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ABSTRACT

Near-duplicate image retrieval plays an important role in
many real-world multimedia applications. Most previous
approaches have some limitations. For example, conven-
tional appearance-based methods may suffer from the illu-
mination variations and occlusion issue, and local feature
correspondence-based methods often do not consider local
deformations and the spatial coherence between two point
sets. In this paper, we propose a novel and effective Non-
rigid Image Matching (NIM) approach to tackle the task of
near-duplicate keyframe retrieval from real-world video cor-
pora. In contrast to previous approaches, the NIM technique
can recover an explicit mapping between two near-duplicate
images with a few deformation parameters and find out the
correct correspondences from noisy data effectively. To make
our technique applicable to large-scale applications, we sug-
gest an effective multi-level ranking scheme that filters out
the irrelevant results in a coarse-to-fine manner. In our rank-
ing scheme, to overcome the extremely small training size
challenge, we employ a semi-supervised learning method for
improving the performance using unlabeled data. To evalu-
ate the effectiveness of our solution, we have conducted ex-
tensive experiments on two benchmark testbeds extracted
from the TRECVID2003 and TRECVID2004 corpora. The
promising results show that our proposed method is more
effective than other state-of-the-art approaches.
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1. INTRODUCTION
Near-Duplicate Keyframes (NDK) refer to the pairs of

keyframes in a video corpus, for which the two keyframes
of a pair are closely similar to each other apart from minor
differences due to the variations of capturing conditions, ren-
dering conditions, or editing operations [30, 32]. NDK de-
tection and retrieval techniques are beneficial for many real
applications, such as news video search [23] and copyright
infringement detection [13, 20]. NDK retrieval is a challeng-
ing research problem due to some well-known factors. One
is that videos from different sources may be captured by
devices with different hardwares under a variety of illumina-
tion conditions. Moreover, video editing often produces ex-
tra photometric and geometric transformations and occludes
the original video by adding captions. Figure 1 shows some
examples of pairs of duplicate keyframes extracted from the
TRECVID2003 video corpus.

In the past years, there has been a surge of research at-
tention on this topic in the multimedia community[13, 20,
26, 27, 30, 32]. Some conventional methods extend content-
based image retrieval (CBIR) techniques for the NDK de-
tection and retrieval task; these often employ global features
extracted from the whole image, such as color moment and
color histogram [20, 30]. Although these methods are usu-
ally very efficient for finding identical copies, they may not
be very accurate for real NDKs as they often fail to address
the variations of lighting changes, viewpoint changes, and
occlusions.

Alternatively, some recent approaches using local feature
point correspondences can deal with the illumination vari-
ations and geometric transformations by exploring the re-
cent advances in local feature descriptors [16]. These ap-
proaches often incur heavy computational cost in feature
matching. Nevertheless, some efficient solutions have been
proposed. For example, Ke et al. [13] proposed an efficient
method using PCA-SIFT and locality-sensitive hashing in-
dexing. However, their method often makes a rigid pro-
jective geometry assumption, which may suffer from some
outlier matches due to lens changes and small object move-
ments. Zhang and Chang [30] presented a stochastic At-
tributed Relational Graph (ARG) matching framework, which
involves a computationally intensive process of stochastic
belief propagation. Zhao et al. [32] proposed a one-to-one
symmetric (OOS) matching method, which applies a local
smoothing constraint to remove the outlier matches. In [17],
Pattern Entropy (PE) is employed as similarity measure
for OOS method. Similar to other bipartite graph matching

methods, the OOS method considers only pairwise matches
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and fails to explore the spatial coherence between the two
sets of interest points in two NDKs. As shown in Figure 1,
illumination variations, occlusions and zooming lead to large
PE, in which PE ≤ 0.5 is considered as NDK pair [17].

In contrast to previous approaches employing either rigid
projective models or bipartite graph matching, in this pa-
per, we propose a novel Nonrigid Image Matching (NIM)
method for near-duplicate keyframe retrieval. Unlike the
previous approaches, we assume that there may exist non-
rigid transformations between the two NDKs. The key to
solving the NIM problem is based on an iterative coarse-to-
fine optimization scheme to reject the outliers, which takes
advantage of a closed-form solution for a given set of corre-
spondences. Since our method takes consideration of local
deformations, it often obtains more inlier matches than reg-
ular rigid projective models and the OOS graph matching
method, this characteristic plays a critical role in duplicate
similarity matching. Figure 1 shows some examples along
with the total numbers of inlier matches found by three
different methods on the same set of extracted SIFT fea-
tures [15].
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Figure 1: Some near-duplicate keyframes examples.
The caption of each subfigure shows the total num-
ber of inlier matches with each of the three methods:
projective geometry, OOS-SIFT method (PE is be-
low the number of inliers), and our NIM method.
Since PE > 0.5, OOS-SIFT method failed in (a-d).

Compared to the previous approaches, the proposed NIM
method not only delivers better retrieval performance, but
also enjoys some other salient merits. For example, our
method is able to find the exact matching region between
two NPKs, which is often not obtained by conventional meth-
ods. This attractive feature is important for part-based or
sub-image detection and retrieval. In addition, our method
is rather efficient, processing about ten pairs of keyframes
per second with a regular PC with moderate configuration.
To further accelerate our technique for large-scale applica-
tions, we suggest a Multi-Level Ranking (MLR) framework
for efficient NDK retrieval, which integrates three different
ranking components in a unified solution: nearest neighbor
ranking, semi-supervised ranking, and NIM-based ranking.

In summary, this paper includes three main contributions.
First of all, we propose a novel Nonrigid Image Match-
ing technique for NDK detection and retrieval, which is sig-
nificantly different from the conventional approaches. Our
technique overcomes some limitations with the existing ap-
proaches and hence offers better performance for solving the
NDK detection and retrieval tasks. Secondly, to enable the
proposed technique applicable to large-scale applications, we
suggest a Multi-Level Ranking framework that can effec-
tively filter out irrelevant results so as to significantly re-
duce the sample size for the NIM comparisons. Although

this is not the first use of the MLR approach by multimedia
researchers [10, 11], our contribution is to validate its effec-
tiveness at improving the NIM scheme in the NDK retrieval
tasks. The third major contribution is to employ a Semi-
Supervised Ranking (SSR) method by a Semi-Supervised

Support Vector Machine (S3VM) for improving the NDK
learning task, which often has extremely few labeled data.
The SSR method effectively improves the filtering perfor-
mance of traditional supervised learning approaches by tak-
ing advantage of unlabeled data information.

The rest of this paper is organized as follows. Section 2
reviews some existing approaches for NDK detection and
retrieval. Section 3 proposes the nonrigid image matching
method for detecting NDK with local feature correspon-
dences. Section 4 presents a multi-level ranking scheme
together with a semi-supervised SVM method for NDK re-
trieval. Section 5 provides our experimental results and the
details of our experimental implementation. Section 6 sets
out our conclusions.

2. RELATED WORK
There are numerous research efforts on near-duplicate im-

age/keyframe detection and retrieval in the multimedia com-
munity [13, 20, 25, 27, 30]. In general, most of the exist-
ing approaches can be roughly divided into two categories:
appearance-based methods and local feature-based methods.

The appearance-based methods often measure the simi-
larity between two keyframes based on the extracted global
visual features, such as color histogram [30] and color mo-
ments [31]. These methods are advantageous for their high
efficiency since keyframes are often compactly represented
in the vector space and thus can be solved efficiently by
adapting conventional CBIR methods and mature data in-
dexing techniques [20]. But they are often not very robust
to illumination changes, partial occlusions, and geometric
transformations.

On the other hand, the local feature-based methods detect
local keypoints in two keyframes and measure their simi-
larity by counting the number of correct correspondences
between two keypoint sets. Keypoints are the salient re-
gions detected over image scales and their descriptors are
often invariant to certain transformations and variations.
They overcome the limitations of the global appearance-
based methods, and thus often achieve better performance [13,
32]. But they may incur a heavy computational cost for the
matching of two keypoint sets, which may contain more than
one thousand of keypoints.

Recently, local feature-based methods have been actively
studied. Sivic et al. [22] employed the local keypoints ap-
proach for object matching and retrieval in movies. Ke
et al. [13] employed the compact PCA-SIFT feature and
speeded up the search of nearest keypoints with the local-
ity sensitive hashing technique for duplicate image detection
and retrieval. Zhao et al. [32] proposed an OOS matching
approach to NDK detection and reported state-of-the-art
performance. The key of the OOS method is to eliminate
noisy outliers during the one-to-one bipartite graph match-
ing process. Most of these methods fall in the same category
of point-to-point bipartite graph matching.

The NIM technique proposed in this paper goes beyond
conventional point-to-point bipartite graph matching meth-
ods. In contrast to existing techniques, our method is able
to recover the explicit mapping between two near-duplicate
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keyframes with nonrigid transformation models and can ef-
fectively find the correct correspondences from noisy data.
Though similar techniques are actively being studied for
tracking in computer vision and graphics [35, 36], to the
best of our knowledge, we are the first to study it compre-
hensively for NDK retrieval tasks.

3. NONRIGID IMAGE MATCHING
In this section, we present the nonrigid image matching

approach to near-duplicate keyframe detection. We first give
our formulation of the nonrigid image matching problem,
and then solve it by a coarse-to-fine optimization technique.

3.1 Formulation
Instead of assuming an affine transformation or projec-

tive projection as in the conventional methods, we employ
the nonrigid mapping relation between the NDKs. There-
fore, the proposed method can tackle not only geometric
transformations and viewpoint changes, but also small ob-
ject movements. The Nonrigid Image Matching refers to the
problem of recovering the explicit mapping between the two
images with a few deformation parameters and finding out
the correct correspondences from noisy data simultaneously.
It has been successfully applied to real-time nonrigid surface
tracking in computer vision [19, 35, 36]. Unlike the nonrigid
image registration, the NIM method is fully automatic and
does not require manual initialization.

The key idea of NIM is to recover the local deformations
from the salient feature correspondences between the two
images and to reject the outlier matches simultaneously.
Therefore, we can simply choose the total number of in-
lier matches τ as a confidence measure to judge whether the
two keyframes are near-duplicate or not. Specifically, given
a set of correspondences M between the model and the in-
put image built through a local feature matching algorithm,
we try to estimate the nonrigid mapping from these obser-
vations. Therefore, a pair of matched points is represented
in the form of m = {m0,m1} ∈ M, where m0 is defined as
the 2D coordinates of a feature point in the training image
and m1 = (u, v) is the coordinates of its match in the input
image. We represent the query keyframe as a deformation
grid, which is explicitly represented by triangulated meshes
with N hexagonally connected vertices. The vertices’ coor-
dinates are formed into a shape vector s = (u v)⊤, where
u ∈ RN and v ∈ RN are the vectors of the coordinates of
mesh vertices. Therefore, s is the variable to be estimated
from the 2D correspondences.

We commence by assuming that a point m lies in a tri-
angle whose three vertices’ coordinates are (ui, vi),(uj , vj)
and (uk, vk) respectively, and {i, j, k} ⊂ [1, N ] is the index
of each vertex. The piecewise affine transformation is used
to map the image points inside the corresponding triangle
into the vertices in the mesh. Thus, the mapping function
TS(m) is defined as below:

Ts(m) =

»

ui uj uk

vi vj vk

–

ˆ

ξ1 ξ2 ξ3

˜⊤
(1)

where (ξ1, ξ2, ξ3) are the barycentric coordinates for the point
m, and ξ1 + ξ2 + ξ3 = 1.

Then, the correspondence error Ec(s) is defined as the
sum of the weighted square error residuals for the matched

points, which can be formulated as follows:

Ec(s) =
X

m∈M

ωmV(δ, σ) (2)

where V(δ, σ) is a robust estimator with compact support
size σ, and ωm ∈ [0, 1] is a weight linked with each corre-
spondence. Moreover, δ is the residual error, which is defined
as δ = m1 − Ts(m0).

The robust estimator function V(δ, σ) that assesses a fixed
penalty for residuals larger than a threshold σ is employed
in the present work; this approach is relatively insensitive to
outliers [4]:

V(δ, σ) =

(

‖δ‖
σν , M1 = {m| ‖δ‖ ≤ σ2}

σ2−ν , M2 = M1

(3)

where the set M1 contains the inlier matches, and M2 is
the set of the outliers. In addition, the order ν determines
the scale of the residual. The greatest number of correspon-
dences is included when the support σ is large. Conversely,
as σ decreases, the robust estimator becomes narrower and
more selective.

In general, the NIM problem approximates a 2D mesh
with N vertices from the keypoint correspondences, which
is usually ill-posed. One effective way to attack this problem
is to introduce regularization, which preserves the regularity
of a deformable mesh and constrains the searching space.
The following object function is widely used in deformable
surface fitting [12, 19] for energy minimization:

E(s) = Ec(s) + λrEr(s) (4)

where Er(s) is the regularization term that represents the
deformation energy, and λr is a regularization coefficient.
The regularization term Er in the above equation, also known
as ’internal force’ in Snakes [12], is composed of the sum of
the squared second-order derivatives of the mesh vertex co-
ordinates. As the mesh is regular, Er(s) can be formulated
through a finite difference:

Er(s) = s⊤
»

K 0
0 K

–

s (5)

where K is a sparse and banded matrix which is determined
by the structure of the explicit mesh model [8, 19].

3.2 Optimization
As the robust estimator function in Eqn. 3 is not convex,

this leads to a hard combinational optimization problem for
the associated penalty function approximation. To tackle
this problem, we employ a progressive finite Newton opti-
mization method [35, 36]. Given a set of inlier matches M1,
the solution for the optimization problem in Eqn. 4 can be
obtained by solving the following two linear equations via
LU decomposition:

u = (λrK + A)−1bu (6)

v = (λrK + A)−1bv (7)

where A ∈ RN×N is equal to

A =
X

m∈M1

ωm

σν
tt⊤

and the vector bu ∈ RN and bv ∈ RN are defined as below:

bu =
X

m∈M1

ωm

σν
ut and bv =

X

m∈M1

ωm

σν
vt
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where t ∈ RN containing the barycentric coordinates is de-
fined as below:

ti = ξ1 tj = ξ2 tk = ξ3

while the remaining elements in the vector t are all set to
zero. It can be observed that the overall complexity of the
NIM method is that of a single Newton step, which is deter-
mined by the total number of mesh vertices N .

Obviously, we can directly compute s by the above closed-
form solution if the correspondences set M contains no out-
liers. However, the incorrect matches cannot be avoided
in the first stage of the matching process where only local
image descriptors are compared. Therefore, a coarse-to-fine
optimization scheme is introduced to reject the outliers grad-
ually, which progressively decays the support σ of the robust
estimator V(δ, σ) at a constant rate η. For each value of σ,
the object function E is minimized through the finite New-
ton step and the result is employed as the initial state for the
next minimization. The optimization procedure stops when
σ reaches a value close to the expected precision, which is
usually one or two pixels. Thus, the whole optimization
problem can be solved within a finite number of steps. As
the derivatives of V(δ, σ) are inversely proportional to the
support σ, the regularization coefficient λr is kept constant
during the optimization.

Before starting the optimization, we need to select the ini-
tial active set. One strategy is to set the initial value of σ
to a sufficiently large value in order to select most of the
correspondences into the initial active set and to avoid get-
ting stuck at local minima. This method may need a few
steps to compensate for the errors generated by the varia-
tions in object positions between the images. Alternatively,
we can select the active set through a modified RANSAC [6,
7] approach by taking advantage of our closed-form solution.
Note that it is usually hard to directly apply the robust es-
timator to a system with a large number of free variables.
To reduce the total number of RANSAC trials, we draw
from progressively larger sets of top-ranked correspondences
with the highest similarities. In the experiments, the sam-
pling process stopped within five trials. Since the result of
RANSAC is usually quite close to the solution, the initial
value of σ can be relatively small. Thus, the proposed pro-
gressive scheme requires fewer steps.

3.3 Case Studies: Detecting Various NDKs
To illustrate how the proposed NIM technique can ef-

fectively detect various NDKs appearing in news video do-
mains, we show part of our detection results to demonstrate
the advantages of our technique.

Figure 2 shows some examples of our successful detection
results for various NDKs. All results on the duplicate pairs
from Columbia’s TRECVID2003 dataset can be found at [2].
In particular, the proposed NIM technique can effectively
detect a variety of NDKs including, but not limited to, the
following cases:

• Viewpoint change. This is very common for the
shots extracted from news video sequences.

• Object movement. This is due to the relative move-
ments caused by the camera or some objects.

• Lens change. This case is caused by the changes of
camera lens, such as zooming in or zooming out.

• Subimage duplicate. Such duplicates could be caused
either by lens changes or some editing effects.

• Small regional change. These duplicates only have
small regional differences. They are often captured in
the same scenario with slight changes.

• Partial occlusion. This case arises from the added
captions or text descriptions in the videos.

4. MULTI-LEVEL NDK RETRIEVAL

4.1 Framework Overview
Although the proposed NIM is efficient for matching two

images in comparison with conventional local feature match-
ing techniques [27, 32], directly applying NIM to large-scale
applications could still be computationally intensive. To im-
prove the efficiency and scalability of our solution, we em-
ploy a Multi-Level Ranking (MLR) framework for efficiently
tackling the NDK retrieval task. This strategy has been
widely used, which is also shown to be successful in multime-
dia retrieval [10, 11]. In particular, our multi-level ranking
scheme integrates three different ranking components:

• Nearest Neighbor Ranking (NNR). This is to
rank the keyframes with simple nearest neighbor search.

• Semi-Supervised Ranking (SSR). This is to rank
the keyframes with a semi-supervised ranking method.

• Nonrigid Image Matching (NIM). This is to rank
the keyframes by applying the proposed NIM method.

The first two ranking components are based on global fea-
tures for efficiently filtering out the irrelevant results, and
the last component provides a fine re-ranking based on the
local features. Figure 3 shows the proposed MLR frame-
work, which attacks the NDK retrieval task in a coarse-to-
fine ranking manner. This makes the proposed NIM solution
applicable to large-scale real applications.

Figure 3: A multi-level ranking framework.

4.2 Formulation as a Machine Learning Task
The NDK retrieval problem can be formulated as a ma-

chine learning task with a query set of labeled image exam-
ples Q = {(x1, +1), . . . , (xl, +1)} and a gallery set of un-
labeled image examples G = {xl+1, . . . ,xl+u}, where each
image example xi ∈ Rd is represented in a d-dimensional
feature space. The goal of the learning task is to find the
relevant near-duplicate examples from G that are closest to
being exact duplicates of examples in Q.

The learning task is tough on account of two difficulties.
One is that there is no negative examples available, as only a
query set Q will be provided in the retrieval task. The other
is the small sample learning issue: Very few labeled exam-
ples will be provided in the retrieval task. To overcome the
first difficulty, we adopt the idea of pseudo-negative exam-
ples used in previous multimedia retrieval approaches [29].
Specifically, we can conduct a query-by-example retrieval
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(a) Viewpoint changes (b) Object movements

(c) Lens changes (d) Subimage duplicates

(e) Small regional changes (f) Partial occlusions

Figure 2: Examples of our detection results on various near-duplicate keyframe cases.

for ranking the unlabeled data in G based on their distances
from the examples in the query set. Then we select a short
list of most dissimilar examples as the negative examples
based on the Nearest Neighbor ranking results.

To this end, with both positive and negative examples, we
can formulate the learning task as a general binary classifica-
tion task, which can then be solved by existing classification
techniques. In our approach, we apply Support Vector Ma-
chines (SVM) for the learning task. SVM is a well-known
and state-of-the-art learning technique [24], which we briefly
review here. SVM is used for learning an optimal hyper-
plane with maximal margin, and can learn nonlinear deci-
sion boundaries by exploiting powerful kernel tricks. SVM
can be generally formulated in a regularization framework:

min
f∈HK

1

l

l
X

i=1

max(0, 1 − yif(xi)) + λ‖f‖2
HK

(8)

where f is the hyperplane function f(x) =
Pl

i=1
αik(x,xi),

k is some kernel function, and HK is the associated repro-
ducing kernel Hilbert space.

While SVM can be applied for solving the learning task,
its performance may be poor when there are very limited

number of labeled examples. This is a critical issue of an
NDK retrieval since only extremely few positive examples
will be provided. To overcome the second difficulty, we next
introduce a semi-supervised learning technique for exploring
both labeled and unlabeled data for the retrieval tasks.

4.3 Semi-supervised Support Vector Machine
To overcome the challenge of small sample learning, we

suggest a semi-supervised retrieval (SSR) approach to at-
tack the learning task via a semi-supervised SVM technique.
Semi-supervised learning has been extensively studied in re-
cent years, and numerous approaches have been proposed
to exploit it [28, 33, 34]. In this paper, we employ a unified
kernel learning approach for semi-supervised SVM. The key
idea is to first learn a data-dependent kernel from the un-
labeled data, and then apply the learned kernel to train a
supervised SVM based on the regularization learning frame-
work. In our approach, we adopt the kernel deformation
principle for learning a data-dependent kernel from unla-
beled data [21].

The main idea of kernel deformation is to first estimate
the geometry of the underlying marginal distribution from
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both labeled and unlabeled data, and then derive a data-
dependent kernel by incorporating estimated geometry [21].
Let H denote the original Hilbert space reproduced by kernel

function k(·, ·), and eH denote the deformed Hilbert space. In
[21], the authors assume the following relationship between
the two Hilbert spaces:

< f, g >H̃=< f, g >H +f⊤Mg

where f(·) and g(·) are two functions, f = (f(x1), . . . , f(x1))
evaluates the function f(·) for both labeled and unlabeled
data, and M is the distance metric that captures the geo-
metric relationship among all the data points. The defor-
mation term f⊤Mg is introduced to assess the relationship
between the functions f(·) and g(·) based on the observed
data. Given an input kernel k, the explicit form of the new
kernel function k̃ can be derived as below:

k̃(x,y) = k(x,y) + κ⊤
y d(x)

where κy = (k(x1, y), . . . , k(xn, y))⊤. The coefficients vec-
tor d(x) can be computed by: d(x) = −(I + MK)−1Mκx,
where K = [k(xi,xj)]n×n is the original kernel matrix for
all the data, and κx = (k(x1, z), . . . , k(xn, z))⊤. To capture
the underlying geometry of the data, a common approach is
to define M as a function of graph Laplacian L, for exam-
ple, M = Lp where p is an integer. A graph Laplacian is
defined as L = diag(S1)−S, where S ∈ Rn×n is a similarity
matrix and each element Si,j is calculated by an RBF func-
tion exp(−‖xi − xj‖

2
2/ς2). ς denotes the kernel width for a

graph Laplacian. 1 denotes a vector with all one elements.
Consequently, the new kernel k can be formulated as follows:

k̃(x,y) = k(x,y) − κ⊤
y (I + MK)−1Mκx (9)

Hence, replacing the kernel k in Eqn. 8 by the kernel k̃ in
Eqn. 9, we can train the semi-supervised SVM classifier.

5. EXPERIMENTS
In this section, we report our empirical study of the pro-

posed techniques for NDK retrieval. Two key techniques
will be evaluated comprehensively in our experiments. The
first experiment is to examine the effectiveness of the Multi-

Level Ranking scheme for filtering out the irrelevant results.
In particular, we would like to examine whether the semi-
supervised ranking method using S3V M is more effective
than the conventional ranking approaches. The second and
more important experiment is to evaluate the performance
of the proposed NIM technique for NDK retrieval in compar-
ison with some state-of-the-art approaches. In the following
experiments, we mainly report quantitative evaluations.

5.1 Experimental Testbeds and Setup
To conduct comprehensive evaluations, we employ two

benchmark datasets for NDK retrieval as our experimental
testbeds. One is the widely used Columbia’s TRECVID2003
dataset [30], which consists of 600 keyframes with 150 near
duplicate image pairs and 300 non-duplicate images extracted
from the TRECVID2003 corpus [30]. All the keyframes
are with the same size, 352 × 264. The other is CityU’s
TRECVID2004 dataset [1] recently collected by Ngo et al. [17].
It contains 7,006 keyframes with 3,388 near-duplicate image
pairs, which are selected from the TRECVID2004 video cor-
pus. In the TRECVID2004 dataset, the near-duplicate im-
age pairs involve a total of 1,953 keyframes, which is about

28% of the whole collection. Note that one keyframe may
be associated with several near-duplicate pairs.

To make a fair comparison with the state-of-the-art ap-
proaches, we adopt the evaluation protocol used in [32].
Specifically, all NDK pairs are adopted as queries for per-
formance evaluation. Each query set Q contains a single
keyframe image; other remaining keyframes are regarded as
the gallery set G. For the retrieval task, each algorithm pro-
duces a list of relevant results by ranking the keyframes in
the gallery set. To evaluate the retrieval performance, the
average cumulative accuracy metric is adopted as a perfor-
mance metric [32], in which the accuracy is measured by
judging whether the retrieved keyframe is one of the corre-
sponding pairwise duplicates in the ground truth query set.
As a yardstick for assessing the performance, we compare
our method with the recently proposed OOS matching algo-
rithm [32], one state-of-the-art method for NDK detection
and retrieval.

For the experimental setups, the kernel function used in
both SVM and S3VM is an RBF kernel with fixed width.
Regarding the parameter settings, the penalty parameter C
of SVMs is set to 10 (or γA = 10−1) and the graph regular-
ization parameter of S3VM is set to γI = 10−1.

All the experiments in this paper were carried out on a
notebook computer with Intel Core-2 Duo 2.0GHz processor
and 2GB RAM. All the proposed methods are implemented
in Matlab, for which some routines are written in C code.
The code can be downloaded from [2]

5.2 Feature Extraction
Feature extraction is a key step for NDK retrieval. In

our experiments, we consider both global and local features.
The two types of features have their advantages and dis-
advantages. We believe an appropriate fusion of them will
compensate their shortcomings, and therefore improve the
overall effectiveness and efficiency.

5.2.1 Global Feature Extraction
The global feature representation techniques have been

extensively studied in image processing and CBIR commu-
nity. A wide variety of global feature extraction techniques
were proposed in the past decade. In this paper, we extract
four kinds of effective global features:

• Grid Color Moment. We adopt the grid color moment
to extract color features from keyframes. Specifically, an
image is partitioned into 3 × 3 grids. For each grid, we
extract three kinds of color moments: color mean, color
variance and color skewness in each color channel (R, G,
and B), respectively. Thus, an 81-dimensional grid color
moment vector is adopted for color features.

• Local Binary Pattern (LBP). The local binary pat-
tern [18] is defined as a gray-scale invariant texture mea-
sure, derived from a general definition of texture in a local
neighborhood. In our experiment, a 59-dimensional LBP
histogram vector is adopted.

• Gabor Wavelets Texture. To extract Gabor texture fea-
tures, each image is first scaled to 64×64 pixels. The Gabor
wavelet transform [14] is then applied on the scaled image
with 5 levels and 8 orientations, which results in 40 subim-
ages. For each subimage, 3 moments are calculated: mean,
variance and skewness. Thus, a 120-dimensional vector is
used for Gabor texture features.

• Edge. An edge orientation histogram is extracted for each
image. We first convert an image into a gray image, and
then employ a Canny edge detector [5] to obtain the edge
map for computing the edge orientation histogram. The
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Figure 4: Cumulative accuracy of similarity measure and features using Nearest Neighbor Ranking on the
TRECVID2003 dataset (600 keyframes) and the TRECVID2004 dataset (7006 keyframes).

edge orientation histogram is quantized into 36 bins of 10
degrees each. An additional bin is used to count the number
of pixels without edge information. Hence, a 37-dimensional
vector is used for shape features.

In total, a 297-dimensional vector is used to represent all
the global features for each keyframe in the datasets.

5.2.2 Local Feature Extraction

Interest point detection and matching is a fundamental
research problem in computer vision. Many effective ap-
proaches have been proposed in the literature. One of the
most widely used methods is the SIFT [15], which computes
a histogram of local oriented gradients around the interest
point and stores the bins in a 128-dimensional vector. To im-
prove the SIFT, Ke et al. [13] proposed an extended method
by applying Principle Component Analysis [9] on the gra-
dient image, which then yields a 36-dimensional descriptor
that is more compact and faster for matching. However, the
PCA-SIFT has been empirically shown to be less distinc-
tive than the original SIFT in a comparative study [16], and
is also slower than the original SIFT in the feature com-
putation. Instead of using SIFT or PCA-SIFT, we adopt
SURF [3], another emerging local feature descriptor to de-
tect and extract local features, which takes advantage of fast
feature extraction using integral images for image convolu-
tions. Specifically, a 64-dimensional feature vector is used
for representing each keypoint with SURF. Compared to the
SIFT, it is more compact and hence reduces the computa-
tional cost for keypoint matching.

5.3 Experiment I: Ranking on Global Features
In this part, we evaluate the effectiveness of the proposed

multi-level ranking scheme for filtering out the irrelevant
keyframes by ranking on global features. We will first eval-
uate the retrieval performance of the global features with
nearest neighbor ranking, and then evaluate the semi-supervised
ranking approach based on S3VM.

5.3.1 Effectiveness of Global Features

To examine how effective the global features are, we mea-
sure the retrieval performance of different distance measures
with the global features on both datasets, as shown in Fig-
ure 4. From the results, we first observe that different dis-
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Figure 5: Comparison of the proposed semi-
supervised ranking method using S3VM algorithm
with other appearance based methods on the
TRECVID2003 dataset.

tance metrics have different impacts on the retrieval results
with the same global features. In particular, the L1 norm
outperforms both the L2 norm and the cosine metric on both
datasets, and the cosine similarity is slightly better than the
L2 norm. As a result, we employ the L1 norm as the distance
measure in all of the remaining experiments.

In addition, we also assess the performance of each compo-
nent of the global features as well as the combined features.
From the results shown in Figure 4, we can see that the
approaches with the combined features clearly outperform
the approaches with individual features. For the individ-
ual features, we found that the grid color moments method
outperforms the other three methods.

5.3.2 Performance of the S3VM Method

Finally, we compare the proposed semi-supervised rank-
ing approach using the S3VM method with other conven-
tional appearance-based methods on global features, such
as the approaches with color histogram [30] and color mo-
ments [31]. Note that we employ the Nearest Neighbor rank-
ing results to select the most dissimilar examples as the neg-
ative samples for training S3VM. Figure 5 shows the experi-
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Figure 6: Cumulative accuracy of NDK retrieval using NIM method on the TRECVID2003 dataset. (a).
There is a wide range available from which to select the threshold value. The image pairs with below 30 inlier
matches are viewed as non-duplicate in our experiments. (b) The overall accuracy grows with the number of
top-K returns. We choose 50 as a trade-off between the accuracy and computational time.

mental results on the two datasets. Obviously, S3VM signif-
icantly outperforms the color moment and color histogram
methods. Specifically, S3VM obtains about 33% improve-
ment over the color moment method on the TRECVID2003
dataset. Compared with the supervised ranking methods in-
cluding Nearest Neighbor ranking and SVM ranking, S3VM
achieves significantly better results, with around 10% im-
provement over the two conventional ranking methods.

5.4 Experiment II: Re-ranking with NIM on
Local Features

5.4.1 Parameter Settings

The last key ranking stage for the MLR scheme is the
NIM ranking using the proposed NDK matching technique.
To deploy the NIM technique for the NDK retrieval task,
we need to determine some parameter settings. In general,
the total number of mesh vertices determines the computa-
tional complexity and the deformation accuracy of the NIM
method. Empirically, we adopt a 14 × 16 mesh for all of
our experiments. The regularization coefficient λr is set to
5 × 10−5 to allow large deformations. The order ν of the
robust estimator is set to 4. The initial support is 100 and
the decay rate is 0.5. We find the optimization of each NIM
task requires around 9 iterations to achieve convergence.

5.4.2 Evaluation on the Choices of Two Thresholds

For the proposed NIM approach, there are two threshold
parameters that can affect the resulting accuracy and effi-
ciency performance. These are: (1) the minimal number of
inlier matches for reporting positive NDKs, denoted by τp,
and (2) the number of top ranked examples to be matched
by NIM, denoted by τk.

The first threshold parameter τp determines the thresh-
old for predicting positive results. Normally, the smaller
the value of τp, the higher the recall (the hit rate). At the
same time, the precision is likely to drop with decreasing τp.
Hence, it is important to determine an optimal threshold
parameter. Although we do not have a theoretical approach

to this, choosing a good τp value empirically seems not too
difficult. To justify this, we evaluate the performance by
varying the τp values. Figure 6(a) shows the surface of cu-
mulative accuracies with the top 30 returned results on the
TRECVID2003 dataset when τp varies from 10 to 50 (where
τk is fixed to 50). From the results, we can see that good re-
sults can be obtained when setting the threshold τp between
15 and 30.

The second threshold parameter τk determines how many
examples returned by the S3VM ranking will be engaged
for the NIM matching. Hence, it affects both the accuracy
and efficiency performance. In general, the larger the value
of τk, the more computational cost is incurred. However,
τk value that is too small is likely to degrade the retrieval
performance. Hence, choosing a proper τk value is impor-
tant to balance the tradeoff between accuracy and efficiency
performance. To see how τk affects the performance, Fig-
ure 6(b) shows the surface of cumulative accuracies with the
top 30 returned results obtained by varying τk from 1 to 50
(with τp fixed to 30). From the results, we can see that the
cumulative accuracy increases when τk increases and tends
to converge when τk approaches 50. Therefore, in the rest
of our experiments, we simply fix τk to 50 to achieve good
efficiency. We will evaluate the efficiency performance in a
subsequent part of this paper.

5.4.3 Comparisons of NDK Retrieval Performance

To examine the performance of the proposed NIM tech-
nique for retrieving NDKs, we compare our method with
several state-of-the-art methods, including the OOS-SIFT
method [27], the OOS-PCA-SIFT method [32], and the Vi-
sual Keywords (VK) methods [32]. Figure 7 shows the ex-
perimental results of the cumulative accuracy of the top 30
returned keyframes on both datasets.

For the TRECVID2003 dataset, it is relatively small and
widely used as a benchmark testbed for NDK retrieval in lit-
erature. From the experimental results, we can draw several
observations. First of all, the proposed S3VM method with
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(b) TRECVID2004 dataset
Figure 7: Comparison of cumulative accuracy of NDK retrieval results on the TRECVID2003 dataset (600
images) and the TRECVID2004 dataset (7006 images), respectively.

global features outperforms the OOS-PCA-SIFT method [32]
and the VK method [27], which use local features. This
again validates the effectiveness of the proposed semi-supervised
ranking technique with S3VM. Second, the proposed NIM
algorithm with local features is significantly better than the
S3VM method. In particular, NIM achieves more than 8%
improvement on the rank one accuracy over S3VM. Finally,
among all compared methods, the proposed NIM method
achieves the best performance, outperforming the state-of-
the-art OOS-SIFT method [27].

Turning next to the TRECVID2004 dataset, due to its
large size, we have a difficulty of comparing our method
with other existing methods, such as the OOS-SIFT and
OOS-PCA-SIFT methods, which are computationally very
intensive. Therefore, we only compare our method with
some conventional approaches. Figure 7(b) shows the ex-
perimental results on the TRECVID2004 dataset. Similar
to the previous dataset, NIM achieves the best performance
among all the compared methods on this dataset. For other
compared methods, S3VM performs significantly better than
both supervised SVM and NN methods.

5.5 Evaluation of Computational Cost
Finally, we empirically examine the efficiency performance

of the proposed NIM and S3VM methods. Both the global
appearance features and local features are extracted offline.
Table 1 and Table 2 summarize the overall computational
time for comparing all pairs of keyframes on both datasets.
From the results, we can see that NIM is more efficient
than the OOS-SIFT method [27] and less efficient than the
VK method which simply computes the similarity of visual
words. Note that VK method often requires much prepro-
cessing time cost for extracting the visual keywords offline.
In addition, we clearly see that the methods using global
features are significantly more efficient than the ones using
local feature matching. This again validates the importance
and effectiveness of the proposed multi-level ranking scheme
for improving the efficiency. Finally, we also plot the com-
putational cost and retrieval accuracy with respect to the
number of top ranked examples (τk) to be compared by NIM
in Figure 8. The results show that the larger the value of

τk, the higher the computational cost and the better the
matching accuracy. In particular, we found that the cumu-
lative accuracy tends to converge to the best result when
τk approaches to 50. In real-world applications, one can
choose an appropriate τk to balance the tradeoff between
accuracy and efficiency. For example, when τk equals to 10,
each query for NIM takes about 1 second and achieves rather
high cumulative accuracy, about 93%.

Table 1: Comparison of overall time cost of 300
queries on the TRECVID2003 dataset.

NIM S3VM NN OOS [27] VK [27]

15.8min 3sec 1sec 6.5hour 1.5min

Table 2: Comparison of overall time cost of 1,953
queries on the TRECVID2004 dataset.

NIM S3VM NN OOS [27] VK [27]

103.5min 8.1min 30sec N/A N/A

6. CONCLUSIONS
This paper proposed a novel nonrigid image matching

method for Near-Duplicate Keyframe (NDK) retrieval. In
contrast to traditional approaches with either projective ge-
ometry or bipartite graph matching, the proposed nonrigid
image matching (NIM) algorithm recovers the explicit non-
rigid mapping between two NDKs and effectively finds out
the correct correspondences by a robust coarse-to-fine opti-
mization scheme. Moreover, our method not only can detect
the NDK pairs accurately, but also can recover the local de-
formations between them simultaneously. To further reduce
the overall computational cost, we proposed an effective
multi-level ranking scheme together with a semi-supervised
ranking technique using semi-supervised SVM (S3VM) to
improve the ranking performance with the unlabeled data.
We conducted extensive evaluations on two testbeds ex-
tracted from the TRECVID corpora. The promising ex-
perimental results showed that our method is importantly
more effective than conventional approaches, especially for
dealing with cases involving viewpoint changes and local de-
formations, which are very common in practice.
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