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Layer
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Abstract—The problem of near-earth wave propagation in the
presence of a dielectric layer such as a vegetation or snow covering
is considered in this paper by modeling the propagation environ-
ment as a homogeneous two-layer medium (air/dielectric/ground).
A number of studies have demonstrated the relevancy of the lateral
wave for the case when both the transmitter and receiver are lo-
cated within a simple half-space dielectric medium [1]–[6]. Unfor-
tunately, for the generalized two-layer model, for configurations in
which the transmitter or receiver (or both) is located above the di-
electric layer, far-field analytical expressions that include all prop-
agation features do not exist. In this paper, in order to arrive at a
computational efficient solution for the two-layer model, a second-
order asymptotic evaluation for the electric fields of an arbitrarily
oriented, infinitesimal electric dipole—for source and observation
points located in the vicinity of the air/dielectric interface—is car-
ried out through the method of steepest descents. The formulations
are valid in the far field, with the limitation that the exponentially
decaying pole and branch cut contributions have been ignored. It
is observed that the Norton wave, though it is highly localized near
the air/dielectric interface, is a significant contribution either when
the dipole and observation points are both located above the dielec-
tric layer or when one is above and the other is within the layer.

Index Terms—Asymptotic evaluation, near-earth wave propaga-
tion, two-layer half-space medium.

I. INTRODUCTION

T
HE rise in the number of deployment of unattended ground

sensor networks for environmental and military surveil-

lance applications has prompted the need for a more complete

understanding of near-earth wireless communication channels.

An unattended ground sensor (UGS) is a low-power and often

low-profile wireless transceiver that gathers a variety of data

(acoustic, seismic, meteorological, etc.) from its surrounding

and then transmits this information to another node within the

network or to a central processing station. Since the heights of

the transmitters and receivers in the network are low, the effects

of the ground and of any dielectric covering (i.e., vegetation or

snow) have to be included for an accurate understanding of the

propagation characteristics necessary for predicting node con-

nectivity.

The asymptotic solution to the problem of dipole radiation

in the presence of a vegetated-terrain at VHF was studied first
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by Tamir [3] and subsequently by others including Li et al. [4],

Cavalcante and Giarola [5], and Sarabandi and Koh [6]. How-

ever, in all these studies, both the source and observation points

are assumed to be embedded in the vegetation; for such a config-

uration, the far-field radiation is dominated by the lateral wave

and the Norton wave is of little importance; for the general-

ized configuration, in which the source and observation point

locations can be arbitrary (with respect to the air/dielectric in-

terface), a compact and comprehensive set of formulations for

computing the total field cannot be found in existing literature.

The more general problem of dipole radiation in the presence

of a layered media has been thoroughly treated, but the asso-

ciated equations are in integrals of the Sommerfeld form and

are too complicated for computation when the source and ob-

servation points are far apart. The transformation of these in-

tegrals into asymptotic forms has been discussed, for instance,

by Chew and Kong [7]—for a general two-layer medium but

only for source and observation points directly on the air/dielec-

tric interface, and by Marin and Pathak [8]—for applications

pertaining to grounded, lossless double-layer printed circuitry.

While it is possible that the results generated by Marin and

Pathak can be extended and specialized to the class of near-earth

propagation problems treated in this paper, no attempts have

been made toward such an endeavor; in addition, although their

closed-form expressions have been shown to be valid even in

the near-field region of the source, the equations are rather in-

volved and cannot be implemented easily as a consequence of

the existence of poles and branch cuts as well as the proximity

of these singularities to the saddle point. Our objective in this

paper is to present field expressions assembled by retaining only

a dominant asymptotic contribution; for application to propaga-

tion problems in the far field (or, as it is in our case, when the

transmitter and receiver are separated by hundreds or thousands

of meters or even more), this simplification is justified and an

accurate approximation to the far field radiation characteristics

can be readily obtained in an efficient manner.

The present paper is an extension of a previous study [6],

which investigated the propagation characteristics for the case

when both the source and observation points are embedded in-

side a vegetation layer. In this paper, we broaden our analysis

to the general case in which the locations of the source and ob-

servation points can be at any location above ground. Specifi-

cally, the following three configurations are analyzed in order:

1) source and observation points in air; 2) source in dielec-

tric layer, observation point in air; 3) source and observation

points in dielectric layer. The fields of other configurations can
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Fig. 1. Two-layer medium model for calculating the fields of an arbitrarily
oriented electric dipole.

be easily deduced through the reciprocity principle. Since the

third case has been thoroughly investigated by [6], only the re-

sults are presented here; for the complete derivation, the reader

is referred to the original work.

The propagation of electromagnetic waves in the presence of

vegetation or snow-covered terrain can be understood by consid-

ering vegetation or snow as a homogeneous layer with an effec-

tive dielectric constant and analyzing the fields in the resulting

two-layer medium (Fig. 1). In order for this model to be accu-

rate, especially in the case of a vegetation layer, the wavelength

of propagation should be large compare to the dimensions of the

features inside the layer (e.g., branches, leaves, spacing between

individual plants). As suggested by [3] and [4], for a forest en-

vironment, the highest frequency at which the vegetation layer

can be considered to be homogeneous is around 200 MHz; how-

ever, for short vegetation such as grass or crops, the effective

medium theory is valid up to the frequency region of about 1

GHz before scattering from vegetation particles become signifi-

cant. For a snow layer, the limit can be even extended to the mil-

limeter-wave range due to low volume-scattering and the high

degree of uniformity within the medium. The effective dielec-

tric constants of the vegetation or snow layer and of the ground

can be computed with the use of standard mixing models as de-

scribed by [9] to [13].

From the spectral representation of the dyadic Green’s func-

tion (as given by [14]), exact expressions for the fields of an

infinitesimal electric dipole radiating in the presence of a two-

layer medium can be derived. These expressions are listed in the

Appendix. In Section II, asymptotic evaluations of these expres-

sions in the most general from are carried out by applying the

method of steepest descents. In Section III, simulation results

are presented, and the variation of each component of the elec-

tric field is analyzed in terms of the effective permittivity, thick-

ness of the vegetation or snow layer, locations of the dipole and

observation points, and frequency of operation.

II. ANALYTICAL FORMULATION

In this section, analytical formulations for the calculation of

the electric fields radiating from a short dipole of arbitrary ori-

entation situated above a dielectric ground plane in the presence

of a layer of vegetation or snow are derived. The geometry of the

problem is illustrated in Fig. 1. As it has been noted, there are

three primary configurations of interest, as a result of different

combinations of the locations of the electric dipole and obser-

vation point. The dipole is assumed to be located on the -axis

with current moment vector , and

the observation point—identified with the usual cylindrical co-

ordinates—is at . In the type of propagation problems

considered here, for analysis restricted to the far field, it can be

assumed that the magnitudes of , , and are much smaller

than that of ; the radial distance between the dipole and the ob-

servation point. Also note that primed quantities are associated

with the source, and the convention is assumed and

suppressed in all the formulations.

A. Case 1 ( and )

Consider the simple case when the source and observation

points are both located in the upper layer (air) of a one-layer

medium (Fig. 1, disregarding the last layer for the moment), the

total electric field for a vertical dipole can be written as

(1)

Specifically, at grazing angle ( and ), each com-

ponent of the field can be expanded as follows:

(2)

(3)

(4)

The first term in the brackets is the direct field; the second term is

the geometrical-optics reflection field; and the rest of the terms

accounts for higher order scattered fields—where the denote

unknown factors. Since incidence is near grazing angle, it is easy

to show that , , whereas

is a small quantity proportional to . For the -component of

the field, it can be seen that the cancellation of the direct and

geometrical-optics reflection term generates a resultant-

which is of the same order as the next term in the expansion.

Likewise, for the and components, the sum of the direct

and geometrical-optics reflection also produces a term that is of

the same order as the next higher order term. Similar analysis

can be applied to a horizontal dipole. Thus, when the source

and observation points are close to the interface (incidence at

grazing angle), it is apparent that an accurate description of the

field components necessitates the derivation of the higher order

term that comes after the geometrical-optics reflection term.

The complete evaluation of the field quantities begins with

the two-fold integral form of the dyadic Green’s function. A

change of variable is applied to obtain the integration in terms of
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and Bessel functions. In integral form, the resulting expres-

sions—for which exact closed-form solutions do not exist—of

the , , and components of the scattered field are given in the

Appendix. Since numerical computation of these expressions

is slow and formidable due to the presence of singularities and

the highly oscillatory behavior of the Bessel function at large

distance , approximate asymptotic solutions are sought. In a

standard procedure, Hankel’s functions of the first and second

kind are used in extending the limits of integration to negative

and positive infinity (in -plane). By transforming the inte-

gration over to the complex -plane by the change of variable

, and then substituting the asymptotic form of

the Hankel’s function for large arguments, the integrand can be

written in the following form—to which the standard method of

steepest descents can be applied

(5)

where subscripts , or and

. The saddle point at is defined by ,

therefore

(6)

(7)

(8)

After some manipulations and following the procedure of saddle

point integration provided by [2], the component of the saddle

point contribution up to second order for a dipole pointed in the

direction can be written as

(9)

where the two terms represent the first and second saddle point

expansion terms. The first saddle point expansion term is the ge-

ometrical-optics reflection term and the second expansion term

can be thought as a correction term that becomes dominant when

the source and observation points are close to the interface. This

correction term is also commonly known as the Norton wave

[15]. After some lengthy algebraic manipulations, expressions

for of (9) can be shown to be the following:

(10)

(11)

(12)

(13)

(14)

(15)

(16)

The mixed reflection coefficient, which is required for an or

-directed dipole, is defined as

(17)

The TE and TM reflection coefficients are of the standard form

(18)

(19)

The appearance of branch points at

entails the use of a two-sheeted Riemann surface in repre-

senting the -plane; in order to satisfy the radiation condition,

the path of integration of (5) is restricted to lie on the upper

sheet . The branch cut defined by

may be crossed by the steepest descent

path and its contribution to the integral can be included by

adding the following to the saddle point contribution [2]:

(20)

It can be readily verified [1], [2] that the poles of the inte-

grand in (5) are not intercepted as the original integration

path deforms to the steepest descent path. Depending on the

permittivity of the lower medium , these poles (the zeros

of the denominator of the reflection coefficients in (18) and

(19)) may move into the vicinity of the saddle point; thus, the

poles may come into effect indirectly and must be taken into

account by carrying out a modified saddle point integration

method. Simulation results, however, show that the ordinary

saddle point integration as used here is sufficient for predicting

the field contributions in the far field. The total field is then the

sum of the direct, saddle point, and branch cut contributions

(21)

where , and is the

Heaviside step function. Calculation of (20) can be quite in-

volved, but note that the branch cut contribution decays expo-

nentially with since the wave number is complex; there-

fore, at large , the branch cut contribution can be considered as

negligible.

For a two-layer medium, to account for higher order reflec-

tions that are transmitted into and then emerging from the di-
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electric layer, the total reflection coefficient is modified as fol-

lows [14]:

(22)

Using the relations

(23)

equation (22) can be rewritten as

(24)

The subscript “ ” is a place holder for the polarization,

either TE or TM. The saddle point contribution for each

higher-order reflection in the summa-

tion series of (22) can be evaluated by using (9) after

replacing the reflection coefficient term in with

. Note that the

higher-order reflections lead to higher order poles for the terms

in the summation series of (22); although they are still located

outside of the steepest descent path, these poles are close

enough that—at higher orders—they demand a more refined

saddle point integration method even when is relatively large.

In order to circumvent this difficulty, calculations are made by

following the normal mode approach in which the total aggre-

gate reflection coefficient in (24) is inserted into (10)–(16) as a

whole, rather than as individuals in a series. This approach leads

to satisfactory results in the far field even if we are ignoring

the pole contributions—which are now supplied by the zeros of

the denominator in (24) and must be located through numerical

methods before their contributions can be included using a

standard technique [2]. These pole contributions, depending on

their locations on the complex plane, represent either distinct

surface-wave modes or leaky modes—both of which become

less significant as the distance between source and observation

points increases [2], [16]. Also note that in the two-layer case

there are branch points only at since the

expression in (24) can be shown to be an even function of

. The branch point that can be intercepted is at

; but since medium 2 (the ground layer) is

highly lossy, the branch cut contribution falls off asymptotically

according to and, hence, rapidly becomes much smaller

than the algebraically decaying saddle point contribution.

B. Case 2 ( and )

Exact formulations for this case have been derived and can

be found in the Appendix. Proceeding through the same pro-

cedure as before, the method of steepest descents is employed

in obtaining the integral after transforming the integration to

the -plane. Multiple reflections occurring within the dielectric

layer can be accommodated by defining the total transmission

coefficient as the following:

(25)

and

(26)

The definition of (26) differs from that of (25) in that the former

expression applies to waves containing an initial bounce off the

dielectric layer/ground interface. It can be shown that the trans-

mitted field for each order can be written as

(27)

where

(28)

and the saddle point can be approximately defined by

(29)

The set of for an arbitrarily oriented dipole can be

shown to take the following forms:

(30)

(31)

(32)

(33)

(34)

(35)
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(36)

(37)

in which

(38)

(39)

The designations “ ” and “ ” differentiate waves that are

initially propagating upward and downward from the source.

The mixed transmission coefficients have been written in the

following form:

(40)

(41)

In the formulations above, and are the individual

terms in the infinite series of (25) and (26), respectively. Instead

of computing each order of transmission separately, the saddle

point evaluation of (27) can be carried out using (9), as before,

by means of the normal mode approach—in which now the ag-

gregate transmission coefficients in (25) and (26) are substituted

into as one term. The difficulty mainly lies in taking the

double derivative of , but this can be overcome with the

help of a symbolic math software. When the source and obser-

vation points are located in the vicinity of the interface, it is seen

that both the first and second term in the saddle point expansion

fall off as ; thus, as in Case 1, both expansion terms are

necessary for accurate representation of the total field.

It is seen that the sign of the term has no

effect on the final result in computing the integral in (27);

therefore, once again, the function is an even function

of and the only branch points on the complex

-plane are attributed to the term . (As a matter

of fact, for general stratified media problems, in the normal

mode approach, the branch points on the plane are supplied

only by the first and last layer [17]; the branch points of the

first layer can be eliminated—as it has been done here—by

translating the calculation onto the -plane after the change of

variable . Thus, on the -plane, the only branch

points remaining are due to the last layer in the stratification.)

Similar to Case 1, calculations are much simplified by ignoring

contributions from the branch cut and the poles [which are

provided by the zeros of the denominator of (25) and (26)];

in the far field, this claim is justified since the saddle point

contribution becomes the only dominant field component.

C. Case 3 ( and )

As it has been shown in [6], when both the source and obser-

vation points are located inside medium 2, the direct and saddle

point contributions decay exponentially as a function of the ra-

dial distance since their propagation takes place in a lossy

medium; the dominant contribution to the total field, as it turns

out, comes from a branch cut contribution. Although a modal

analysis can be used, a ray tracing approach provides a more in-

sightful interpretation for this case. In the ray tracing approach,

the effective reflection coefficient is expanded as a series before

asymptotic evaluation is carried out separately for each term.

In such an approach, both medium 1 and medium 2 would fur-

nish branch cut contributions on the -plane since now—for

each individual order of reflection—the integrand in the field

integral is no longer an even function of . Dis-

carding the branch cut contribution arising from the branch point

at for the reason aforementioned, the only rel-

evant and significant contribution, in the far field, comes from

the branch cut contribution due to the branch point at

. This branch cut contribution, which now no longer

undergoes exponential decay, can be interpreted as a wave from

the source that radiates upward to the dielectric/air interface at

critical angle and then propagates along the interface (in air) be-

fore reaching the observation point at critical angle again. Since

the majority of the propagation takes place in air, this field com-

ponent—which has been labeled as the “lateral” wave—does

not suffer the large path loss experience by the direct and saddle

point contributions. Through standard branch cut integration

techniques, the three lowest orders of lateral waves have been

derived in [6] and are expressed in matrix form as the following

:

(42)

where and are symmetric dyads defined in [6]. The first

term in (42) represents the direct lateral wave contribution; the

second term is the contribution of the lateral wave generated

from the image of the source in the ground plane; and the third

term is the contribution of the direct lateral wave that has been

reflected from the ground plane before reaching the observation

point. It is seen that the lateral waves, and hence the total field,

decreases as —which is the same asymptotic behavior ob-

served for the first two cases. For further details on the derivation

and verification of (42), the reader is referred to [6].

III. SIMULATION RESULTS

In this section, the field components for a vertical dipole and a

horizontal dipole are calculated using the formulations derived
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Fig. 2. Magnitude (a) and phase (b) of the electric fields of a vertical dipole
as a function of distance in the presence of a vegetation layer with d = 0:5�.
The dipole is located on z-axis at z = 0:4� and the observation point is at
(�; �=3; 0:3�); f = 30MHz, " = 1:01+ 0:01i, and " = 8 + 6i.

Fig. 3. Magnitude (a) and phase (b) of the electric fields of a vertical dipole
as a function of distance in the presence of a dry snow layer with d = 0:5�.
The dipole is located on z-axis at z = 0:4� and the observation point is at
(�; �=3;0:3�); f = 30 MHz, " = 2:01 + 0:01i, and " = 8 + 6i. Note
the poor quality of the numerical calculation for E at large distances, but the
asymptotic solution is well-behaved.

in Section II. The variation in radiation characteristics is also

demonstrated as a function of the effective permittivities, thick-

ness of the vegetation or snow layer, locations of the source and

observation points, and frequency of operation. Before the anal-

ysis, it is necessary to verify the validity of the asymptotic ex-

pressions presented. Figs. 2 and 3 show the total fields (scattered

plus direct) of a vertical dipole of unity current moment oper-

ating at 30 MHz located on the -axis at with the

observation point at . The middle dielectric layer

has been chosen to have a thickness of ; the effective per-

mittivity of the ground, , is set to be , which approx-

imately corresponds to a soil composed of gray San Antonio

clay loam with a density of 1.4 and 5% moisture con-

tent [12]. The dielectric layer is assumed to be sparse vegetation

in Fig. 2 and dry snow with density of 0.5

in Fig. 3. Note the dependence

of all the field components in the far field. The exact solutions

are obtained through numerical integration of the expressions

tabulated in the Appendix. Figs. 4 and 5 show the fields for a

horizontal dipole calculated using the same set of parameters,

except now the dipole itself is located inside the dielectric layer

at . It can be seen that there is very good agreement

(both in magnitude and phase) between the exact and asymp-

totically evaluated values when is large in all the cases. As

it has been noted in Section II, the validity of the formulations

presented here depends on the assumption that exponentially de-

caying components of the field can be discarded when is large.

For example, in Fig. 5, the validity holds for below

Fig. 4. Magnitude (a) and phase (b) of the electric fields of a horizontal dipole
as a function of distance in the presence of a vegetation layer with d = 0:5�.
The dipole is located on z-axis at z = �0:4� and the observation point is at
(�; �=3;0:3�); f = 30MHz, " = 1:01+ 0:01i, and " = 8 + 6i.

Fig. 5. Magnitude (a) and phase (b) of the electric fields of a horizontal dipole
as a function of distance in the presence of a dry snow layer with d = 0:5�.
The dipole is located on z-axis at z = �0:4� and the observation point is at
(�; �=3;0:3�); f = 30 MHz, " = 2:01+ 0:01i, " = 8 + 6i.

Fig. 6. Comparison of asymptotic and geometrical-optics approximations with
exact values obtained from numerical integration for a vertical dipole located at
z = 0:4� (a) and z = �0:4� (b). Observation point is at (200�;�=3; z);
f = 30MHz, " = 1:01+ 0:01i, " = 8 + 6i, and d = 0:5�.

which the branch cut and pole contributions must be included

to accurately account for the total field, as well as the interfer-

ence patterns.

Having validated the accuracy of the asymptotic expressions,

it is beneficial to investigate the region in which the Norton wave

[or the second term in (9)] is dominant. It is expected that when

the source or observation point (or both) is far from the dielec-

tric/air interface, the geometrical-optics term would become the

principal field contribution. Depending on the configuration and

physical parameters of the problem, simulations confirm that ge-

ometrical-optics provides an accurate approximation as long as

the source or observation point (or both) is greater than

above the dielectric layer. A comparison of the asymptotic and

geometrical-optics approximations with the exact solutions is

shown in Fig. 6(a) and (b) for a vertical dipole as a function

of the observation point’s distance above the dielectric. The

dipole’s location is in air for the first figure but is in the dielectric

for the second. Note that the geometric-optics term converges to
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Fig. 7. (a) Ratio of Norton wave to G.O. contribution for a vertical dipole. Source and observation points located above dielectric layer; f = 30MHz, � = 200�,
" = 8+6i, and d = 0:5�. (b) Field intensity as a function of receiver height above dielectric/air interface for a dipole located inside the dielectric at z = �0:4�.
Observation point is at (100�; �=3; z); f = 30 MHz, " = 1:01 + 0:01i, " = 8 + 6i, and d = 0:5�.

Fig.8. (a) Magnitude of E for a vertical dipole located above a dielectric layer with " = 1:01 + 0:01i and 2:01 + 0:01i. Observation point is at
(100�;�=3;0:3�); f = 30 MHz and " = 8 + 6i. (b) Magnitude of E for a vertical dipole in the presence of a ground with various percentages of soil
moisture content. The dipole is located inside the dielectric layer at z = �0:5� and observation point is at (�; �=3;0:5�); f = 200MHz, " = 1:01+ 0:01i
for vegetation layer, " = 2:01 + 0:01i for snow layer, and d = 2:0�.

the exact solution for large but becomes a rather poor approxi-

mation as the observation point approaches the interface. An ex-

ample of the relative magnitude of the Norton wave as compared

to the geometrical-optics approximation is shown in Fig. 7(a);

the Norton wave is seen to be highly localized to the air/dielec-

tric interface, hence, it is obvious why this wave contribution

has been designated as a type of “surface” wave. From Fig. 6,

one can also see that the field intensity at the receiver can be

increased by elevating the receiver higher above ground, this is

often called the height-gain effect. In fact, for small elevations,

the field intensity increases linearly with elevation, as shown in

Fig. 7(b), for a dipole embedded in the dielectric layer—a sim-

ilar plot can be constructed for a dipole located in air.

It is also instructive to analyze how the field changes as a

function of the thickness of the dielectric layer. As the thickness

changes, interference patterns caused by the superposition of

multiple reflections are observed; this is shown in Fig. 8(a) for

a vertical dipole located above a dielectric layer with

and . The observation point is fixed in

the far field at in both cases. It can be deduced

that the magnitude of the field oscillates about the limit value for

which (one-layer medium) and the rate of oscillation is

dependent upon the magnitude of the permittivity whereas the

rate of the approach toward the limit value is determined by the

loss tangent.

To fully consider the effects of the dielectric layer and the

ground, the total field’s dependence on the effective permittiv-

ities of the two media must also be examined. For a vegetation

layer, the effective dielectric constant is slightly greater than

that of free space; on the other hand, for a snow layer, while

the imaginary part of the permittivity is still small, the real part

can be as large as 2.0–3.0, depending on the snow density and

the moisture content. The field variations as a function of

for fixed dipole and observation point locations are shown in
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Fig. 9. Electric field as a function of the effective permittivity of the dielectric
layer for a vertical dipole. Dipole is located above the dielectric layer for (a) and
within the dielectric layer for (b). Observation point is at (100�; �=3; 0:3�),
f = 30 MHz, " = 8 + 6i, and d = 0:5�.

Fig. 9. Note that the field strength can change considerably as

a function of the real part of the permittivity; and, for the set of

parameters used in this example, there can be a 15 to 20 dB dif-

ference between the field value of a vegetation layer and that of

a snow layer. The complex semi-oscillatory behavior evident in

Fig. 9 can also be anticipated if the permittivity of the ground,

, is varied while holding that of the dielectric layer constant.

A primary determinant of the permittivity of soil is the moisture

content. In Fig. 8(b), the effect of the moisture content on the

total field is illustrated for a ground composed of gray San An-

tonio clay loam with a dry density of 1.4 ; the value of the

corresponding dielectric constant for each moisture level is ob-

tained from the measurements done by Hipp [12]. It is obvious

that the field strength can change quite noticeably as a function

of the permittivity of the ground; in addition, it is interesting to

note that the field strength, as the soil moisture content is ele-

vated, decreases for a vegetation layer but increases for a snow

layer.

To illustrate the frequency response of the present problem,

a frequency dependent model must be used for the permittivi-

ties of the dielectric layer and ground. For the simulations that

follow, the soil of the ground is again selected to be gray San

Antonio clay loam with a density of 1.4 (5% moisture

content). The dielectric constant as a function of frequency of

such a composition can be found in figures given by [12]. For

a vegetation layer, the effective dielectric constant is calculated

by using the Polder-van Santen mixing formula, in which the

host material is air and the inclusion being the vegetation mate-

rial. The dielectric properties of the vegetation material are de-

pendent upon the gravimetric moisture content, frequency, and

temperature; an empirical formula in terms of these parameters

has been derived in [10]. For a snow layer, if the snow is dry,

then the real part of the effective dielectric constant can be con-

sidered to be independent of frequency and to be a function of

the snow density only; the imaginary part is relatively small and

on the order of to .

The results of the simulations are shown in Fig. 10(a) and

(b), the former is for a vegetation layer and the latter is for a

dry snow layer; a ground with the soil parameters given above

is used in both cases. The source is a vertical dipole located in

air—two observation points are used: in air and in the vegeta-

tion or snow, hence, there are two graphs in each figure. In the

frequency range of 30 MHz to 200 MHz, the relative dielec-

tric constant of soil changes from to ,

Fig. 10. Frequency response for a vertical dipole in a vegetation layer (a) and
a snow layer (b). Dipole is located above the dielectric layer at z = 1 m,
observation point is at (1000m; �=3;�1 m), and d = 2 m.

and that of the vegetation layer changes from to

for 5% inclusion by volume and for a vegetation

material at 27 with 50% gravimetric moisture content. For

the dry snow, with a density of 0.5 , the relative dielec-

tric constant is and is almost independent of fre-

quency. Note that only the -component of the electrical field

is shown in the graphs, and the quantity has been normalized

to frequency in order to set the power output of the transmitter

to constant. As it is evident in these figures, the amplitudes of

variation can be quite large; thus, in the design of low-power

communication channels, the selected frequency of operation is

a critical factor in determining the efficiency of the system.

IV. CONCLUSION

In this study, the concept and relevance of Norton waves and

lateral waves have been analyzed for the canonical problem of

propagation in the presence of a two-layer medium representing

a vegetation or snow-covered terrain. Through the method of

steepest descents, asymptotic formulations for the total field of

an arbitrarily oriented electric dipole have been derived from

exact expressions for dipole and observation point situated near

the air/dielectric interface. By discarding the pole and branch cut

contributions for configurations in which the dipole and obser-

vation point both are not embedded within the dielectric layer,

the formulations are much simplified and reduce to an ordinary

saddle point contribution. It should be emphasized that such a

simplification can only be made when there is loss in the media

of propagation. In the absence of loss, in order to be considered

as an accurate and practical solution, the saddle point contri-

bution must be supplemented with the proper branch cut con-

tributions—regardless of the magnitude of the radial distance

between the transmitter and receiver. The pole contributions,

however, would always decay exponentially as a function of ra-

dial distance even in the lossless case. When the aforementioned

simplification is exploited, it has been shown that the saddle

point contribution becomes the dominant field component and

it is composed of a geometrical-optics term and a Norton wave

correction term that is highly localized to the air/dielectric in-

terface. In addition, simulation results indicated that the field

intensity and frequency response at the receiver have a strong

dependence on the permittivities of the vegetation or snow layer

and the ground. Although the transmitter has been restricted to

an electric dipole throughout this paper, extension to an arbitrary

radiating source can be made by noting that the asymptotic form

of the Green’s function for each of the three cases discussed is
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related to the derived expressions for the field components by a

simple constant:

(43)

Therefore, once the current distribution of an arbitrary source is

known, an approximation to the far field pattern can be easily

computed. Also, upon application of the reciprocity principle, it

is straightforward to verify that

(44)

where the superscript “ ” indicates the transpose operation.

Simply by using the relation stated in (44), we can extend our

formulations to other standard configurations not explicitly

treated in Section II. For example, the dipole is located in air

while the observation point is located inside the dielectric layer.

APPENDIX I

INTEGRAL SOLUTIONS FOR CASE 1 ( AND )

Exact expressions for the electric field of a dipole radiating

in the presence of a two-layer medium are derived from the

dyadic Green’s function. If the arbitrarily oriented dipole is lo-

cated on the -axis at with the current moment vector

, it can be shown that, for Case 1, the

general equation for the scattered electric field at observation

point with can be written as

(A.1)

where the function in the integrand is dependent upon the dipole

orientation and the field component of interest ( , , or )

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

The total reflection coefficient is given by

(A.9)

and the mixed reflection coefficient is

(A.10)

where the simple reflection coefficients for a wave going from

layer to layer are the following

(A.11)

(A.12)

The wavenumber is represented by ( 0, 1, or 2) and

(A.13)

The direct field must be added to the scattered field to obtain the

total field. If , (44) should be applied.

APPENDIX II

INTEGRAL SOLUTIONS FOR CASE 2 ( AND )

When the dipole is inside the dielectric layer and the obser-

vation point is air, the derivation for the total field is more com-

plicated but is not much different from that of the first case.

Simple manipulations of the dyadic Green’s function give the

transmitted field as

(A.14)

where the set of functions can be shown to be

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

The various transmission coefficients are defined below

(A.22)
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(A.23)

(A.24)

(A.25)
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