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Near-field cavity optomechanical coupling in a
compound semiconductor nanowire
Motoki Asano1✉, Guoqiang Zhang1,2, Takehiko Tawara1,2, Hiroshi Yamaguchi1 & Hajime Okamoto1

A III-V compound semiconductor nanowire is an attractive material for a novel hybrid

quantum interface that interconnects photons, electrons, and phonons through a wavelength-

tunable quantum structure embedded in its free-standing structure. In such a nanomecha-

nical element, however, a challenge is how to detect and manipulate a small number of

phonons via its tiny mechanical motion. A solution would be to couple an optical cavity to a

nanowire by introducing the ‘cavity optomechanics' framework, but the typical size difference

between them becomes a barrier to achieving this. Here, we demonstrate near-field coupling

of a silica microsphere cavity and an epitaxially grown InP/InAs free-standing nanowire. The

evanescent optomechanical coupling enables not only fine probing of the nanowire’s

mechanical motion by balanced homodyne interferometry but also tuning of the resonance

frequency, linewidth, Duffing nonlinearity, and vibration axis in it. Combining this cavity

optomechanics with epitaxial nanowire engineering opens the way to novel quantum

metrology and information processing.
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S
emiconductor nanowires are key elements in not only
nanophotonics1 and nanoelectronics2 but also in nano-
mechanics owing to their rich mechanical properties (e.g.

small-effective mass and high aspect ratio)3. In particular, a III–V
compound semiconductor nanowire is a strong candidate for a
hybrid quantum interface among photons, excitons, and phonons
because of its highly adjustable inner-layered heterostructure and
strain-mediated optomechanical coupling. For example, epitaxial
engineering allows us to embed semiconductor low-dimensional
structures, such as quantum wells and quantum dots, into a III–V
semiconductor nanowire, whose resonant energy can be widely
tuned from visible to telecom wavelengths via the bottom-up
growth process4,5. The deformation potential and piezoelectric
effect in the III–V compound semiconductor enable us to couple
these quantum structures to the nanowire’s mechanical motion,
namely phonons, via mechanically induced dynamic strain6–8. If
the mechanical motion of such a quantum-structure-embedded
nanowire can be resolved at the level of a few-phonon (or a single
phonon) regime, its functionality would be dramatically
improved in hybrid quantum interfaces9,10, However, detecting
and controlling such a tiny mechanical motion of a nanowire by
electrical or optical means are technically difficult because of the
nanowire’s small electrostatic capacity, low optical absorbance,
and reflectivity.

One way to probe and control a few phonons in a semi-
conductor nanowire is to introduce a framework called "cavity
optomechanics”11 by coupling a high-Q optical (photon) cavity to
a nanowire mechanical (phonon) resonator to induce
photon–phonon interactions. However, such cavity coupling is
quite challenging because of the typical size difference between
the optical cavity and nanowire. Therefore, very few demon-
strations of cavity optomechanics in a nanowire system have been
reported. The previous demonstrations were carried out for Si-
based nanowires inserted into Fabry–Pérot cavities12,13. This
scheme requires that a nanowire is removed from a substrate and
manipulated. Therefore, it is difficult to apply this scheme to an
as-grown high-quality nanowire and construct a cavity-
optomechanical nanowire system on a chip. An alternative
scheme that allows us to apply cavity optomechanics in an as-
grown high-quality III–V compound semiconductor nanowire
would lead to rich optomechanical operation in the wide range of
optical wavelengths as well as to hybrid quantum optoelec-
tromechanics through wavelength-tunable quantum structures.

Here, we demonstrate near-field optomechanical coupling of a
movable silica whispering-gallery mode (WGM) microsphere
cavity (Q= 1.8 × 105) and an as-grown InP/InAs free-standing
nanowire through an evanescent gradient force field (Fig. 1a).
This near-field approach allows us to achieve a free access with an
optical cavity to a subwavelength-scale mechanical element based
on the use of telecom fiber optics14–19. It enables us to finely
probe the thermal motion of a single nanowire with sub-
picometer sensitivity by balanced homodyne interferometry
(Fig. 1b) under the unresolved sideband regime, where the optical
linewidth (κ) is larger than the mechanical mode frequency (Ω)11.
Moreover, the optical force in the evanescent field allows us to
tune the frequency, linewidth, Duffing nonlinearity, and vibration
axis of the two orthogonalized mechanical modes (Fig. 1c). Our
results show that, by further optimizing the fiber-cavity posi-
tioning apparatus, quantum-limited displacement detection is
available in this nanowire system. Although this nanowire
includes multiple quantum wells whose resonant energy is outside
the telecom wavelength, resonant quantum structures with tele-
com wavelength can be prepared quite straightforwardly in the
InP/InAs nanowire system by tuning the inner layer thickness via
epitaxial engineering. Such a quantum-structure-embedded
nanowire and its cryogenic measurement would allow us to

resonantly couple the cavity photons with excitonic degrees of
freedom, which will open the way to the development of novel
hybrid quantum nanomechanical systems. In the following, we
demonstrate high-sensitive displacement detection and optical
control of mechanical motion in a single nanowire using this
near-field cavity optomechanical coupling.

Results
High-sensitivity displacement measurement. The near-field
cavity optomechanical system was formed with an epitaxially
grown free-standing nanowire and a movable WGM micro-
sphere. Nanowires containing InP/InAs heterostructures in the
vertical (growth) direction were epitaxially grown on an InP
substrate by metal organic vapor phase epitaxy (see “Methods”).
The length and diameter of the nanowires are about 14 μm and
500 nm, respectively, which was determined from a scanning
electron micrograph (Fig. 2a). The heterostructure was designed
to form a very straight nanowire with the band-gap wavelength
remaining below the laser wavelength to avoid direct optical
absorption from the 1550-nm probe light. A WGM microsphere
with a diameter of 40 μm was fabricated from a silica optical fiber
by the standard discharge technique and contacted to a tapered
optical fiber, which enables fiber access to the WGM using a
telecom-wavelength light. The fiber-coupled microsphere was
attached to a plate with glue and placed in a vacuum chamber
(~10−5 Pa) together with the nanowire on the InP substrate. The
linewidth of the WGM is κ/2π= 1.1 GHz, which corresponds to
the quality factor Q= 1.8 × 105 (Fig. 2b). The nanowire-
containing InP substrate was put on a three-axis piezo-posi-
tioner, which enables an adjustment of the relative gap between
the nanowires and microsphere along the x-axis, where we define
the x-, y-, and z-axis such that the x-axis corresponds to the radial
direction of the WGM as shown in Fig. 2c. Using the piezo-
positioner, the microsphere was evanescently coupled to a single
nanowire, which was located at the edge of the cleaved surface
with the normal axis corresponding to [110].

A balanced homodyne interferometer was constructed to
directly readout cavity phase modulation for high-sensitivity
displacement measurement (see Fig. 2d). Light from an external
diode laser was divided into a probe and a local oscillator. The
probe light was coupled to the microsphere via an optical tapered
fiber inside the vacuum chamber. After it had passed through the
optical cavity, the probe interfered with the local oscillator with a
fixed power of 3 mW. The optomechanical signals were detected
by a balanced photodetector. The radiofrequency part of the
signal, i.e. signal in mechanical motion, was monitored with a
spectrum analyzer, and the dc part of the signal was sent to a
servo-controller to stabilize the optical phase of the local
oscillator via a piezo-loaded mirror. The optical phase of the
local oscillator was set on in-phase, i.e., only dispersive
optomechanical readout was available. To achieve maximum
efficiency, the on-resonance probe light was used in the following
experiment.

Figure 3a shows the displacement noise power spectrum (at
x, y ≈ 500 nm, 0 nm; the definition of the position is given later)
measured with an optical probe power of 3 μW. This spectrum
was obtained by calibrating the optical phase noise power
spectrum with the application of an optical calibration tone from
an electro-optic modulator20 and by taking into account the
amount of the thermal motion and the nanowire’s effective mass
of 2.0 fg. It displays the thermal motion of the two orthogonalized
mechanical modes of the nanowire at 1.278 and 1.284MHz
(hereafter referred to as mode 1 and mode 2, respectively). The
linewidths of the two modes are 283 and 222 Hz, respectively,
which leads to the corresponding mechanical quality factors of
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4.5 × 103 and 5.8 × 103. These two mode frequencies show good
agreement with those of fundamental flexile modes numerically
calculated by the finite element method. This reveals that the two
spectra correspond to the nearly degenerate orthogonalized
modes of the standing nanowire, where the degeneracy was lifted
due to the slight geometric asymmetry. Note that the displace-
ment of the nanowire was measured via linear optomechanical
coupling, where the output optical phase quadrature is propor-
tional to the mechanical displacement in the bad cavity regime.
The resultant linear optomechanical coupling constants,

gð1Þω � ∂ωcav

∂x
xzpf , are 2π × 28.5 and 23.9 Hz for mode 1 and mode

2, respectively, where ωcav is the optical resonance frequency, xzpf
is zero-point fluctuation, and x is mechanical displacement. The
probe power of 3 μW results in a noise floor level (i.e.

displacement sensitivity) of 2.4 × 10−12m=
ffiffiffiffiffiffi

Hz
p

. The noise floor
level was further reduced as the pump power was increased
because the net linear optomechanical coupling is enhanced in
proportion to the square of the probe power (see Fig. 3b). The

noise floor level of 8.2 × 10−13 m=
ffiffiffiffiffiffi

Hz
p

was achieved with the

Fig. 1 Conceptual illustration of near-field cavity optomechanics with a free-standing nanowire and a whispering-gallery mode microsphere. a Near-

field cavity optomechanical coupling between the nanowire and microsphere via an optical evanescent field. Ω and κ denote the mechanical frequency and

optical linewidth, respectively. b Optical probe of mechanical displacement via cavity phase modulation with balanced homodyne interferometry. c Optical

control of mechanical response with frequency shifts, linewidth broadening, and eigen-mode rotation via static optical force.

Fig. 2 Device and setup for near-field cavity optomechanics. a Scanning microscope image of as-grown InP/InAs heterostructured nanowires and a

schematic of the internal structure of a nanowire. The crystal orientation for the growth direction [111] and direction of cleaved surface [110] are

represented by yellow vectors. The inset shows a cross-sectional image of a nanowire. b Transmission spectrum of the optical cavity with a microscope

image of it (inset). c Illustration of the configuration of the microsphere and nanowire with coordinates defined such that the radial direction of the

whispering-gallery mode corresponds to the x-axis. d Schematic of optical measurement setup with a fiber-based balanced homodyne interferometer.

ECDL external cavity diode laser, EOM electro-optic modulator, BS beam splitter, FL fiber loop.
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optical power of 15 μW. This noise floor level is equivalent to the
level of thermal motion at 2.8 K. This displacement sensitivity
implies that thermal motion can be detected at the liquid helium
temperature, where rich quantum optical properties appear in
heterostructured nanowires. The displacement sensitivity could
be further improved to the standard quantum limit by optimizing
the taper-sphere coupling (see “Discussion”).

The strength of optomechanical coupling depends on the
vibration axis, and is thus, in general, different between the two
mechanical modes. In particular, the WGM optical field has a
strongly anisotropic optical gradient where the radial direction of
the microsphere (x direction defined in our experimental
coordinates) has a stronger gradient than the other directions
(polar and azimuthal directions). Thus, the vibrating mode along
the x direction is better resolved than the orthogonal modes. On
the other hand, the two-mode mechanical spectra in our
experiment were almost equivalently observed via the displace-
ment measurement as shown in Fig. 3a. This indicates that the
initial configuration between the microsphere and nanowire has
an almost ±45° angle between the radial direction of the WGM
and the two orthogonalized vibration directions. To quantita-
tively evaluate this initial angle θ0, we measured two-mode
thermomechanical spectra by sweeping the y position (see
Fig. 3c). Here, we define y= 0, where the difference among the
areas of power spectral density becomes zero. Being symmetric
with respect to y= 0, the mechanical spectrum of mode 1 (2)
dominantly appeared at the positive (negative) y positions. The
initial angle θ0 can be estimated by fitting the difference between

the areas of power spectral density η(y)≡ P1(y)− P2(y), where
Pi(y) is the integrated power in the power spectral density in
mode i. By fitting the experimental values with the theoretical
ones, θ0 is estimated to be 44.9° (see Fig. 3d), where θ0 is extracted
with the additional fitting parameter, ϕ0, which corresponds to
the angle between y-axis and practical sweep direction. Note that
such an initial configuration with θ ≈ 45° originates in the fact
that the optical microsphere was accessed at the edge of the
cleaved surface with the normal axis corresponding to [110].

Control of mechanical responses via static optical forces. Since
both orthogonalized mechanical modes are coupled to the optical
cavity mode, the optical force influences their frequency, line-
width, and the vibration axis. This can be understood from the
following equations of motion:

€X1 þ Γ1
_X1 þΩ2

1X1 ¼ Fth
1 þ F

opt
1 ðX1;X2Þ; ð1Þ

€X2 þ Γ2
_X2 þΩ2

2X2 ¼ Fth
2 þ F

opt
2 ðX1;X2Þ; ð2Þ

where Xi, Γi, and Ωi are the displacement, damping factor, and
angular frequency of ith modes (we define Ω2 ≥Ω1). The two

modes are driven by the thermal Langevin force Fth
i under the

optical force field F
opt
i ðX1;X2Þ for the vibration direction of mode

i. In the case of thermal motion with small mechanical dis-
placements, we can approximate the optical force field as

F
opt
i ðX1;X2Þ � F0

i þ g i1ðxÞX1 þ g i2ðxÞX2; ð3Þ

Fig. 3 Characterization of two-mode mechanical spectra and their sensitivity in thermal motion by balanced homodyne interferometry. a Two-mode

power spectral density of thermal motion observed by balanced homodyne interferometry with an optical probe power of 3 μW. The insets show the

fundamental flexural mode calculated by the finite element method (the color code corresponds to the amount of displacement, and the black vectors

depict the vibration directions). b Two-mode power spectral density of thermal motion with different optical probe powers. The lowest noise floor level,

—Sfloor ¼ 8:2 ´ 10�13 m=
ffiffiffiffiffiffi

Hz
p

—, was achieved with the optical probe power of 15 μW. c Two-mode power spectral density of thermal motion with respect

to y coordinate. d Normalized difference between integral of power spectral density for modes η(y) with respect to y coordinate. The black dots show the

experimental data and the red solid curve shows the fitted curve with θ0= 44.9° and an tilted sweep angle ϕ0= 1.2°. η has completely different profiles

with respect to the initial angle θ0 between the x-axis and the vibrating direction of a mechanical mode in the nanowire (curves with θ0= 0°, 30°, 60°, and

90° are shown with ϕ0= 1.2°).
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where F0
i is a constant force to change the equilibrium points of

vibration (and thus ignored in the following discussion), and

g ijðxÞ � ∂Xj
F
opt
i is the force gradient with a derivative along the Xj

direction. In this model, the optical force is assumed to be con-
servative. Note that the optical spring effect, which originates
from the linear optomechanical coupling and often appears in a
cavity optomechanical system by detuning the cavity11, does not
appear under the current homodyne measurement with an on-
resonance probe. Thus, the quadratic optomechanical coupling is
the dominant source of this optical force21. The strength of this
quadratic (dispersive) optomechanical coupling exponentially
changes with the gap, i.e., gij(x) is an exponent function for x.
Therefore, this leads to an exponential frequency shift of the
mechanical modes with the gap. Here, note that gij also leads to
the rotation of the vibration axis of the two mechanical modes
when the off-diagonal component is a non-zero value (see
“Methods”)22. When we include this rotation effect, we can
theoretically estimate the x dependence of the two-mode spectra
in the frequency domain (Fig. 4a). The theoretical results show an
exponential shift of the two mode frequencies for x, which is in
good agreement with the experimentally measured shift (Fig. 4b).
The only difference between the experiments and theory appears
in the linewidth. Experimentally, the linewidth broadens as the
gap is reduced. This linewidth broadening is caused by the dis-
sipative optomechanical coupling23, which is not included in our
theoretical model [Eq. (3)].

Now, one can find that the amount of frequency shift and the
linewidth are not equivalent between the two mechanical modes
(Fig. 4c, d). This difference is due to the rotation of the vibration
axis by the optical force. This can be seen in the theoretical results
by comparing the case including the rotation effect (color plots in
Fig. 4a) and the case excluding it (solid curve in Fig. 4a). The
optically induced rotation of the vibration axis pushes the
frequency shift in mode 1, whereas it suppresses the frequency
shift in mode 2. The angle between the vibration axis and the x-
axis, θ, can be quantitatively evaluated by taking into account the
ratio of the frequency and the area of the displacement noise
power spectrum between the two modes24:

θ � tan�1 ΔΩ1

ΔΩ2

ffiffiffiffiffi

P1

P2

s !

; ð4Þ

where ΔΩi is the frequency shift in mode i. Figure 5a shows the
gap (x) dependence of the angle θ at y= 0, which was extracted
from Eq. (4). The experimental values (open circles) show good
agreement with the theoretical values (solid curve, see Eq. (9)),
indicating rotation to θ= 18.9° at x= 0.

This rotation leads to the difference in the optomechanical
coupling coefficients between the two modes, in which the
coefficient of mode 1 is increased at the price of mode 2,
especially when the gap is small. The linear optomechanical

coupling constant gð1Þω , which contributes to the displacement
sensitivity, was estimated by taking into account the linewidth

broadening (see “Methods”). Apparently, gð1Þω in mode 1 gained
several hundred hertz as the gap decreased due to the rotation,
whereas that in mode 2 converged (see Fig. 5b). Because this
rotation aligns the vibration axis in mode 1 so that it becomes
parallel to the x-axis, we can achieve optimized displacement
sensitivity in mode 1 regardless of the initial angle. Such mode-
selective coupling due to the rotation also appears in the
quadratic optomechanical coupling coefficients. The quadratic
optomechanical coupling coefficients are classified into a

dispersive part, gð2Þω � 1
2
∂2ωcav

∂x2
x2zpf , and a dissipative part,

gð2Þκ � 1
2
∂2κ
∂x2

x2zpf . The dispersive (dissipative) part is estimated

from the frequency shift (linewidth broadening) of the two modes
(see “Methods”). The value of coefficients in mode 1 in the small
gap region becomes about ten times larger than that in mode 2.
Such mode-selective control of both the mechanical frequency
and linewidth could be extended to non-reciprocal operation25

and quantum nondemolition measurement14,26,27 via the quad-
ratic optomechanical coupling.

In addition to the linear mechanical responses (i.e. frequency,
linewidth, and vibration axes), the Duffing mechanical
nonlinearity can be controlled by using the cavity-induced
optical force. The Duffing nonlinearity often appears in
strongly driven mechanical resonators as a result of the
hardening or softening effect28. Such nonlinearity is externally
uncontrollable because it is generally caused by the structural or
material properties of resonators. The fourth-order optome-
chanical coupling, whose coefficient is given by

gð4Þω � 1
4!
∂4ωcav

∂x4
x4zpf , with the on-resonance probe allows us to

induce and control such Duffing nonlinearity in a free-standing
structure like the present nanowire (see Fig. 6a). We performed

Fig. 4 Two-mode mechanical responses with static optical forces. a Theoretically predicted two-mode power spectral density (PSD) with optical force

field in terms of gap x. The black dashed lines show the two-mode frequencies without rotation of eigen-modes. b Experimentally observed two-mode

power spectral density with respect to x coordinate. c, d Mechanical frequencies and linewidths with respect to x coordinate. The red and blue circles

correspond to them in mode 1 (lower-frequency mode) and mode 2 (higher-frequency mode), respectively.
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the driven measurement with a lock-in detector under a strong
excitation of the mechanical motion of the nanowire achieved
by setting a piezoelectric sheet below the InP substrate (see
“Methods”). Figure 6b, c shows the mechanical response
measured at two different gaps, x ≈ 100 and 500 nm, respec-
tively. The symmetric mechanical spectra in the large gap x ≈

500 nm reflect that the free-standing structure of nanowire does
not show the Duffing nonlinearity (see Fig. 6b). On the other
hand, the asymmetric mechanical spectra in the small gap x ≈
100 nm with the same driving force indicate that the near-field
optical force induces the Duffing nonlinearity via the fourth-
order optomechanical coupling (see Fig. 6c). Note that the

Fig. 5 Eigen-mode rotation angle and optomechanical coupling constants. a Angle between x-axis and a vibrating mode in the nanowire. The purple

circles are the experimentally observed rotation angles, and the black solid line shows data fitted with a theoretical model. b Linear dispersive

optomechanical coupling constants, gð1Þω , estimated from the net phase modulation. c Quadratic dispersive optomechanical coupling constants, gð2Þω ,

estimated from the frequency shifts. d Quadratic dissipative optomechanical coupling constants, gð2Þκ , estimated from the linewidth broadening. The red

(blue) circles corresponds to that of mode 1 (mode 2). The insets are conceptual illustrations of modulation in mechanical responses via each

optomechanical coupling (corresponding to the illustration in Fig. 1b, c).

Fig. 6 Optically induced Duffing nonlinearity. a Conceptual illustration of optically induced Duffing nonlinearity via the static fourth-order optomechanical

coupling. The purple spectral shape shows the typical Duffing response in contrast to the green Lorentz response. Two-mode mechanical amplitude

achieved in the driven lock-in measurement at x≈ 100 nm (blue) (b) and x≈ 500 nm (red) (c).
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fourth-order optomechanical coupling coefficient under the on-
resonance probe can give rise to only the softening effect

(gð4Þω > 0). This positive sign is reasonable because gð2Þω > 0 as the
same even-order coefficient due to the exponential profile of the
optical fields. Introducing an additional control light and
setting its detuning to a finite value might make it possible to
tunably adjust the softening and hardening effects like the
optical spring effects can be11. Such an optically tunable
Duffing nonlinearity could be used for sensing applications of
nanomechanical resonators29,30.

Besides the Duffing nonlinearity, the near-field optomechanical
coupling might induce richer mechanical nonlinearities in terms
of the even-order mechanical nonlinearity and nonlinear
mechanical damping31,32. The former can modulate the equili-
brium point of mechanical motion in higher-odd-order opto-

mechanical coupling (i.e. coefficient of gð2n�1Þ
ω with n ≥ 2), and the

latter can enrich the dynamics of energy relaxation in higher-

order dissipative optomechanical coupling (i.e. coefficient of gðnÞκ

with n ≥ 3). Note that introducing a control laser with finite
detuning might make it possible to tune the sign of these
nonlinear effects. Investigating the nonlinear mechanical proper-
ties in near-field cavity optomechanics might open the way to
further functionalize the manipulation of nanowire mechanical
systems.

Discussion
The optomechanical performance achieved in our experiment
could be further improved by optimizing the optical taper-cavity
coupling with additional positioners. This optimization would
increase the loaded optical Q factor, which is typically larger than
107 in a silica microsphere of the current size. We estimate that
improving the optical Q factor to 1.0 × 107 (i.e. κ/2π= 20MHz)
could lead to displacement sensitivity of 2.9 × 10−15 m=

ffiffiffiffiffiffi

Hz
p

,
which corresponds to the standard quantum limit in this nano-
wire mechanical resonator, if a similar level of optomechanical
coupling, g0/2π= 100 Hz, is obtained with the probe power of 16
nW. This implies that the Heisenberg-limit displacement mea-
surement in the back-action-dominant regime would be available
in this nanowire at room temperature17. Moreover, introducing
the ultrahigh-Q microsphere (Q > 108)33 would allow us to bring
the system into the resolved-sideband regime (Ω > κ), which
would lead to rich optomechanics (e.g. sideband cooling and
heating) in semiconductor nanowires.

In principle, this near-field optomechanical approach does not
limit the nanowire structure. Therefore, it can be extended to
various types of nanowires with different sizes and inner struc-
tures, including arrayed nanowires34,35. The extension to epi-
taxially engineered nanowires with an optical or electronic
functionality would also be available. This would thus allow us to
construct novel quantum hybrid cavity optomechanical systems
based on, for example, nanowire field-effect transistors and
quantum dots36–39, which could lead to highly efficient electro-
optic transduction and highly sensitive charge detection through
optomechanical coupling40. The near-field cavity optomechanical
coupling could also be demonstrated at liquid helium tempera-
tures by carefully designing the cryo-measurement setup. Such a
cryogenic operation would open the way to a novel hybrid
quantum optoelectromechanical system, in which mechanical
displacement (i.e. phonons) is resolved at a level close to the zero-
point motion and a small number of electrons confined in the
nanowire couple to a small number of photons via the cavity-
induced optomechanical coupling. Moreover, coupling a cavity to
a quantum-dot-embedded free-standing nanowire would lead to
novel nanomechancial systems that show rich physics related to
exciton–polariton dynamics41,42.

Methods
Fabrication of InP/InAs heterostructured nanowire. We prepared InP/InAs
nanowires in a metal organic vapor phase epitaxy system5. We used bottom-up
vapor–liquid–solid (VLS) growth for nanowire synthesis. Indium particles were
used to catalyze nanowire growth in the self-catalyzed VLS mode. They were
formed on a heated InP (111)B substrate (360 ∘C) by introducing trimethylindium
(TMIn) source material for 5 min at a flow rate of 3.03 μmol/min43. We then
reduced the temperature to 330 ∘C and started nanowire growth by introducing
TMIn and tertbutylarsenic (TBA) or tertbutylphosphine (TBP) simultaneously.
The nanowire growth initiated from indium particles distributed on the InP sub-
strate. Owing to the epitaxial relationship between the nanowires and substrates,
the 〈111〉-oriented nanowires are vertically aligned on it (Fig. 2a). By alternating
source As and P materials, we added multiple InAs layers to InP nanowires. Each
nanowire shown in Fig. 2a contains 300 InP/InAs units. For the InP segment
growth, the flow rates of TMIn and TBP were 3.03 and 803.6 μmol/min, respec-
tively. For the InAs segment growth, the flow rates of TMIn and TBA were 3.03
and, 26.8 μmol/min, respectively. The growth times for InP and InAs segments in
each InP/InAs unit were 20 and 2 s, respectively. The thicknesses of the segments
were 35 ± 3 and 7.5 ± 2 nm, respectively.

Estimation of initial angle θ0. To quantitatively estimate the initial angle θ0
between the vibration direction and x direction (the radial direction of the WGM),
we measured the two-mode mechanical spectra by sweeping the y position and
calculated the difference in the integral of the power spectral density between the
two modes for each y, η(y). Note that the x coordinate, which is defined so that x=
0 on the sphere surface, was far enough away (x ≈ 500 nm) to avoid angle rotation
due to the static optical force. By approximating that the two mechanical modes
have the same effective masses and the same thermal occupation, the integrated
power spectral density of each mode Pi only reflects the linear optomechanical
transduction for each y. Since the linear optomechanical transduction is propor-
tional to the derivative of the optical near-field potential along the vibration
direction, η(y) is modeled by

ηðyÞ � P1ðyÞ � P2ðyÞ

¼
Z

mode1

dωSVV ðω; yÞ �
Z

mode2

dωSVV ðω; yÞ

� BðG1ðyÞ � G2ðyÞÞ;

ð5Þ

where Gi(y)≡ ∂Uopt(x, y)/∂Xi with Xi the vibration coordinate in mode i, and B an
arbitrary constant. The vibration coordinate can be transformed to X1 ¼ x cos θ0 þ
y sin θ0 and X2 ¼ �x sin θ0 þ y cos θ0 with the laboratory coordinate (x, y) with the
initial angle θ0. The optical near-field potential in the WGM of microsphere is
given by

Uopt ¼Ajψ2
WGMðx; yÞj

2

¼ jlðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx þ RÞ2 þ y2
q

ÞPl
m

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx þ RÞ2 þ y2
q

0

B

@

1

C

A

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2

;
ð6Þ

where ψWGM(x, y) is the optical near-field of WGMs given by the product of a

spherical Bessel function jl and associated Legendre function Pl
m with the integers

of l and m, R is the microsphere radius, and k= 2π/λ is the wavenumber of light
with the resonance wavelength λ. Here, we fixed l=m= 220 and λ= 1567 nm
from the boundary condition of the WGM cavity44. By calculating the derivative of
Eq. (6) along xi and substituting it into Eq. (5), we achieved the theoretical model
with free parameters θ0, x, and y. To fit this model into the experimental results, we
assumed that x ! x0 þ tan ϕ0y with x0 fixed at 500 nm and that ϕ0 is a tilted sweep
angle to take into account the imperfect configuration. As a result, we achieved θ0
= 44.9° and 1.2° from the experimental data by fitting with the theoretical model.

Two-mode mechanical spectra with static optical forces. From Eqs. (1) and (2),
we analytically derive the two-mode mechanical spectra with Fourier transfor-
mation:

χ1ðωÞ � g11ðxÞ �g12ðxÞ
�g21ðxÞ χ2ðωÞ � g22ðxÞ

� �

X1

X2

� �

¼ Fth
1

Fth
2

 !

; ð7Þ

where χiðωÞ ¼ Ω2
i � ω2 þ iωΓi . Here, we assume that the static optical force makes

an angle of ±45° in the vibration directions. This assumption of the initial angle
reduces to gij(x)= fx(x)/2, where fx(x) is the force gradient along the x direction in
the laboratory frame (shown in Fig. 2c). Note that we approximate that
fx ≡ ∣∂xFx∣ ≫ ∣∂yFx∣, ∣∂xFy∣, ∣∂yFy∣ ≈ 0 by taking into account the WGMs. The
matrix is diagonalized as diag[χ+(ω), χ−(ω)] with

χ ± ðωÞ ¼
1

2
χ1ðωÞ þ χ2ðωÞ � f xðxÞ
�

±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ1ðωÞ � χ2ðωÞ
� �2 þ f xðxÞ

2
q

	

:
ð8Þ

Here, we assume that the initial angle between the vibration direction and force
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direction is 45° and regard the optical force gradient as an exponential function

A exp �x=xevð Þ, xev � λ=ð4π
ffiffiffiffiffiffiffiffiffiffi

n2SiO2

q

� 1Þ with the optical wavelength λ and

refractive index of optical cavity nSiO2
¼ 1:44. The constant A= 7 × 10−11 was

chosen so that the amount of frequency shift almost corresponded to the
experimental data.

The two-mode mechanical spectra were experimentally obtained via the linear
optomechanical coupling, whose strength also depends on the vibration direction.
The linear optomechanical coupling constants, which are proportional to the
optical force, are given by Fx cos θ and Fx sin θ where Fx �

R

dxf x ¼
Axev expð�x=xevÞ and θ is the angle between the vibration direction and the
dominant optical force in the radial direction of the WGM cavity expressed by

θðxÞ ¼ π

4
�
Ω2

2 �Ω2
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f xðxÞ
2 þ ðΩ2

2 �Ω2
1Þ

2
q

f xðxÞ
: ð9Þ

Note that the contribution of mechanical dissipation is ignored because the Q of
the mechanical resonance is high enough with ΩiΓi � Ω2

i . The sum of the squares

of amplitude jχ�1
þ ðωÞFx cos θj þ jχ�1

� ðωÞFx sin θj are shown in Fig. 4a with an

appropriate noise floor with the signal-to-noise ratio of 102, which almost
corresponds to the experimental one. Note that the non-rotating case described by
the black dotted lines in Fig. 4a corresponds to the case of g12= g21= 0.

Estimation of linear optomechanical coupling constant. The linear opto-
mechanical coupling constant was evaluated by using a calibration method. The
dispersive optomechanical coupling constant is given by

gð1Þω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R

dωSmech
VV ðωÞ

R

dωSrefVV ðωÞ

s

Ωrefβ
R

dωSxxðωÞ
; ð10Þ

where Smech
VV ðωÞ and SrefVV ðωÞ are experimentally measured power spectral densities

with the unit of V2/Hz, and Ωref and β are the reference frequency and phase
modulation rate, respectively20. In the case of no damping in a mechanical reso-
nator (pure thermal motion), ∫dωSxx(ω)= 4nM with the phonon number nM.
However, if there is an additional damping, ∫dωSxx(ω) should be corrected as
4nMΓ/Γ0, where Γ is measured linewidth due to the additional damping from the
quadratic optomechanical coupling and Γ0 is an intrinsic linewidth of mechanical
resonator. As a result, we estimated the linear optomechanical coupling constant by

gð1Þω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R

dωSmech
VV ðωÞ

R

dωSrefVV ðωÞ

s

Ωrefβ

4nM

Γ0
Γ
: ð11Þ

Importantly, the corrected optomechanical coupling with Eq. (11) shows an
exponential dependence on the gap distance, which is predicted in theory, whereas
the noncorrected coupling does not.

Estimation of static quadratic optomechanical coupling constant. The dis-
persive and dissipative quadratic optomechanical coupling constants, denoted by

gð2Þ;iω and gð2Þ;iκ , respectively, for the orthogonalized mechanical mode i are defined
by

gð2Þ;iω ¼ 1

2

∂2ωcav

∂X2
i

x2zpf ;i ¼
1

ncav
Re

∂FXi

∂Xi


 	

; ð12Þ

gð2Þ;iκ ¼ 1

2

∂2κ

∂X2
i

x2zpf ;i ¼
1

ncav
Im

∂FXi

∂Xi


 	

; ð13Þ

where ω and κ are the cavity frequency and linewidth modified by the mechanical
displacement Xi of mode i, and xzpf,i are zero-point fluctuations of mode i. The
cavity photon number ncav with zero-detuned probe is given by

ncav ¼
4η

κ

Pin

_ω0

; ð14Þ

where Pin is the input probe power at the tapered fiber, ℏ is Planck’s constant over
2π, ω0 is the cavity resonance frequency, and η≡ κin/κ with taper-cavity coupling
constant κin determines the coupling ratio at which the critical coupling condition
corresponds to 1/2. In our experiment, ncav was about 4.0 × 103 with the input
optical power of 3.0 μW. Although these expressions are equivalent to the ones in
previous work21, we modified them to estimate the coupling constants with the
experimental observables by taking into account the intermodal coupling.

Here, we regard the static optical force as a complex force where the real part
shows a conservative portion inducing a frequency shift, and its imaginary part
shows a non-conservative one inducing linewidth broadening. To estimate the
static quadratic optomechanical coupling constant from the frequency shift and
linewidth broadening, Eq. (8) is recalculated for an arbitrary rotated angle θ (i.e.
g11ðxÞ ¼ f xðxÞcos2θ; g12ðxÞ ¼ g21ðxÞ ¼ f xðxÞ cos θ sin θ; g22ðxÞ ¼ f xðxÞsin2θ) as

follows:

χ ± ðωÞ ¼
1

2
χ1ðωÞ þ χ2ðωÞ � f xðxÞ
�

±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ1ðωÞ � χ2ðωÞ
� �2 þ f xðxÞ

2 � 2 χ1ðωÞ � χ2ðωÞ
� �

cos 2θ

q
	

:
ð15Þ

The force gradient is decomposed to real and imaginary parts as fx(x)= fR(x)+
ifI(x), where each part can be calculated from Eq. (15) as

f RðxÞ ¼ �ðΔΩ1 þ ΔΩ2Þ; f IðxÞ ¼ �ðΔΓ1 þ ΔΓ2Þ; ð16Þ
where

ΔΩ1;2 ¼ Re χþ;�ðωÞ � χþ;�ðωÞ
�

�

�

f x!0


 	

; ð17Þ

ΔΓ1;2 ¼ Im χþ;�ðωÞ � χþ;�ðωÞ
�

�

�

f x!0


 	

: ð18Þ

By transforming the coordinate to (X1, X2) (i.e.
f X1

e � ∂X1
FX1

� f Xcos
2θ; f X2

� ∂X2
FX2

¼ f Xsin
2θ), we can represent the

quadratic optomechanical coupling constant with experimentally measured
parameters ΔΩi, ΔΓi, and θ as follows:

gð2Þ;1ω ¼ �ΔΩ1 þ ΔΩ2

ncav
cos2θ; gð2Þ;2ω ¼ �ΔΩ1 þ ΔΩ2

ncav
sin2θ; ð19Þ

gð2Þ;1κ ¼ �ΔΓ1 þ ΔΓ2
ncav

cos2θ; gð2Þ;2ω ¼ �ΔΓ1 þ ΔΓ2
ncav

sin2θ; ð20Þ

which were estimated with the experimentally observed ΔΩi, ΔΓi, and θ for each x
in Fig 5c, d.

Driven lock-in measurement for observing Duffing nonlinearity. To confirm
that the Duffing nonlinearity is induced by the near-field optical gradient, we
performed the driven lock-in measurement as follows. The nanowire mechanical
amplitude was electrically driven with a radiofrequency drive signal via a piezo-
electric sheet attached to the substrate. A lock-in amplifier was used to generate the
radiofrequency drive signal and measure the mechanical amplitude from the
output of the balanced photoreceiver (shown in Fig. 2d). The two-mode
mechanical spectra (shown in Fig. 6b, c) were acquired by sweeping the frequency
of the drive signal from 1.28 to 1.29 MHz.

Data availability
The data that support the findings of this study are available from the corresponding

author upon reasonable request.
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