
Near-Data Filters: Taking Another Brick
from the Memory Wall

Diego G. Tomé
∗

CWI, The Netherlands

diego.tome@cwi.nl

Tiago R. Kepe
UFPR and IFPR, Brazil

trkepe@inf.ufpr.br

Marco A. Z. Alves
UFPR, Brazil

mazalves@inf.ufpr.br

Eduardo C. de Almeida
UFPR, Brazil

eduardo@inf.ufpr.br

ABSTRACT

In this paper, we use the potential of the near-data parallel
computing presented in the Hybrid Memory Cube (HMC) to
process near-data query filters and mitigate the data move-
ment through the memory hierarchy up to the x86 processor.
In particular, we present a set of extensions to the HMC In-
struction Set Architecture (ISA) to filter data in-memory.
Our near-data filters support vector instructions and solve
data and control dependencies internally in the memory: in-
ternal register bank and branch-less evaluation of data filters
transform control-flow dependencies into data-flow depen-
dencies (i.e., predicated execution). We implemented the
near-data filters in the select scan operator and we discuss
preliminary results for projection and join. Our experiments
running the select scan achieve performance improvements
of up to 5.64× with an average reduction of 80% in en-
ergy consumption when executing a micro-benchmark of the
1 GB TPC-H database.

1. INTRODUCTION
In the past decades, the disparity between processor per-

formance and main memory latency has grown tightly, a
well-known problem called the “memory wall” [17]. The
“memory wall” arises from technology limitations: perfor-
mance improves up to 70% per year (30% recently) for pro-
cessors, while only 10% per year for DRAM memories [7].
This increasing performance gap has a direct impact on large
scale data processing, especially for in-memory databases.
Although smart-SSD devices are being researched for database
management systems (DBMS) [6], such approaches only ben-
efit when the storage cannot fit in primary memory.

∗This author contributed to this work while Master Student
at UFPR.

In-memory databases became popular over the years due
to the dropping cost per bit of DRAM together with an im-
portant storage capacity growth from megabyte to terabyte
of data. However, in-memory query processing suffers from
the interconnection and cache latency required to move large
amounts of data around the memory and cache hierarchy
(i.e., hit the “memory wall”). The data movement across
the memory and cache hierarchy accounts for 40 − 80% of
the execution time to validate query filters in resource stalls,
memory stalls and branch mispredictions [1]. This prob-
lem becomes clear if we consider that most query filters are
performed over large volumes of data (bigger than cache
memories), creating a data streaming effect in the memory
hierarchy, which does not benefit from the cache sub-system.

The emergence of smart memories, such as the Hybrid
Memory Cube (HMC) [3], inverts the common data pro-
cessing approach by moving computation to where data re-
sides with many benefits, like providing faster response times
and reducing energy consumption [12]. The HMC is a 3D
die-stacked technology with stacks of DRAM logically split
into 32 independent vaults interconnected using Through-
Silicon Vias (TSVs) [4] to a logic layer at the end of the
stack. The logic layer executes near-data instructions with
high level of parallelism. Nowadays, commercial hardware
is already shipped with the HMC, like, Intel Xeon Phi, Fu-
jitsu SPARC64 XIfx and Xilinx Kintex FPGA, and the con-
sortium to develop the technology also includes Samsung,
Micron, NVidia, ARM, Open-Silicon and IBM.

In this paper, we spark the discussion of near-data query
processing in HMC. Our goal is to mitigate the data move-
ment of in-memory databases using the parallel computing
potential of the HMC to process near-data query filters.

Overall, we provide the following main contributions: (1)
We analyze the impact of the data filtering of the current
database query processing (column/row-store) over the tra-
ditional x86 processor using the HMC as ordinary DRAM.
(2) We extend the HMC ISA to reduce DRAM access and
data movement when validating in-memory data. We also
extend the HMC ISA to support data dependencies and
branch-less decisions when evaluating query filters: merg-
ing multiple basic-blocks removing branches and annotating
the instructions [5]. These extensions allow that control de-
pendencies, such as the evaluation of filters, could be trans-
formed into in-memory data dependencies, with less inter-

1

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 All TPCH

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

project select join others

TPC-H Queries

P
e
rc

e
n

ta
g

e
 o

f
th

e
 E

x
e
c
u

ti
o

n
 T

im
e

Figure 1: Top time consuming database operators in MonetDB [9] running the 100 GB TPC-H benchmark.

leaving between HMC and the processor. In [16], we vali-
dated the HMC Instruction Predication Extension (HIPE)
from the hardware architecture perspective. In this paper,
we describe the underpinnings to implement database oper-
ations over HIPE. (3) We perform a deep investigation of
pros/cons of our near-data filter extensions now assuming
column-store databases (the best case for OLAP) using the
maximum degree of parallelism in the HMC. Cycle accu-
rate simulations mimicking column-stores show promising
performance improvements up to 5.64× with an average re-
duction of 80% in energy consumption when executing a
micro-benchmark of the 1 GB TPC-H database.

Outline: Section 2 discusses where the execution time goes
in different query operators and gives an overview of the
HMC architecture, it also describes the predicate process-
ing in row-stores and column-stores. Section 3 presents our
architectural extension to perform near-data filters with the
predicated execution, the full row-buffer and maximum par-
allelism available in the hardware. Section 5 discusses pre-
liminary results of our next steps. Section 4 describes the
experimental setup and evaluation results running a TPC-
H micro-benchmark. Section 6 presents related work and
Section 7 presents conclusions.

2. QUERY PROCESSING IN X86
In this section, we analyze the impact of each query op-

erator in the execution time observing in particular the op-
erators that require data-filters. Then, we overview the ar-
chitecture of the HMC and discuss the execution of query
filters over the current x86 architecture using the HMC as
ordinary DRAM main memory.

2.1 Query Processing: Where Does Time Go?
In read-mostly database workloads, the large data move-

ment required for filtering presents direct impact on per-
formance [15]. Figure 1 shows the top time consuming
database operators when we run a 100 GB TPC-H using
the in-memory database MonetDB. We perform the experi-
ments on a Intel quad-core i7-5500U@2.40GHz with RAM of
16 GB (DDR3L 1333/1600) and L3 cache size of 4MB run-
ning OpenSuse Leap 42.3 on Linux kernel 4.4.76-1-default.
We obtained the performance trace of each TPC-H query
using the TRACE statement modifier of MonetDB that in-
cludes the execution time of every database primitive. The
last bar to the right in Figure 1 sums up the most time con-
suming operators of the TPC-H: projection, selection, join,

and the remaining ones grouped into the category “others”.
The selection operator moves data around the memory hi-
erarchy up to the processor to validate filter conditions on
database columns representing around 20% of the execution
time. The projection operator in turn represents around
56% of the execution time to materialize intermediate and
final data of other operators, such as select and join. In prac-
tice, the projection operation filters data on intermediate
results to project the columns in the query plan. Therefore,
we consider projections as a data filtering operation.

Ailamaki et al. [1] show the amount of time taken by dif-
ferent operations in read-mostly databases. In particular,
40−80% of the execution time to validate filters in the select
scan is spent in three time consuming components: resource
stalls with 20 − 35% of the execution time (i.e., control-
flow dependency and functional units), memory stalls with
15−30% (i.e., data movement in the memory hierarchy) and
branch mispredictions 5 − 15%. In our paper, we explore
the potential of the HMC to minimize the effect imposed by
these components in query filters.

2.2 The Hybrid Memory Cube Architecture
The HMC reduces the bandwidth gap between proces-

sors and memory by integrating memory and logic dies in a
single 3D stack. Figure 2 illustrates the overall system ar-
chitecture of the HMC. It integrates multiple DRAM bank
layers and a single logic layer. Typical DDR-3 DRAM mod-
ules are organized in 8-KB rows, while the HMC DRAMs
uses small rows of 256 B providing lower energy consump-
tion and faster accesses to sparse addresses. Every set of 3D
stacked banks forms a vertical group called vault intercon-
nected by a Through-Silicon Vias (TSV) bus. In the current
specification [10], the HMC provides 32 vaults that can in-
dependently access DRAM banks with a potential internal
high bandwidth up to 320 GB/s.

The logic layer is placed on the base of the HMC and
implements the vault controller, a mechanism that receives
all the requests to the DRAM layers. Each vault also has
their independent functional units enabling in-memory pro-
cessing. The vault controller performs arithmetic and logi-
cal update atomic instructions with operands size of up to
16 bytes. They are variants of read-modify-write operations
supported by some memory controllers [13]. This kind of
operation normally reads data from any memory location,
operates over data, then writes the result back to the same
memory location. Once the operation finishes one of the

2

Processor Core

ALUFetch Decode
Rename

Dispatch

Reorder Buffer

Write

Back

Memory Order Buffer

Query Plan

Project

Select Scan

Cache Hierarchy
L1 Cache

Last Level

Cache

64 bytes (cache line)

Hybrid Memory Cube

Vault 0

logic

Vault 1

logic

Vault 31

logic

B0 B1

B2 B3

B4 B5

B6 B7

T

S

V

B0 B1

B2 B3

B4 B5

B6 B7

T

S

V

B0 B1

B2 B3

B4 B5

B6 B7

T

S

V

...

…
Load 16 bytes

x86 Compare

Store 1 byte

…

Load 16 bytes

(request)

Load 64 bytes

(request)

bank 7

256 bytes

(row buffer)

64 bytes

(data)

16 bytes

(data)

Crossbar switch

4 serial

links

Figure 2: Traditional x86 processing to validate a filter con-
dition with the HMC installed as conventional DRAM.

following is returned back to the processor: the old data or;
the modified data or; the operation status.

In the current ISA, the HMC allows in-memory process-
ing, but the processor still needs to trigger the instructions
and wait for the results in order to send the resulting data
to another HMC instruction (i.e., data-flow dependency)
or to take decisions such as request other operations to be
processed (i.e., control-flow dependency). The iteration be-
tween the HMC and the processor due to data-flow depen-
dency increases data movement through the interconnection,
while the control-flow dependency stalls the pipeline. Both
situations increases the execution time and energy spent
during computations.

2.3 Query Processing in HMC
Now we draw attention to the processing of queries in

the HMC starting with the following question: “What hap-
pens when database systems run the near-data filtering over
the current x86 architecture using the HMC as traditional
DRAM?” Let us consider the “column-at-a-time” execution
in the Decomposition Storage Model (DSM or column-store)
and assume the data filtering executed by the select scan op-
erator in the query plan. Figure 3 exemplifies the current
approach of data filtering in the select scan operator over
three columns of a table. In “Column 0”, a full scan is
required when evaluating the first filter in the query plan.
The output of the scan is a bitmap with 1’s for matched
entries and 0’s for not matched entries. The x86 processor
loads only the matching entries to perform the second scan
in “Column 1”. This processing repeats for “Column 2” as
we move on in the query plan.

We refer again to Figure 2 to illustrate the data move-
ment scenario to process the validation of filters with the
current x86 architecture instructions and the HMC placed
as main-memory. In this scenario, the assembly instructions
to process the filter conditions stay unmodified.

Initially, the x86 instructions are allocated in the proces-
sor pipeline. In current x86 architecture supporting AVX-
128 extensions, an instruction may request up to 16 bytes of
data to the cache memory. In general, this is only sufficient

Unknown	

Match	

Column	0	

Col.0		

Scan	

Unknown	

Match	

Column	1	

Unwanted	

LOAD	

Unknown	

Match	

Unwanted	

LOAD	

1	

1	

…	

1	

0	

…	

0	

1	

…	

1	

0	

…	

0	

Col.	0	bitmap	

of	matches	

Column	2	

Unknown	

Match	

Unwanted	

LOAD	

Unknown	

Match	

Unwanted	

LOAD	

1	

…	

1	

0	

0	

0	

…	

0	

1	

…	

0	

…	

0	

Col.1		

Scan	

1	

…	

0	

0	

0	

…	

0	

0	

0	

1	

0	

…	

0	

Col.2		

Scan	

Col.	1	bitmap	

of	matches	

Col.	2	bitmap	

of	matches	

Figure 3: Select scans validating matching bitmaps in the
“column-at-a-time” strategy.

for a chunk of the database column and multiple requests
are required to scan the entire column. In the first access,
a cache miss in L1 and LLC requires a memory access. The
processor then requests 64 bytes to main memory due to the
size of a cache line, but the HMC placed as main-memory
provides 256 bytes per access in the buffer: this means that
3

4
of the time and energy to access the memory buffer may

be wasted. Afterwards, only 64 bytes are returned back to
cache and, when data is positioned in cache, the processor
operates only over 16 bytes per instruction to finally evalu-
ate query filters for the column chunk. Even considering the
full cache line for query filtering, we waste energy and time
installing elements inside the line for a single access only.

We run a micro-benchmark to understand the filtering
of data in the architecture of Figure 2 in two ways: (1)
the x86 processor validating the selection filters with the
HMC as DRAM and (2) the HMC validating the selection
filters replacing the x86 instructions for those supported by
the current ISA. We discuss modifications in the assembly
code of the query and their execution later on in this paper,
but basically we swap x86 comparison instructions to HMC
comparison instructions and the execution pipeline sends the
instruction to execute in the HMC. In this motivation exper-
iment, we execute the TPC-H Query 06 with the traditional
strategies: “tuple-at-a-time” and “column-at-a-time”.

1
9
6
.5
7
	

2
2
.0
9
	

3
8
6
.7
4
	

2
4
.3
4
	

10	

100	

1000	

tuple-at-a-time	 column-at-a-time	

E
xe
cu
ti
o
n
	T
im

e
	(
m
s)
	

x86	

HMC	

Figure 4: The execution time of the TPC-H Query 06 in
the current x86 and HMC architectures with two storage
organizations (tuple/column-store).

Figure 4 shows the response time of Query 06 in 1 GB
database in the x86 and in the HMC architectures. We

3

Selective Load Filter

(with predication)

Full Load Filter

(without predication)

Full Load Filter

Selective Load Filter

SQL

LOOP:

 ...

 HIPE_LD H1 bitmap1[i]

 HIPE_LD H2 l_discount[i]

 HIPE_SEGT H3 $0.05, H2

 HIPE_SELT H4 $0.07, H2

 HIPE_AND H1 H1, H3

 HIPE_AND H1 H1, H4

 HIPE_ST H1 bitmap2[i]

 ...

J LOOP

for (int i = 0; i < lineitemSize; i++) {

 bitmap_1[i] = (l_shipdate[i] >= 19940101 && l_shipdate[i] < 19950101);

}

for (int i = 0; i < lineitemSize; i++) {

 if (bitmap_1[i] == 1) // Branch Execution

 bitmap_2[i] = (l_discount[i] >= 0.05 && l_discount[i] <= 0.07);

 else

 bitmap_2[i] = 0;

SELECT sum(l_extendedprice * l_discount) as revenue

FROM lineitem

WHERE l_shipdate >= date '1994-01-01’

 AND l_shipdate < date '1994-01-01' + interval '1' year

 AND l_discount between 0.06 - 0.01 AND 0.06 + 0.01

 AND l_quantity < 24;

for (int i = 0; i < lineitemSize; i++) {

 bitmap_1[i] = (l_shipdate[i] >= 19940101 && l_shipdate[i] < 19950101);

}

for (int i = 0; i < lineitemSize; i++) {

 bitmap_2[i] = (l_discount[i] >= 0.05 && l_discount[i] <= 0.07);

 bitmap_2[i] = bitmap_1[i] && bitmap_2[i]

C Language

C Language HIPE-Scan Assembly Like

LOOP:

 ...

 HIPE_LD H1 bitmap1[i]

 HIPE_SET pH1 H1, $1

 HIPE_LD H2 l_discount[i] (pH1)

 HIPE_SEGT H3 $0.05, H2 (pH1)

 HIPE_SELT H4 $0.07, H2 (pH1)

 HIPE_AND H1 H1, H3 (pH1)

 HIPE_AND H1 H1, H5 (pH1)

 HIPE_ST H5 bitmap2[i]

 ...

J LOOP

HIPE-Scan Assembly Like

Figure 5: The translation of the TPC-H Query 06 to C and simplified assembly version. Our two versions consider the
HIPE-Filter instruction set performing full load filter or performing selective load filter using predicated instructions.

provide further details of the execution environment in Sec-
tion 4. We observe that the x86 processor still presents
the best response times to validate filter conditions com-
pared to the HMC no matter the query engine. The prob-
lem when simply validating data filters in the HMC is re-
lated to the current HMC ISA. First, there is only single
memory address operations (update instruction). Only op-
erations between address and immediate are possible (e.g.,
attribute == constant). This narrows the implementation
of different types of filters in databases, like, operations be-
tween two distinct addresses (e.g., attribute == attribute).
Second, comparisons are only executed with compare-and-
swap instructions. This instruction is costly to operate over
data, since data is modified after every evaluation of a query
filter. Third, the instructions operate over 16 bytes of data
at a time wasting the potential of the DRAM row-buffer.
Compared to the row-wise query engine, we observe that
the column-wise suffers less impact with the small 16 bytes
load request, because only the requested columns in the
query statement move data around, while row-wise engines
require moving tuples that are bigger than 16 bytes in OLAP
databases. Fourth, the processor only triggers HMC instruc-
tions enough to use few parallelism between the vaults (i.e.,
only a small portion of parallelism is explored).

3. NEARDATA FILTERING
Data filtering is broadly used in many applications to val-

idate data (e.g., analytics, business transactions, scientific
simulations), however, we focus on filtering relational data
once it covers most of those applications. In this section, we
expose what happens to the data filtering when extrapolat-
ing some architectural limitations of the HMC. In previous
work [15, 16], we presented hardware extensions that backed
the contributions of this paper. In particular, we benefit
from these extensions: (1) to use the maximum loop unroll
depth of 32x and benefit from the HMC parallelism; and (2)
to implement predication in the query execution pipeline
changing processor oriented control-flow by near-data data-
flow.

3.1 HMC Instruction Predication Extension
(HIPEFilter)

LOAD bitmap1

CMP bitmap1

LOAD bitmap2

CMP bitmap2

A

C

Predicated Execution

LOAD l_discount1

CMP l_discount1

if(p1)
B

if(p1)

LOAD bitmap1

CMP bitmap1

LOAD l_discount1

CMP l_discount1

true

false

LOAD bitmap2

CMP bitmap2

A

B

C

Branch Execution

 p1

Figure 6: Branched vs. predicated execution of query filters.

Compared to [16] we change our focus from the hardware
extensions and present in greater detail the predication in
the near-data execution of query plans.

We refer to Figure 5 to exemplify the interaction between
the x86 processor and the HMC while running the “Full
Load Filter” version of the TPC-H Query 06. The evalua-
tion of filters occurs independently in each column and does
not take into account intermediate matching entries between
columns (i.e., unwanted load operations are irrelevant).

The “Selective Load Filter” on the other hand, evalu-
ates the intermediate results between each column to decide
whether the values in the next column will be evaluated. Let
us consider the branched execution of a bitmap depicted by
Figure 6. The bitmap resulted from the first predicate pro-
cessing is used to evaluate the data in the second column or
assigning 0 to the second bitmap. In control-flow decisions,
the evaluation of conditions leads to the correct branch and
the rest of the code only executes after the branch finishes
its instructions. The problem with the branched code is

4

twofold: (1) the number of CPU cycles required to deter-
mine the next memory address to fetch when traversing a
branch (i.e., jump instruction), which wastes memory band-
width; and (2) more branch mispredictions with direct im-
pact on performance [5]. Previous work could only solve
such problem inserting a full processor inside the memory
with a huge physical area overhead.

Hybrid Memory Cube

Processor Core

ALUFetch Decode
Rename

Dispatch

Reorder Buffer

Write

Back

Memory Order Buffer

Cache Hierarchy
L1 Cache

Last Level

Cache

LOCK HIPE

HIPE Load 256 bytes // data

HIPE Compare 256 bytes

HIPE Store 64 bytes // bitmap

UNLOCK HIPE

HIPE

instruction

HIPE

instruction

HIPE inst.

(status)

HIPE inst.

status

Query Plan

Project

Select Scan

Vault 0

logic

Vault 1

logic

Vault 31

logic

B0 B1

B2 B3

B4 B5

B6 B7

T

S

V

B0 B1

B2 B3

B4 B5

B6 B7

T

S

V

B0 B1

B2 B3

B4 B5

B6 B7

T

S

V

...

Crossbar switch

256 bytes

operation

HIPE

Interlock

register bank

Op.

Data

Lo
a

d
/S

to
re

cm
d

.
+

 a
d

d
r.

Result

+ zero

Predication

match logic

Instruction buffer

Figure 7: The architecture of the HIPE-Filter.

Instead, we benefit from the predicated execution to im-
plement the near-data filtering (see Figure 6). Using pred-
icated instructions we can merge multiple basic-blocks into
a single super-block: many branches are removed and the
instructions annotated [5]. Annotated instructions are only
executed under a certain condition: in the case a predicate
is false, the predicated instructions are squashed by the logic
layer, i.e. these instructions are converted to NOP opera-
tions and simply discarded avoiding side effects.

3.2 Hardware extensions
Figure 7 depicts our extensions to the HMC architec-

ture to allow the predicated execution. HIPE is formed
by an instruction buffer to keep incoming instructions into
the mechanism. A register bank, formed by 36 registers of
256 bytes each (total of 9 KB). The instructions are exe-
cuted in-order, and each HIPE instruction belongs to one of
the three classes: lock/unlock, load/store, ALU operation.
The lock/unlock are used to gain access to the HIPE struc-
ture, avoiding conflicts to the register bank among multiple
threads. The load/store instructions perform data transfers
between the DRAM and the register bank inside the HIPE.
The ALU operations perform computations inside the ALU
using operands from the register bank. Before execution,
the load/store and ALU instructions check the predicated
register to proceed.

The register bank implements an interlock mechanism,
which means that each register has a valid flag, in order to
continue the execution during independent loads, only stop-
ping the execution on real data dependencies. Each register
stores not only the result value from the operations, but also
the is-zero flag from each operation to be used during the
predicated execution.

The predication match logic is responsible for checking
if the predicate is true or false before the execution of an
instruction. In case the predicate is true, the predicated
instruction can be triggered normally. In case the predicate
is false, the instruction is transformed into a NOP.
We are now ready to discuss the assembly codes in Fig-

ure 5 and replace control-flow to data-flow dependency in
the HMC. In the assembly code of the “Full Load Filter”
version, all the instructions execute sequentially, but more
importantly comparisons require the decision from the x86
processor to move on in the execution. Now, the assem-
bly code of the “Selective Load Filter” version presents the
predicated execution, where no instructions annotated with
pH1 are executed if the query filter evaluates false.
The following modifications are required to implement

the HIPE-Filter: (Database) we require no changes in the
source code of the database system to implement the HIPE-
Filters, but it needs to be recompiled to use HIPE instruc-
tions. (Processor) the processor needs an extension to
its ISA to provide the execution of HIPE instructions by
the pipeline and the TLB, in a similarly required by HMC
ISA. (HMC) we extended the current HMC ISA to include
compare instructions, as it only supports compare-and-swap
instruction (HMC SWP) to evaluate values.

3.3 Understanding the Impact of Predication
In this section, we present simplified version of the real-

ity using an execution flow diagram to explain the trade-off
between the HIPE-Filters with and without predication. In
this example, we consider 1 CPU cycle for every instruc-
tion inside HIPE and the load/store latency varies between
80 cycles with few operations running in parallel (low con-
tention) and 100 cycles with multiple operations running in
parallel (high contention). It is important to notice that the
simulator [2] used in our experiments, considers different la-
tency and more component details. Thus, simulation results
differ from the estimations present in this section.

Figure 8 describes the execution of Full Load Filter on the
l discount column with the bitmap generated by the scan
on the l shipdate column. Here, we illustrate a select scan
unrolled 4×. After the lock instruction, during each clock
cycle, a 256 bytes-wide load is requested, loading the bitmap
of the l shipdate column scan. Considering the DRAM ac-
cess latency with high contention, the validation of the filters
of the l discount column are performed after the cycle 102.
From cycle 106, the results are compared with the bitmap
of the l shipdate column generating the next bitmap to be
stored in memory. Therefore, the data-dependency between
the first LD and the CMP instructions produces an stall
of almost 100 cycles per column in each lock/unlock block.
The scan over 4× 256 bytes takes 192 cycles due to the data-
dependency between the first load with the first comparison
and the store with the unlock instruction.

Figure 9 illustrates the execution of the predicated Selec-
tive Load Filter for high selectivity. Here, we present the
worst-case scenario: an increase of 36% in the execution
time compared to the Full Load Filter. We observe an extra
DRAM read latency included in the critical path, because
the Selective Load Filter first loads and compares the bitmap
from the l shipdate column before issuing the load for the
l discount column.
Also in Figure 9, we can infer the best-case scenario, which

usually happens for very low selectivity queries. Whenever

5

Execution

cycles

LD

BMP1

LD

DATA
LD

DATA
LD

DATA
LD

DATA

CMP

DATA
CMP

DATA
CMP

DATA
CMP

DATA

DRAM read high latency

0 1 2 5 102 106

Data dependency

HIPE

LOCK
AND

BMP1
AND

BMP1
AND

BMP1
AND

BMP1

110

ST

BMP2

191 192

HIPE

UNLK

DRAM write low latency

111

Full scan

Normal

Instruction

Predicated

Instruction

Execution Latency

Ld/St Operations = 80 cycles (low contention)

Ld/St Operations = 100 cycles (high contention)

Other instructions = 1 cycle

Instructions Type

Data dependency

Figure 8: HIPE-Scan executing the Full Load Filter (no predication, with loop unrolling).

Execution

cycles

LD

DATA

LD

BMP1

LD

DATA

NOP

NOP

CMP

BMP1
CMP

BMP1
CMP

BMP1
CMP

BMP1

DRAM read low latency

0 1 2 82 86

Data dependency

HIPE

LOCK
CMP

DATA

NOP

NOP

CMP

DATA

90

ST

BMP2

262

HIPE

UNLK

DRAM write low latencyDRAM read medium latency

177 182 26387

DRAM

energy

savings

Data Dependency

DRAM extra latency

Data Dependency

Data Dependency

Selective

scan

Figure 9: HIPE-Scan executing the Selective Load Filter (with predication and loop unrolling) worst/average case.

the previous bitmap presents no match on the unrolled loop,
no load (indicated as selective scan) is issued, saving 87 cy-
cles (between cycles 90 and 177 in this example). This sce-
nario turns out to be a common case due to the low number
of matches in the l shipdate column, saving in our example
9% of the execution time compared to the Full Load Filter.

In summary, the Full Load Filter increased the DRAM
contention and also wasted energy loading non-required data
in the low selectivity scenario. On the other hand, the Full
Load Filter performed better due to the lack of extra data-
dependency for the high selective scenario.

4. EXPERIMENTAL EVALUATION
In this section, we provide a thorough investigation of

pros/cons of our near-data filters compared to our initial
work on HMC [15, 16]. This section presents the simulation
environment, the experimental methodology and the results
with the implementation of the near-data filtering.

4.1 Methodology and Setup
We used the SiNUCA cycle-accurate in-house simulator

[2] to evaluate our proposal. SiNUCA was validated against
real machines and allows modelling our custom architectural
modifications inside the HMC to understand the system
behavior when executing the near-data filters, considering
an aggressive out-of-order processor, advanced multi-banked
and non-blocking caches together with the HMC. Table 1
shows the major system parameters used in our study.

The baseline architecture is inspired by the Intel Sandy-
Bridge processor micro-architecture referred to as x86. The
Sandy-Bridge was modeled with the AVX-512 instruction
set capabilities, and in all cases, the main memory used was
the HMC version 2.1 [8]. For this baseline (x86), all the
instructions are executed in the x86 processor.

In our experiments, we evaluate our near-data filters in a
1 GB TPC-H database running boolean expressions to filter

data. We implemented our filters in the select scan due to
the amount of data movement to validate filter conditions,
as depicted by Figure 1. We implemented two versions of
the select scan query operator: the HIPE-Scan implemented
without predication (i.e., the x86 continues to trigger the in-
structions to the pipeline) and the HIPE-Scan implemented
with predication. In particular, we run a micro-benchmark
with the TPC-H Query 06, because the largest data move-
ment in this query focus on the push-down of the most selec-
tive predicates. More details are present in the next section.

Table 1: Simulation parameters for evaluated systems.
OoO Execution Cores 16 cores @ 2.0 GHz, 32 nm; 6-wide issue;
16 B fetch; Buffers: 18-entry fetch, 28-entry decode; 168-entry ROB;
MOB entries: 64-read, 36-write; 1-load, 1-store units (1-1 cycle);
3-alu, 1-mul. and 1-div. int. units (1-3-32 cycle);
1-alu, 1-mul. and 1-div. fp. units (3-5-10 cycle);
1 branch per fetch; Branch predictor: Two-level GAs. 4,096 entry BTB;

L1 Data + Inst. Cache 32 KB, 8-way, 2-cycle; Stride prefetch;
64 B line; MSHR size: 10-request, 10-write, 10-eviction; LRU policy;

L2 Cache Private 256 KB, 8-way, 4-cycle; Stream prefetch;
64 B line; MSHR size: 20-request, 20-write, 10-eviction; LRU policy;

L3 Cache Shared 40 MB (16-banks), 2.5 MB per bank; LRU policy;
16-way, 6-cycle; 64 B line; Bi-directional ring; Inclusive;
MOESI protocol; MSHR size: 64-request, 64-write, 64-eviction;

HMC v2.1 32 vaults, 8 DRAM banks/vault; DRAM@166 MHz;
8 GB total size; 256 B Row buffer; Closed-page policy;
8 B burst width at 2:1 core-to-bus freq. ratio; 4-links@8 GHz;
DRAM: CAS, RP, RCD, RAS, CWD cycles (9-9-9-24-7);
Per vault func. units (logical bitwise & integer); Latency: 1 cpu-cycle;
Operation size (bytes): 16, 32, 64, 128, 256 (up to 16-B originally);

HIPE Logic Unified func. units (integer + floating-point) @1 GHz;
Latency (cpu-cycles): 2-alu, 6-mul. and 40-div. int. units;
Latency (cpu-cycles): 10-alu, 10-mul. and 40-div. fp. units;
Op. sizes (bytes): 16, 32, 64, 128, 256; Register bank: 36x 256 B;

4.2 Implementation Details
We assume the column-store model in our experiments.

The evaluation of filters in the column-store model is per-
formed with a column-at-a-time bitmap along the predi-
cates: matches store “1” and no matches store “0” (as pre-
sented by Figure 3).

6

0

1

2

3

4

5

6

7

8

4
,0

2

4
,0

2

4
,1

5

5
,3

5

7
,3

5

7
,5

7

1
,3

4

1
,3

4 1
,9

8

2
,2

6

2
,5

1

2
,6

2

1
,3

4

1
,3

4

1
,3

4

1
,3

4

1
,3

4

1
,3

4

0
,8

3

0
,8

9

1
,2

2

1
,5

5

1
,5

7

1
,5

7

x86-64B-unroll_4x HMC-Scan-256B-unroll_16x

HIPE-Scan_256B_unroll32x_FullScan HIPE-Scan_256B_unroll32x_SelectveScan

Selectvity

E
xe

c
u

t
o

n
 T

im
e

 (
m

s)

10
−1

10
−2

10
−3

10
−4

10
−5

1

Figure 10: Evaluating execution time of TPC-H Q6 varying the selectivity factor in the different hardware architectures.

In our implementation, we assume the biggest operand
size for each architecture: 64 Bytes for the x86 and 256 Bytes
for the HMC. With big operand sizes, less instructions are
necessary to operate over the dataset reducing the total
amount of executed instructions. However, the processor
still waits for the return status before triggering further in-
structions to the HMC. We also assume the biggest loop
unroll depth for each architecture to take advantage of the
parallelism: 8x for x86 and 32x for HMC.

4.3 Evaluation Results

4.3.1 Impact of Selectivity

In this section, we observe the impact of the filter selectiv-
ity in our near-data filters. Figure 10 describes the execution
time varying the selectivity of the l shipdate column in the
TPC-H query 6. We did not vary the selectivity of the other
two columns.

The selectivity greatly impacts the x86 architecture. The
execution time increased almost 90% comparing the 10−3

and 1 selectivity factors. The execution time difference be-
tween x86 and HMC-Scan varies from 2.98× in the factor of
10−3 to up to 2.88× in the factor of 1.

For the HIPE-Scan performing the Full Load Filter al-
gorithm, the selectivity factor has no impact in execution
time as both wanted and unwanted data are requested and
checked independent of the selectivity. When compared to
the x86 architecture it shows an improvement of 3.00× for
the 10−3 factor and 5.64× for the 1 factor.

The evaluation of the HIPE-Scan performing the Selective
Load Filter algorithm achieves a better result when operates
with selectivity smaller than 10−2. HIPE-Scan using predi-
cation avoids many DRAM accesses improving by 4.84× for
the 10−3 selectivity factor, and 4.82× for factor 1.

We notice a trade-off between the Full Load Filter and the
Selective Load Filter considering different selectivity factors.

Such trade-off shows us that the database scheduler needs
adaptations to maximize the gains from the HIPE-Scan.

4.3.2 Energy Consumption

Figure 11 presents the energy consumption of the total
DRAM accesses normalized by the x86 execution. The X-
axis is divided into four architectures: “x86”, “HMC” with
original functional units, “HIPE Full” with vectorized in-
structions without predication, and “HIPE Selective” with
predication based on column selectivities. In each architec-
ture the selectivity of the l shipdate column varies among
0, 001% up to 100%. The energy estimations consider the
DRAM values for HMC [10], focusing on the three main
components, read, write and data transfers energy.

The Selective Load Filter is dramatically more efficient in
energy consumption than the x86 (almost 3×). When com-
pared to the HMC-Scan and the Full Load Filter, the Se-
lective Load Filter is 1% and 4% more efficient respectively,
because HIPE allows more instructions in the pipeline to
evict stalls. When considering the extra energy used by the
x86 to transmit data through the off-chip links, the Selective
Load Filter saves 80% on average.

5. NEXT STEPS: PROJECTION AND JOIN
Now, we briefly discuss our next steps implementing our

near-data filters as part of the projection and join operators.
For the join, we implemented the Nested Loop Join (NLJ)
due to its streaming behavior that benefits from the HMC
parallelism. Other join algorithms (hash and sort-merge)
generate random memory accesses that inhibit the poten-
tial of the HMC. For the projection, our implementation
traverses the bitmap vector to filter the projection column:
one load of 256-bytes of the input bitmap and, in case of
matched entries, it executes up to 32 parallel loads of 256-
bytes of the projection column and stores the values into the
result vector. Those load and store instructions are on-chip

7

3
8

,4
6

%

3
8

,8
2

%

4
2

,1
6

%

5
9

,1
6

%

9
4

,3
6

%

1
0

0
,0

0
%

1
1

,0
2

%

1
2

,3
6

%

1
9

,6
5

%

2
6

,2
8

%

2
6

,6
0

%

2
,9

6
%

1
4

,5
0

%

1
4

,4
2

%

1
4

,7
2

%

1
8

,0
2

%

2
9

,8
8

%

3
5

,9
9

%

1
2

,8
8

%

1
2

,9
4

%

1
3

,5
5

%

1
7

,1
1

%

2
8

,9
9

%

3
5

,1
3

%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0
,0

0
1

0
,0

1

0
,1 1

1
0

1
0

0

0
,0

0
1

0
,0

1

0
,1 1

1
0

1
0

0

0
,0

0
1

0
,0

1

0
,1 1

1
0

1
0

0

0
,0

0
1

0
,0

1

0
,1 1

1
0

1
0

0

x86 HMC HIPE_Full HIPE_Selective

E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

n
o

rm
a

li
ze

d
 t

o
 x

8
6

 1
0

0

Figure 11: Energy consumption for select scan.

memory operation, i.e., the load instruction gets data from
the DRAM dies to the HIPE registers within HMC and the
store instruction does the inverse.

1x 2x 4x 8x 16x 32x

0

20

40

60

80

100

120

140

1
9
.6

3

1
4
.2

8

1
3
.2

0

2
1
.3

1

6
6
0
.2

5

3
3
9
.2

0

1
8
3
.3

6

9
9
.5

7

5
7
.8

5

3
7
.0

3

x86-64B HIPE-256B

Unroll Depth

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Figure 12: Execution time using the HIPE-Filters in the
Nested-Loop join varying the loop unroll depth.

1x 2x 4x 8x 16x 32x

0

2

4

6

8

10

12

14

16

18

20

1
6
.9

8

1
2
.7

8

1
0
.7

5

1
0
.2

9

1
.7

5

0
.9

9

0
.6

1

0
.3

4

0
.2

4

0
.1

7

x86-64B HIPE-256B

Unroll Depth

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Figure 13: Execution time using the HIPE-Filters in the
column projection varying the loop unroll depth.

Figure 12 and Figure 13 present preliminary results. The
near-data join reaches poor performance against the x86.
Although the NLJ streams the join columns, it enforces data

reuse when repeatedly traversing the inner loop, as in this
experiment, the inner table fits in cache. We plan new ex-
periments to analyze the performance when the inner table
does not fit in cache. The near-data projection improves the
execution time by more than 1 order of magnitude compared
to the x86 processor. The streaming behavior of projections
causes low data reuse and less amount of off-chip data trans-
fers during the copy of data (materialization). However, in
this version of our near-data projection, we do not consider
the impact of the Selective Store problem [14]: writing fil-
tered values of non-continuous memory addresses to a new
continuous memory address.

6. RELATED WORK
The impact of the memory-wall problem motivated several

works over the past decades (caching, SSDs, NUMA), but
we stick to near-data processing in DRAM due to space
constraints.

The work developed in [18] presents the JAFAR, an exter-
nal DRAM accelerator to push down select scan operations
near-data in DDR-3. JAFAR processes a 64-bit word at a
time by intercepting memory requests from the CPU in the
DRAM I/O buffer. However, the data access must be co-
ordinated to avoid collisions with CPU requests. Besides,
JAFAR runs outside the processor and requires specific ad-
dress translation to perform operations over the correct data
inside the DRAM. In contrast, we take advantage of the logic
layer of the HMC to execute the near-data filters without the
necessity of coordination to access external hardware. This
design choice maintains the common out-of-order execution
and allows different ranges of word sizes up to 256 bytes to
better use the HMC row-buffer.

The use of the HMC as main memory was evaluated by
placing an accelerator inside the logic layer of the HMC to
support join algorithms [11]. This work redesigns the hash
and merge join algorithms to minimize the single word access
(e.g., 16 bytes) and avoid the row buffer re-access. Unfor-
tunately, it does not consider the necessary modifications in
HMC to perform such operations for row-stores neither has
evaluated the parallelism provided by the HMC.

[15] presents the usage of huge functional units to process
large amounts of data with register banks inside the HMC.
However, this design requires a fine control from the proces-
sor to choose the best operand size. Moreover, this design

8

is highly expensive to implement, because it requires lots
of extra logic to provide serial access to HMC, extra inter-
connection and routing through the vaults, register banks
and the extra control. To the best of our knowledge none
of the past work analyze the current processing support of
the HMC over read-mostly database workload, neither they
analyze further modifications in the logic layer to fully ex-
ecute database instructions. Our near-data filters extends
our initial work [15, 16] on HMC exploring the logic layer to
process data with native HMC operations.

7. CONCLUSIONS AND FUTURE WORK
In this paper we present near-data query filters in the

Hybrid Memory Cube (HMC). These near-data filters aim
to reduce DRAM accesses achieving less data movement in
the memory hierarchy (i.e., mitigating the “memory wall”
problem), while providing high levels of parallelism.

To this end, we present extensions to the HMC Instruction
Set Architecture (ISA). In particular, we extend the state-
of-the-art HMC architecture [15] with predicated execution
to transform control-flow into data-flow dependencies.

We evaluated our near-data filters against the main query
execution engines in the x86 with AVX-512 instructions. We
observed that choosing the correct filter algorithm based on
the selectivity factor presents great impact on the perfor-
mance, which may occur to other metrics inside the database.
The execution of our near-data filters inside the HMC out-
performs the column-at-a-time by 5.64× when compared
to the baseline x86 execution using the HMC as conven-
tional DRAM. When analyzing the energy consumption, we
achieved average reductions of up to 80% due to reduced
amount of off-chip data-transfers between the processor and
memory.

Our results support that future in-memory database sys-
tems can benefit from near-data processing architectures,
like the HMC. Our next steps include understanding our
near-data filters in other database operations to design a
HMC-aware database scheduler with query operations being
dispatched to the most convenient hardware. Preliminary
results with projections and joins encourage such design.

8. ACKNOWLEDGMENTS
This work was partially supported by the Serrapilheira

Institute (grant number Serra-1709-16621).

9. REFERENCES
[1] A. Ailamaki, D. J. DeWitt, and M. D. e. a. Hill.

Dbmss on a modern processor: Where does time go?
In VLDB, pages 266–277, 1999.

[2] M. A. Z. Alves, C. Villavieja, M. Diener, and t al.
Sinuca: A validated micro-architecture simulator.
HPCC, pages 605–610, 2015.

[3] R. Balasubramonian, J. Chang, T. Manning, and
et al. Near-data processing: Insights from a
MICRO-46 workshop. IEEE Micro, pages 36–42, 2014.

[4] E. Beyne, P. D. Moor, W. Ruythooren, and et al.
Through-silicon via and die stacking technologies for
microsystems-integration. IEDM, 2008.

[5] Y. Choi, A. D. Knies, L. Gerke, and T. Ngai. The
impact of if-conversion and branch prediction on
program execution on the intel itanium processor. In
MICRO-34, pages 182–191, 2001.

[6] J. Do, Y.-S. Kee, J. M. Patel, and et al. Query
processing on smart ssds: Opportunities and
challenges. In SIGMOD, pages 1221–1230.

[7] J. L. Hennessy and D. A. Patterson. Computer
Architecture, Fifth Edition: A Quantitative Approach.
Morgan Kaufmann Publishers Inc., 5th edition, 2011.

[8] HMC-Consortium. Hmc specification 2.1, 2017.

[9] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S.
Mullender, and M. L. Kersten. Monetdb: Two decades
of research in column-oriented database architectures.
IEEE Data Eng. Bull., 2012.

[10] J. Jeddeloh and B. Keeth. Hybrid memory cube new
dram architecture increases density and performance.
In (VLSI), pages 87–88, 2012.

[11] N. S. Mirzadeh, O. Kocberber, B. Falsafi, and
B. Grot. Sort vs. hash join revisited for near-memory
execution. In ASBD, 2015.

[12] O. Mutlu. Memory scaling: A systems architecture
perspective. In Memory Workshop (IMW), pages
21–25, 2013.

[13] R. Nair, S. Antao, C. Bertolli, and al. Active memory
cube: A processing-in-memory architecture for
exascale systems. IBM JRD, 2015.

[14] O. Polychroniou, A. Raghavan, and K. A. Ross.
Rethinking simd vectorization for in-memory
databases. In SIGMOD, pages 1493–1508, 2015.

[15] P. C. Santos, G. F. Oliveira, D. G. Tome, E. C.
de Almeida, M. Zanata, and L. Carro. Operand size
reconfiguration for big data processing in memory. In
DATE, pages 710–715, 2017.

[16] D. G. Tome, P. C. Santos, L. Carro, E. C. de Almeida,
and M. A. Z. Alves. HIPE: HMC instruction
predication extension applied on database processing.
In DATE, pages 261–264, 2018.

[17] W. A. Wulf and S. A. McKee. Hitting the memory
wall: Implications of the obvious. SIGARCH,
23(1):20–24, 1995.

[18] S. L. Xi, O. Babarinsa, M. Athanassoulis, and
S. Idreos. Beyond the wall: Near-data processing for
databases. In DAMON, pages 2:1–2:10, 2015.

9

	Introduction
	Query Processing in x86
	Query Processing: Where Does Time Go?
	The Hybrid Memory Cube Architecture
	Query Processing in HMC

	Near-Data Filtering
	HMC Instruction Predication Extension (HIPE-Filter)
	Hardware extensions
	Understanding the Impact of Predication

	Experimental Evaluation
	Methodology and Setup
	Implementation Details
	Evaluation Results
	Impact of Selectivity
	Energy Consumption

	Next Steps: Projection and Join
	Related Work
	Conclusions and Future Work
	Acknowledgments
	References

