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Abstract

A simple and explicit expression of the solution of the SIR epidemio-

logical model of Kermack and McKendrick is constructed in the asymp-

totic limit of large basic reproduction numbers R0. The proposed formula

yields good qualitative agreement already when R0 ≥ 3 and rapidly be-

comes quantitatively accurate as larger values of R0 are assumed. The

derivation is based on the method of matched asymptotic expansions,

which exploits the fact that the exponential growing phase and the even-

tual recession of the outbreak occur on distinct time scales. From the

newly derived solution, an analytical estimate of the time separating the

first inflexion point of the epidemic curve from the peak of infections is

given.

1 Introduction

The COVID-19 pandemic has impacted all aspects of our daily lives. It has
thus triggered an extraordinary world-wide response across all fields of science,
from virology and pharmacology to sociology. Within the scientific crowd, ap-
plied mathematicians and theoretical physicists also brought their contribu-
tion, notably by using their mathematical expertise in epidemiological mod-
elling [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Deterministic compartment models
allow one in principle to develop an accurate global view of the contagion dy-
namics within large populations. Compartments can be used to divide the pop-
ulation into age categories as well as according to the evolution of the illness,
for those who have been infected [13, 8, 10]. These multiple levels of description
are useful and necessary, and can be made to fit closely to the data. However,
they contain a plethora of fitting parameters and can therefore be complex to
interpret. Fortunately, it turns out that the simplest of all compartment mod-
els, SIR, faithfully reproduces the global dynamics at the level of a country or a
large city with COVID-19 [9, 14]. As a result, the SIR model remains a useful
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tool at such global level of description. We write it as follows

dS

dt
= −βSI/N,

dI

dt
= βSI/N − γI,

dR

dt
= γI,

where S, I, and R respectively denote the number of susceptible, infected and
removed individuals, with constant sum N = S + I + R. The population R
includes both those who have recovered from the illness and those who have
died. Above, β is the contact rate, γ is the recovery rate, and their ratio

R0 = β/γ

is the basic reproduction number. Despite its long history [15], there continues
to be many efforts to try and solve it analytically [16, 17, 18, 19, 20, 21, 22, 23, 24,
25]. In their seminal paper, Kermack and McKendrick offered an approximate
solution in the limit of a “small epidemic”, i.e. when the reproduction number
R0 is just above 1 [15]. So far, this has remained the only explicit approximate
analytical solution available, in the sense that it can be justified as an asymptotic
limit of the true solution. Well above the epidemic threshold, an analytical
expression of the solution can be written in parametric form [26]. Unfortunately,
it is only given implicitly, such that time is expressed in terms of one of the
dynamical variables through an integral. Hence, this solution is not directly
interpretable and its analysis can be quite involved [23]. Alternatives have
been proposed in the form of converging series [17, 20], but these can involve
expansions with as many as 15 up to 60 terms and, hence, are again impractical
for analysis. More down-to-earth is the approach by which the solution is fitted
by well-chosen ansatz with a few parameters [27, 24]. However, these ansatz are
not derived from the model and their parameters must be fitted to the data,
rather than deduced from the model.

1.1 Statement of results

The aim of this paper is to show that

R(t)

N
≡ nr(t) ∼







1
R0−1 ln

[

ae(β−γ)t + 1− a
]

, t < t∗,

1
R0−1 ln

[

1 + 1−a
a

e−(β−γ)t
]

+ nr,∞ − e−γ(t−t∗), t > t∗,
(1)

where a is the infected fraction of the population at t = 0, while nr,∞ and t∗
are given by

nr,∞ ∼ 1− e−R0(1−e−R0), t∗ ∼
nr,∞ − 1

γ
−

ln a

β − γ
. (2)

Given nr(t), one may infer the infected fraction of the population exactly as

I(t)

N
≡ ni(t) = 1− nr(t)− (1− a) e−R0nr(t). (3)

2
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Figure 1: Comparison between the approximate formulas (1) and (3) (full lines)
and the numerical solution of the SIR equation (dotted lines) for several values
of the reproduction number R0. ni(0) = a = 0.01.

Eq. (1) is remarkably simple and compact. The “∼” sign in it indicates that it
holds asymptotically in the limit R0 ≫ 1. However, a good qualitative agreement
with the numerical solution is already found for R0 = 3 and the approximate
formula rapidly becomes as good as exact with increasing R0, see Fig. 1. Hence,
Eq. (1) complements the classical “small epidemic” formula derived by Kermack
and McKendrick [15], which is valid in the limit 0 < R0−1 ≪ 1. When, in 1956,
D. G. Kendall presented the implicit analytical solution of the SIR model, he
noted:

“It is curious that the Kermack and McKendrick approximation should have
been accepted without comment for nearly thirty years; the exact solution is eas-
ily obtained and the difference between the two can be of practical significance.”

Similarly, the reader will find that the derivation of the present asymptotic
formula is quite simple and could have been established much earlier with well-
established asymptotic techniques.

As an illustration of the usefulness of the present analytical expression, let
us compute the time elapsed between two important moments of the epidemic,
namely the time t1 of first inflexion of the curve ni(t) and the time t2 of the
peak of the epidemic. In appendix, we show that the former happens when nr

is equal to n1, solution of

R0

R0e
−R0n1

1− R0e−R0n1

=
1− R0e

−R0n1

1− n1 − e−R0n1

, (4)

3
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Figure 2: Time from inflexion to epidemic maximum as a function of R0. Dots:
numerical solution. Full line: asymptotic curve, Eq. (9).

while the latter happens when

nr = n2 =
lnR0

R0

, (5)

in the limit a → 0. It turns our that t1 < t∗ and that t2 > t∗. Hence, using
Eq. (1), we have

γt1 ∼
ln(1/a)

R0 − 1
+

1

R0 − 1
ln
[

e(R0−1)n1 − 1
]

. (6)

Meanwhile, for t2, we have

n2 =
1

R0 − 1
ln

[

1 +
1− a

a
e−(β−γ)t2

]

+ nr,∞ − e−γ(t2−t∗). (7)

Above, we may assume in first approximation that t2 is sufficiently large that the
logarithmic term is negligible. Thus, we obtain the more manageable expression

n2 ∼ nr,∞ − e−γ(t2−t∗), → γt2 ∼ γt∗ + ln (nr,∞ − n2) , (8)

and obtain

γ (t2 − t1) ∼ nr,∞ − 1 + ln (nr,∞ − n2)−
1

R0 − 1
ln
[

e(R0−1)n1 − 1
]

. (9)

A comparison between this approximate formula and the numerics is given in
Fig. 2. Collecting data in real-time allows one to detect when the slope of the
epidemic curve has reached a maximum; t2 − t1 is then the time left before the
epidemic starts to recede.

2 Preliminaries

Before embarking into the asymptotic analysis of the SIR model, we first recall
a few well-known facts. Eliminating S thanks to the relation S(t)+I(t)+R(t) =

4
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N , the evolution equations for the fractions ni = I/N and nr = R/N are

dni

dt
= (β − γ)ni − β (ni + nr)ni, (10)

dnr

dt
= γni. (11)

They should be solved with the initial condition

ni(0) = a ≪ 1, nr(0) = 0. (12)

At the start of the outbreak, ni, nr ≪ 1 and the linearised evolution equations
immediately yield

ni ≈ ae(β−γ)t, nr ≈
a

R0 − 1
e(β−γ)t. (13)

On the other hand, dividing Eq. (10) by Eq. (11), one obtains

d

dnr

(ni + nr − 1) = −R0 (ni + nr − 1) , (14)

which immediately yields Eq. (3). Thanks to the explicit dependence ni[nr(t)],
Eq. (11) eventually becomes a first-order nonlinear ODE:

dnr

dt
= γ

[

1− nr(t)− (1− a) e−R0nr(t)
]

. (15)

As t → ∞, nr tends to the value nr,∞ that makes the right hand side vanish:

nr,∞ = 1− (1− a) e−R0nr,∞ ≈ 1− e−R0nr,∞ . (16)

In the large-R0 limit, the second term in the right hand side above is small, so
that a recursive resolution can be set up. An excellent approximation is given
by

nr,∞ ∼ 1− e−R0(1−e−R0), (17)

with an absolute error of less than 0.002 for R0 > 3. Alternatively, one may
express nr,∞ in terms of the tabulated Lambert function [23].

It is immediate to see that Eq. (15) can formally be integrated as

γt =

∫ nr

0

dn

1− n− (1− a) e−R0n
. (18)

This expression has been known and studied for a long time [26]. Note that if
if both γ and β are functions of time, such that their ratio R0 = β/γ remains
constant, then Eq. (18) remains valid, with γt replaced by the effective time
τ =

∫

γ(t)dt [22]. Recently, a thorough analysis of the integrand of Eq. (18)
was carried out, yielding upper and lower bounds for the function t(nr) [23]. In
addition, series representations of the integral based either on Taylor expansion
of the integrand near the origin or based on its poles in the complex-n plane were
given in that work. The first of these approaches effectively amounts to assume
that n is small and thus generalizes Kermack and McKendrick approximate
solution. However, the formulas in [23] are rather involved, making the inversion
of the relation t(nr) laborious.

5
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3 Matched asymptotic expansions

The method consists in deriving separate approximations at the early stage and
at the later stage of the outbreak. One the one hand, the outer solution has a
characteristic time γ−1 and describes the decaying phase of the epidemic. On
the other hand, the inner solution applies to the growing phase and evolves on
a shorter time scale. In the language of asymptotics, the R0 ≫ 1 limit produces
a boundary layer problem [28]. The two approximations are constrained by
matching conditions at intermediate stages of the outbreak. Thanks to the
fact that they have an overlapping range of validity, one can then construct a
composite solution, Eq. (1), that is uniformly valid in time.

3.1 Outer solution

When nr = O(1), e−R0nr is exponentially small and can at first be neglected in
Eq. (15). We thus have

dnr

dt
∼ γ (1− nr) , → nr ∼ n(o)

r = 1− e−γ(t−to), (19)

where the superscript (o) refers to “outer” approximation and to is an arbitrary
constant. However, knowing the actual limiting value of nr as t → ∞, a better
approximation is

n(o)
r = nr,∞ − e−γ(t−to). (20)

Since nr,∞ and 1 only differ by an exponentially small quantity, they are asymp-
totically equivalent as R0 → ∞. However, the correction brought about by using
nr,∞ in Eq. (20) considerably improves the approximation for moderately large
R0 and thus expands the range of usability of the final result, Eq. (1).

Note that n
(o)
r is only defined for t > to, since nr must be a positive number.

3.2 Inner solution

At earlier stages of the epidemics, nr is O
(

R0
−1

)

. More precisely, Eq. (13)
suggests to write

n ∼ n(i)
r (t) =

ν(t)

R0 − 1
, (21)

where (i) refers to “inner” approximation. Then Eq. (15) becomes

dν

dt
= (R0 − 1) γ

[

1− e
−

R0

R0−1
ν
(1− a)−

1

R0 − 1
ν

]

, (22)

∼ (β − γ)
[

1− e−ν (1− a)
]

. (23)

Unlike Eq. (15), this last equation can be integrated explicitly:

eν

eν − 1 + a

dν

dt
∼ β − γ, → ln

(

eν − 1 + a

a

)

∼ (β − γ) t, (24)

where we used the fact that ν(0) = 0. Hence,

ν ∼ ln
[

ae(β−γ)t
− 1 + a

]

, (25)

and

n(i)
r ∼

1

R0 − 1
ln

[

ae(β−γ)t
− 1 + a

]

. (26)

6
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3.3 Matching

So far, we have derived two approximations that efficiently describe the solution
at different moments of the epidemic. However, the constant to in Eq. (20) is
still unknown. To determine it, we must impose that (20) and (26) match in an
intermediate region. Loosely speaking, one wants that

lim
t→∞

n(i)
r (t) ∼ lim

t→0
n(o)
r (t). (27)

To formalise this statement more precisely, let us define the matching region as

t = t∗ + η∆t, (28)

where η is such that γη∆t ≪ 1, while (β − γ) η∆t ≫ 1. This double asymptotic
constraint is possible since (β − γ) /γ = R0 − 1 ≫ 1 by assumption. On the one
hand, we have

n(o)
r (t∗ + η∆t) = nr,∞ − e−γ(t∗−to)−γη∆t, (29)

∼ nr,∞ − eγ(t∗−to) + e−γ(t∗−to)γη∆t. (30)

On the other hand, the inner solution yields

n(i)
r ∼

1

R0 − 1
ln
[

ae(β−γ)t
− 1 + a

]

, (31)

=
1

R0 − 1

(

ln
[

ae(β−γ)t
]

+ ln

[

1−
1− a

a
e−(β−γ)t

])

, (32)

=
1

R0 − 1

{

(β − γ) t+ ln a+ ln

[

1−
1− a

a
e−(β−γ)t

]}

, (33)

= γt+
ln a

R0 − 1
+

1

R0 − 1
ln

[

1−
1− a

a
e−(β−γ)t

]

, (34)

∼ γt∗ + γη∆t+
ln a

R0 − 1
. (35)

Equating expressions (30) and (35), we obtain the two conditions

nr,∞ − e−γ(t∗−to) = γt∗ +
ln a

R0 − 1
, and e−γ(t∗−to) = 1. (36)

Hence, we have to = t∗ and

γt∗ = nr,∞ − 1−
ln a

R0 − 1
. (37)

3.4 Composite solution

As indicated above, n
(o)
r is only defined for t > to = t∗. For t < t∗, only the

inner solution holds:
nr(t < t∗) ∼ n(i)

r . (38)

On the other hand, for t > t∗, we may construct a uniformly valid approximation
as

nr(t > t∗) ∼ n(i)
r + n(o)

r − (common part), (39)

7
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where the common part is the time-dependance that n
(i)
r and n

(o)
r have in com-

mon in the matching region, and which should be removed to avoid double
counting. One has, from (35),

(common part) = γt∗ + γη∆t+
ln a

R0 − 1
= γt+

ln a

R0 − 1
. (40)

Hence

nr(t > t∗) ∼
1

R0 − 1
ln
[

ae(β−γ)t
− 1 + a

]

+ nr,∞ − e−γ(t−t∗) − γt−
ln a

R0 − 1

=
1

R0 − 1
ln

[

1−
1− a

a
e−(β−γ)t

]

+ nr,∞ − e−γ(t−t∗). (41)

Eqs. (38) and (41) yield Eq. (1), which completes the derivation.

4 Conclusion

We have shown that an explicit approximate solution, Eq. (1), can be derived in
the limit of large R0. The interest of this solution is that it is already effective
when the reproduction is only moderately large. Given that SIR is in itself a
crude approximation of reality, it makes little sense from an applied perspective
to look for an approximation that is exact to within 1%. Taking the time
between inflexion and maximum of the epidemic curve as a measure of accuracy,
the present theory, Eq. (9) yields an answer with less than 10% error for R0 just
above 4. With influenza, a reproduction number exceeding the value of 3 appears
rare but possible [29], as was the case with the 1918 influenza pandemic [30].
In the case of the COVID-19 pandemic estimates yield R0 in the range 1.5 to
6.49 [31] and particularly around 3 in France [32] and between 3.5 and 4 in Korea
and in the Hubei province (China) during the first wave [33]. For measles, R0

can be on the order of 10 or even larger [34]. Hence, the large-R0 limit considered
here is relevant, even though, of course, the assumption of a constant ratio β/γ
does not apply to the COVID-19 pandemic. While the formulas derived in this
paper appear accurate enough, it is to be noted that they can be improved.
Only leading-order expressions have been used for the inner and outer solutions
that apply to the ascending and receding phases of the outbreak, respectively.
The inner solution can be improved by the keeping O (1/(R0 − 1)) corrections
in Eq. (22) and treating them as perturbations. The same can be done with
O
(

e−R0nr

)

terms in the equation for the outer solution. Even within the present
theory, a correction to t2 could be computed by perturbation, thus improving
Eq. (9).

Aknowledgement
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A Derivation of formulas (4) and (5)

From Eq. (10), dni/dt vanishes when ni = 1 −
1
R0

− nr. By substitution into
(3), one immediately obtains (5).

8
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Next, let us enquire when the second time derivative of ni vanishes. Writing
ni = ni [nr(t)], let us denote

n′

i =
dni

dnr

. (42)

Then,

dni

dt
= n′

i

dnr

dt
, (43)

d2ni

dt2
= n′′

i

(

dnr

dt

)2

+ n′

i

d2nr

dt2
= n′

i

(

dnr

dt

)2
[

n′′

i

n′

i

+

(

dnr

dt

)

−2
d2nr

dt2

]

, (44)

and one thus seek for the condition

n′′

i

n′

i

= −

(

dnr

dt

)

−2
d2nr

dt2
. (45)

Dividing (10) by (11), one has

n′

i = R0 − 1− R0 (ni + nr) . (46)

Hence, n′′

i = −R0 (n
′

i + 1) and

n′′

i

n′

i

= −R0

(

n′

i + 1

n′

i

)

= −R0

(

R0 − R0 (ni + nr)

R0 − 1− R0 (ni + nr)

)

= R0

R0 (1− a) e−R0nr

1− R0 (1− a) e−R0nr

∼ R0

R0e
−R0nr

1− R0e−R0nr

, (47)

as a → 0. On the other hand, neglecting a compared to 1, (15) yields

d2nr

dt2
= −γ

dnr

dt

(

1− R0e
−R0nr

)

. (48)

Hence,

−

(

dnr

dt

)

−2
d2nr

dt2
= γ

(

dnr

dt

)

−1
(

1− R0e
−R0nr

)

=
1− R0e

−R0nr

1− nr − e−R0nr

. (49)

Equating (47) with (49) yields (4).
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