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Abstract

This paper proposes two novel image similarity measures for fast indexing

via locality sensitive hashing. The similarity measures are applied and eval-

uated in the context of near duplicate image detection. The proposed method

uses a visual vocabulary of vector quantized local feature descriptors (SIFT)

and for retrieval exploits enhanced min-Hash techniques. Standard min-Hash

uses an approximate set intersection between document descriptors was used

as a similarity measure. We propose an efficient way of exploiting more so-

phisticated similarity measures that have proven to be essential in image /

particular object retrieval. The proposed similarity measures do not require

extra computational effort compared to the original measure.

We focus primarily on scalability to very large image and video databases,

where fast query processing is necessary. The method requires only a small

amount of data need be stored for each image. We demonstrate our method

on the TrecVid 2006 data set which contains approximately 146K key frames,

and also on challenging the University of Kentucky image retrieval database.

1 Introduction

The definition of a near duplicate image varies depending on what photometric and ge-

ometric variations are deemed acceptable. The application ranges from exact duplicate

detection where no changes are allowed to a more general definition that requires the

images to be of the same scene, but with possibly different viewpoints and illumination.

In this paper, we build on a min-Hash method [2, 4] that addresses (through a similarity

threshold parameter) a whole range of near duplicate images: from images that appear, to

a human observer, to be identical or very similar to images of the same scene or object.

Detection of near duplicate images in large databases imposes two challenging con-

straints on the methods used. Firstly, for each image only a small amount of data (a

fingerprint) can be stored; secondly, queries must be very cheap to evaluate. Ideally,

enumerating all the duplicates of an image should have complexity close to linear in the

number of duplicates returned.

1.1 Efficient image representations and search

The choice of an image representation and a distance measure affects both the amount

of data stored per image and the time complexity of the database search. The amount of

stored data ranges from a constant (small) amount of data per image to storing large sets

of image features, whose size often far exceeds the size of the images themselves. When

searching the database for relevant images, algorithms of different time complexity are



used, the most naive approach being computing the similarity between every image pair

in the database.

Recently, a bag of visual words with tf-idf (term frequency – inverse document fre-

quency) weighting [19] has proven to be a very successful approach for image and partic-

ular object retrieval, even on large corpora [17, 18]. The tf part of the weighting scheme

captures the number of features described by a given visual word. The frequency of visual

word in the image provides useful information about repeated structures and textures. The

idf part captures the informativeness of visual words – visual words that appear in many

different images are less informative than those that appear rarely.

In this paper, we are interested in near duplicate image detection (NDID), specifically

in the min-Hash algorithm. The algorithm originates from text retrieval [2] and was pre-

viously used for NDID in [4]. The min-Hash method stores only a small constant amount

of data per image, and a complexity for duplicate enumeration that is close to linear in

the number of duplicates returned. The method represents the image by a sparse set of

visual words. Similarity is measured by the set overlap (the ratio of sizes between the

intersection and the union). The advantage of such a choice of image representation and

the similarity measure is that it enables very efficient retrieval. The drawback is that some

relevant information is not preserved in the set of visual words (binary) representation.

In this paper, we propose two more complex similarity measures that are inspired by

image retrieval systems. We show that the proposed similarity measures can be efficiently

computed using a modified min-Hash procedure with no extra computational cost. The

first extension represents an image by a set of weighted visual words. In this approach,

each visual word is assigned a weight (e.g. idf). The similarity function is a set overlap

that is weighted by the word weights, i.e. words with low weight (common to most of the

documents) contribute to the similarity less than rare, discriminative words. As a second

step towards tf-idf weighting, we propose extending the similarity measure to compute

a weighted histogram intersection score, which is able to take the term frequency into

account.

1.2 Related work

The closest work to ours is of Chum et al. [4] on NDID based on min-Hash. We extend

the method and directly compare the results. Ke et al. [12] demonstrate near-duplicate de-

tection and sub-image retrieval by using sparse features, taken from each image, coupled

with a disk-based Locality Sensitive Hashing (LSH) for fast approximate search on the in-

dividual feature descriptors. They demonstrate the efficacy of their method on a synthetic

database of “corrupted” images but show the system only scaling to handle 18K images

with query times many times slower than the min-Hash method. Zhang & Chang [22]

use a parts-based representation of each scene by building Attributed Relational Graphs

(ARG) between interest points. They then compare the similarity of two images by using

Stochastic Attributed Relational Graph Matching, to give impressive matching results.

Unfortunately, they only demonstrate their method on a few hundred images and don’t

discuss any way to scale their system to larger data sets of images.

Relevant work has been published on near duplicate shot detection (NDSD). These

methods typically use strong temporal constraints than are not available in NDID. For

example, [1, 6, 23] use an edit distance. The method of Joly et al. [10, 11] represents

each keyframe by a set of 20D spatio-temporal descriptors computed about Harris interest

points (requiring to store a large amount of data per keyframe – possibly hundreds of



Harris points and their descriptors).

Recently, attention has been drawn to hashing based image retrieval. In [20] Tor-

ralba et al. proposed to learn short descriptors to retrieve similar images from a huge

database. The method is based on a dense 128D global image descriptor, which limits

the approach to no geometric / viewpoint invariance. Jain et al. [8] introduced a method

for efficient extension of Locally Sensitive Hashing scheme [7] for Mahalanobis distance.

Both aforementioned approaches use bit strings as a fingerprint of the image. In such a

representation, direct collision of similar images in a single bin of the hashing table is

unlikely and a search over multiple bins has to be performed. This is feasible (or even

advantageous) for approximate nearest neighbour or range search when the query exam-

ple is given. However, for clustering tasks (such as finding all groups of near duplicated

images in the database) the bit string representation is less suitable.

2 Image Representation and Similarity Measures

Recently, most of the successful image indexing approaches are based on the bag-of-

visual-words representation [5, 9, 17, 18, 19]. In this framework, for each image in the

data set affine invariant interest regions are detected. Popular choices are MSER [15],

DoG (difference of Gaussians) [14] or multi-scale Hessian interest points [16]. Each

detected feature determines an affine covariant measurement region, typically an ellipse

defined by the second moment matrix of the region. An affine invariant descriptor is then

extracted from the measurement regions. Often a 128-dimensional SIFT [14] descriptor

is used.

A ‘visual vocabulary’ [19] is then constructed by vector quantization of feature de-

scriptors. Often, k-means or some variant is used to build the vocabulary [17, 18]. The

image database or a random subset can be used as the training data for clustering. The

k-means cluster centers define visual words and the SIFT features in every image are then

assigned to the nearest cluster center to give a visual word representation.

Assume a vocabulary V of size |V | where each visual word is encoded with unique

identifier from {1, . . . , |V |}. A bag-of-visual-words approach represents an image by a

vector of length |V |, where each element denotes the number of features in the image that

are represented by given visual word. A set Ai of words Ai ⊂V is a weaker representation

that does not store the number of features but only whether they are present or not.

We will discuss three different image similarity measures. Two measures use a set of

visual words image representation; the last one uses a bag of visual words representation.

All of them can be efficiently approximated by randomized algorithms. Note that the

proposed similarity measures shares some properties of the tf-idf scheme which is known

to perform well in image retrieval.

Set similarity. The distance measure between two images is computed as the similarity of

sets A1 and A2, which is defined as the ratio of the number of elements in the intersection

over the union:

sims(A1,A2) =
|A1 ∩A2|
|A1 ∪A2|

. (1)

This similarity measure is used by text search engines [2] to detect near-duplicate text

documents. In NDID, the method was used in [4]. The efficient algorithm for retrieving

near duplicate documents, called min-Hash, is reviewed in section 3.



Weighted set similarity. The set similarity measure assumes that all words are equally

important. Here we extend the definition of similarity to sets of words with differing

importance. Let dw ≥ 0 be an importance of a visual word Xw. The similarity of two sets

A1 and A2 is

simw(A1,A2) =
∑Xw∈A1∩A2

dw

∑Xw∈A1∪A2
dw

. (2)

The previous definition of similarity (1) is a special case of the new definition (2) for dw =
1. Efficient algorithm for retrieval using simw similarity measure is derived in section 4.1.

Histogram intersection. Let ti be a vector of size |V | where each coordinate tw
i is the

number of visual words Xw present in the i-th document. The histogram intersection

measure is defined as

simh0
(A1,A2) =

∑w min(tw
1 , tw

2 )

∑w max(tw
1 , tw

2 )
. (3)

This measure can be also extended using word weightings to give:

simh(A1,A2) =
∑w dw min(tw

1 , tw
2 )

∑w dw max(tw
1 , tw

2 )
. (4)

This similarity measure (4) is closer to the tf-idf weighting scheme, while preserving the

advantages of very fast retrieval of near identical documents using the min-Hash algorithm

– see section 4.2 for details.

3 Min Hash Background

In this section, we describe how a method originally developed for text near-duplicate

detection [2] is adopted to near-duplicate detection of images.

Two documents are near duplicate if the similarity sims is higher than a given thresh-

old ρ . The goal is to retrieve all documents in the database that are similar to a query

document. This section reviews an efficient randomized hashing based procedure that

retrieves near duplicate documents in time proportional to the number of near duplicate

documents. The outline of the algorithm is as follows: First a list of min-Hashes are ex-

tracted from each document. A min-Hash is a single number having the property that two

sets A1 and A2 have the same value of min-Hash with probability equal to their similar-

ity sims(A1,A2). For efficient retrieval the min-Hashes are grouped into n-tuples called

sketches. Identical sketches are then efficiently found using a hash table. Documents

with at least h identical sketches (sketch hits) are considered as possible near duplicate

candidates and their similarity is then estimated using all available min-Hashes.

min-Hash algorithm. A number of random hash functions is given f j : V → R assigning

a real number to each visual word. Let Xa and Xb be different words from the vocabu-

lary V . The random hash functions have to satisfy two conditions: f j(Xa) 6= f j(Xb) and

P( f j(Xa) < f j(Xb)) = 0.5. The functions f j also have to be independent. For small vo-

cabularies, the hash functions can be implemented as a look up table, where each element

of the table is generated by a random sample from Un(0,1).
Note that each function f j infers an ordering on the set of visual words Xa < j Xb iff

f j(Xa) < f j(Xb). We define a min-Hash as a smallest element of a set Ai under ordering

induced by function f j

m(Ai, f j) = arg min
X∈Ai

f j(X).



For each document Ai and each hash function f j the min-Hashes m(Ai, f j) are recorded.

The method is based on the fact, which we show later on, that the probability of m(A1, f j)=
m(A2, f j) is

P(m(A1, f j) = m(A2, f j)) =
|A1 ∩A2|
|A1 ∪A2|

= sims(A1,A2). (5)

To estimate sims(A1,A2), N independent hash functions f j are used. Let l be the number

of how many times m(A1, f j) = m(A2, f j). Then, l follows the binomial distribution

Bi(N,sims(A1,A2)).The maximum likelihood estimate of sims(A1,A2) is l/N.

How does it work? Let X = m(A1 ∪A2, f j). Since f j is a random hash function, each

element of A1 ∪A2 has the same probability of being the least element. Therefore, we

can think of X as being drawn at random from A1 ∪A2. If X is an element of both A1

and A2, i.e. X ∈A1∩A2, then m(A1, f j) = m(A2, f j) = X . Otherwise either X ∈A1 \A2

and X = m(A1, f j) 6= m(A2, f j); or X ∈ A2 \A1 and m(A1, f j) 6= m(A2, f j) = X . The

equation (5) states that X is drawn from |A1 ∪A2| elements at random and the equality of

min-Hashes occurs in |A1 ∩A2| cases.

Sketches. For efficiency of the retrieval, the min-Hashes are grouped into n-tuples. Let

F be an n-tuple ( f1, . . . , fn) of different independent random hash functions on V . Let

SF(A1) be a sketch (m(A1, f1), . . ., m(A1, fn)). The probability that two sets A1 and

A2 have identical sketches SF(A1) = SF(A2) is sims(A1,A2)
n since the hash functions

in F (and hence the min-Hashes in the sketch) are independent. Grouping min-Hashes

significantly reduces the probability of false positive retrieval. The retrieving procedure

then estimates sims(A1,A2) only for image pairs that have at least h identical sketches

out of k sketches (F1, . . . ,Fk). The probability P(A1
h∼ A2) that the sets A1 and A2 have

at least h identical sketches out of k is given

P(A1
h∼ A2) =

k

∑
i=h

(

k

i

)

pin(1− pn)k−i, (6)

where p = sims(A1,A2). Note that the parameters k and n have to be fixed at the database

design time, whereas h can be specified at query time. In this paper we use h = 1.

4 Extensions

In this section, two similarity measures inspired by the tf-idf weighting are introduced.

The proposed extensions to min-Hash are aimed at image search and would be difficult

to apply in the textual domain. In text, the vocabulary of shingles [2] (uses sequences

of words rather than single words) is very large and specific. Accurate estimation of the

tf-idf weights for such a vocabulary is not possible.

4.1 Word weighting

In this section we describe how the min-Hash method can be adopted to estimate (2). First,

we make an illustrative (but inefficient) extension to the method that considers positive

integer values of dw
1. As a second step, we show the equivalence of the illustrative method

1Note that assuming dw to be integral is not a limitation. If the values of dw were positive rational numbers,

all the values can be transformed by a multiplicative constant d′
w = Cdw so that the weights d′

w are integers.

Using d′
w instead of dw does not change the similarity measure simw.



to a more efficient method based on generating random non-uniform hash functions.

For now, assume that dw are positive integers. For each set Ai, we construct a set A ′
i

as follows. Each element Xw ∈Ai is represented by dw elements Xk
w, k = 1 . . .dw, in A ′

i . A

min-Hash of A ′
i is obtained as described in the previous section: random hash functions

f ′j(X
k
w) are used to define min-Hashes on documents A ′

i . Each element Xk
w is assigned a

different value by the hash function, but all Xk
w represent the same visual word Xw. Let X

j
w

be a min-Hash of A ′
i , a min-Hash of Ai is then defined as Xw. Again, the probability that

a min-Hash of two sets A1 and A2 are identical is given by the ratio

|A ′
1 ∩A ′

2 |
|A ′

1 ∪A ′
2 |

=
∑Xw∈A1∩A2

dw

∑Xw∈A1∪A2
dw

.

The same result is obtained when the following hash function is used on the original

vocabulary

f j(Xw) = min
k=1...dw

f ′j(X
k
w).

In the rest of this section we derive how to generate the value of the hash function directly

without generating dw uniformly distributed random numbers for each word.

Let mw be a random variable mw = mink rk
w, where k = 1 . . .dw and rk

w ∼ Un(0,1). The

cumulative distribution of mw is given by

P(mw ≤ a) = 1− (1−a)dw . (7)

It follows that a random uniformly distributed variable x ∼ Un(1,0) can be transformed

to a random variable with cumulative distribution function (7) as mw = 1− dw
√

1− x. The

expression can be further simplified using the fact that 1− x ∼ Un(1,0) to give mw =
1− dw

√
x. Note that mw is also defined for real non-negative values of dw. Since for the

purposes of the min-Hash algorithm, only the ordering of the hashes is important, further

simplification can be obtained by applying a monotonic transformations:

f j(Xw) =
− logx

dw

, where x ∼ Un(1,0). (8)

4.2 Histogram intersection

In this section, the bag-of-words image representation will be used. We show how a new

vocabulary can be constructed so that the min-Hash algorithm can be directly applied to

approximate histogram intersection. Let ti be a vector of size |V | where each coordinate

tw
i is a number of visual words Xw present in i-th document. Let yw denote the highest

number of occurrences of visual word Xw in a document in the database yw = maxi t
w
i . We

can construct a new vocabulary V ′ as follows. For each visual word Xw the vocabulary

will contain yw different elements X1
w, . . . ,Xyw

w . The bag-of-words representation ti of a

document can be equivalently represented a set A ′
1 ⊂ V ′, where the set A ′

1 contains tw
i

elements representing visual word Xw: X l
w ∈ A ′

1 iff tw
i ≥ l. For example, if an image

contains two features represented by visual word Xw, elements X1
w and X2

w will be present

in the set representation of that image2.

2Note the difference between expanding the vocabulary in section 4.1 and here. In simw the number of

repeated elements representing one visual word was either 0 (if the visual word was not present in the image) or

dw in all images, and the elements were indistinguishable. Here, each document can contain different number

of repeated elements, depending on how many instances of the visual word appear in the image. Also, each

instance is unique, elements X1
w and X2

w are different.



The min-Hash algorithm can be applied to the new set representation directly. The

size of set intersection |A ′
1 ∩A ′

2 | is equal to ∑w min(tw
1 , tw

2 ) and the size of the set union

|A ′
1 ∪A ′

2 | = ∑w max(tw
1 , tw

2 ). Applying these equalities to sims eqn (3) we directly obtain

eqn (4). The extension to weighted histogram intersection is straightforward.

5 Experimental Results

We demonstrate our method for NDID on two data sets: the TrecVid 2006 data set and

the University of Kentucky data set.

It is difficult to evaluate near duplicate image retrieval, especially on large data sets.

Labelling of large data sets is difficult in its own right and the subjective definition of

near duplicate images complicates things further. There is no ground truth available for

the TrecVid data set, hence a precise comparison of accuracy of the methods is not pos-

sible for this data. Therefore, in the first experiment we mainly focus on measuring the

efficiency of the methods on a large (146k images) TrecVid data set.

To evaluate the quality of the retrieval, we present an extensive comparison of the

original min-Hash method and the two proposed methods (word weighting and weighted

histogram intersection) on an image retrieval database – University of Kentucky database

[17] – where the ground truth is available.

The idf weights were used in simw and simh as word weights in our experiments.

5.1 TrecVid 2006

TrecVid [21] database consists of 146,588 JPEG keyframes automatically pre-selected

from 165 hours (17.8M frames, 127 GB) of MPEG-1 news footage, recorded from differ-

ent TV stations from around the world. Each frame is at a resolution of 352×240 pixels

and normally of quite low quality. The frames suffer from compression artefacts, jitter

and noise typically found in highly compressed video. In this experiment a vocabulary of

64K visual words, N = 192 min-Hashes, sketch size n = 3, and k = 64 number of sketches

were used as in [4].

We measured the number of sketch hits, i.e. how many pairs of documents were con-

sidered to be near duplicates. Figure 1 displays the number of sketch hits plotted against

the similarity measures of the colliding documents. For document pairs with high value of

the similarity measure, the number of hits is roughly equal for sims and simw and slightly

higher for simh. This means that about the same number of near duplicate images will be

recovered by the first two methods and the histogram intersection detects slightly higher

number of near duplicates. The detected near duplicate results appear similar after vi-

sual inspection and no significant discrepancy can be observed between the results of the

methods.

However, for document pairs with low similarity (pairs that are of no interest) using

simw and simh similarity significantly reduces the number of sketch hits. In the standard

version of the algorithm, even uninformative visual words that are common to many im-

ages are equally likely to become a min-Hash. When this happens, a large number of

images is represented by the same frequent min-Hash. In the proposed approach, com-

mon (non-informative) visual words are down-weighted by a low value of idf. As a result,

a lower number of sketch collisions of documents with low similarity is observed.

The average number of documents examined per query is 8.5, 7.1, and 7.7 for sims,

simw, and simh respectively. Compare this to 43,997.3 of considered documents (images
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Figure 1: The number of sketch hits as a function of the document similarity for different similarity

measures (TrecVid data set). Left: similarities 0 – 0.35, right: high similarities (different scale).

having at least one visual word in common) using tf-idf inverted file retrieval using a

vocabulary of the same size.

5.2 University of Kentucky database

This database contains 10,200 images in sets of 4 images of one object / scene. Querying

the database with each image should return three more examples. This is used to score the

retrieval by the average number of correctly returned images in top four results (the query

image is to be retrieved too). We are probing lower values of the similarity measures due

to larger variations between images of the same scene in this data set. Therefore more

min-Hashes and more sketches have to be recorded.

In the experiments, we varied several parameters of the method: the size of the vocab-

ulary (30k and 100k), the number of independent random hash functions, and the number

of hashed sketches. The number of min-Hashes per sketch was set to n = 2. The average

number of documents considered (the average number of sketch hits)3 and the average

number of correctly retrieved images in the top 4 ranked images were recorded. The

results of the experiment are summarized in table 1.

The results consistently show that the number of sketch hits is significantly decreased

while the retrieval score is improved when the idf-weighting is used. The results are

further improved when the histogram intersection is used. Some example queries and

results are shown in figure 2. It can be seen on the results, that sims often retrieves

images based on the object background. The background is repeated on many images and

is down-weighted by both simw and simh idf weighting. For comparison, the number of

considered documents using standard tf-idf retrieval with inverted files would be 10,089.9
and 9,659.4 for vocabulary sizes 30k and 100k respectively.

We are not trying to compete with image or specific object retrieval. The method is

designed to find images with high similarity by ‘trying out’ only a few possibilities. This

database is too small to highlight the advantages of rapid retrieval and reduced image

representation. Despite this, the scores for the histogram intersection similarity measure

simh exceed the score of 3.16 for flat tf-idf scoring in [17].

Acknowledgements. We are grateful for support from EC grant 215078 DIPLECS, and

the Czech Government reseach program MSM6840770038.

6 Conclusions

We have proposed two novel similarity measures whose retrieval performance is ap-

proaching the well established tf-idf weighting scheme for image / particular object re-

3The average number of sketch hits per image is computed as 2 · total number of sketch hist / number of

documents. The multiplication by 2 is introduced because each hit involves two documents.



documents considered top 4 score

vocab 30k vocab 100k vocab 30k vocab 100k

mh ske sims simw simh sims simw simh sims simw simh sims simw simh

512 256 553.8 362.2 207.0 143.8 87.3 49.3 2.54 2.54 2.67 2.43 2.42 2.57

512 512 908.6 664.1 394.6 281.3 181.1 94.4 2.70 2.72 2.85 2.65 2.68 2.80

512 1024 1671.9 1200.1 730.9 543.0 340.2 178.7 2.74 2.79 2.94 2.80 2.85 2.97

512 1536 2325.4 1626.8 1041.3 871.4 469.6 260.7 2.75 2.80 2.96 2.81 2.90 3.03

640 320 657.4 434.3 255.6 177.0 107.2 60.4 2.65 2.65 2.77 2.54 2.53 2.67

640 640 1141.9 810.2 488.3 340.2 206.5 117.7 2.76 2.81 2.93 2.73 2.77 2.89

640 1280 1924.3 1443.4 889.4 642.9 396.5 225.5 2.80 2.86 3.01 2.84 2.92 3.04

640 1920 2691.4 1949.0 1258.4 969.7 567.0 330.7 2.80 2.87 3.02 2.88 2.96 3.09

768 384 748.5 520.5 302.8 215.4 127.7 72.0 2.71 2.73 2.84 2.62 2.62 2.74

768 768 1362.3 957.0 578.2 419.9 244.7 140.3 2.83 2.86 2.99 2.81 2.85 2.95

768 1536 2242.9 1669.1 1035.7 761.2 637.8 264.1 2.85 2.90 3.05 2.90 2.98 3.08

768 2304 2978.1 2230.6 1423.1 1154.0 816.5 382.1 2.85 2.91 3.06 2.91 3.01 3.13

896 448 979.0 595.2 352.5 251.2 145.5 83.6 2.77 2.79 2.90 2.69 2.68 2.80

896 896 1578.5 1082.2 683.8 481.6 275.4 163.0 2.86 2.90 3.03 2.86 2.90 3.00

896 1792 2743.1 1878.6 1371.7 869.5 515.1 318.8 2.88 2.93 3.08 2.94 3.02 3.13

896 2688 3398.8 2496.4 1790.8 1238.7 734.9 452.8 2.87 2.93 3.09 2.96 3.05 3.17

Table 1: University of Kentucky data set. Number of min-Hashes (mh), number of sketches (ske),

number of considered documents, and average number of correct images in top 4 are shown for

three similarity measures sims, simw, and simh. Better results (lower for documents considered,

higher for top 4 score) are highlighted among the methods.
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Figure 2: University of Kentucky data set: sample queries (left column), results (three rows each)

for sims (top row), simw (middle row), and simh (bottom row).



trieval. We show that pairs of images with high values of similarity can be efficiently (in

time proportional to the number of retrieved images) retrieved using the min-Hash algo-

rithm. We have shown experimental evidence that the idf word weighting improves both

the search efficiency and the quality of the results. The weighted histogram intersection is

the best similarity measure (out of the three examined) in both retrieval quality and search

efficiency. Promising results on the retrieval database encourage the use of the hashing

scheme beyond near duplicate detection, for example in clustering of large database of

images [3].
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