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Abstract. In this paper we find two near-collisions of the full compres-
sion function of SHA-0, in which up to 142 of the 160 bits of the output
are equal. We also find many full collisions of 65-round reduced SHA-0,
which is a large improvement to the best previous result of 35 rounds.
We use the very surprising fact that the messages have many neutral
bits, some of which do not affect the differences for about 15–20 rounds.
We also show that 82-round SHA-0 is much weaker than the (80-round)
SHA-0, although it has more rounds. This fact demonstrates that the
strength of SHA-0 is not monotonous in the number of rounds.

1 Introduction

SHA-0 is a cryptographic hash function, which was issued as a Federal Infor-
mation Processing Standard (FIPS-180) by NIST in 1993 [8]. It is based on the
principles of MD4 [12] and MD5 [13]. The algorithm takes a message of any
length up to 264 bits and computes a 160-bit hash value. A technical revision,
called SHA-1, which specifies an additional rotate operation to the algorithm,
was issued as FIPS-180-1 [9] in 1995. The purpose of the revision according to
NIST is to improve the security provided by the hash function.

Finding collisions of hash functions is not an easy task. The known cases
of successful finding of collisions (such as the attack on Snefru [14, 2], and the
attack on MD4 [12, 4]) are rare, and use detailed weaknesses of the broken func-
tions. It is widely believed that finding near-collisions (i.e., two messages that
hash to almost the same value, with a difference of only a few bits) are as diffi-
cult, or almost as difficult, as finding a full collision. The Handbook of Applied
Cryptography [7] defines near-collision resistance by

near-collision resistance. It should be hard to find any two inputs x, x′

such that h(x) and h(x′) differ in only a small number of bits.

and states that it may serve as a certificational property. In some designs of hash
functions, such as SHA-2/224 [10], SHA-2/384 [11], and Tiger [1], the designers
that wish to allow several hash sizes for their design, base the version with the
smaller size on the one with the larger size, and discard some of the output bits,
thus showing the confidence of the designers in the difficulty of finding near-
collisions. Near-collisions were also used in the cryptanalysis of MD4 [15, 4].
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Table 1. Comparison of Chabaud and Joux’ Results to Our Results

Chabaud and Joux Our Results
Rounds Complexity Rounds Complexity

Optimized for 80 261 82 243

Best collision found 35 214 65 229 (*)
Conforming rounds found ≈ 56 [6] – 76 240 (**)
Near collisions (18-bit diff) – – 80 240 (**)

(*) About half an hour on a PC
(**) Our actual search took less than a day on a PC which is

equivalent to a complexity of 235

Near-collisions are the simplest example of forbidden relations between outputs
of the hash function. Another proposed forbidden relation of the hash results
is division intractability [5] where finding messages hashed to a divisor of other
hashes should be difficult.

In [3] Chabaud and Joux proposed a theoretical attack on the full SHA-0
with complexity of 261. Using their technique they found a collision of SHA-0
reduced to 35 rounds.

In this paper we improve over the results of [3], and present attacks with
lower complexities. We present collisions of 65-round reduced SHA-0, and near-
collisions of the full compression function of SHA-0 in which up to 142 of the
160 bits of the hash value are equal. We use the very surprising observation that
many bits of the message are neutral bits, i.e., they do not affect the differences of
the intermediate data for 15–20 rounds. We observe that the strength of SHA-0 is
not monotonous, i.e., collisions of 82 rounds are easier to find than of 80 rounds,
and use it in our search for near-collisions. We also present several observations
on variants of SHA-0.

A comparison of Chabaud and Joux’ results with our results is given in
Table 1.

Table 2 shows the complexity of finding collisions of reduced and extended
SHA-0, as a function of the number of rounds. The table demonstrates that
the strength of SHA-0 is not monotonous with the number of rounds. In the
complexity calculations we assume that for the extended SHA-0, the additional
rounds after the original 80 rounds are performed with the fi function being
XOR, like in rounds 60, . . . , 79 that preceed them. We also assume that the first
22 rounds can be gained for free by using the neutral bits.

A comparison between finding near-collisions using a generic attack and our
attack is given in Table 3. Note that the generic attack hashes a large number
of random messages, all of them are then kept in memory. Due to the birth-
day paradox, it is expected to have a collision or near-collision with complexity
(number of messages) about
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Table 2. The Complexity of Finding Collisions of Reduced/Extended SHA-0

Number of Rounds Complexity Number of Rounds Complexity
64 229 80 256

65 229 81 243

68 243 82 243

74 250 83 265

75 252 84 264

76 – (*) 85 271

77 266 86 295

78 256 87 – (*)
79 256 92 274

(*) There is no disturbance vector for which the differences of the five
registers after 76 or 87 rounds are zero and which no do not have
consequent disturbances in the first 17 rounds

Table 3. The Complexities of Finding Near-Collisions of the Compression Function
of SHA-0 by a Generic Attack and by Our Attack (the number of different bits is the
Hamming distance of the five registers before the feed-forward)

Number of Diff. Bits 0 1 2 3 4 5 18
Generic (time & memory) 280 276 273 270 268 265 241

Ours (time, negligible memory) 256 243 243 242 242 242 240

where k is the Hamming weight of the difference. As this attack is generic, it
uses no special properties on SHA-0, and thus cannot be used to gain insight on
its design.

This paper is organized as follows: Section 2 describes the SHA-0 algorithm,
and a few notations. Section 3 describes the attack of Chabaud and Joux. Our
improved attack is presented in Section 4. Two pairs of near-collisions of the
compression function of SHA-0 and full collision of 65-round reduced SHA-0 are
given in section 5. Section 6 describes small variations of SHA-0 that largely
affect its security. Finally, Section 7 summarizes the paper.

2 Description of SHA-0

SHA-0 hashes messages of any length in blocks of 512 bits, and produces a
message digest of 160 bits.

1. The message is padded with a single bit ‘1’, followed by 0–511 bits ‘0’,
followed by a 64-bit representation of the message length, where the number
of zeroes is selected to ensure the total length of the padded message is
a multiple of 512 bits. The padded message is divided to 512-bit blocks
M1, . . . , Mn.

2. A 5-word buffer h0 is initialized to

h0 = (67452301x, EFCDAB89x, 98BADCFEx, 10325476x, C3D2E1F0x).
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Table 4. Functions and Constants

Rounds fi(B,C, D) Ki

0 ≤ i ≤ 19 BC ∨ B̄D 5A827999x

20 ≤ i ≤ 39 B ⊕ C ⊕ D 6ED9EBA1x

40 ≤ i ≤ 59 BC ∨ BD ∨ CD 8F1BBCDCx

60 ≤ i ≤ 79 B ⊕ C ⊕ D CA62C1D6x

3. Each block Mj in turn is subjected to the compression function, along with
the current value of the buffer hj−1. The output is a new value for hj :

hj = compress(Mj , hj−1).

4. hn is the output of the hash function.

The compression function is:

1. Divide the 512-bit block Mj to 16 32-bit words W0, W1, . . . , W15.
2. Expand the 16 words to 80 words by the recurrence equation:

Wi = Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16, i = 16, . . . , 79. (1)

We denote expansion of a block to 80 words by this equation by exp(·), and
note that W = exp(Mj).

3. Divide hj−1 to the five registers A, B, C, D, and E by

(A0, B0, C0, D0, E0) = hj−1

4. Iterate the following round function 80 times (i = 0, . . . , 79)

Ai+1 = (Wi + ROL5(Ai) + fi(Bi, Ci, Di) + Ei + Ki)mod 232, (2)

Bi+1 = Ai, Ci+1 = ROL30(Bi), Di+1 = Ci, Ei+1 = Di,

where the functions and constants used in each round are described in Ta-
ble 4.

5. The output of the compression function is

hj = (A0 + A80, B0 + B80, C0 + C80, D0 + D80, E0 + E80).

In the remainder of the paper we consider only 512-bit messages and only the
first application of the compression function. We denote the j’th bit of Wi by
W j

i , and similarly we denote the j’th bits of Ai, Bi, Ci, Di, and Ei by Aj
i , Bj

i , Cj
i ,

Dj
i , and Ej

i . We also use the notation fi to denote the output of fi(Bi, Ci, Di)
in round i, and f j

i denotes the j’th bit of fi.
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Table 5. Single Difference and Corrections

Disturbance C o r r e c t i o n R o u n d s
Round i i + 1 i + 2 i + 3 i + 4 i + 5

Input W 1 0 → 1 1 → 0
Words W 6 1 → 0

W 31 0 ↔ 1 0 ↔ 1 0 ↔ 1

Desired A6 0 → 1
Results f1 0 → 1

f31 0 ↔ 1 0 ↔ 1
E31 0 ↔ 1

Registers A1 B1 C31 D31 E31

Differences 0 → 1 0 → 1 0 → 1 0 → 1 0 → 1 None

3 Description of Chabaud and Joux Attack

In the attack of Chabaud and Joux [3] messages are constructed with specific
differences, such that the effect of the differences of the messages on the difference
of the registers A, . . . , E can be canceled within a few rounds. The cancellation
is performed by applying correcting patterns by additional differences in the
messages.

The attack is initiated by a selection of a difference ∆, that is later used as the
difference of the two colliding messages. The difference is selected with various
disturbances and corrections, where the corrections are additional differences
used to correct the differences caused by the disturbances. The disturbances are
always selected in bit 1 of the message words. Due to the rotations by 5 and
30 bits in the round function, corrections are made in bits 1, 6, and 31 of the
words. These disturbances and corrections are aimed to limit the evolution of
differences to other bits. The result is that in an expected run, Ai and A′

i can
only differ in bit 1 (i.e., Ai ⊕ A′

i ∈ {0, 00000002x}), and each time they differ,
they cause differences in the other registers in the following rounds, which are
then corrected by differences of the messages (or W ’s).

A disturbance starts by setting bit 1 in one of the input words of M ′ as
the complement of the corresponding bit of M . We now show how applying a
correction sequence on bits 6, 1, 31, 31, 31 on the following words may cancel
the differences at the end of the sequence. Suppose the initial disturbance is in
W 1

i �= W ′1
i . This input difference causes registers A and A′ to differ at bit 1. On

each consequent round the difference moves to the next register (B, C, D or E),
while the corrections of bits 6, 1, 31, 31, 31 in the input words W ′

i+1, . . . W ′
i+5,

respectively, keep registers A and A′ equal in these rounds. After this sequence
of a single disturbance and five corrections, the registers’ contents are equal. By
generating M ′ from M by applying this mask, and calculating the difference of
A and A′ at each round we can get the differences described in Table 5 with a
non negligible probability. The table describes a disturbance with W 1

i = 0 and
W ′1

i = 1, and the required corrections. A similar disturbance and corrections
can be applied for a ‘1’ to ‘0’ difference. The notation 0 → 1 refer to a change



Near-Collisions of SHA-0 295

where a bit is ‘0’ in W and ‘1’ in W ′. The notation 0 ↔ 1 means that there is a
change either from ‘0’ to ‘1’ or from ‘1’ to ‘0’.

Let D be a vector of 80 words, which correspond to the 80 rounds of the
compression function. Each word in the vector is set to ‘1’ if there is a disturbance
in the corresponding round, and is set to ‘0’ otherwise. We call this vector the
disturbance vector. Since getting a collision for the full function requires five
correcting rounds, full collisions require the last five words of the disturbance
vector to be zero (but for near-collisions this property is not required). Let
SRl(D) be the vector of 80 words received by prepending l zero words to the
first 80 − l words of D (i.e., a non-cyclic shift operation of the words). Then,
the corrections are made in bit 6 in the rounds which correspond to non-zero
words in SR1(D), in bit 1 in SR2(D), and in bit 31 in SR3(D) and SR4(D) and
SR5(D). Thus, the expansion of ∆ to 80 round can be written in the form

exp(∆) =
((D ⊕ SR2(D)

) � 1
) ⊕(

SR1(D) � 6
) ⊕((

SR3(D) ⊕ SR4(D) ⊕ SR5(D)
) � 31

)
,

where � denotes shift of each word of the vector separately. In addition, since
exp(∆) is expanded by the linear feedback shift register of Equation (1), the dis-
turbance vector D is also generatable by this linear feedback shift register. See [3]
for additional details on the attack, and the additional required constraints.

We expect that the value of Ai+1 ⊕ A′
i+1 be Di � 1 if all the corrections

succeed (i.e., only disturbances in the current round affect the difference after
the round). Thus, the vector of the expected values of (Ai+1 ⊕ A′

i+1)i=0,...,79,
which we denote by δ is

δ = D � 1

(note that the indices of δ are 1, . . . , 80, rather than 0, . . . , 79).
As the correction process is probabilistic, and assuming each disturbance has

the same probability for correction, we are interested in the disturbance vector
with the least Hamming weight for getting the least search complexity (but
note that the correction probabilities vary, and depend on the fi’s used in the
correction rounds).

4 Our Improved Attack

Our attack is based on the attack of Chabaud and Joux with enhancements that
increase the probability of finding collisions and near-collisions.

The main idea is to start the collision search from some intermediate round,
thus eliminating the probabilistic behavior of prior rounds. In order to start the
collision search from round r, we build a pair of messages M and M ′ with a
difference M ⊕M ′ = ∆, and with the two additional properties described below.
Before we describe these properties we wish to make the following definitions:
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Definition 1. Given the difference ∆ of two messages, the attack of Chabaud
and Joux defines the expected differences δ of the values of register A in each
round. We say that a pair of messages conforms to δr if Ai ⊕ A′

i = δi for every
i ∈ {1, . . . , r} (which means that the differences at the output of the first r
rounds 0, . . . , r − 1 are as expected).

Definition 2. Let M and M ′ be a pair of messages that conforms to δr for some
r ≥ 16. We say that the i’th bit of the messages (i ∈ {0, . . . , 511}) is a neutral bit
with respect to M and M ′ if the pair of messages received by complementing the
i’th bits of M and M ′ also conform to δr. We say that the pair of the i’th and j’th
bits is neutral with respect to M and M ′ if all the pairs of messages received by
complementing any subset of these bits ({i}, {j}, or {i, j}) in both messages M
and M ′ also conform to δr. We say that a set of bits S ⊆ {0, . . . , 511} is neutral
with respect to M and M ′ if all pairs of messages received by complementing
any subset of the bits in S in both messages M and M ′ also conform to δr. We
say that a subset S ⊆ {0, . . . , 511} of the bits of the messages is a 2-neutral set
with respect to M and M ′ if every bit in S is neutral, and every pair of bits in
S is neutral.

We denote the size of the maximal 2-neutral set (for given messages and r)
by k(r). We are now ready to describe the two additional properties:

1. The message pair conforms to δr. Having the required sequence of A ⊕ A′

implies that all other differences (i.e., B ⊕B′, C ⊕C′, D ⊕D′, E ⊕E′ ) are
also as required.

2. The message pair has a large-enough 2-neutral set of bits. We expect that a
large fraction of the subsets of the bits in the 2-neutral set are also neutral.

Given a pair of messages with these properties, we can construct a set of 2k(r)

message pairs by complementing subsets of the bits of the 2-neutral set. Since a
large fraction of these pairs conform to δr, while the probability of random pairs
is much smaller, it is advisable to use these pairs for the attack.

How r and k(r) are determined? Starting the search from round r we can
calculate the probability

p(r) =
79∏

i=r

pi

of successful corrections in all the rounds given messages that conform to δr

(where pi is the probability of successful corrections in round i, or 1 if no cor-
rection is performed). When the disturbance vector has zeroes at the last five
rounds, p(r) is the probability for getting a collision (otherwise, a near-collision
is expected). The number of conforming pairs we need to test is expected to be
about 1/p(r). Since every subset of k(r) neutral bits can be used, we can try 2k(r)

pairs using with these bits. Thus, we should select r that satisfies 2k(r) ≥ 1/p(r).
In fact, we select the largest r that satisfies this inequality.



Near-Collisions of SHA-0 297

4.1 Finding 2-Neutral Sets of Bits of a Given Pair

The following algorithm finds a 2-neutral set of bits. The input to the algorithm
is a pair of messages M , M ′ with a difference ∆ that conforms to δr. The
algorithm generates 512 candidate pairs by complementing single bits in M , M ′

(leaving their difference unchanged). Let ei, i ∈ {0, . . . , 511}, denote a message
whose value has a single bit ‘1’, and 511 bits ‘0’, where the bit ‘1’ is in the i’th
location. The candidate pairs can be written by

(M ⊕ ei, M ′ ⊕ ei), i ∈ {0, . . . , 511}.
Each candidate pair is tested to conform to δr. If a candidate pair conforms to
δr, then bit i is a neutral bit.

In order to find a 2-neutral set of bits we define a graph whose vertices cor-
respond to the neutral bits. We then add an edge for each pair of bits whose
simultaneous complementations does not affect conformance. This graph de-
scribes all the bits whose complementation does not affect conformance, and
all the pairs of these bits whose simultaneous complementations does not affect
conformance. We are now interested to find the maximal clique (or an almost
maximal clique) in this graph, i.e., the maximal subset of vertices for which any
vertex in the subset is connected to any other vertex in the subset by an edge.
Although in general finding a maximal clique is an NP-complete problem, in our
case finding a large enough clique is not difficult, as many vertices are connected
to all other vertices by edges.

We are now ready to make some very important observations, on which the
success of our attack is based:

Observation 1 When we perform a search with the set of 2k(r) message pairs,
about 1/8 of the pairs (i.e., about 2k(r)−3 pairs) conform to δr.

Let

p(r → r′) =
r′−1∏
j=r

pi

be the probability that a pair that conforms to δr also conforms to δr′ , and notice
that p(r) = p(r → 80).

Observation 2 Let r and r′ be some rounds where p(r → r′) ≈ 2−k(r). By
trying the 2k(r) generated message pairs, we get the expected number of pairs
conforming to δr′ , but surprisingly a fraction of the pairs that conform to δr′

also conform to δr′+l, which we would expect to get with a larger set of about
2k(r)+α, where 2 ≤ l ≤ 4 and 3 ≤ α ≤ 8.

In the actual attack we improve the algorithm further by searching for pairs
of non-neutral bits whose simultaneous complementation create pairs that also
conform to δr (and similarly search for triplets of bits, or larger sets of bits).
Using this method we receive a larger number of neutral “bits” that can be used
for our analysis with higher rounds.
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Table 6. A Pair of Messages with 40 Neutral Bits and Simultaneous Neutral Bits for
r = 22 (the bits are numbered in the range 0, . . . , 511)

M= 19EF75A8x D2F24D9Ax 8F179A7Dx 1A295690x

2E84C143x D74B9DDCx 18C10577x 8107056Ex

5B1A47EDx 6212C3F2x 3B2D04F8x F5581AB0x

26D8CDBCx AB3A3248x F347E871x 46278F39x

M’= 19EF75A8x D2F24D9Ax 8F179A7Dx 1A295692x

2E84C103x D74B9DDEx 98C10577x 0107056Ex

DB1A47EFx 6212C3B2x 3B2D04F8x 75581AF0x

A6D8CDBEx AB3A324Ax 7347E831x C6278F3Bx

Singles: 388 457 458 459 464 484 485 489
490 491 494 495 496 499 501 506
507

Pairs: 301 264 461 424 493 456 497 460
500 463 502 428

Triplets: 296 175 138 341 220 183 376 255 218 386 265 228
391 270 233 462 426 425 466 429 393 488 483 478
492 334 297

Quadru- 229 137 108 71 331 210 116 79 364 338 337 300
plets: 455 435 434 397 505 437 431 400

Quintu- 471 470 469 433 395 487 465 344 343 306
plets: 504 480 451 438 420

An example of a pair of messages with its neutral set of bits, is given in
Table 6. In this example r = 22 and the size of the neutral set is k(22) = 40.
In particular, the quadruplet 229 137 108 71 consists of bits of rounds 7, 4, 3,
and 2, so the changes at round 2 are successfully corrected by the changes in the
other rounds so the difference is unaffected for 20 rounds, and even from round
7 there are 15 additional rounds whose difference is not affected.

Observation 3 In many cases pairs of bits that are simultaneously neutral, but
each bit is not, are of the form W j

i , W
(j−5l)mod 32
i−l for small l’s. Similarly triplets

(and quartets, etc.) of non-neutral bits, whose simultaneous complementation is

neutral are of the same form, i.e., W j
i , and W

(j−5l)mod 32
i−l for two different small

l’s. We call such sets of bits simultaneous-neutral sets, and in case of pairs of
bits simultaneous-neutral pairs.

4.2 Finding a Pair with a Larger 2-Neutral Set

For the attack, we are interested in finding a message pair with a maximal 2-
neutral set of bits. Assume that we are already given a pair conforming to δr. We
are now modifying this pair slightly in order to get another pair that conforms
to δr with a larger 2-neutral set of bits.

This algorithm takes the given message pair as a base, modifies it in a certain
way that we describe later, and calls the algorithm that finds the 2-neutral set
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of the new pair. If the size of this set is larger than the set of the base pair, the
base pair is replaced by the new pair, and the algorithm restarts with the new
pair as the base.

By modifying the current message pair we create a new pair that hopefully
conforms to δr. The modifications are made in bits that maximize the probability
of success. In order to create a new conforming pair, we modify several neutral
bits (and simultaneously-neutral sets of bits), and check whether the resultant
pair conforms to δr.

In some cases we can improve further. In rounds where bit 1 differs, i.e.,
W 1

i �= W ′1
i , the carry from bit 1 to the next can create a difference in the next

bit. The probability for this carry to make this difference is 1/2. In such case
Ai+1 ⊕ A′

i+1 �= 00000002x, and thus the new pair does not conform to δr.

Observation 4 If the differences of the carry is changed, the change can be
canceled by complementing W 0

i and W ′0
i , or by complementing other bits in the

message that affect A0
i+1 indirectly.

Such bits are also W 27
i−1 and W ′27

i−1 (which affect A27
i , and then A0

i+1 after the

rotate operation), or W 22
i−2 and W ′22

i−2, or W
(32−5l)mod 32
i−l and W

′(32−5l)mod 32
i−l

for other small l’s. Each such complementation has probability 1/2 to cancel the
difference in the carry.

This algorithm can be simplified as follows: The algorithm takes as an in-
put a message and modifies a few subsequent bits in several subsequent words,
with the shift of five bits as mentioned above. For example, the modified bits
cover all 224 − 1 (non-empty) subsets of {W 0

0 , . . . , W 3
0 } ∪ {W 5

1 , . . . , W 8
1 } ∪ . . . ∪

{W 25
5 , . . . , W 28

5 }. Then, the pattern of modification is shifted by all 31 possible
rotations. Finally, we proceed and make the same analysis starting from W1,
then W2, etc. The modification process ends when the algorithm starts with
W10. This simplification lacks consideration of some optimizations and details
given earlier, whose incorporation is vital for an optimized implementation.

4.3 Increasing the Number of Conforming Rounds

In order to start the search at a higher round we need to construct a pair that
conforms to δr′ , where r′ > r. This pair is constructed using the last pair with the
maximal number of neutral bit we have. The pair undergoes small modifications
of the form described above. Once a message conforms to δr′ is found, we use
the algorithms described in Subsections 4.1 and 4.2 to find a 2-neutral set, and
then to find a pair with the largest 2-neutral set.

4.4 Final Search

After computing the 2-neutral set, we start the final search by complementing
sequentially every subset of the bits in the 2-neutral set (a total of 2k(r)−1 trials).
Since a large fraction of the resulting pairs of messages conform to δr, then the
search effectively starts at round r. If in addition 2k(r) > 1/p(r), then we expect
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Table 7. Probability Summary

Round Function − log Pi

0, . . . , 19 IF 25
20, . . . , 39 XOR 16
40, . . . , 59 MAJ 15
60, . . . , 79 XOR 15

to find a collision or a near-collision, depending on the expected difference after
r rounds. If 2k(r) > 1/p(r → r′) for some r′, then we expect to find a collision
(or a near-collision) of r′ rounds reduced (or extended) SHA-0.

5 Results

In our search we used ∆ that is optimized for finding 82-round collisions (thus
also near-collisions of 80 rounds). This ∆ is not suitable for finding full collisions
of 80 rounds, as it has two disturbances at the last five rounds. However, its
corresponding 80-round probability is much higher than the probability of a
∆ that allows a full collision. Although this ∆ cannot provide full collisions,
it can lead to collisions of 65-round reduced SHA-0 and of 82-round extended
SHA-0. The overall probability of successful corrections in 82-round SHA-0 is
p(0 → 82) = 2−71. A probability summary for each set of 20 consecutive rounds
(i.e., the IF, XOR, MAJ, XOR rounds) is described in Table 7 (in rounds 80 and
81 the probability is 1 if f80 = f81 = XOR). Using our technique with r = 22 the
overall probability is reduced to 2−43. Our algorithm finds a 2-neutral set with
40 neutral and simultaneous-neutral bits (see Table 6), thus we expect to find
near-collisions of the compression function after 73 rounds in two computation
days on a PC. Our actual findings (using an earlier set of neutral bits) are near-
collisions of the compression function with a difference of only three bits (of
A ⊕ A′, . . . , E ⊕ E′) after 76 rounds (that still conform to δ76), which are also
near-collisions of the full compression function (but do not conform to δ80), and
full collisions of 65-round reduced SHA-0. The near collisions were found after
about a day of computation for each pair, which is equivalent to a search with
a complexity of 235. Finding 65-round near-collisions take about half an hour.
Two such pairs of messages (in 32-bit hex words) are:

1. M1 = 310EEB32 AC418FC2 415D5A54 6FFA5AA9
5EE5A5F5 7621F42D 8AE2F4CA F7ACF74B
B144B4E1 5164DF45 C61AD50C D5833699
6F0BB389 B6468AC5 4D4323F9 86088694

M ′
1 = 310EEB32 AC418FC2 415D5A54 6FFA5AAB

5EE5A5B5 7621F42F 0AE2F4CA 77ACF74B
3144B4E3 5164DF05 C61AD50C 558336D9
EF0BB38B B6468AC7 CD4323B9 06088696
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Table 8. Difference of the Hash Results Before and After the Feed-forward (i.e., A80⊕
A′

80, . . . , E80 ⊕ E′
80 and (A0 + A80) ⊕ (A′

0 + A′
80), . . . , (E0 + E80) ⊕ (E′

0 + E′
80)), and

Their Hamming Weights

Difference (in hex) Weight

M1 and M ′
1:

Before: 00401FA0 00060184 00000400 80000020 80000000 17
After: 01C061A0 00020084 00000C00 800001E0 80000000 19

M2 and M ′
2:

Before: 00C030A4 000E0304 00000403 80000060 80000000 20
After: 004070A4 00020104 00000C07 80000020 80000000 18

2. M2 = EF567055 F0722904 009D8999 5AFB3337
37D5D6A8 9E843D80 69229FB9 06D589AA
4AD89B67 CFCCCD2C A9BAE20D 6F18C150
43F89DA4 2E54FE2E AE7B7A15 80A09D3D

M ′
2 = EF567055 F0722904 009D8999 5AFB3335

37D5D6E8 9E843D82 E9229FB9 86D589AA
CAD89B65 CFCCCD6C A9BAE20D EF18C110
C3F89DA6 2E54FE2C 2E7B7A55 00A09D3F

The differences of the results of hashing M1 and M2 with the full SHA-0 are
described in Table 8 along with the number of differing bits. Tables 9 and 10
show detailed information of the evolution of differences in each round of the
compression function, including the expanded messages, their differences, the
differences Ai+1 ⊕ A′

i+1, the probability of conformance of each round (in log
form), and the rounds where the values collide, or the number of differing bits
of the five registers. Both messages collide after 65 rounds, and have only small
differences afterwards. If we consider SHA-0 reduced to 76 rounds, our results
show a near collision with difference of only three bits before the feed forward
and three and four bits difference after the feed forward when using M1 and M2.

6 SHA-0 Variants

In this section we analyze some variants of SHA-0 that show strengths and
weaknesses of the hash function.

6.1 Increasing the Number of Rounds

There are ∆’s that lead to collision after 82 rounds, whose probability p(0 → 82)
is considerably larger than the probability p(0 → 80) of the best ∆ that leads
to an 80-round collision. Therefore, increasing the number of rounds of SHA-0
from 80 to 82 would make it much easier to find collisions.
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Table 9. A Near-Collision and its Differences in the Various Rounds (M1 and M ′
1 are

formed by the first 16 words of W and W ′)

Round (i) Wi W ′
i

exp(∆) Ai+1 ⊕ A′
i+1 − log Pi Diff Bits

0 310EEB32x 310EEB32x 00000000x 00000000x 0 collision
1 AC418F C2x AC418F C2x 00000000x 00000000x 0 collision
2 415D5A54x 415D5A54x 00000000x 00000000x 0 collision
3 6F F A5AA9x 6F F A5AABx 00000002x 00000002x 1 1
4 5EE5A5F5x 5EE5A5B5x 00000040x 00000000x 0 1
5 7621F42Dx 7621F42Fx 00000002x 00000000x 2 1
6 8AE2F4CAx 0AE2F4CAx 80000000x 00000000x 1 1
7 F7ACF74Bx 77ACF74Bx 80000000x 00000000x 1 1
8 B144B4E1x 3144B4E3x 80000002x 00000002x 1 1
9 5164DF 45x 5164DF 05x 00000040x 00000000x 0 1

10 C61AD50Cx C61AD50Cx 00000000x 00000002x 3 2
11 D5833699x 558336D9x 80000040x 00000000x 1 2
12 6F0BB389x EF0BB38Bx 80000002x 00000000x 3 2
13 B6468AC5x B6468AC7x 00000002x 00000002x 2 2
14 4D4323F 9x CD4323B9x 80000040x 00000000x 1 2
15 86088694x 06088696x 80000002x 00000000x 2 1
16 77518F 42x F7518F42x 80000000x 00000000x 1 1
17 DF9C29D7x 5F9C29D5x 80000002x 00000002x 2 2
18 5F AAAC39x DF AAAC7Bx 80000042x 00000002x 1 2
19 BB09175Fx BB09171Fx 00000040x 00000002x 3 3
20 6490CB61x E490CB21x 80000040x 00000002x 2 4
21 6861259Ax 686125D8x 00000042x 00000000x 1 4
22 CDEC748Dx 4DEC748Fx 80000002x 00000000x 1 3
23 445065F Bx C45065F 9x 80000002x 00000002x 1 3
24 686ECB35x 686ECB75x 00000040x 00000000x 0 2
25 9697B486x 1697B486x 80000000x 00000002x 2 2
26 B2EBAF47x 32EBAF05x 80000042x 00000002x 1 3
27 B0A26036x 30A26074x 80000042x 00000000x 1 3
28 D04F EF97x D04F EF95x 00000002x 00000000x 1 2
29 EAC4868Cx EAC4868Cx 00000000x 00000000x 0 2
30 475CB800x 475CB800x 00000000x 00000000x 0 1
31 CD8B252Fx 4D8B252Fx 80000000x 00000000x 0 collision
32 AA516EC2x AA516EC0x 00000002x 00000002x 1 1
33 B55E320Ex B55E324Cx 00000042x 00000002x 1 2
34 445AED30x 445AED70x 00000040x 00000002x 2 3
35 C99B3C31x 499B3C73x 80000042x 00000000x 1 3
36 CC6D6275x CC6D6277x 00000002x 00000000x 1 3
37 82AF2BDDx 02AF2BDDx 80000000x 00000000x 0 2
38 2B453B89x 2B453B89x 00000000x 00000000x 0 1
39 D3219627x 53219627x 80000000x 00000000x 0 collision
40 F27B216Dx F27B216Dx 00000000x 00000000x 0 collision
41 B82EDD37x B82EDD37x 00000000x 00000000x 0 collision
42 F5DF3BC7x F5DF3BC7x 00000000x 00000000x 0 collision
43 6186F BE6x 6186F BE6x 00000000x 00000000x 0 collision
44 E350E8D5x E350E8D5x 00000000x 00000000x 0 collision
45 503F B3B9x 503F B3B9x 00000000x 00000000x 0 collision
46 A7CE16ADx A7CE16AFx 00000002x 00000002x 1 1
47 48A469D3x 48A46991x 00000042x 00000002x 1 2
48 4C4F1126x 4C4F1164x 00000042x 00000000x 1 2
49 6325C5A5x E325C5A7x 80000002x 00000000x 2 2
50 354CDD51x 354CDD51x 00000000x 00000000x 0 2
51 66F DF D2Cx 66F DF D2Cx 00000000x 00000000x 1 1
52 675D748Cx E75D748Cx 80000000x 00000000x 0 collision
53 34F DD312x 34F DD312x 00000000x 00000000x 0 collision
54 180DF 165x 180DF 167x 00000002x 00000002x 1 1
55 44F6564Fx 44F6560Dx 00000042x 00000002x 1 2
56 7F16D89Ex 7F16D8DCx 00000042x 00000000x 1 2
57 A2801211x 22801211x 80000000x 00000002x 3 3
58 6735580Cx 6735584Ex 00000042x 00000002x 1 4
59 28526DEDx 28526DAFx 00000042x 00000000x 2 3
60 814398E5x 814398E7x 00000002x 00000000x 1 2
61 4B535174x 4B535174x 00000000x 00000000x 0 2
62 DBDE9B03x DBDE9B03x 00000000x 00000000x 0 1
63 EE3462DCx 6E3462DCx 80000000x 00000000x 0 collision
64 4D46459Dx 4D46459Dx 00000000x 00000000x 0 collision
65 7C86B19Bx 7C86B199x 00000002x 00000002x 1 1
66 DB10930Dx DB10934Fx 00000042x 00000002x 1 2
67 3714064Ex 3714060Cx 00000042x 00000000x 1 2
68 8295AC97x 0295AC95x 80000002x 00000000x 1 2
69 E0484724x E0484724x 00000000x 00000000x 0 2
70 8BD1B4B6x 8BD1B4B4x 00000002x 00000002x 1 2
71 8AD78A15x 0AD78A55x 80000040x 00000000x 0 1
72 B52D822Bx B52D822Bx 00000000x 00000002x 2 2
73 7D857AD1x F D857A93x 80000042x 00000002x 1 3
74 B7B1D9F 1x 37B1D9B3x 80000042x 00000000x 1 3
75 E138B8F Cx E138B8F Cx 00000000x 00000002x 2 3
76 A58DD5A0x A58DD5E2x 00000042x 00000082x 1 5
77 F29EAD7Dx F29EAD3Fx 00000042x 00001000x 1 5
78 F C71D2D4x F C71D2D6x 00000002x 00060184x 1 9
79 BDE88CF2x BDE88CF2x 00000000x 00401F A0x 0 17
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Table 10. A Near-Collision and its Differences in the Various Rounds (M2 and M ′
2

are formed by the first 16 words of W and W ′)

Round (i) Wi W ′
i

exp(∆) Ai+1 ⊕ A′
i+1 − log Pi Diff Bits

0 EF567055x EF567055x 00000000x 00000000x 0 collision
1 F0722904x F0722904x 00000000x 00000000x 0 collision
2 009D8999x 009D8999x 00000000x 00000000x 0 collision
3 5AF B3337x 5AF B3335x 00000002x 00000002x 1 1
4 37D5D6A8x 37D5D6E8x 00000040x 00000000x 0 1
5 9E843D80x 9E843D82x 00000002x 00000000x 2 1
6 69229F B9x E9229F B9x 80000000x 00000000x 1 1
7 06D589AAx 86D589AAx 80000000x 00000000x 1 1
8 4AD89B67x CAD89B65x 80000002x 00000002x 1 1
9 CF CCCD2Cx CF CCCD6Cx 00000040x 00000000x 0 1

10 A9BAE20Dx A9BAE20Dx 00000000x 00000002x 3 2
11 6F18C150x EF18C110x 80000040x 00000000x 1 2
12 43F89DA4x C3F89DA6x 80000002x 00000000x 3 2
13 2E54F E2Ex 2E54F E2Cx 00000002x 00000002x 2 2
14 AE7B7A15x 2E7B7A55x 80000040x 00000000x 1 2
15 80A09D3Dx 00A09D3Fx 80000002x 00000000x 2 1
16 8B479C85x 0B479C85x 80000000x 00000000x 1 1
17 CB3EAD0Ax 4B3EAD08x 80000002x 00000002x 2 2
18 1E522001x 9E522043x 80000042x 00000002x 1 2
19 20205362x 20205322x 00000040x 00000002x 3 3
20 D63179BFx 563179F Fx 80000040x 00000002x 2 4
21 A8576A05x A8576A47x 00000042x 00000000x 1 4
22 ADA12DA9x 2DA12DABx 80000002x 00000000x 1 3
23 9F88A004x 1F88A006x 80000002x 00000002x 1 3
24 C0728F EAx C0728F AAx 00000040x 00000000x 0 2
25 C64B8CDFx 464B8CDFx 80000000x 00000002x 2 2
26 6B98F F ACx EB98F F EEx 80000042x 00000002x 1 3
27 A11EE3F6x 211EE3B4x 80000042x 00000000x 1 3
28 F DF912D1x F DF912D3x 00000002x 00000000x 1 2
29 6D3BF6BAx 6D3BF6BAx 00000000x 00000000x 0 2
30 298328CFx 298328CFx 00000000x 00000000x 0 1
31 29EF82E2x A9EF82E2x 80000000x 00000000x 0 collision
32 385CC5D4x 385CC5D6x 00000002x 00000002x 1 1
33 04D65A78x 04D65A3Ax 00000042x 00000002x 1 2
34 8A1424F0x 8A1424B0x 00000040x 00000002x 2 3
35 11351F45x 91351F07x 80000042x 00000000x 1 3
36 82BF1CBFx 82BF1CBDx 00000002x 00000000x 1 3
37 D0F0184Bx 50F0184Bx 80000000x 00000000x 0 2
38 556595C9x 556595C9x 00000000x 00000000x 0 1
39 F293B286x 7293B286x 80000000x 00000000x 0 collision
40 4346ADD9x 4346ADD9x 00000000x 00000000x 0 collision
41 36E6A098x 36E6A098x 00000000x 00000000x 0 collision
42 EEE67B0Bx EEE67B0Bx 00000000x 00000000x 0 collision
43 9E56A7D0x 9E56A7D0x 00000000x 00000000x 0 collision
44 60238639x 60238639x 00000000x 00000000x 0 collision
45 7AC21718x 7AC21718x 00000000x 00000000x 0 collision
46 DAECDF02x DAECDF00x 00000002x 00000002x 1 1
47 BF89EC25x BF89EC67x 00000042x 00000002x 1 2
48 8BCC5BE5x 8BCC5BA7x 00000042x 00000000x 1 2
49 F9E93AA7x 79E93AA5x 80000002x 00000000x 2 2
50 59C4AF61x 59C4AF61x 00000000x 00000000x 0 2
51 D45F F B3Bx D45F F B3Bx 00000000x 00000000x 1 1
52 4E1035E8x CE1035E8x 80000000x 00000000x 0 collision
53 016512B4x 016512B4x 00000000x 00000000x 0 collision
54 18901C29x 18901C2Bx 00000002x 00000002x 1 1
55 35ECCBD3x 35ECCB91x 00000042x 00000002x 1 2
56 27099F83x 27099F C1x 00000042x 00000000x 1 2
57 49C921C6x C9C921C6x 80000000x 00000002x 3 3
58 E2ED9980x E2ED99C2x 00000042x 00000002x 1 4
59 17C2D470x 17C2D432x 00000042x 00000000x 2 3
60 BD164D15x BD164D17x 00000002x 00000000x 1 2
61 26C37009x 26C37009x 00000000x 00000000x 0 2
62 5E724CBEx 5E724CBEx 00000000x 00000000x 0 1
63 CE9A5044x 4E9A5044x 80000000x 00000000x 0 collision
64 D3C21B0Ex D3C21B0Ex 00000000x 00000000x 0 collision
65 3A0DACE4x 3A0DACE6x 00000002x 00000002x 1 1
66 3BA3534Dx 3BA3530Fx 00000042x 00000002x 1 2
67 113A26F1x 113A26B3x 00000042x 00000000x 1 2
68 D19BC830x 519BC832x 80000002x 00000000x 1 2
69 29E9F A23x 29E9F A23x 00000000x 00000000x 0 2
70 70D1E9E5x 70D1E9E7x 00000002x 00000002x 1 2
71 63247261x E3247221x 80000040x 00000000x 0 1
72 3F CF E72Ex 3F CF E72Ex 00000000x 00000002x 2 2
73 14D7B0B7x 94D7B0F 5x 80000042x 00000002x 1 3
74 077CF5B9x 877CF5F Bx 80000042x 00000000x 1 3
75 1F F465A6x 1F F465A6x 00000000x 00000002x 2 3
76 2628792Cx 2628796Ex 00000042x 00000182x 1 6
77 C6CC2F D7x C6CC2F95x 00000042x 0000100Cx 1 8
78 E295DBF3x E295DBF1x 00000002x 000E0304x 1 13
79 B19BF7EDx B19BF7EDx 00000000x 00C030A4x 0 20
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6.2 Different Order of Functions

Modifying the order of the fi functions can reduce the complexity of the at-
tack. For example, if the order would be IF, XOR, MAJ, XOR, . . . , IF, XOR,
MAJ, XOR, where in each round the function changes, the restrictions caused
by two consecutive IF round would be removed, and thus ∆’s with much higher
probabilities could be chosen.

6.3 SHA-1

Since in SHA-1 Equation (1) is replaced by

Wi = ROL1(Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16), i = 16, . . . , 79. (3)

which makes the mixing of the message bits much more effective, and since the
techniques used in this paper uses the properties inherited from equation (1),
the presented attacks are not applicable to SHA-1.

7 Summary

In this paper we described how to find near-collisions of SHA-0 using the surpris-
ing existence of many neutral bits. The near-collisions were found within a day
on our PC. Our technique also improves the complexity of finding full collisions
of SHA-0, but we concentrated on near-collisions due to the very low complexity
of finding them. The observation that the strength of SHA-0 is not monotonous
with the number of rounds is used here to find near-collisions of 80 rounds by
applying the much more efficient attack on SHA-0 extended to 82 rounds. We
expect that finding full collisions will take a month of computation time, and
intend to check it in the continuation of our research. Due to the additional
rotate operation, the results of this paper are not applicable to SHA-1.
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