed-
back functions and output function. The feedback function of NFSR and the
filter function are chosen in such a way that the correlation [3] and distinguish-
ing attacks [16] on the former version, Grain v0, have been made impossible
in time faster than exhaustive search. The companion cipher, Grain-128 [14],
is designed in a similar way except that the feedback function is of low alge-
braic degree (a property not in Grain v1), which results in distinguishing attacks
[2,18], an algebraic attack of a modified version [4] and a dynamic cube attack of
full initialization rounds [8,9] and a new version, Grain-128a [15], with optional
authentication. In [7], a slide property in the initialization phase was discovered,
which can be used to reduce by half the cost of exhaustive key search for a
fixed IV and to mount related-key chosen IV attacks [7,17] against Grain v1 and
Grain-128.

In this paper, we propose a new key recovery attack, called near collision
attack, on Grain v1. The attack utilizes the compact NFSR-LFSR combined
structure of Grain v1 and works even if all of the previous identified weaknesses
have been sewed and if a perfect key/IV initialization algorithm is adopted, e.g.,
the slide property does not exist any more and there are a sufficiently large
number of initialization rounds. It is observed that the NFSR and LFSR are
of length exactly 80-bit (the same as the key length, with no redundance) and
the LFSR updates independently in the keystream generation phase. Further, if
the 160-bit internal states at two different time instants differ in only a small
number of positions, the output keystreams they generate will be similar to each
other. In fact, the keystream segment differences in this case can not take all the
possible values, i.e., there are lots of impossible keystream segment differences
and even for the possible differences, the distribution is heavily non-uniform.
Some differences occur with very high probability, while others do not. This is
due to the fact that for some keystream segment differences, there are many
low weight internal state differences that can cause them. Based on the near
match generalization of the birthday paradox, such near collisions of the internal
states do exist given enough keystream and the problem is how to explicitly and
efficiently identify them.

We develop an approach to detect such near collision internal states and the
basic attack is called NCA-1.01. Combined with BSW sampling, an enhanced
attack, NCA-2.0, is proposed and it can reduce the attack complexity com-
pared to NCA-1.0. We further improve it to NCA-3.0 by utilizing the heavily
non-uniform distribution of the internal state differences for a fixed keystream
difference. Then our attack has been launched and verified on a reduced version
of Grain v1 with 32-bit LFSR and 32-bit NFSR. An extrapolation of the results
under some reasonable assumption indicates an attack on Grain v1 for any fixed

1 Near collision attack version 1.0.

520 B. Zhang et al.

Table 1. The attack complexity

Attack model Pre-computation time Data Memory Time

NCA-1.0 295.7 245.8 278.6 285.9

NCA-2.0 283.4 262 265.9 276.1

NCA-3.0 273.1 267.8 262.8 271.4

IV in 271.4 cipher ticks after the pre-computation of 273.1 ticks, given 262.8-bit
memory and 267.8 keystream bits. This is the best key recovery attack against
Grain v1 so far2. The results of all the NCA attacks are summarized in the fol-
lowing table. Our attack is just a starting point for further analysis of Grain-like
stream ciphers and hopefully it provides some new insights on the design of such
compact stream ciphers.

This paper is structured as follows. Some notations and preliminaries are
given in Sect. 2. Then, some key observations used in our attack and the descrip-
tion of Grain v1 are presented in Sect. 3. The general attack model and its com-
plexity analysis are formalized in Sect. 4. The NCA-2.0 based on BSW sampling
resistance is given in Sect. 5 and the NCA-3.0 based on the non-uniform distrib-
ution of keystream segment differences is presented in Sect. 6, respectively. The
basis simulation results on the reduced version of Grain is provided in Sect. 7.
Finally, we conclude in Sect. 8.

2 Notations and Preliminaries

In this section, we give a brief description of Grain3 and propose some lemmas
that we will use. The following notations are used throughout the paper.

– wH(·): the Hamming weight function, output the number of 1s in the binary
representation of the input argument.

– d: the maximum Hamming weight of the internal state difference.
– l: the length of the keystream segment, measured in bit.
– n: the length of the internal state, measured in bit.
– Δs: the internal state difference.
– V (n, d): the total number of the internal state differences with wH(Δs) ≤ d.
– Q(n, d, l): the total number of all the possible keystream segment differences,

while traversing all the V (n, d) internal state differences.
– R(n, d, l): the average number of the internal state differences, corresponding

to a fixed keystream segment difference.
– Bd: the set of the internal state differences with Δs ∈ Bd and wH(Δs) ≤ d.
– IΔs: the set of the difference position indexes of Δs. The difference position

indexes range from 0 to 159, corresponding to n0, n1, . . . , n79, l0, l1, . . . , l79.
– P : the pre-computation time complexity.
2 We give a rigorous analysis on the time complexity of the brute force attack on

Grain v1 in Sect. 3.3 and find that the actual complexity is 287.4 cipher ticks, which
is higher than 280 ticks.

3 We use Grain to denote Grain v1 hereafter.

Near Collision Attack on the Grain v1 Stream Cipher 521

– T : the on-line time complexity.
– M : the memory requirement.
– D: the data complexity.
– Ω: the number of CPU clock cycles to generate one bit keystream in software.

It is easy to see that4 Bd = {Δs ∈ F
n
2 |wH(Δs) ≤ d} = {Δs1,Δs2, . . . ,ΔsV (n,d)}

and |Bd| = V (n, d) =
∑d

i=0

(
n
i

)
. The definition of d-near-collision for two binary

strings is as follows.

Definition 1. Two n-bit strings s, s′ are d-near-collision, if wH(s ⊕ s′) ≤ d.

Similar to the birthday paradox, which states that two random subsets of a
space with 2n elements are expected to intersect when the product of their sizes
exceeds 2n, we present the following lemma of d-near-collision.

Lemma 1. Given two random subsets A, B of a space with 2n elements, then
there exists a pair (a, b) with a ∈ A and b ∈ B that is an d-near-collision if

|A| · |B| ≥ 2n

V (n, d)
(1)

holds, where |A| and |B| are the size of A and B respectively.

Proof. Let A = {a1, a2, . . . , a|A|} and B = {b1, b2, . . . , b|B|}. Each ai ∈ A, bj ∈ B
are uniformly random variables with values in F

n
2 . Consider the random variables

wH(ai ⊕bj) and let φ be the characteristic function of the event wH(ai ⊕bj) ≤ d,
that is,

φ(wH(ai ⊕ bj) ≤ d) =
{

1 if wH(ai ⊕ bj) ≤ d
0 otherwise.

For 1 ≤ i ≤ |A|, 1 ≤ j ≤ |B|, we consider the number NA,B(d) of pairs
(ai, bj) satisfying wH(ai ⊕ bj) ≤ d (the number of d-near-collisions): NA,B(d) =
∑|A|

i=1

∑|B|
j=1 φ(wH(ai ⊕ bj) ≤ d). The expected value of NA,B(d) of pairwise-

independent random variables can be computed as E(NA,B(d)) = |A|·|B|· V (n,d)
2n .

Therefore, if we choose the size of A and B satisfying Eq. (1), the expected num-
ber of d-near-collisions pairs is at least 1. �

If d = 0, then V (n, d) = 1 and Lemma 1 reduces to the common collision,
otherwise the data required of finding a d-near-collision is much less than that of
finding a complete collision. If |A| · |B| = 2n/V (n, d), then the probability to find
a d-near-collision is about 50%. If |A| · |B| = 3 · 2n/V (n, d), then the probability
to find a d-near-collision is larger than 98%.

2.1 Grain-v1

Grain-v1 is one of the 7 finalists selected in the final portfolio by the eSTREAM
project. It is a bit-oriented stream cipher taking an 80-bit key and a 64-bit IV.
4 | · | denotes the cardinality of a set.

522 B. Zhang et al.

The cipher consists of a pair of linked 80-bit shift registers, one is linear feedback
shift register (LFSR) and another is non-linear feedback shift register (NFSR),
denoted as {li, li+1, . . . , li+79} and {ni, ni+1, . . . , ni+79} respectively. The update
function of the LFSR is li+80 = li+62 + li+51 + li+38 + li+23 + li+13 + li and the
update function of the NFSR is

ni+80 = li + ni+62 + ni+60 + ni+52 + ni+45 + ni+37 + ni+33 + ni+28 + ni+21

+ ni+14 + ni+9 + ni + ni+63ni+60 + ni+37ni+33 + ni+15ni+9

+ ni+60ni+52ni+45 + ni+33ni+28ni+21 + ni+63ni+45ni+28ni+9

+ ni+60ni+52ni+37ni+33 + ni+63ni+60ni+21ni+15

+ ni+63ni+60ni+52ni+45ni+37 + ni+33ni+28ni+21ni+15ni+9

+ ni+52ni+45ni+37ni+33ni+28ni+21.

During keystream generation phase, shown in Fig. 1, the output bit zi is
filtered by a non-linear function h(x), which is balanced and correlation immune
of the first order, defined as follows.

h(x) = x1 + x4 + x0x3 + x2x3 + x3x4 + x0x1x2 + x0x2x3 + x0x2x4

+ x1x2x4 + x2x3x4,

where the variables x0, x1, x2, x3 and x4 correspond to the tap positions li+3,
li+25, li+46, li+64 and ni+63 respectively. The output function is taken as zi =∑

k∈A ni+k + h(li+3, li+25, li+46, li+64, ni+63), where A = {1, 2, 4, 10, 31, 43, 56}.

h(x)

NFSR LFSR

Fig. 1. Keystream generation mode

h(x)

NFSR LFSR

Fig. 2. Initialization mode

Let the bits of the key be ki, 0 ≤ i ≤ 79 and the bits of the IV be IVi,
0 ≤ i ≤ 63. In the initialization phase, shown in Fig. 2, first load the NFSR with
the key bits, ni = ki, 0 ≤ i ≤ 79, then load the first 64 bits of the LFSR with the
IV, si = IVi, 0 ≤ i ≤ 63. The remaining bits of the LFSR are filled with ones,
i.e., si = 1, 64 ≤ i ≤ 79. Then the cipher is clocked 160 times without producing
any keystream bit. Instead the output function is fed back and xored with the
input, both to the LFSR and to the NFSR.

Near Collision Attack on the Grain v1 Stream Cipher 523

3 Some Key Observations

We start with some key observations used in our attacks. More technical descrip-
tions of the various steps will be provided in the next sections.

3.1 State Recovery with Known State Difference

According to NFSR-LFSR combined structure of Grain, the internal states at
two different time instants can be recovered in a reasonable time if we know
the state difference. More precisely, during the keystream generation phase,
we denote the LFSR state as Lt1 = (lt10 , lt11 , . . . , lt179) at time t1 and Lt2 =
(lt20 , lt21 , . . . , lt279) at time t2 (0 ≤ t1 < t2).

Suppose that we know the difference ΔL = (lt10 ⊕lt20 , . . . , lt179⊕lt279) = (Δl0,Δl1,
. . . ,Δl79) with the time interval Δt = t2 − t1. Since the LFSR is clocked inde-
pendently (never affected by the NFSR or the keystream bits) in the keystream
generation phase of Grain, each lt2i in Lt2 can thus be linearly expressed by the
variables in Lt1 : ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

lt20 = c00l
t1
0 + c01l

t1
1 + · · · + c079l

t1
79

lt21 = c10l
t1
0 + c11l

t1
1 + · · · + c179l

t1
79

...
lt279 = c790 lt10 + c791 lt11 + · · · + c7979l

t1
79,

where cj
i , 0 ≤ i, j ≤ 79 can be pre-computed according to Δt and the update

function of the LFSR, not depending on t1 and t2. Combined with ΔL, we can
easily derive the following linear system.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δl0 = lt20 ⊕ lt10 = (c00 + 1)lt10 + c01l
t1
1 + · · · + c079l

t1
79

Δl1 = lt21 ⊕ lt11 = c10l
t1
0 + (c11 + 1)lt11 + · · · + c179l

t1
79

...
Δl79 = lt279 ⊕ lt179 = c790 lt10 + c791 lt11 + · · · + (c7979 + 1)lt179.

(2)

Variables in Lt1 can then be determined by solving (2), which means that we
can obtain the internal state of LFSR at t1. The time complexity of this step is
upper bounded by TL ≈ 218.9 basic operations [19]. Suppose one basic operation
needs one CPU cycle, then according to AppendixC that one tick of Grain needs
210.4 CPU clock cycles, hence TL = 218.9/210.4 = 28.5 cipher ticks in software.

The next step is to recover the NFSR state at t1. This process can be found in
AppendixA. The time complexity of this phase is upper bounded by TN = 220.3

cipher ticks. The key can then be easily recovered by the running internal state at
t1 backward. To sum up, given the internal state difference with the time interval,
the time complexity to retrieve the internal state is TK = TL +TN = 220.3 cipher
ticks.

3.2 The Distribution of the Keystream Segment Differences

The second observation is that the distribution of keystream segment differ-
ences (KSDs) is heavily biased, given a specific internal state differential (ISD).

524 B. Zhang et al.

Table 2. The distribution of KSDs

ISD KSD Proportion (%) ISD KSD Proportion (%)

Δs1 0xa120 49.4 Δs4 0x0000 52.0
0xe120 50.6 0x0080 48.0

Δs2 0x0000 12.9 Δs3 0x0001 13.2
0x0001 13.8 0x0201 12.1
0x2000 38.3 0x0801 37.2
0x2001 35.1 0x0a01 37.5

For instance, we choose d = 4, l = 16, IΔs1 = {9, 31, 39, 69}5, IΔs2 = {99, 121,
134, 149}6, IΔs3 = {29, 64, 101, 147}7 and IΔs4 = {20, 26, 53, 141}8. Then we
randomly choose 104 internal states, calculate the companion states by adding
Δs1, Δs2, Δs3, Δs4 and generate the corresponding KSDs for Δs1, Δs2, Δs3
and Δs4 in Table 2.

From Table 2, there are only 2 values of KSD, each occurred with proportion
close to 1/2 for Δs1 and Δs4 respectively. There are 4 values of KSD with varying
proportions for Δs2 and Δs3 respectively, e.g., if the ISD is Δs2, then 38.3%
KSDs are 0x2000. We also test other ISDs with different d and l, the results are
similar to Table 2.

In many cases, there exists some impossible KSDs when d and l are fixed.
To illustrate this, given 1 ≤ d ≤ 4, l ∈ {8, 16, 24, 32}, we enumerated each
Δs ∈ Bd and count the number of Q(n, d, l) for all the possible ISDs in Bd. The
results show that there exists some impossible differences for most of (d, l) pairs.
Thus the value of Q(n, d, l) can be estimated as 2l−γ where 2γ is the number
of impossible differences, e.g., for (d, l) = (3, 24), γ = 4.7. Even for the possible
differences, the distribution is non-uniform, which causes some entropy leakage
as well. These features can be further utilized to enhance our attack.

3.3 Complexity of the Brute Force Attack

The third observation is that the complexity of brute force attack is higher than
280 ticks and such an attack can only be mounted for each fixed IV, while our
attack can be applied to the scenario with arbitrary IVs.

As a baseline, we analyzed the time complexity of the brute force attack on
Grain. Given a known fixed IV and a 80-bit keystream segment w, generated by
(K, IV) pair, the goal is to recover K using the exhaustive search strategy.

For each enumerated ki, 1 ≤ i ≤ 280 − 1, the attacker first needs to proceed
the initialization phase which needs 160 ticks. During the keystream generation
phase, once a keystream bit is generated, the attacker compares it to the cor-
responding bit in w. If they are equal, the attacker continue to generate the
5 Δs1 = 0x0002008080000000200000000000000000000000.
6 Δs2 = 0x0000000000000000000000080000000240002000.
7 Δs3 = 0x0000002000000000010000002000000000000800.
8 Δs4 = 0x0000100400002000000000000000000000200000.

Near Collision Attack on the Grain v1 Stream Cipher 525

next keystream bit and do the comparison. If not, the attacker search another
key and repeat the previous steps. If each keystream bit is treated as a random
independent variable, then for each ki, the probability that the attacker need to
generate l (1 ≤ l ≤ 80) bits keystream is 1 for l = 1 and 2−(l−1) for l > 1, which
means that the previous l − 1 bits are equal to the counter bits in w. Let Nw be
the expected number of bits needed to generate for each enumerated key, which
is Nw =

∑80
l=1 l · Pl =

∑80
l=1 l · 2−(l−1) ≈ 4. Then, the total time complexity is

(280 − 1) · (160 + 4) ≈ 287.4 cipher ticks.

4 The General Attack Model

In this section, we will give a general description of our attack model. From
Sect. 3.1, it is easy to recover the internal state by utilizing the known ISD and
the time interval, thus the main concern is to retrieve the ISD derived from the
two d-near-collision internal states. Our attack consists of two phases, i.e., an
off-line stage only performed once followed by an on-line stage.

4.1 Off-line Stage

In the off-line stage, some well structured differential tables are pre-computed.
Given l and d, we enumerated the V (n, d) different ISDs in Bd and generate
their corresponding KSDs with proportions. In total, Q(n, d, l) different tables
will be constructed and indexed with KSD. The ISDs with the proportions, which
will generate the indexed KSD, will be stored in each KSD table. For example,
following Table 2 in Sect. 3.2, Δs2 together with the proportion 12.9% will be
stored in one line of table-0x0000 and Δs4 together with the proportion 52.0%
will also be saved in another line of table-0x0000. The table structure can be
illustrated as follows.

table − 0x0000

⎧
⎪⎨

⎪⎩

Δs4 52.0%
Δs2 12.9%

...
table − 0x0001

⎧
⎪⎨

⎪⎩

Δs2 13.8%
Δs3 13.2%

...
...

table − 0x0080

{
Δs4 48.0%

...
...

The total number of tables is Q(n, d, l) and the average number of rows in
each table is R(n, d, l). Due to the non-uniform distribution of the KSDs for a
fixed ISD, we only consider at most 100 KSDs whose proportions are the first 100
largest among all the KSDs, then each ISD will be stored in at most 100 different
KSD tables. Hence R(n, d, l) is upper bounded by 100 · V (n, d)/Q(n, d, l). The
memory requirement is thus M1 = Q(n, d, l) · R(n, d, l) = V (n, d) · 26.6 entries,
each containing n+δ bits where δ is used to store the proportion and δ = 7 bits9.
9 We use a 7-bit string to store the percentage number, e.g., for 67 %, we only store

binary representation of 67 (67 < 128).

526 B. Zhang et al.

We sort each table with respect to the values of those proportions so that the
ISD with the maximum proportion will appear in the first row. All the tables will
be sorted with respect to their KSD indexes. Let N be the sampling number of
the random internal states when determining the projection from ISD to KSD,
then we have P = 2 · N · V (n, d) · l cipher ticks.

4.2 On-line Stage

Now we discuss how to obtain the ISD by utilizing the pre-computed tables and
the truncated keystreams. Let the length of the keystream segment be l̂ = l +β,
where β is the length of the keystream suffix used for verification. The on-line
stage contains the following steps:

Step 1. We randomly collect two keystream segments sets A and B, each ele-
ment ai ∈ A, bj ∈ B of which is l̂-bit. Let a

[l]
i and b

[l]
j denote the first l bits of

the keystream segments and the time instants for each a
[l]
i and b

[l]
j are also

recorded. Let sA
i and sB

j be the internal states corresponding to a
[l]
i and b

[l]
j

respectively, from Lemma 1, in order to assure that there exists at least one
pair (sA

i , sB
j) so that sA

i ⊕ sB
j ∈ Bd, it is required that |A| · |B| ≥ 2n/V (n, d).

Step 2. We sort A and B with respect to the value of the first l bits and divide A,
B into m different groups GA

1 , GA
2 , . . . , GA

m and GB
1 , GB

2 , . . . , GB
m respectively.

The keysream segments in A (B) with the same a
[l]
i (b[l]j) will be put into the

same group with the index a
[l]
i (b[l]j). The size of each group can be estimated

as |GA
i | = |A|/2l, |GB

i | = |B|/2l, 1 ≤ i ≤ m. Note that if |A| ≥ 2l, then
m = 2l. If |A| < 2l, then there may be some empty groups and we define
m = |A|. The sorting time is T1 = |A| · log |A| + |B| · log |B| comparisons.

Step 3. Now we need to identify the candidate (sA
i , sB

j) pairs that is d-near-
collision. Denote the Q(n, d, l) different KSDs in the off-line stage by W =
{w1, w2, . . . , wQ(n,d,l)} where each wk, 1 ≤ k ≤ Q(n, d, l) is of l-bit lengths.
For each wk ∈ W , we need to find all the pairs (a[l]

i , b
[l]
j) satisfying a

[l]
i ⊕b

[l]
j =

wk. There are two strategies to achieve this goal:
Strategy I. For each wk ∈ W , we xor it to each group index of GA

i in
A and get A∗. If there is one group GA∗

i with the group index same
as the index of another group GB

i in B, then we get a
[l]
p ⊕ b

[l]
q = wk

for any 1 ≤ p ≤ |GA∗
i | and 1 ≤ q ≤ |GB

i |, for if we xor wk to each
a
[l]
p ∈ GA∗

j and get a
[l]∗
p = a

[l]
p ⊕ wk, then any (a[l]∗

p , b
[l]
q) pair is a match

satisfying a
[l]∗
p = a

[l]
p ⊕ wk = b

[l]
q , see Fig. 3. The time complexity is

T I
2 = Q(n, d, l) · m · log m comparisons.

Strategy II. For each GA
i in A, we xor its index to each index of GB

j in B
(get B∗) and search a match in the sorted W = {w1, w2, . . . , wQ(n,d,l)}. If
a match wk ∈ W is found, then we have (a[l]

p , b
[l]
q) satisfying a

[l]
p ⊕b

[l]
q = wk

with a
[l]
p ∈ GA

i , b
[l]
q ∈ GB

j , see Fig. 4. The time complexity is T II
2 =

m · m · log Q(n, d, l) comparisons.
The time complexity of Step 3 is T2 = min{T I

2 , T II
2 }.

Near Collision Attack on the Grain v1 Stream Cipher 527

KSDs

A

A*

B

Find match

Fig. 3. Strategy I

KSDs

A

B*

B

Find match

Fig. 4. Strategy II

Step 4. From the previous steps, if we choose Strategy I in step 3, then for
each wi, there are at most Cwi

= 2l · |GA
j | · |GB

j | = |A| · |B|/2l matches, thus
the total number of matches is at most C = Cwi

· Q(n, d, l) = Q(n, d, l) ·
|A| · |B|/2l = |A| · |B| (Strategy II get at most C=|A| · |B| matches), among
which there are many pseudo-collisions10. This step is to filter out these
pseudo-collisions and find the real one. Precisely, for each pair (a[l]

p , b
[l]
q), we

look for the table with the index a
[l]
p ⊕ b

[l]
q = wi, read the corresponding

ISD list Bwi

d and for each Δs ∈ Bwi

d , we can derive the internal state by
using the method described in Sect. 3.1. Finally, we can easily verify the
correctness of the state by running the cipher forward and compare the
generated keystream with those β bits collected in A and B. The average
size of the table is R(n, d, l) = 100 · V (n, d)/Q(n, d, l). The time complexity
is T3 = C · R(n, d, l) · TK = |A| · |B| · V (n, d) · 26.6 · TK/2l cipher ticks11 (for
strategy II, T3 = |A| · |B| · V (n, d) · 26.6 · TK/Q(n, d, l)).

The total online complexity of the on-line state is thus T = T1 +T2 +T3 and
the memory complexity is M2 = |A| + |B| entries, each containing l̂ bits.

Table 3. The attack complexity with various l

l P T1 T2 T3 T

102 295.7 240.9 285.8 286.4 286.4

104 295.7 240.9 285.9 284.4 285.9

106 295.7 240.9 285.9 272.4 285.9

n = 160, d = 16, D = 245.8, M = 278.6.
Strategy II is chosen in Step 3.

10 Pseudo-collision indicates the case that a
[l]
i ⊕ b

[l]
j matches to a KSD, but the internal

state recovered from the ISD found in the table indexed with the KSD is not correct.
11 We ignore the cost for verifying the correctness of the state, since it does not make

significant change in T3.

528 B. Zhang et al.

4.3 Complexity Analysis

The unit of the time complexity is one tick of Grain. It is obvious that Q(n, d, l) is
upper bounded by 2l and R(n, d, l) is upper bounded by 100 · V (n, d)/Q(n, d, l).
The pre-computation time is P = 2 · N · V (n, d) · l. The data complexity is
D = |A| + |B| l̂-bit keystream segments and the memory requirement is M =
M1 + M2 = V (n, d) · 26.6 + |A| + |B| entries.

The time complexity in Step 2 is T1 = |A| · log |A|+ |B| · log |B| comparisons.
Suppose each comparison is done in one CPU cycle. Since one tick of Grain
needs Ω = 210.4 CPU clock cycles (see Appendix C for details), T1 = (|A| ·
log |A| + |B| · log |B|)/Ω cipher ticks. Similarly, the time complexity in Step 3 is
T2 = min{Q(n, d, l) · m · log m/Ω, m2 · log Q(n, d, l)/Ω} ticks.

For Grain n = 160 and d = 16, then V (n, d) ≈ 272. If we choose |A| =
|B| =

√
3 ∗ 2n/2/

√
V (n, d) ≈ 244.8 and the sample size N = 216, then the data

complexity is thus D = |A| + |B| = 245.8, the memory requirement is M = 278.6

167-bit entries and the time complexity of pre-computation is P = 289 · l. The
complexities varying with l are shown in Table 3. From Table 3, our attack has
a rather uniform complexity tradeoff. Besides, from |A| · |B| = 3 · 2n/V (n, d),
the estimated success probability is about 98%. We name this basic attack as
NCA-1.0. However, the pre-computation complexity P = 295.7 exceeds the brute
force attack complexity of 287.4. In the following sections, we will propose some
enhanced attacks.

5 Improvement I

The first improvement is designated by combining the sampling resistance
property of Grain with NCA-1.0. Biryukov and Shamir proposed the concept
of sampling resistance in [5], named BSW-sampling. It can be used to obtain
larger choices of tradeoff parameters on the Biryukov-Shamir tradeoff curve.

5.1 Sampling Resistance of Grain

The main idea is to find an efficient way to generate and enumerate special states,
from which some subsequent generated keystream bits have a fixed pattern (e.g.,
a string of zeros). If the length of the fixed pattern is k, then the sampling
resistance of the cipher is R = 2−k. In [6], it was proved that the sampling
resistance of Grain is 2−21 by guess and determine strategy. We use a simple
method to derive the sampling resistance of Grain which has lower complexity
than the guess and determine strategy in [6]. Here comes our Lemma 2, proved
in AppendixB.

Lemma 2. Given the value of 139 particular state bits of Grain and the first
21 keystream bits produced from that state, another 21 internal state bits can be
deduced directly.

Near Collision Attack on the Grain v1 Stream Cipher 529

Table 4. The attack complexities with various l based on sampling resistance

l P ∗ T1 T2 T3 T

92 283.4 235.9 276.1 275.4 276.1

94 283.4 235.9 276.2 273.4 276.2

96 283.4 235.9 276.2 271.4 276.2

n∗ = 139, d = 13, D = 262, M = 265.9.
Strategy II is chosen in Step 3.

The 139 particular state bits contained 60 bits of the NFSR state and 79 bits
of the LFSR state. From Lemma 2, the sampling resistance of Grain is R =
2−21. Thus, we define a restricted one-way function τ : {0, 1}139 → {0, 1}139 by
choosing a prefix of 021.

1. For each 139-bit input value x, the remaining 21-bit internal state can be
determined by Lemma 2 and the prefix of 021.

2. Run the cipher forward for 160 ticks, generate an 160-bit segment 021||y and
output y.

Now, the searching space is reduced to a special subset of the internal states.

5.2 Complexity Analysis Based on Sampling Resistance

Now, the goal is to recover the n∗ = 139 bits ISD which contains 60 NFSR
state bits and 79 LFSR state bits, instead of the n = 160 bits ISD. Note that
if we observe l-bit keystream from the output y of τ , we need additional 42
ticks, 21 ticks to compute the remaining 21-bit internal state and 21 ticks to
generate the prefix keystream. The pre-computation time complexity is thus
P ∗ = 2 · N · V (n∗, d) · (l + 42) ticks. In the on-line stage, we need to collect
those keystream segments with the prefix pattern 021, which can ensure that the
corresponding internal state existed in the reduced searching space. Hence, the
data complexity is D = (|A|+ |B|) ·221. Given d = 13, then V (n∗, d) ≈ 259.3 and
|A| = |B| =

√
3·2n∗/2/

√
V (n∗, d) ≈ 240. Thus, the data complexity is D = (|A|+

|B|) ·221 = 262, the memory complexity is M = V (n∗, d) ·26.6 + |A|+ |B| = 265.9

entries, each containing n∗ + δ bits instead of n + δ bits. The pre-computation
time is P ∗ = 2 · N · V (n∗, d) · (l + 42) = 276.3 · (l + 42). The time complexities
with various l are summarized in Table 4. From Table 4, compared to NCA-1.0,
our improved attack reduces P by a factor of 212.3 and it saves 10-bit storage
for each entry in A and B. All the complexities are under the brute force attack
complexity of 287.4. We name this combined attack as NCA-2.0.

6 Improvement II

The second improvement is based on NCA-2.0 by utilizing the non-uniform dis-
tribution of KSDs among all the tables.

530 B. Zhang et al.

Table 5. The attack complexity on Grain with various l based on special tables

l P ∗ T1 T2 T3 T

92 273.1 241.9 260.5 275.4 275.4

94 273.1 241.9 260.6 273.4 273.4

96 273.1 241.9 260.7 271.4 271.4

n∗ = 139, d = 10, M = 262.8 bits, D = 267.8.
Strategy I is chosen in Step 3.

6.1 Special Tables

As we have observed in Sect. 3.2, the distribution of the table size for each (d, l)
are non-uniform. For (d, l) = (4, 16), there are altogether Q(160, 4, 16) = 215.5

tables among which some tables like table-0x0000, table-0x0008, table-0x0004
contains 10 times more rows than those like table-0x0012 and table-0x0048.
Table-0x0000 contains the most rows among all the tables. Furthermore, most
tables like table-0xfe00, table-0xfd68 and table-0xfad1 only contain a single
row. Those tables with low Hamming weight indexes contains most of the ISD.
The distributions among other (d, l) pairs are similar.

For each (d, l) pair that 1 ≤ d ≤ 4, l ∈ {8, 16, 24, 32}, we found that the tables
with low Hamming weight indexes satisfying wH(KSD) ≤ 3 contain about 80%
of all the V (n, d) different ISDs. We call these tables special tables. In general,
we make the following assumption which is verified in random experiments.

Assumption 1. On average, the special tables can cover 50% of all the V (n∗, d)
different ISDs, when d and l becomes larger.

The assumption indicates that in the off-line stage, we only need to construct
those special tables.

6.2 Complexity Analysis Based on Special Tables

All the complexities remain unchanged except T2 = min{l3 ·m·log m, m2 ·log l3}.
In NCA-2.0, n∗ = 139, then given d = 10, V (n∗, d) ≈ 249. If we choose |A| =
|B| =

√
3 · 2n∗/2/

√
V (n∗, d) ≈ 245.8 and the sample size N = 216, then the

pre-computation time complexity is P ∗ = 266 · (l + 42) and the data complexity
is D = (|A| + |B|) · 221 = 267.8 entries12, each containing l̂ bits. The memory
complexity is M = V (n, d) · 26.6 + |A| + |B| = 255.6 entries, each containing
n∗ + δ = 146 bits. The time complexities with various l are summarized in
Table 5. From it, we can obtain an attack of T = 271.4, M = 262.8 and D = 267.8

with the pre-computation complexity P = 273.1. We name this enhanced attack
as NCA-3.0.

12 In the on-line stage, the data can be collected in an overlapping way, thus to get
267.8 keysream segments, each containing l̂ bits, we only need l̂ + 267.8 − 1 ≈ 267.8

keystream bits.

Near Collision Attack on the Grain v1 Stream Cipher 531

7 Simulations and Results

In this section, we validate our attacks by simulating a reduced version of Grain
v1 stream cipher. We first give a brief description of the reduced version and then
verify the Assumption 1 under various parameters. Finally, we apply NCA-2.0
and NCA-3.0 to the reduced cipher.

7.1 Reduced Version

The reduced version of Grain v1 cipher consists of an LFSR of 32 bits and an
NFSR of 32 bits. f ′(x) = 1+x2+x7+x16+x32 is a primitive polynomial of degree
32. The update function of LFSR is defined as l′i+32 = l′i+30 + l′i+25 + l′i+16 + l′i.
The feedback polynomial of the NFSR, g′(x) is defined as

g′(x) = 1 + x7 + x9 + x17 + x24 + x32 + x7x9 + x17x24

+ x7x9x17 + x9x17x24 + x7x9x17x24,

which is a balanced function of degree 4. Similar to Grain, the update function
of NFSR with the bit l′i masked to the input is

n′
i+32 = l′i + n′

i+25 + n′
i+23 + n′

i+15 + n′
i+8 + n′

i + n′
i+25n

′
i+23 + n′

i+15n
′
i+8

+ n′
i+25n

′
i+23n

′
i+15 + n′

i+23n
′
i+15n

′
i+8 + n′

i+25n
′
i+23n

′
i+15n

′
i+8.

We use the same non-linear filter function h(x) as in Grain v1 and take the
output function as z′

i =
∑

k∈A′ n′
i+k + h(l′i+3, l

′
i+11, l

′
i+21, l

′
i+25, n

′
i+24), where

A = {1, 4, 10, 21}. The key initialization is similar to Grain-v1. First, load the
NFSR with the 32-bit key, then load the first 24 bits of LFSR with the 24-bit
IV. The remaining bits of the LFSR are filled with ones. Then the cipher is
clocked 64 times without producing any keystream. Instead the output function
is feedback and xored with the input, both to the LFSR and to the NFSR. The
actual complexity of the brute force attack on the reduced version is 238.1 cipher
ticks. By using the same strategy in Appendix B, given the value of 53 particular
state bits of the reduced Grain (including 32 bits LFSR and 21 bits NFSR) and
the first 11 keystream bits produced from that state, another 11 internal state
bits can be deduced directly. Then the sampling resistance is R′ = 2−11.

7.2 Verification of Assumption 1

Recall that the special tables are those with low Hamming weight indexes satis-
fying wH(KSD) ≤ 3. We first verify Assumption 1 in a random experiment. More
precisely, we randomly chose 104 ISDs in Bd and generate their corresponding
KSDs with the proportions. For each ISD, N random internal states were gener-
ated to determine the projection from ISD to KSD. Only those KSDs satisfying

532 B. Zhang et al.

Table 6. Verification of Assumption 1

η l No. of ISDs Proportion (%)

50 24 9842 98.4
1000 24 9851 98.5

50 32 9202 92.0
1000 32 9153 91.5

n = 53, d = 4.

wH(KSD) ≤ 3 will be recorded and their corresponding ISDs will be stored in a
text file named with KSD. Similar to the process of the off-line stage, we only
consider at most η KSDs whose proportions are the first η largest among all the
KSDs. Finally, we count the number of different ISDs in these special tables.
For the reduced version of Grain, the length of the internal state is n = 53 and
we set d = 4, N = 212. thus we randomly chose 104 ISDs, each of which has
Hamming weight at most 4. The number of different ISDs in the special tables
under various l and η are summarized in the following Table. From it, we can
see that when η = 50 and l = 32, the special tables can cover more than 90%
of all the ISDs, which corroborate our theoretical assumption very well. Under
this configuration, we will apply NCA-2.0 and NCA-3.0 to the reduced version
in the following section.

7.3 Simulations

In the off-line stage, we set η = 50, N = 212 and d = 4. The theoretical complex-
ity with various l are given in the following table. The contents of a table will be
stored in a text file named with the corresponding KSD. The pre-computation
time under various keystream length l are summarized in the follow table. From
Table 8, the table construction of NCA-2.0 takes more time than that of NCA-3.0,
since NCA-3.0 only need to construct those special tables and the number of text
files is much less than that of NCA-2.0, which indicates a lower cost of table look-
up. In the on-line stage, we collected |A| = |B| =

√
3 · 2n∗/2/

√
V (n∗, d) ≈ 218

keystream segments. We apply NCA-2.0 and NCA-3.0 to the reduced version
of Grain respectively for 140 randomly generated (K, IV) pairs. The average
time for each attack and the experimental success probability are summarized in
Table 9. For both NCA-2.0 and NCA-3.0, the experimental time is based on run-
ning an non-optimized C++ program on a 1.83 GHz CPU with 2 GB RAM and
1 TB harddisk. The success probability is given in the last column of Table 10.
It is the proportion of the number of the correct internal state difference stored
in the KSD tables.

We also conducted an experiment to analyze all those randomly collected
keystream segments in the on-line stage of NCA-3.0. We attempt to find all
those keystream segment pairs satisfying wH(KSD) ≤ 3 and wH(ISD) ≤ d,
but get no results. We then repeat the experiment by increasing the maximum
Hamming weight of the special indexes from 3 to 5, we finally get an average

Near Collision Attack on the Grain v1 Stream Cipher 533

Table 7. Theoretical complexity on reduced version of Grain

Attack l P D M T

NCA-2.0 24 236.3 229.2 223.9 236.2

NCA-3.0 24 236.3 229.2 223.9 236.2

NCA-2.0 32 236.7 229.2 223.9 231.4

NCA-3.0 32 236.7 229.2 223.9 228.2

η = 50, N = 212, d = 4.

Table 8. Pre-computation time of NCA-2.0 and NCA-3.0

Attack l Time Memory No. of tables

NCA-2.0 24 9 h, 50 min 643 MB 8192
NCA-3.0 24 6 h, 35 min 216 MB 378
NCA-2.0 32 27 h, 41 min 4.45 GB 2097152
NCA-3.0 32 6 h, 37 min 11.6 MB 1562

η = 50, N = 212, d = 4.

Table 9. The simulation results on reduced version of Grain

Attack l Average attack timea Success probability (%)

NCA-2.0 24 1 h, 53 min 9
NCA-3.0 24 1 h, 31 min 7
NCA-2.0 32 2 h, 12 min 6
NCA-3.0 32 41 min 4
aThis is the average time for each on-line attack.

success rate of 10%, i.e., 1 qualified keystream segment pair out of 10 simulations.
These experimental results suggest that we can not ensure a very stable success
probability of NCA-3.0 on the full version currently. It need to be refined further
and we indeed get some improvements by reducing the complexity of recovering
the NFSR given the LFSR and the state difference by a factor of about 29. We
will provide the details in the upcoming papers.

From Table 9, we can also see that the experimental success probability of
NCA-2.0 is lower than estimated in theory. The reason is that we choose a
restricted value of η and N . These two parameters directly influence the size
and the number of the pre-computed tables, hence affect the success probability.
How to theoretically derive the relationship between the success probability and
these two parameters is our future work.

8 Further Explanations and Discussions

To link the reduced version results with the full version analysis, the following
assumption is used in our analysis.

Assumption 2. The attack parameters in the full version analysis are chosen
based on a linear extrapolation according to the state length ratio.

534 B. Zhang et al.

Precisely, the sampling size of N = 216 in the full version of our attack is
chosen as follows. For the reduced version, we have a non-negligible success
probability when N = 212. The proportion of the state length for the full version
and the reduced version is 160/64 ≈ 3. Similarly, the KSD length proportions
are 106/32 ≈ 4 and 96/32 = 3. This indicates that N = 212 · 4 = 214 is an
appropriate choice for the full version. To further enhance the success probability,
we choose the sampling size N = 216. The theoretical relationship between N
and the success probability is not easy to determine analytically, but we will try
to pursue this issue in our future work.

In our simulations, we also tested the time of one tick for the reduced version
on our PC. One tick needs approximately 29 CPU clocks (about 0.24 ∗ 10−6

seconds to generate one keystream bit). When l = 32, the cost for NCA-2.0
is about 2 h and 12 min, which contains a number of I/O operations for table
look-ups (access to hard disk). The size of the pre-computed tables is about 4 GB,
which contains millions of txt files (This can be replaced by binary file, which
is faster for read and write operations). These hard disk operations will add
some burden to the running time our non-optimized C++ program. Therefore,
there exist some gaps between the time complexity of Tables 7, 8 and 9. We will
further optimized our experimental code in the future. We can actually improve
the running time by loading all the tables into CPU memory before the on-line
attack, then the I/O operation costs can be reduced in the on-line phase.

9 Conclusion

In this paper, we have proposed a key recovery attack, called near collision attack
on Grain v1. Based on some key observations, we have presented the basic attack
called NCA-1.0 and further enhance it to NCA-2.0 and NCA-3.0 by combining
the sampling resistance of Grain v1 and the non-uniform distribution of the
KSD table size respectively. Our attack has been verified on a reduced version
of Grain v1. Under some assumption, an extrapolation of the results indicates
an attack on the original Grain v1 for any fixed IV in 271.4 cipher ticks after the
pre-computation of 273.1 ticks, given 262.8-bit memory and 267.8 keystream bits,
while the brute force attack can only be mounted for a fixed IV. Our attack is just
a starting point for further analysis of Grain-like stream ciphers and hopefully
it provides some new insights on the design of such compact stream ciphers.

A Recovering the NFSR Initial State

We will discuss how to recover the NFSR state at t1, once the LFSR state
at t1 has been recovered. In [1], Afzal et al. conducted several experiments to
retrieve the maximum number of bits that can be obtained when the other bits
are guessed. Results show that no more than 77 bits can be recovered out of
160 bits, while guessing the remaining 83 bits (including all 80 bits LFSR and
3 bits of NFSR). The method is to solve an equation system containing the 77
unknown NFSR state bits. Furthermore, they also generate algebraic equations

Near Collision Attack on the Grain v1 Stream Cipher 535

of Grain-v1 in Maple 10, and solved the equations with Magma V 2.13-5 [11] on
a PC with CPU at 1.73 GHz and 1 GB RAM. This method was also utilized in
a weak Key-IVs attack [20]. The results are summarized in the following table.

Table 10. Simulation results of algebraic analysis of Grain

Version No. of bits No. of bits Time to Keystream
Version guesseda recovered find solution bits used

Grain-v1 3 77 0.204 s 150
aSince the LFSR state is known, only 3 NFSR need to be guessed.

From Table 10, suppose that one operation (basic operation for solving the
non-linear equation) acts in one clock cycle of the CPU, then 1.73 · 109 ≈ 229.9

operations are executed per second for 1.73 GHz PC. Therefore, we need 229.9 ·
0.204 · 23 ≈ 230.7 operations (or CPU clock cycles) and 150 bits keystream to
retrieve all the 80 NFSR state at t1. Now we need to convert this time complexity
to one tick of Grain. According to AppendixC, one tick of Grain needs Ω = 210.4

CPU clock cycles. Therefore, the complexity to recover the NFSR state is TN =
230.7/Ω = 220.3 cipher ticks.

B Proof of Lemma 2

Proof. The listing strategy is same to the proof of the Lemma 1 in [6]. However,
we extend the steps from 18 to 21. From the output function of Grain zi =∑

k∈A ni+k + h(li+3, li+25, li+46, li+64, ni+63,) where A = {1, 2, 4, 10, 31, 43, 56}.
We attempt to enumerate all the NFSR bits from ni+10 to ni+31. It is impor-
tant to know that the non-linear feedback of Grain does not affect the output
function until the cipher has been clocked 18 times. Thus, we can easily derive
the following 17 steps

n10 = z0 + n1 + n2 + n4 + n31 + n43 + n56 + h(l3, l25, l46, l64, n63),
...

n25 = z15 + n16 + n17 + n19 + n46 + n58 + n71 + h(l18, l40, l61, l79, n78),
n26 = z16 + n17 + n18 + n20 + n47 + n59 + n72 + h(l19, l41, l62, l80, n79),

In step 1, the value of n10 can be determined by fixing 4 LFSR bits and
7 NFSR bits. We continue this procedure to derive the following values of
n11, n12, . . . , n25. At this point, we have fixed 57 NFSR bits, 64 LFSR bits and
deduced 16 NFSR bits. In step 17, l80 is involved in the computation of n26,
according to the linear feedback function, we need to fix 5 LFSR bits and 1
NFSR bit.

In step 18, n80 and l81 exist in the expression of n27, we have to fix 5 LFSR
bits and 2 NFSR bits (n28 and n0) to deduce n27. In the step 19, we can not
deduce n28 in this step, since it was fixed in the last step. However, n29 exists

536 B. Zhang et al.

in the expression of z18, we can thus derive the value of n29 by fixing 3 LFSR
bits. In step 20, n30 can be obtained by fixing 2 LFSR bits. In the last step (step
21), l45 can be deduced directly without fixing any state bit. All the state bits
are known from step 22. The number of the fixed state bits are summarized in
Table 11. To sum up, we have recovered the 20 NFSR state bits and 1 LFSR state
bit using 60 bits of the NFSR state and 79 bits of the LFSR state (Altogether
139 bits of internal state). �

C How Can We Measure One-clock Cycle of Grain

The goal of this section is to measure the CPU clock cycle cost by one tick
of Grain in software. The source code of Grain we used here is written by the
designers [12]. We performed the testing several times on a PC with 2.83 GHz
CPU and the average time to generate one keystream bit is 0.475 · 10−6 s. Thus,
one tick of Grain is Ω = 0.475 · 10−6 · 2.83 · 109 ≈ 210.4 CPU cycles. The testing
codes is in Fig. 5 (This program should run with the source code of Grain).

Table 11. The fixed state bits in each step

Step Deduced bit Fixed LFSR Fixed NFSR bits

1 n10 l3, l25, l46, l64 n1, n2, n4, n31, n43, n56, n63

2 n11 l4, l26, l47, l65 n3, n5, n32, n44, n57, n64

3 n12 l5, l27, l48, l66 n6, n33, n45, n58, n65

4 n13 l6, l28, l49, l67 n7, n34, n46, n59, n66

5 n14 l7, l29, l50, l68 n8, n35, n47, n60, n67

6 n15 l8, l30, l51, l69 n9, n36, n48, n61, n68

7 n16 l9, l31, l52, l70 n37, n49, n62, n69

8 n17 l10, l32, l53, l71 n38, n50, n70

9 n18 l11, l33, l54, l72 n39, n51, n71

10 n19 l12, l34, l55, l73 n40, n52, n72

11 n20 l13, l35, l56, l74 n41, n53, n73

12 n21 l14, l36, l57, l75 n42, n54, n74

13 n22 l15, l37, l58, l76 n55, n75

14 n23 l16, l38, l59, l77 n76

15 n24 l17, l39, l60, l78 n77

16 n25 l18, l40, l61, l79 n78

17 n26 l19, l41, l62, l0, l23 n79

18 n27 l20, l42, l63, l1, l24 n28, n0

19 n29 l21, l43, l2 -
20 n30 l22, l44 -
21 l45 - -

Near Collision Attack on the Grain v1 Stream Cipher 537

ECRYPT_ctx* ctx=new ECRYPT_ctx;

u32 KSLen=2000;

u8 key[10],IV[8],keyStream[KSLen];

ECRYPT_keysetup(ctx,key,80,64);

ECRYPT_ivsetup(ctx,IV);

clock_t start, finish;

double duration, speed;

start=clock();

ECRYPT_keystream_bytes(ctx,keyStream,KSLen);

finish=clock();

duration=((double)finish-start)/CLOCKS_PER_SEC;

speed=duration*2.83*1000*1000*1000/((double)KSLen*8);

printf("time%4.4f sec\n"

"The encryption speed is %3.4f cycles/bit \n",duration,speed);

Fig. 5. Code of testing.

References

1. Afzal, M., Masood, A.: Algebraic cryptanalysis of A NLFSR based stream cipher.
In: The 3rd International conference on Information and Communication Tech-
nologies: From Theory to Applications, ICTTA 2008, pp. 1–6 (2008)

2. Aumasson, J.-P., Dinur, I., Henzen, L., Meier, W., Shamir, A.: Efficient FPGA
implementations of high-dimensional cube testers on the stream cipher Grain-128,
In: Special Purpose Hardware for Attacking Cryptographic Systems-SHARCS’09
(2009)

3. Berbain, C., Gilbert, H., Maximov, A.: Cryptanalysis of Grain. In: Robshaw, M.
(ed.) FSE 2006. LNCS, vol. 4047, pp. 15–29. Springer, Heidelberg (2006)

4. Berbain, C., Gilbert, H., Joux, A.: Algebraic and correlation attacks against lin-
early filtered non linear feedback shift registers. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 184–198. Springer, Heidelberg (2009)

5. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, p. 1. Springer,
Heidelberg (2000)

6. Bjorstad, TE.: Cryptanalysis of Grain using Time/Memory/Data Tradeoffs (2006).
http://www.ecrypt.eu.org/

7. De Cannière, C., Küçük, Ö., Preneel, B.: Analysis of Grain’s initialization algo-
rithm. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 276–289.
Springer, Heidelberg (2008)

8. Dinur, I., Güneysu, T., Paar, C., Shamir, A., Zimmermann, R.: An experimentally
verified attack on full Grain-128 using dedicated reconfigurable hardware. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 327–343. Springer,
Heidelberg (2011)

9. Dinur, I., Shamir, A.: Breaking Grain-128 with dynamic cube attacks. In: Joux,
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011)

10. http://www.ecrypt.eu.org/stream/e2-grain.html
11. Magma Computational Algebra System. http://magma.maths.usyd.edu.au/

http://www.ecrypt.eu.org/
http://www.ecrypt.eu.org/stream/e2-grain.html
http://magma.maths.usyd.edu.au/

538 B. Zhang et al.

12. Grain-v1 Software Implementation using C. http://www.ecrypt.eu.org/stream/
e2-grain.html/

13. Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained envi-
ronments. Int. J. Wirel. Mob. Comput. (IJWMC) 2(1), 86–93 (2007)

14. Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: Grain-
128. In: IEEE International Symposium on Information Theory-ISIT’2006, pp.
1614–1618 (2006)

15. Agren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of Grain-
128 with optional authentication. Int. J. Wirel. Mob. Comput. (IJWMC) 5(1),
48–59 (2011)

16. Khazaei, S., Hassanzadeh, M., Kiaei., M.: Distinguishing attack on Grain.
ECRYPT Stream Cipher Project Report 2005/071 (2005). http://www.ecrypt.eu.
org/stream

17. Lee, Y., Jeong, K., Sung, J., Hong, S.H.: Related-key chosen IV attacks on Grain-
v1 and Grain-128. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS,
vol. 5107, pp. 321–335. Springer, Heidelberg (2008)

18. Stankovski, P.: Greedy distinguishers and nonrandomness detectors. In: Gong, G.,
Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 210–226. Springer,
Heidelberg (2010)

19. Strassen, V.: Gaussian elimination is not optimal. Nume. Math. 13, 354–356 (1969)
20. Zhang, H., Wang, X.: Cryptanalysis of stream cipher Grain family, Cryptology

ePrint Archive, Report 2009/109 (2009). http://eprint.iacr.org/

http://www.ecrypt.eu.org/stream/e2-grain.html/
http://www.ecrypt.eu.org/stream/e2-grain.html/
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://eprint.iacr.org/

	Near Collision Attack on the Grain v1 Stream Cipher
	1 Introduction
	2 Notations and Preliminaries
	2.1 Grain-v1

	3 Some Key Observations
	3.1 State Recovery with Known State Difference
	3.2 The Distribution of the Keystream Segment Differences
	3.3 Complexity of the Brute Force Attack

	4 The General Attack Model
	4.1 Off-line Stage
	4.2 On-line Stage
	4.3 Complexity Analysis

	5 Improvement I
	5.1 Sampling Resistance of Grain
	5.2 Complexity Analysis Based on Sampling Resistance

	6 Improvement II
	6.1 Special Tables
	6.2 Complexity Analysis Based on Special Tables

	7 Simulations and Results
	7.1 Reduced Version
	7.2 Verification of Assumption 1
	7.3 Simulations

	8 Further Explanations and Discussions
	9 Conclusion
	A Recovering the NFSR Initial State
	B Proof of Lemma 2
	C How Can We Measure One-clock Cycle of Grain
	References

