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Abstract  Magnetospheric currents play an important role in the electrodynamics of near-

Earth space. This has been the topic of many space science studies. Here we focus on the 

magnetic field they cause close to Earth. Their contribution to the geomagnetic field is the 

second largest after the core field. Significant progress in interpreting the magnetic fields 

from the different sources has been achieved thanks to magnetic satellite missions like Ørsted, 

CHAMP and now Swarm. Of particular interest for this article is a proper representation of 

the magnetospheric ring current effect. Uncertainties in modelling its effect still produce the 

largest residuals between observations and present-day geomagnetic field models. A lot of 

progress has been achieved so far, but there are still open issues like the characteristics of the 

partial ring current. Other currents discussed are those flowing in the magnetospheric tail. 

Also their magnetic contribution at LEO orbits is non-negligible. Treating them as an 

independent source is a more recent development, which has cured some of the problems in 

geomagnetic field modelling. Unfortunately there is no index available for characterising the 

tail current intensity. Here we propose an approach that may help to properly quantify the 

magnetic contribution from the tail current for geomagnetic field modelling. Some open 

questions that require further investigation are mentioned at the end. 
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1. Introduction 

The geomagnetic field as observed on ground or by low-Earth orbiting (LEO) satellites is the 

sum of contributions from many different sources. The largest part, the core field accounting 

for more than 90%, originates from dynamo action in the Earth’s fluid outer core. Another 

internal source is the magnetisation of rocks and sediments at depths up to, say, 20 km, 

comprising the “lithospheric field”. Magnetic fields, generated by electric currents in the 

ionosphere and magnetosphere, are termed external sources. These magnetic fields are highly 

variable in time and space. As a consequence, they induce electric currents in the electrically 

conducting subsurface layers of Earth; their resulting magnetic fields are called induction 

fields. In this chapter we will repeatedly refer to these terms when discussing the different 

contributions.  

Magnetic field observations have successfully been used in the past for remotely sensing 

physical processes related to the source mechanisms of the different components. However, a 

prerequisite for applying such a technique is a proper separation of the various field 

contributions and an isolation of the signal of interest. This is still a challenging task and 

further improvements are warranted for a full utilisation. A typical approach for the separation 

of source terms is to consider their differences in characteristics both in time and space. As 

expected, there are overlaps in the characteristic between the different source terms, and 

therefore no simple techniques are available for a clear source separation.  

In recent years the quality of geomagnetic field models has improved considerably. This is in 

first place due to the high quality of magnetic measurements provided by dedicated satellite 
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missions like Ørsted and CHAMP and now also the Swarm constellation of three satellites. In 

addition, also the techniques for field modelling have evolved a lot during the past decade. A 

first and important step is a clever scheme for selecting those magnetic field data, which are 

not so strongly influenced by contributions from external sources. On the other hand, a 

sufficient amount of data has to be taken into account in order to achieve statistically relevant 

results. 

In this article we will focus on the magnetic fields generated by magnetospheric currents. 

Their effect is the second largest in the concert of contributions, as observed at near-Earth 

locations, outside the auroral oval. For that reason a proper description of their source terms is 

of special importance for the numerical modelling of other geomagnetic field parts. Within 

the magnetosphere there are several major current systems. These include the Chapman-

Ferraro currents on the dayside magnetopause, the magneto-tail currents on the nightside, the 

magnetospheric ring current in the equatorial plane at a typical distant of about 5 Earth radii 

(RE) and the field-aligned currents (FACs) connecting magnetospheric currents with the 

ionosphere at auroral latitudes. A schematic illustration of major magnetospheric current 

systems is shown in Figure 1. Different colours have been used for highlighting the various 

current systems. More details about the characteristics of these currents can be found in text 

books like Kivelson and Russell (1995).  

The purpose of this article is to assess the influence of large-scale magnetospheric current 

systems on attempts to model the core and lithospheric field. Certain approaches have been 

developed to minimise the effects of external field contributions, but these are still not 

sufficient. Unmodelled external field contributions pose presently the largest problems for 

progress in geomagnetic field modelling. This is partly due to the imperfectness of 

geomagnetic activity indices like Kp, DST or AE. For some magnetospheric and ionospheric 

current systems suitable proxies for quantifying their intensity are completely missing. Here 
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we are going to present some alternatives that may help to improve the situation. Our 

investigations are based on data from globally distributed ground magnetic observatories and 

from the satellites Ørsted, CHAMP and Swarm.  

In the sections to follow we will first present general features of the main magnetospheric 

currents and introduce proxies for quantifying them. Subsequently detailed descriptions of the 

ring current and magnetospheric tail current will follow. Special attention will be paid to 

possibilities of parameterising the near-Earth magnetic field effects of these currents. Our 

prime aim is to outline an improved approach for considering the external field contributions 

for geomagnetic field modelling. 

 

 

Fig. 1  Schematic illustration of magnetospheric current systems contributing to the near-

Earth magnetic field. The major current systems are highlighted by different colours. 

(modified after Fig.  of Kilvelson and Russell, 1995). 
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2. General features of magnetospheric currents 

For describing the activity of the various magnetospheric currents it is advisable to use 

appropriate coordinate systems. Since the solar wind is the prime driver for magnetospheric 

activity, the direction to the sun plays a central role for the geometry of the currents. 

Furthermore, the Earth’s internal magnetic field acts as the reference frame for the dynamics 

of charged particles. In situ observations of the ring current have shown that the geomagnetic 

main field (primarily its dipole terms) closely controls the latitudinal current distribution (see 

Hamilton et al. (1986) and references therein). For that reason it is good practice to present 

the magnetic effect of the ring current in Solar-Magnetic (SM) coordinates. In that system the 

z axis is aligned with the geomagnetic dipole axis, pointing northward, the y axis is 

perpendicular to the plane spanned by the dipole axis and the direction to the sun, pointing 

toward the evening side, and the x axis completes the triad, pointing towards the sun. In case 

of a symmetric ring current the magnetic effect at Earth is aligned with the SM z component. 

Since westward currents are dominating in the ring current, generally negative SM z values 

are observed.  

Currents flowing further away from Earth, in regions where the main field is weaker, are more 

closely controlled by the influence of the solar wind. Their effect is best described in 

Geocentric-Solar-Magnetospheric (GSM) coordinates. In that frame the x axis is pointing 

from the Earth to the sun, the y axis is perpendicular to the plane containing the geomagnetic 

dipole axis and the x axis, pointing towards the evening side, and the z axis completes the 

triad pointing northward. The two systems, SM and GSM, are rather closely aligned. 

Therefore magnetic contributions in these frames cannot easily be separated.  Largest angles 

between the two systems occur during solstice seasons and smallest during equinoxes. A more 

detailed introduction into these and other space physics related coordinate systems can be 

found in the Appendix of Kivelson and Russell (1995, pg. 531ff).  
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The geometry of the ring current is strongly controlled by the Earth’s main field. Therefore its 

magnetic effect at Earth generally has a spatial distribution fixed in latitude and longitude. 

Just the amplitude changes with time but not the distribution. Exceptions occur during 

magnetic storms when a partial ring current develops. Such phenomena will be discussed in 

more detail in Section 3.2. 

The situation is quite different for the effect of magneto-tail currents. The orientation and 

location of these currents is controlled by a combined action of the main field and the solar 

wind. At a fixed location on Earth the tail currents produce a time varying magnetic field 

comprising both diurnal and annual variations. The amplitudes of these variations observed in 

the three field components depend on latitude, longitude and season, with largest values 

during the solstices. Further details of the tail current effects are given in Section 4.1. 

Despite of dedicated satellite missions like Cluster, THEMIS and MMS there is still no 

continuous in situ monitoring of magnetospheric currents. Indirect quantities that can be used 

to quantify their intensity are therefore desirable. In case of the ring current the DST 

(disturbance storm time) index, introduced in the 1960s (Sugiura, 1964), is commonly used 

for this purpose. It reflects the longitudinal mean magnetic disturbance in nano Tesla [nT] at 

the dipole equator caused by the magnetospheric ring current. In practice the DST value is 

derived from four magnetic observatories at mid latitudes, separated approximately by 90° in 

longitude. More details on the techniques for actually deriving the DST index can be found in 

(Iyemori, 1990). The DST index is commonly used to quantify the intensity of a geomagnetic 

storm, the larger the negative deflections the stronger the storm. 

The situation is less favourable for the currents in the outer magnetosphere. No index exists 

that can be used to quantify their activity. It is known that the Chapman-Ferraro currents on 

the dayside magnetopause get stronger when the solar wind dynamic pressure increases. They 

generate a magnetic field that compensates the main field at locations outside the 
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magnetosphere. The more the boundary is pushed towards the Earth, the stronger this 

shielding field. Inside the magnetosphere the field of the Chapman-Ferraro currents are 

enforcing the main field. Since the shape of the dayside magnetopause is reasonably well 

known, the magnetic effect of the Chapman-Ferraro currents can be estimated quite reliably 

when the solar wind pressure is known from in situ measurements. In addition the 

interplanetary magnetic field has to be taken into account. In case of a southward component 

the size of the magnetosphere can be further reduced (e.g. Sibeck et al., 1991). All these 

effects are taken care of by present-day magnetopause models (e.g. Shue et al., 1998). 

Another relevant contribution of magnetic field comes from the magnetospheric tail current 

system. As can be seen in Figure 1, the neutral sheet current flows westward in the central 

plane of the tail. It diverts at the magnetopause; half of it is flowing over the northern tail lobe 

and the other half over the southern lobe, closing the cross-tail current loop. At times of 

magnetic reconnection between the interplanetary magnetic field (IMF) and Earth’s main 

field, additional magnetic flux is stored in the magneto-tail (e.g. Hughes, 1995). Favourable 

conditions for an enlarged tail exist when the IMF has a southward component, opposite to 

the direction of the geomagnetic field. Then closed magnetic field lines will be opened on the 

dayside through magnetic reconnection and transported tailward by the solar wind. As a 

consequence of the increased magnetic flux in the tail the neutral sheet current gets stronger 

and an enhanced southward-directed magnetic contribution is observed close to Earth. 

Unfortunately, there is presently no index available that reliably quantifies the intensity of the 

magneto-tail currents. 

Further phenomena of interest are magnetospheric substorms. Under certain conditions, after 

excessive loading, magnetic energy stored in the magneto-tail is released explosively. Part of 

the energy is convected downtail, but the other part is routed towards the Earth along 

magnetic field lines into the auroral regions. According to our present understanding, the 
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neutral sheet cross-tail current is partly disrupted and rerouted along field lines through the 

auroral ionosphere (e.g. Clauer and McPherron, 1974; Ritter and Lühr, 2008). This reduced 

cross-tail current causes an enhancement of the magnetic field at the time of substorm onset. 

The effect fades away after about two hours. Occurrences of substorms can reliably be 

detected at auroral latitudes where they make large effects. In a statistical study Ritter and 

Lühr (2008) have investigated the magnetic effect of substroms at mid and low latitudes. 

Enhancements of the northward component of more than 10 nT have been observed. But for 

substorms occurring during quiet times (Kp <= 2o), outside magnetic storms, the low and mid 

latitude effects hardly exceeds 2 nT and thus have only marginal influence on geomagnetic 

field modelling. 

 

3. The magnetospheric ring current and its representation 

The magnetospheric ring current has a “doughnut-like” shape encircling Earth near the 

equatorial plane at distances from 2 to 7 RE. Currents are carried by charged particles trapped 

by the geomagnetic field. Ions drift westward in the main part of the ring current while the 

electrons move eastward, resulting in a net westward current. During magnetic storms or 

substorms more energetic charged particles are injected and the ring current becomes stronger 

and moves closer to Earth. When the supply of particles stops, the current intensity gradually 

decays, which is termed the recovery phase of the storm. Because of the close relationship 

between storm evolution and ring current intensity, the corresponding DST index is commonly 

used as storm-time indicator. 

An electric current at several RE distance, like the ring current centred in the magnetic equator 

plane, provides at Earth a uniform magnetic field aligned with the magnetic dipole axis and 

pointing southward. Such a field appears in the magnetic field measurements of polar orbiting 
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satellites as the external q1
0 term in spherical harmonic expansions. The advantage of satellite 

measurements over the ground-based recordings is that they sense the absolute amplitude. 

Data from ground observatories track well the temporal variations, but cannot determine an 

unknown bias value (e.g. Langel et al., 1980; Langel and Estes, 1985) because of local 

(unknown) lithospheric field contributions in the vicinity of the observatory. There is always a 

ring current flowing, also during quiet times when the DST index is zero. 

In the subsequent sections we will first introduce properties of the quiet-time ring current, in 

particular its representation by indices. Thereafter we address features of the partial ring 

current that appears during magnetically disturbed periods. Different types of observations 

have so far not been able to provide a unified picture of the actual current geometry. 

 

3.1 The quiet-time ring current 

In this section we focus on the characteristics of external fields during quiet times, which is 

different from many other space science studies. Satellite data are used to check the reliability 

of the DST index or equivalent parameters. Lühr and Maus (2010) reported about systematic 

ring current measurements over 9 years with the CHAMP satellite. Only data from quiet times 

have been taken, when the magnetic activity index ap was below 15 (corresponding to Kp < 

30) and in addition the previous 3-hour interval satisfied ap < 18 (Kp < 3+). The obtained 

results therefore do not represent the average ring current activity during those years. 

Spherical harmonic analysis allows to separate, in case globally distributed observations are 

available, between magnetic field contributions originating from sources inside and outside 

the orbital altitude of the satellite. In this way we have determined the external, 

magnetospheric, field contributions in the satellite data. Experience has shown that it makes 

sense to further separate the external fields, by means of spherical harmonic analysis, into 
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their parts that are better ordered in the SM and GSM frames (e.g. Maus and Lühr, 2005). 

Magnetic data of at least one year are needed for distinguishing reliably between the average 

field contributions in the two frames. Here we focus on the SM part, which is related to the 

ring current. 

 

 

Fig. 2  Quiet-time ring current index. Annual average of the ring current field as derived by 

CHAMP (black curve). External part of DST index, EST, is shown by red curves, as annual 

averages (solid line) and 3-month averages (dashed line). 

 

Figure 2 shows the obtained CHAMP results of the SM –z component for the years from 2001 

through 2009 as black curve. During the active years of solar cycle 23, up to 2005, annual 

averages beyond 15 nT are reached. Thereafter values gradually decline approaching 2 nT in 

2009. This solar cycle dependence is present although only quiet intervals (according to Kp) 

have been considered. Obviously, intervals between magnetically active periods are too short 

during solar maximum years for the ring current to fully decay. 
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These satellite-based results cannot be compared directly with DST values. The ground-based 

magnetic field measurements used to derive DST are the sum of the external part, caused by 

the magnetospheric currents and the internal part from the corresponding induction effect. 

Maus and Weidelt (2004) and Olsen et al. (2005) have proposed an approach for decomposing 

Dst = Est + Ist into its external part EST and the internal part IST, caused by ground induced 

currents, with 

  Ist(t) = Q Est(t)   (1) 

The factor Q is determined from radially symmetric profiles of electrical conductivity in the 

Earth’s mantle. A typical value is Q=0.28; for a more realistic mantle profile with non-zero 

but finite conductivity the multiplication of (1) has to be replaced by a convolution. 

Nowadays the decomposition of DST into EST and IST is done routinely and the two parts are 

considered separately in geomagnetic field modelling. When correcting the field components 

X, Y, Z (northward, eastward, downward, respectively) of an observatory for the ring current 

effect, EST and IST are to be used 

  X’ = X – Est cos(ß) – Ist cos(ß)  (2) 

  Z’ = Z – Est sin(ß) + 2 Ist sin(ß)  (3) 

where X’ and Z’ are the corrected northward and downward components, respectively, ß is the 

dipole latitude of the observatory. The Y component generally does not need correction. 

For our comparison of the DST index with the CHAMP SM annual averages we have to 

consider only the EST values. Seasonal and annual averages of EST have been calculated by 

using the same selection criteria as for CHAMP data. The evolution of EST is plotted in Figure 

2 as red lines. The dashed red line reflects clearly the seasonal variation of magnetic activity. 

Minima appear commonly around June solstice and maxima are observed during equinox 
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and/or December solstice months. The June solstice depression is a well-known characteristic 

of the upper atmosphere clearly visible in air density, electron density and also magnetic 

activity. The annual averages of EST (solid red line) follow to some extent the activity level of 

the solar cycle, but the differences to the CHAMP SM results are substantial, reaching values 

up to 10 nT during the active phase of the solar cycle. Differences become smaller around the 

minimum phase. It is interesting to note that all these activity-dependent features are visible in 

the averages although only values from quiet times (Kp < 3) have been considered.  

These obvious deficits of the DST index have initiated activities for an improved 

representation of the ring current activity. An alternative ring current index, called RC, is 

derived from 21 globally distributed magnetic observatories at mid and low latitudes (not at 

the magnetic equator, to avoid contributions from the equatorial electrojet). As described by 

Olsen et al. (2014), a core field magnetic model, like CHAOS-4, is subtracted from the 

ground observatory hourly mean values. Remaining crustal magnetic field biases are 

determined and subsequently removed individually for each station. The crustal bias is a 

constant value, the arithmetic mean of quiet-time (Kp < 2+) night values over the whole time 

span (> 10 years) is in consideration. A spherical harmonic analysis is applied to the residuals 

of the magnetic northward components from the considered observatories. For this hour-by-

hour analysis only stations in darkness (18 – 06 LT) are given account, and their location is 

taken in dipole coordinates. The RC index is derived from the central external dipole term 

(e.g. –q1
0) of the analysis. It is thus compatible with the (external part of the) DST index as the 

southward deflection of the magnetic field at the geomagnetic equator. 

According to the arguments made above, also RC has to be separated into the external and 

internal parts, ERC and IRC, respectively. For the comparison with CHAMP SM annual 

averages only ERC is of interest. 
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It should be noted that there are also other attempt for representing external field 

contributions, e.g. by the VMD index, specifically designed for main field modelling 

(Thompson and Lesur, 2007). 

 

Fig. 4 (black curve) Annual averages of CHAMP SM values (same as Fig. 3). (red curve) 

External part of RC index, ERC, also annual averages. The red curve has been offset by 9.1 

nT for best fitting the CHAMP values. 

 

Figure 4 shows the quiet-time ring current effect, independently determined from ground 

stations and from CHAMP over 9 years. We find an almost perfect match between the two 

sets of annual averages. There is just a constant bias of 9.1 nT by which the ERC value has to 

be made more negative (accounting for the unknown constant bias of RC) to properly reflect 

the ring current activity. By comparing Figures 3 and 4 we can seen that satellites can track 

the quiet-time ring current effect very well. Furthermore, the RC index is much more 

consistent with the results derived by CHAMP than the DST index. For the geomagnetic field 

modelling the ring current effect has to be estimated hour by hour. This can best be achieved 

by ground-based observations. Our results suggest that the RC index is a suitable parameter 

for providing that information. For completeness it should be mentioned that satellite-derived 



 14 

main field models have been used for determining the baselines of the observatory readings. 

By this procedure a certain amount of signal feed-through may have helped to get the good fit 

between the ERC and the CHAMP-SM in Figure 4. 

 

3.2 The asymmetric ring current 

According to the standard procedure, the DST value represents the longitudinal average of the 

northward magnetic disturbance at low latitudes. This assumes that the ring current is an 

azimuthally symmetric current. However, it is known since long (e.g. Akasofu and Chapman, 

1964) that magnetic deflections are stronger in certain local time sectors during storm times 

than in others. This effect has been termed the asymmetric ring current. As DST is not capable 

of reflecting the asymmetry, additional indices have been developed by the University of 

Kyoto’s World Data Center, such as ASY-H and ASY-D (Iyemori, 1990) that reflect the 

maximum longitudinal differences in the northward and eastward components, respectively. 

So far these have not been endorsed by IAGA. 

An alternative way to measuring the magnetic effect of the ring current by ground stations can 

be provided by LEO satellites on near-equatorial orbits. They provide a full longitudinal scan 

on every orbit (~95 min). An example for that is the US Air Force satellite C/NOFS (de La 

Beaujardière, et al., 2004), which was launched in April 2008 and re-entered in November 

2015. With its orbital inclination of only 13° it stays within a latitudinal distance of ±24° from 

the geomagnetic equator. This is a favourable orbit for detecting magnetic effects of the ring 

current. As part of its space science instrument suit C/NOFS carried also a vector 

magnetometer. Magnetometer data have been calibrated with respect to high-quality 

geomagnetic field models, POMME-6 in the beginning and POMME-8 for later years, mainly 

based on CHAMP data. Magnetic field readings from C/NOFS of the years from 2008 
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through 2010 have been considered by Le et al. (2011) to study the ring current evolution 

during storms. For isolating the ring current effect first the core and crustal fields as given by 

the models POMME-6 and MF7, respectively, are removed from the satellite magnetic field 

readings. The residuals are transformed into the SM system and only the SM z component is 

used where the major effect is expected. Close to the magnetic equator the equatorial 

electrojet (EEJ) may also contribute to a negative magnetic deflections by about 10 nT around 

local noon.  

Examples of direct comparison between C/NOFS observations and DST values are presented 

in Figure 5 for the storm on 22 July 2009. The top panel presents the evolution of the 

moderate storm with a peak DST value of only -80 nT. It starts early on 22 July, and the main 

phase lasts for about 4 hours. At representative epochs, marked by numbered vertical lines, 

the ring current effects are determined. In the lower part C/NOFS results, CST, for these 

epochs are shown as black line in a dial plot as the satellite scans through all local times over 

one orbit. For a better visualisation the readings are offset by 100 nT. The plotted values are 

thus  

CST  = -zSM + 100nT. 

For quantifying the C/NOFS results a red circle is fitted to the CST values sampled over an 

orbit. Parameters derived from this fit are the radius and the position of centre in terms of both 

its offset and local time. The offset quantifies the longitudinal asymmetry of the ring current, 

and the local time marks the sector of largest enhancement. In order to reduce the influence of 

the EEJ we omitted readings in the circle fit when their magnetic latitude is within ±5° MLat 

and their local time is within the sector 08 – 16 LT. Accordingly the corresponding DST value 

is plotted as blue symmetrical ring also offset by -100 nT. The bias prevents a collapse of all 

data in the centre for small values and allows to present positive-field ring current effects.  
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Fig. 5  Comparison of the magnetic ring current effect measurements by C/NOFS (zSM) near 

the equatorial plane (black curve) with DST values (blue circle) during 4 days around a 

magnetic storm. Red circles are fits to C/NOFS observations and red dots mark their centres. 

Dashed circles are the reference for DST = 0 (after Fig. 3 of Le et al., 2011). 

 

Figure 5 covers 5 days of DST evolution around the magnetic storm. Several hours before the 

onset there is a quiet magnetic field (upper left dial). C/NOFS observes a nicely circular and 

centred field distribution. Only one hour into the main phase (upper middle dial) the magnetic 

effect increases predominantly around the evening sector. As a consequence the centre of 

fitted circle is displaced by about 30 nT towards the 18 LT sector. By that time DST starts to 
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underestimate the disturbance. Two hours later (upper right dial), the storm has further 

intensified and C/NOFS records an even stronger asymmetry of more than 50 nT, now shifted 

somewhat to later evening. DST clearly underestimates the mean disturbance level and by 

definition cannot reflect the asymmetry. About an hour after completion of main phase 

(bottom left dial) C/NOFS finds again a well-centred deflection pattern at all longitudes, and 

DST agrees reasonably well with C/NOFS recordings. This fair match between satellite 

observation and index of the symmetric ring current distribution continues through the 

recovery phase of the storm (bottom middle and right dials).  

This one example indicates that generally the ring current effect is evenly distributed through 

all longitudes (local times), and the representation by a single number like DST is justified. 

However, during the main phase of a magnetic storm a significantly asymmetric magnetic 

deflection is found around the globe, and DST typically underestimates the peak deflection. Le 

et al. (2011) studied four individual storms and confirmed similar ring current features in all 

the cases. In order to check the general validity of the statements on asymmetry we 

considered a large numbers of C/NOFS orbits independent of magnetic activity covering the 

years from 2009 through 2013. For each orbit a circle was fitted to the C/NOFS readings and 

the centre point was determined. Figure 6 shows the positions of centre points in a dial plot. 

Results are sorted into four classes of magnetic activity, Kp: 0-2, 2-4, 4-6, >6. Individual 

centres are marked by black dots and a red dot represents the median position.  
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Fig. 6  Dependence of ring current asymmetry on magnetic activity. The centres of fitted 

circles shift progressively towards the dusk sector with increasing activity. 

The black dots scatter quite a bit, but that is mainly due, in particular for quiet periods, to a 

degrading calibration of the C/NOFS magnetometer after the end of the CHAMP mission, 

September 2010. From the median values listed in the dials we can see that well-centred 

circles result during quiet periods. There is clear evidence for a shift of the centre towards the 

evening sector at higher magnetic activity and the amount of displacement progressively 

increases with the disturbance level. Already at moderate activity (Kp ~ 5) the centre is 

shifted by more than 17 nT. Although no super storms (DST < -300 nT) occurred during the 

considered 4 years, large asymmetries between dawn and dusk deflections of more than 75 nT 

are observed during active periods. 

Similar results concerning the asymmetry of the ring current effect have been derived from 

ground-based observations. Newell and Gjerloev  (2012) made use of a large number of 
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magnetometers from the SuperMAG data repository. A total of 98 geomagnetic stations are 

used to derive the SuperMAG ring current index, SMR. It is a quantity comparable to DST or 

SYM-H but provides local time resolution from four sectors (SMR-00, SMR-06, SMR-12, 

SMR-18). For studying the typical magnetic storm evolution all storms during the years 1997-

2007 which exceeded DST = -80 nT were considered. By means of a superposed epoch 

analysis the authors determined the average evolution of the SMR indices in the four local 

time sectors, using the start of main phase (decrease of field strength) as key time (t = 0). 

Figure 7 shows the average curves of storm-time signals at low latitudes for the four indices 

centred at the magnetic local time (MLT) sectors 00 MLT, 06 MLT, 12 MLT, and 18 MLT. 

All four indices exhibit a southward deflection after onset but with different slopes. About 10 

hours into the storm minima are reached. Largest field depressions are found within the 18 

MLT sector and smallest around 06 MLT. The difference in peak amplitude between dawn 

and dusk amounts to about 30 nT. For the noon and midnight sectors comparable excursions 

are observed. During the recovery phase the four curves converge again.  

All these results are fully compatible with the C/NOFS observations reported by Le et al. 

(2011). The difference in peak deflection between SMR-06 and SMR-18 of 30 nT 

corresponds to a shift of circle centre by 15 nT. When looking at Figure 6 we see that 

C/NOFS finds significantly larger shifts for high magnetic activity. This is probably due to the 

individual interpretation of every orbit as compared to the averaging of time series from many 

storms. The duration of storms can vary largely from case to case, and the applied averaging 

heavily reduces peak values. We thus may conclude that the typical storm-time asymmetry is 

clearly larger than deduced from the averaged SMR evolution presented here.  The 

comparison between satellite and ground-based observations allows for another conclusion. 

Since the data from above and below the ionosphere show the same asymmetry of ring current 

effect, ionospheric currents cannot be the cause for the dusk sector intensifications during 

storms. Responsible currents have to flow above the C/NOFS orbit (>850 km).  
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Fig. 7  Average evolution of the storm-time magnetic signal at middle latitudes separately for 

four different magnetic local time sectors. A superposed epoch analysis has been applied, 

using the start of main phase as key time (t=0). (after Fig. 7 from Newell and Gjerloev, 2012) 

 

Near-Earth observations may suggest that during the storm main phase an additional partial 

ring current is forming in the evening sector. It would be desirable to prove this inference by 

direct measurements in the magnetosphere. New opportunities for in situ observation of the 

ring current arose with the advent of the Cluster constellation mission. This fleet of four 

satellites enables during perigee passes direct measurements of current density in the ring 

current area. Zhang et al. (2011) derived current density estimates for all local times. They 

considered Cluster observations from the periods 18 March to 14 June 2002 and 14 July 2003 

to 27 April 2004. As can be seen in Figure 8, largest current densities are found in the sector 

06 to 09 MLT, while small current densities are observed around 18 MLT. This finding seems 

to be in stark contrast to our expectations from magnetic effects observed at LEO and on 

ground. However, when interpreting the Cluster current density estimates one has to take into 
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account that not the whole volume of the ring current region has been sampled by the Cluster 

constellation but just individual north-south passes are evaluated. The total current 

distribution may well be different from the derived local current density. Both, the radial 

current density profile, as well as the north-south extent of the current carrying volume may 

vary with local time. Further studies are needed focussing more on the total current intensity 

in the different sectors rather than the current density profiles along satellite tracks. Such 

results should be more significant for comparisons with ground-based magnetic field 

observations.  

In a comprehensive study of the ring current Le et al. (2004) used data of the spacecraft ISEE, 

AMPTE/CCE and Polar for deriving statistical results on the longitudinal distribution of 

currents. As the main conclusion the authors claim that a significant fraction of the ring 

current is partial, flowing only within a limited longitudinal region and must be diverted out 

of the equatorial region as FACs to close in the ionosphere. During quiet times the azimuthal 

current strength is highest on the nightside and lowest on the dayside. With increasing activity 

the intense current moves towards the duskside. The ring current distribution deduced from 

their in situ magnetic field data indicate that the current intensity varies strongly through 

longitude sectors, and only 20% can be regarded as symmetric under moderate storm 

conditions.  
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Fig. 8  Local time distribution of in situ Cluster ring current density measurements. (after Fig. 

4 of Zhang et al., 2011) 

 

Another technique of indirect ring current intensity estimation is counting the energetic 

neutral atoms originating from the ring current region. An instrument that can provide this 

information, the Energetic Neutral Analyser (ENA), has been flown on the IMAGE satellite. 

Some energetic ions (mainly Hydrogen or Oxygen) suffer charge exchanges with neutral 

Hydrogen atoms in the magnetosphere. After the colliding ion has gained an electron from the 

neutral, it can fly over large distances along a straight line, at a velocity according to its initial 

energy, because it is unaffected by the ambient magnetic and electric fields, and collisions are 

very rare in the outer magnetosphere. From the direction of arrival one can deduce the source 

region of the particle. The flux of emitted neutral particles is proportional to the density of 

ions in the source region. Since the energy is largely conserved through the process of charge 

exchange, also the energy spectrum of particles within the source region can be recovered.  
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According to the well-known Dessler-Parker-Sckopke relation the total current is proportional 

to the total energy stored in the ring current (Dessler and Parker, 1959; Sckopke , 1966). ENA 

instruments are able to obtain a complete picture of the energetic particle distribution in the 

ring current at all longitudes and radial distances. Initial results of the ENA instrument on 

board IMAGE have been published by C:son Brandt et al. (2002). Figure 9 shows one 

example of ENA measurements during a magnetic storm on 4 October 2000. At the time of 

energetic neutrals recording, 18:00 UT, the activity had reached DST = -140 nT. In the energy 

range around 30 keV, where most of the ring current particles can be found, highest fluxes 

come from the local time sector 00 to 06 MLT and a radial distance between 3 and 5 RE. A 

rather similar distribution can be found for the higher energetic particle. The authors have 

investigated 17 more events in the time frame 2000-2002 and found peak ENA counts in the 

post-midnight sector practically in all cases. The higher density of energetic ions in the post-

midnight/morning sector suggest a stronger ring current in that region, which is similar to the 

in situ current measurements of Cluster. However, near-Earth observations suggest a 

somewhat different local time distribution of the current intensity. This apparent 

incompatibility may be explained by additional currents like field-aligned and/or 

magnetopause currents that cause the enhanced magnetic deflections in the dusk sector during 

storm main phases (see Haaland et al., 201 ). More coordinated space – ground studies are 

needed for obtaining a more realistic picture of the magnetospheric current geometry during 

storms. Although only quiet periods are considered for main field modelling, the actual 

“partial ring current” configuration can have on average a non-negligible influence on the 

results that may vary with season and/or solar cycle if not considered properly. 
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Fig. 9  Energetic Neutral Atom image of the ring current region during a storm on 4 October 

2000. Highest fluxes of energetic particles emerge from the sector 00 to 06 local time (after 

Fig.1 of C:son Brandt et al., 2002). 

 

3.3 Résumé of ring current magnetic field effect 

The storm time index DST is widely used to characterise the strength of a magnetic storm. 

Commonly its value is related to the intensity of the magnetospheric ring current. In spite of 

its usefulness in general we have outlined some of the weaknesses of this index, in particular 

when it comes to quantifying the ring current effect during low activity periods, which are of 

interest for magnetic field modelling efforts. A major problem seems to be the reliable 

determination of quiet-time base lines for the magnetic observatories contributing to DST. A 

certain amount of ring current is always flowing even during quiet times. This basic level of 

field contribution is difficult to derive from ground-based observations, but can be determined 

from satellite recordings on polar orbits. We have found that the DST values commonly 

underestimate the quiet-time ring current effect. Around solar maximum years the deficit 

amounts on average to about 10 nT, which may already be of interest for space science 

studies. The difference almost disappears at very low solar activity. In detail, however, the 
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differences are quite variable. Here we have presented an alternative, the RC index, based on 

a more sophisticate approach for deriving a reliable representation the magnetospheric ring 

current effect.  

A topic, relevant at least during magnetic storms, is the longitudinal asymmetry of the ring 

current intensity. It is known since long that the magnetic field depression during a storm is 

strongest in the local time sector around 18 LT. This has commonly been associated with the 

formation of a partial ring current that enhances the total current in a certain sector. However, 

recent in situ current density measurements by Cluster sense weak currents in the evening 

sector and peak current densities around early morning. A similar result is inferred from 

energetic neutral atom measurements that confirm highest fluxes of energetic ions in the post-

midnight/early morning sector. In contrast, Le et al. (2004) deduce from field measurements 

in the magnetosphere a ring current distribution more similar to the ground-based results. 

More dedicated studies are needed for reconciling the apparent incompatibilities between 

ground-based and in situ measurements.  

 

4. Characteristics of magnetospheric tail current  

On the nightside the magnetosphere is pulled out by the solar wind into a long tail, extending 

several 100 RE into space. Particular current systems are responsible for the shape of the 

magnetospheric tail (see Fig. 1). At a certain distance down-tail of about 10 RE the 

magnetosphere has the shape of a tube, opening up with a flaring angle of typically 5° at 30 

RE. The main tail current configuration is schematically shown in Figure 10. The cross-tail 

current (also called neutral sheet current) is flowing at about the centre of the tail from the 

morning to the evening side. At the dusk side magnetopause the current is diverting, flowing 

over the northern and southern lobes back to the dawn side. These two current loops generate 
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rather homogeneous magnetic fields, which point towards the Earth in the northern lobe and 

away from the Earth in the southern lobe. At the position of Earth the resulting magnetic field 

points southward, perpendicular to the cross-tail plane. In Figure 10 red arrows indicate 

magnetic field directions. The sizes of the tail and Earth on that figure are approximately to 

scale. The small size of Earth compared to the tail dimensions implies that no significant 

differences can be expected between magnetic effects on the day and nightside. We thus may 

assume a homogenous field distribution caused by the tail currents. 

The orientation of the tail axis is closely controlled by the direction of the solar wind. 

Therefore it is on average aligned with the Sun-Earth line plus a small aberration angle of 4.3° 

caused by the orbital speed around the sun. About this line the tail can easily be rotated. For 

that reason it follows the tilt of the geomagnetic dipole axis in the plane perpendicular to the 

Sun-Earth line. As a consequence of that behaviour near-Earth magnetic effects of magneto-

tail currents can efficiently be described in GSM coordinates. They are primarily confined to 

the -z component. There is some additional effect of the IMF By component that is twisting 

the tail about its axis (e.g. Cowley, 1981; Tsyganenko and Fairfield, 2004). This causes also 

magnetic field deflections at Earth in the y component. 
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Fig. 10  Schematic drawing of the magneto-tail current configuration. The Earth is drawn at a 

distance of 15 RE. Red arrows represent the generated magnetic field directions. (modified 

after Olsen, 1982) 

 

4.1 Magnetic effect of the magneto-tail 

In the past there have been attempts to estimate the near-Earth magnetic effect of magneto-tail 

currents as part of geomagnetic field modelling efforts. Maus and Lühr (2005) were the first 

to derive from Ørsted and CHAMP data magnetic field contributions in GSM coordinates 

which were related to magneto-tail currents. They report for the maximum years of solar cycle 

23 an average stable value of -12.9 nT well aligned with the GSM z component. In addition 

they confirmed a weak dependence of GSM y on the IMF By component (y = 0.23 By). Such 

a leakage of the IMF into near-Earth space has earlier been noted by Lesur et al. (2005) and is 

due to the twisting of the magneto-tail (e.g. Tsyganenko and Fairfield, 2004). Nowadays it is 

common practice in geomagnetic field modelling to separate the external field contributions 

into their SM and GSM parts (e.g. Olsen et al., 2005, 2014; Lühr and Maus, 2010; Alken et 

al., 2015). However, there is still some uncertainty about the amplitude of the tail current 

effect. Quiet-time values ranging from 8 to 13 nT are quoted in the different studies. A more 

reliable determination of that quantity would be desirable. 

The Earth performs periodic motions (rotation and seasonal tilt of spin axis) relative to the 

stable GSM field from the magneto-tail currents. At a fixed point on Earth surface the tail 

field causes diurnal and annual variations. Maus and Lühr (2005) had already compared the 

expected annual variations of about ±5 nT caused by the tail currents with the annual baseline 

variations recorded at five observatories. They found a good agreement in all cases. Here we 

try to give a more general picture of the apparent field variations. 
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Fig. 11 Diurnal variation caused by the magnetic effect of the magneto-tail currents. The left 

column shows for the different latitudes the deflections of horizontal components at June 

solstice and the right column at December solstice. The presented results are valid for the 

Greenwich meridian.  

Figure 11 shows the global distribution of expected diurnal variation caused by tail currents 

according to the CHAOS-5 geomagnetic field model (Finlay et al, 2015). In that model only 

the dominant external dipole term in GSM coordinates is of importance. Plotted are the 

deflections of the northward (top) and eastward (bottom) components. June and December 

solstice days have been chosen because largest diurnal variations occur during these days. We 

have selected, as example, a profile along the Greenwich meridian. Here the UT and LT times 
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are identical. At other longitudes the latitude dependence is somewhat different. Quite large 

variations appear at northern mid latitudes. In the eastward component the diurnal deflection 

amounts to ±8 nT, and it is somewhat smaller in the northward component. It is interesting to 

note that the presented variations of both components at northern mid latitudes are in phase 

with the typical Sq variations during June solstice, but in anti-phase around December solstice 

(e.g. Yamazaki et al., 2016, this issue). That means, the effect of the magneto-tail currents 

reaches 10% to 20% of the Sq amplitude during solstice seasons. When estimating Sq-related 

ionospheric currents from magnetic observatory data the influence of tail currents should first 

be removed. 

 

 

Fig. 12  Annual variation caused by the magnetic effect of the magneto-tail currents. The left 

frame shows for the different latitudes the deflections of the northward components at 

midnight and the right frame for the eastward component at 06 local time. The presented 

results are valid for the Greenwich meridian. 

There is also an annual variation caused by the magneto-tail currents. For quiet night times we 

can find, according to the CHAOS-5 model, variations in the northward component over the 

course of a year of up to 10 nT peak-to-peak at mid latitudes. In the eastward component 
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largest annual variations appear during the morning hours. Therefore the distribution at 06 

local time has been presented in the right frame of Figure 12. In the northern hemisphere 

deflections are exceeding ±6 nT. These so-called annual variations of the baselines are known 

for quite some time (e.g. Campbell, 1984) but could not be explained correctly in those years. 

 

4.2 Parameterisation of the magneto-tail current effect 

For a proper isolation of the magneto-tail current effect in geomagnetic field modelling 

approaches it would be desirable to have a quantity that can be used as a proxy for the current 

strength. Since such an index is not available, we may try an indirect method for quantifying 

the tail current effect. In the Earth’s magnetosphere, at altitudes above about 1000 km, 

collisions between particles occur rather seldom. Under these conditions the electric 

conductivity may become very large, and a good approximation for the dynamics of such a 

plasma is offered by the frozen-flux theorem. This means, the amount of magnetic flux does 

not change along field lines. We can make use of this characteristic for quantifying the 

magnetic field strength in the magneto-tail. At high latitudes the auroral oval forms. Closed 

magnetic field lines reaching into the magnetosphere thread this region. The region poleward 

of the auroral oval is called the polar cap. Magnetic field lines origination from the polar cap 

are regarded ‘open’. They are connected on one side to the Earth and on the other end to the 

solar wind. All field lines from the northern polar cap enter the northern magneto-tail lobe and 

those from the southern polar cap lead through the southern lobe. According to the frozen-flux 

theorem the magnetic flux integrated over the area of each of the two polar caps should be 

equal to the magnetic flux threading the corresponding lobes of the tail. In case of a spherical 

polar cap the magnetic flux, ΦPC, can be calculated as 

  ΦPC = π (RE sin θPC)2 BPC   (7) 
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where θPC is the magnetic co-latitude of the polar cap boundary and BPC is the mean magnetic 

field strength within the polar cap. Equivalently, the magnetic flux within a tail lobe, Φtail, can 

be expressed as 

  Φtail = ½ π R2
tail Btail    (8) 

where Rtail is the radius of the magneto-tail with a typical value of 20 RE and Btail is the mean 

field strength within the tail lobes. By equating (7) and (8) we can solve for the field strength 

in the tail lobes. 

  Btail = 2 ΦPC / (π R2
tail)   (9) 

If we know the polar cap boundary, we can estimate the field in the magneto-tail and with that 

the expected magnetic effect at Earth. A typical value for the colatitude is θPC = 15° and the 

mean field strength is around 55,000 nT. With these numbers we obtain an open magnetic 

flux during normal days of ΦPC = 486·106 Vs. With the help of Eq. (9) we can get a value for 

the magnetic field in the tail lobes, Btail = 19 nT. In situ observations, e.g. from Cluster, 

confirm that 20 nT is a typical field strength observed in the tail lobes. For more details of the 

polar cap to magneto-tail relation see Hughes (1995). 

The simple geometry magneto-tail currents, as shown in Figure 10, allows to estimate the 

magnetic effect at Earth. For a circularly shaped magnetopause and a cross-tail current in the 

middle, which splits up evenly on the dusk side into return currents over the northern and 

southern lobes, an analytic expression can be given. This current configuration is assumed to 

start at a distance of 10 RE from Earth and extends into infinity (any part beyond 100 RE has 

no significant impact). For this symmetric configuration we get at Earth only a contribution 

along the GSM z component, which can be calculated as 

 𝐵𝑧 = − 𝜇0 𝐽2𝜋 𝑙𝑛 𝑅𝑡𝑎𝑖𝑙 +√𝑟02+𝑅𝑡𝑎𝑖𝑙2𝑟0                         (10) 
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where J is the current density of the neutral sheet cross-tail current and r0 = 10 RE is the 

distance to Earth. When considering a tail field of 20 nT we can estimate the sheet current 

density within the cross-tail neutral sheet (2Btail = μ0 J, effects of the currents in the two lobes 

largely compensate). With the resulting J = 32 mA/m we get a magnetic effect of Bz = -9.2 nT 

at Earth.  

It is known that the size of the magnetospheric tail and the intensity of the cross-tail current 

increases with magnetic activity. During times of southward IMF magnetic flux is opened on 

the dayside and added to the tail. It would be desirable to have a parameter that can be used to 

track the change of magnetic flux in the tail. Here we propose to use the magnetic flux of the 

polar cap for this purpose. Recently there has been an empirical model of the auroral oval, 

termed CH-Aurora-2014, introduced by Xiong and Lühr (2014), in which the poleward and 

equatorward boundaries of the oval are derived from the latitude distribution of small-scale 

field-aligned currents. The intensity profile of small-scale FACs is deduced from CHAMP or 

Swarm satellite magnetic field observations. With the help of a correlation analysis we 

identified the solar wind to magnetosphere coupling function defined by Newell et al. (2007), 

subsequently termed merging electric field, Em, as the most suitable quantity controlling the 

position of auroral oval boundaries. The field line merging efficiency at the dayside 

magnetopause closely controls this coupling function. More details on the determination of 

the boundaries can be found in Xiong et al. (2014). Figure 13 shows examples of average 

auroral oval distributions for three magnetic activity levels.  
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Fig. 13  Magnetic latitude and local time distribution of the auroral oval for three different 

magnetic activity levels (reproduced from Fig. 7 of Xiong et al. (2014)). 

 

In order to be able to make predictions of the tail field effect at Earth we first have to calibrate 

the functional relation between estimated polar cap magnetic flux and the observed magnetic 

field in GSM coordinates. For this purpose we used observations from the CHAMP mission 

during the years from 2000 to 2010. Data over at least one year are needed for separating 

sufficiently well the closely aligned contributions of the ring current (in SM) from that of the 

tail current (in GSM). The CHAMP dataset has been divided into six activity classes 

determined by periods of prevailing merging electric fields (Em) centred at (0.5, 1.5, 2.7, 4.2, 

6.0, 9.7 mV/m). For obtaining the external field contributions we first subtracted the CHAOS-

4 core and crustal field model (Olsen et al., 2014) from the CHAMP magnetic field data. Then 

the residuals of the six activity classes were interpreted separately. To each class of residuals 

we applied a spherical harmonic analysis, where the expected ring current activity in SM 

frame was parameterised by the RC index, as described in section 3.1. For improving the fit 

between the CHAMP-derived SM values and the ground observations we allowed for a 

scaling factor applied to the RC index and an additive bias term constant for all six activity 
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classes. Of particular interest here are the derived external contributions in GSM frame. For 

each of the classes we obtained a value well aligned with the GSM –z direction. 

 

 

 

Fig. 14  Increase of the polar cap magnetic flux with growing merging electric field, Em. 

 

The other quantity of interest is the magnetic flux confined to the polar cap. With the help of 

the CH-Auroral-2014 model (Xiong and Lühr, 2014) we can compute the open magnetic flux 

for any merging electric field value. Figure 14 shows the increase in polar cap magnetic flux 

with growing Em values. As can be seen in the figure, the magnetic flux starts to saturate for 

Em values larger than 4 mV/m. There are obviously active processes that slow down field line 

merging and adding of more magnetic flux to the magneto-tail when the merging electric field 

exceeds a certain value. 

Of particular interest for this study is the relation between open magnetic flux and magnetic 

field effect from the tail currents. Results obtained from our six activity classes are shown in 
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Figure 15. As can be seen there exists an excellent linear relationship between these two 

quantities. This result is very convincing because both quantities have been derived fully 

independently. From Figure 14 we know that the magnetic flux goes into saturation for large 

merging electric fields. The same behaviour is obviously true for the neutral sheet current in 

the tail. In any case, the strict linear relation confirms the theoretically inferred connection 

between polar cap size and open flux in the magnetospheric tail. 

 

 

Fig. 15  Ratio between polar cap magnetic flux and the magnetic effect of tail currents at 

Earth observed in the GSM -Bz component. The linear dependence confirms the theoretically 

expected relation between the two quantities. 

 

The regression function, listed in the top of Figure 15, provides us in principle with a formula 

for estimating the magnetic contribution from the magneto-tail. Somewhat surprising is the 

rather large bias value of 6.7 nT in the equation. This would mean, even if the polar cap size 

approaches zero, there is still an appreciable magnetic disturbance from the magneto-tail, 

which makes no sense. There are a number of reasons that may cause this artefact. For low 
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magnetic activity our estimate of the magneto-tail effect is about 12 nT. There have been 

earlier publications quoting 8 to 9 nT for the quiet-time tail effect (e.g. Olsen et al., 2005; 

Lühr and Maus, 2010). Also our first-order estimate of the magneto-tail current effect, 

presented above, gives 9 nT at Earth. This would bring down the bias to below 3.5 nT. It is 

notoriously difficult to distinguish properly with the spherical harmonic analysis between the 

quiet-time contributions from the ring current and the tail currents. Therefore an interchange 

of a few nT between the two frames can easily occur. Luckily, such an exchange between the 

SM and GSM bias values has no significant effect on the quality of the geomagnetic field 

models. Another contribution to the field bias could result from the estimated amount of open 

flux. From a comparison of the CH-Arora-2014 model with ultraviolet images taken by the 

IMAGE satellite Xiong and Lühr (2014) deduced that the CHAMP model underestimates the 

diameter of the polar cap on average by 0.5°. Taking this into account reduces the apparent 

bias in the relation by another 1.5 nT. Because of the excellent linear relation between the two 

independently estimated quantities, open flux and magneto-tail field effect, we regard the 

obtained linear slope as reliable. Considering all these arguments we suggest to use the CH-

Aurora-2014 model for estimating the magnetic flux, Φ, within the northern polar cap and 

predict the magneto-tail effect at Earth in GSM coordinates by the function  

Bz = -(17.15 Φ [GWb] + 3.5 [nT])  (11) 

The resulting magnetic fields (in nT) can be used in geomagnetic field modelling approaches 

for parameterising the contributions from the magnetospheric tail currents. 
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Fig. 16  Examples for the magneto-tail current and ring current effects at Earth. Here the days 

around the St. Patrick’s Day storm have been chosen. 

 

Figure 16 shows an example for the magnetic field contributions from tail and ring currents. It 

is quite evident how different the characters of these two contributions are. The effect of the 

ring current is much larger. Changes take place on longer time scales. At quiet times this 

effect reduces to small values. Due to its large dynamics the ring current effect has to be 

considered carefully when separating the different field contributions. In contrast, the 

magnetospheric tail currents are recovering generally much faster, on the order of few hours, 

to quiet-time configuration, but there occur also sudden increases. The St. Patrick’s Day storm 

is somewhat special in that respect since the magnetic activity remained elevated for several 

days after the main phase. Another feature of the magneto-tail effect, the range of variations 

seem to stay within 5 nT while the basic level of magnetic field at Earth is about twice as 

large. For a proper consideration of the contribution from the magneto-tail it is advisable to 

take into account the estimated field strength in the GSM z component in geomagnetic 

modelling efforts. 
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4.3 Résumé of magneto-tail current field effects 

The magnetospheric tail is an important electrodynamic region of near-Earth space. Its shape 

is formed by the balance between solar wind kinetic pressure on the outside and the magnetic 

pressure on the inside. For that reason its orientation is well aligned with the solar wind flow. 

During times of southward IMF new magnetic flux is opened on the dayside magnetopause 

and added to the tail. Eventually the flux piled-up in the tail reconnects and offloads energy 

and momentum within the substorm process. All the currents accompanying these processes 

and shape reconfigurations generate magnetic fields observable at Earth. For high-resolution 

geomagnetic field modelling a proper consideration of the field contributions from the tail is 

essential. In recent years it has been found that magnetic fields from the tail, of order 10 nT, 

are well organized in GSM coordinates as compared to the ring current effects in SM frame.  

Unfortunately there exists no index that quantifies the intensity of tail currents. Here we 

introduce a possible proxy for that purpose. The amount of open flux in the polar cap is 

assumed to be equal to the magnetic flux in a tail lobe. Based on field-aligned current 

distributions a model of the auroral oval boundaries has been developed from CHAMP and 

Swarm observations. This model (CH-Aurora-2014) allows to predict the actual position of 

the polar cap boundary. With the help of that the open flux in the two hemispheres can be 

calculated. For checking the validity of the inferred relation between tail magnetic flux and 

near-Earth magnetic effect we performed a statistical analysis over many years comparing the 

two quantities for different levels of activity. The excellent linear relation resulting from our 

calibration confirms that the estimated polar cap open flux can be used to represent the 
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temporal evolution of the magneto-tail current effect. Future applications may demonstrate 

the suitability of this proxy for geomagnetic field modelling. 

 

5. Summary and outlook 

In this article we reviewed features of large-scale magnetospheric currents. We have not 

focused on the details of physical processes responsible for their existence. Rather we try to 

interpret the magnetic signatures they cause near-Earth. Dedicated magnetic field survey 

missions like Ørsted, CHAMP and now Swarm have provided deeper insight into the various 

contributions to the geomagnetic field. Conversely, higher demands arise from these accurate 

data for a proper separation between the source terms.  

Important contributions to the geomagnetic field come from the magnetospheric ring current. 

It weakens the main field during times of enhanced magnetic activity. Traditionally the 

intensity of the ring current is represented by the storm-time, DST index. However, our 

analysis revealed that the DST index shows some deficits, in particular when it comes to 

characterise the ring current effect during quiet times. As an alternative we propose to use 

another index, the RC, for quantifying the magnetic effect of the ring current. Direct 

comparisons with ring current estimates from CHAMP show an excellent agreement.  

Another feature we investigated is the partial ring current. Prominent enhancements appear in 

the evening sector during active periods. We could confirm from ground and space-based 

observations the asymmetry of ring current effects between dawn and dusk sides. However, in 

situ measurements of the ring current density do not confirm the expected local time 

distribution of current intensity. This open issue needs further investigation in future. 

The magnetic effect caused by magnetospheric tail currents is another topic we addressed. 

Good progress has been achieved since considering the tail current magnetic effect in GSM 
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coordinates. Such a field causes at Earth surface various signatures (diurnal and annual 

variations), which were previously not understood.  

So far there is no suitable index available for quantifying the intensity of magneto-tail 

currents. Here we propose to use the amount of open magnetic flux emanating from the polar 

caps as a proxy for that. Based on an empirical model of auroral oval boundaries we provide 

estimates of the magnetic flux in the tail lobes. A direct comparison of polar cap magnetic 

flux with the near-Earth magnetic effect of the tail currents confirms a linear relation between 

these two quantities. In future the polar cap magnetic flux may be used for parameterising the 

magneto-tail current contribution to the near-Earth magnetic field. 

In our view a major issues to be address in future is the unsolved problem of the partial ring 

current. The traditional picture of enhanced ring current density within the dusk sector during 

magnetic storms may need revision. Here joint data interpretations from satellites in the 

magnetosphere and in low-Earth orbit, like Cluster and Swarm, may help to reconcile the 

contradicting results. In case of the magneto-tail currents more effort is warrant for refining 

the magnetic footprint on Earth. In particular seasonal effects due to tail deformation need to 

be investigated in more details. Also here the expertise of magnetospheric physics and 

geomagnetic field modelling has to be combined for achieving progress.  
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