NEAR FIELD GAIN CORRECTION FOR STANDARD gain horn antennas

H. H. Chung and R. C. Rudduck

Technical Report 711587-1

March 1980

Contract N00014-76-A-0039-RZO1

DISTRIDUTION STATEMENT
 Approved tor publie rajecem
 Distra:ter junimired

2750th Air Base Wing/PMR
Specialized Procurement Branch Building 1, Area C Wright-Patterson Air Force Base, Ohio 45433

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entorod)

20.

Both the GTD method and the equivalent line source integration (LSI) method were wised for the calculation of the on-axis near fields for noncorrugated pyramidal horns. For the corrugated horns, the aperture inteoration method (API) was used.
Knows: porn antone: (ri: /i-

ACKNOWLEDGMENT

The authors would like to express their sincere appreciation to Dr. W. D. Burnside for his suggestions and reading of the manuscript.

The efforts of the Measurement Standards and Microwave Laboratory at Newark Air Force Station in providing measured results on coupling data are greatly appreciated.

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS 1
Chapter
I INTRODUCTION 1
II BASIC GTD THEORY ?
Wedge Diffraction 2
Slope Diffraction 6
II I FAR FIELD PATTERN ANALYSES 11
E-Plane Pattern 11
H-Plane Pattern 17
IV ANALYSIS OF THE ON-AXIS NEAR FIELD BY USING GTD METHOD 22
\checkmark AMPLITUDE CENTER FOR ON-AXIS WAVE 28
VI ANALYSIS OF HORN GAIN 33
VII ON-AXIS COUPLING AND NEAR FIELD CORRECTION. 37
VIII RESULTS AND DISCUSSION 41
Procedure for Horns of Same Model 42
Procedure for Horns of Different Models 43
IX CONCLUSION 75
Appendix
A EQUIVALENT LINE SOURCE INTEGRATIONMETHOD (LSI)76
B APERTURE INTEGRATION METHOD (API) $8 ?$
C COUPLING BETWEEN NON-ISOTROPIC SOURCES 88
REFERENCES 95

CHAPTER I
 INTRODUCTION

The customary method of measuring the gain of microwave antennas is by comparison with a siandard gain pyramidal horn. The gain of the standard gain horn is determined either by calculation from the dimensions of the pyramidal horn or by measurements. If the far field gain is to be measured, near field corrections are frequently necessary for accurate gain measurements. In this research, the object was to investigate the use of the Geometrical Theory of Diffraction (GTD) for calculating near field corrections.

Both the GTD method and the equivalent line source integration (LSI) method were used for the calculation of the on-axis near fields for non-corrugated pyramidal horns. For small horn dimensions, the LSI method is recommended for somewhat better accuracy. For the corrugated horns, the aperture integration method (API) is used for better accuracy.

In most published research the range is defined as that between the two horn apertures. A more appropriate way to def ine the range is to use the distance between the amplitude ceriters of the two horns. The amplitude center of a horn is determined from its E- and H-plane phase centers. Because the range is defined as that between the amplitude centers, considerably less correction is required as compared to using the distance between the horn apertures.

The method for using the near field range correction to determine the far field gain from the measurements of coupling between two horns is discussed in Chapter VII. The measured coupling data used in this research are based on measurements taken at the Measurement Standards and Microwave Laboratory at Newark Air Force Station.

CHAPTER II BASIC GTD THEORY

Wedge Diffraction

The basic GTD analysis for horn antennas [1-5] is the diffraction by a wedge as shown in Figure 1. There are three basic contributions to the field at the observation point, namely, the incident rays and reflected rays (called the geometric optics rays) and the diffracted rays as seen in the figure. Depending on the position of the observation point there may be no incident ray or no reflected ray as seen in Figure 2.

For an isotropic point source, the incident ray at the observation point (s, ϕ) is given by

$$
\begin{equation*}
\frac{e^{-j k s_{i}}}{s_{i}} \tag{1}
\end{equation*}
$$

where s_{j} is the distance between the source and observation points as shown in Figure lb. The reflected ray at the observation point is given by

$$
\begin{equation*}
E^{r}= \pm \frac{e^{-j k s_{r}} r}{s_{r}} \tag{2}
\end{equation*}
$$

where s_{r} is the distance between the image and observation points. The plus (+) sign is used for E-field polarization perpendicular to ray fixed plane of incidence and the minus (-) sign is used for parallel polarization. The diffracted fields at the observation point (s, ϕ) are given by [6]

$$
\begin{align*}
& E_{n}^{d}=E_{11}^{i}\left(Q_{E}\right) \cdot D_{s}\left(L, \phi, \phi_{O}, \beta_{0}, n\right) A(s) e^{j k s} \tag{3}\\
& E_{1}^{d}=E_{1}^{i}\left(Q_{E}\right) \cdot D_{h}\left(L, \phi, \phi_{0}, E_{0}, n\right) A(s) e^{-j k s} \tag{4}
\end{align*}
$$

where $E_{11}^{i}\left(Q_{E}\right)$ is the parallel component which parallel to ray fixed plane of incidence of the incident field at the diffraction point Q_{E}, E_{n}^{d} is the parallel component of the diffracted field at the

(1) Incident ray at the observation point.
(2) Reflected ray at the observation point.
(?) Diffracted ray at the observation point.

Figure 1. Geometry for three dimensional wedas diffractinn.

Figure ?. Boundary regions for the wedge prohlem. Region I: Incident + reflected + diffracted diffracted rays.
Region II: No reflected ray. Region III: No reflected and incident. rays.
observation point, and $E_{1}^{i}\left(Q_{E}\right)$ and E_{\perp}^{d} are the perpendicular components. For an isotropic point source located at (s^{\prime}, ϕ_{0}), time incident field at the diffraction point Q_{E} is given by ${ }^{\circ}$

$$
\begin{equation*}
E^{i}\left(Q_{E}\right)=\frac{e^{-j k s^{\prime}}}{s^{\prime}} \tag{5}
\end{equation*}
$$

where s' is the distance between the source and diffraction points. The spreading factor, $A(s)$, descrives how the amplitude of the field varies along the diffracted ray,

$$
\begin{equation*}
A(s)=\sqrt{\frac{s^{\prime}}{s\left(s^{1}+s\right)}} . \tag{6}
\end{equation*}
$$

The diffraction coefficients, D_{S} and D_{h}, for each incident polarization are given by

$$
\begin{equation*}
D_{S, h}\left(L, \phi, \phi_{0}, R_{0}, n\right)=D_{I}\left(L, \phi-\phi_{0}, B_{0}, n\right) \mp D_{I}\left(L, \phi+\phi_{0}, \beta_{0}, n\right) \tag{7}
\end{equation*}
$$

whore the minus (-) sign applies for D_{S} and the plus (+) sign for D_{h}. The components of the diffraction coefficients are exprescon in terms of

$$
\begin{align*}
& D_{I}\left(L, \psi, \vdots_{0}, n\right)=\frac{e^{-j \frac{\pi}{4}}}{2 n \sqrt{2 \pi k \sin }}{ }_{0}\left[\cot \left(\frac{+\pi}{2 n}\right) F\left(k L a^{+}(\because)\right)\right. \\
& +\cot \left(\frac{-\theta_{-}^{\prime}}{2 n}\right) F\left(\mathrm{KLa}^{-}(.)\right)^{-} \tag{8}
\end{align*}
$$

where F_{0} is the incident angle with respect to the edge. The wedge parameter n is given by

$$
\begin{equation*}
n=2-\frac{W A}{\pi} \tag{191}
\end{equation*}
$$

where $W A$ is the wedge angle in radians. The angle parameter is qiven by

$$
\begin{equation*}
4=\infty \pm p_{0} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
a^{ \pm}(n)=2 \cos ^{2}\left(\frac{2 n+N^{-}}{2}-\frac{t}{-}\right) \tag{11}
\end{equation*}
$$

where $\stackrel{+}{N^{-}}$are integers which most nearly satisfy the equations,

$$
\begin{equation*}
2^{\pi} n N^{+}-\psi=- \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \pi n N^{-}-!=-\pi \quad . \tag{13}
\end{equation*}
$$

The transition function which is basically à Fresnel integral is given by

$$
\begin{equation*}
F(x)=2 j \times e^{j x} \int_{\sqrt{x}}^{x} e^{-j \tau^{2}} d \tau \tag{14}
\end{equation*}
$$

For spherical wave incidence on a wedge with a flat surface, the distance parameter is given by

$$
\begin{equation*}
L=\frac{s s^{1}}{s+s^{\prime}} \sin ^{2} \tag{15}
\end{equation*}
$$

The total field at the observation point is the sum of the incident, reflected, and diffracted fields as given by

$$
\begin{equation*}
E^{t}=E^{i}+E^{r}+E^{d} . \tag{16}
\end{equation*}
$$

For grazing incidence along the wedge surface (${ }_{0}=0$) the incident. and reflected terms combine to give the total geometrical optics field effectively incident at the observation point. Thus,

$$
\begin{equation*}
\frac{e^{-j k s_{i}}}{s_{i}} \tag{1171}
\end{equation*}
$$

and the diffraction coefficient becomes

$$
D_{h}=2 D_{I}\left(1, \infty, R_{n}, n\right) .
$$

(18
It is usually more convenient to use a unit amplitude for the incident wave as given in Equation (1). Consequently, the geometrical optics field for grazing incidence is defined as

$$
\begin{equation*}
E^{G 0}=\frac{e^{-j k s_{i}}}{s_{i}} \tag{19}
\end{equation*}
$$

and hence the diffracted field for grazing incidence is given by

$$
\begin{equation*}
E^{d}=E^{i}\left(Q_{E}\right) D_{I}\left(L, t, O_{0}, n\right) A(s) e^{-j k s}, \tag{20}
\end{equation*}
$$

where

$$
E^{i}\left(Q_{E}\right)=E^{G 0}\left(Q_{E}\right)=\frac{e^{-j k s^{\prime}}}{s^{\prime}} .
$$

Slope Diffraction

It is well known that the tangential component of the electric field vanishes on the surface of a perfectly conducting plane. Therefore, in the case of grazing incidence on a wedge, the parallel component of the incident field vanishes, and thus one needs to use slope diffraction in order to obtain the H-plane pattern. The slope diffracted fields are calculated in a way similar to ordinary edge.
diffraction except that the slope diffraction coefficients $\frac{\partial D}{\partial A_{0}}$ and $\frac{\partial D_{h}}{\partial p_{0}}$ and the slope of the incident field $\frac{\partial E^{i}}{\partial n}$ at the edge are aset.

Slope diffraction can he derived from ordinary edge diffraction by considering a dipole source composed of two isotropic point sources as shown in Figure 3. The field of the dipole source is given by

$$
\begin{equation*}
E^{s i}=I \frac{e^{-j k s_{+}}}{s_{+}}-I \frac{e^{-j k s_{-}}}{s_{-}} \tag{2?}
\end{equation*}
$$

where s_{+}and s_{-}are the respective slant distances from each individual ${ }^{+}$ource. ${ }^{-}$For small spacings $a \ll s_{i}$,

$$
s_{i}=s_{i} \mp \frac{1}{2} s \sin \beta \sin \psi
$$

where f is the angle measured from the z-axis as shown in Figure 3a, and ψ is measured from the $x z$ plane as shown in Figure 3 h . Thus, the source field can be expressed as

$$
\begin{align*}
E^{s i} & =1 \frac{e^{-j k s_{i}}}{s_{i}}\left[e^{+j \frac{k \ell}{2} \sin A \sin \psi}-e^{-j \frac{k \ell}{2} \sin \sin \ell}\right] \\
& =2 j I \sin \left(\frac{k i}{2} \sin \sin :\right) \frac{e^{-j k s_{i}}}{s_{i}} . \tag{?3}
\end{align*}
$$

(a)

(b)

Figure 3. Dipole source for slope diffraction.

For a slope diffraction source $k s \rightarrow 0$, and thus

$$
\begin{equation*}
E^{s i}=j k I 2 \sin \rho \sin \psi^{-e^{-j k s_{i}}} s_{i} . \tag{21}
\end{equation*}
$$

The slope diffracted field can be derived by superposition of the diffracted fields from the individual sources as shown in Figure 4. Thus by using Equations (3) and (4)

$$
\begin{equation*}
E^{S d}=I \frac{e^{-j k s^{\prime}}}{s^{\prime}}\left[D_{s, h}\left(t, \phi_{0}+\frac{\Delta \phi_{0}}{2}\right)-D_{s, h}\left(\phi, t_{0}-\frac{\hat{\Delta t}_{0}}{2}\right)\right] A(s) e^{-j k s} \tag{25}
\end{equation*}
$$

where D_{S} is used for parallel polarization and D_{h} for perpendicular polarization. Since $\omega_{0} \rightarrow 0$ for a dipole source, Equation (25) can be expressed as

$$
\begin{equation*}
E^{s d}=I-\frac{e^{-j k s^{\prime}}}{s^{\prime}} \frac{\partial D_{S}, h}{\partial \phi_{0}} i \phi_{0} A(s) e^{-j k s} \tag{26}
\end{equation*}
$$

Furthermore, the slope of the incident field at the diffraction point Q_{E} can be derived from Equation (24) as

$$
\begin{equation*}
\left.\frac{\partial E^{s i}}{\partial \psi}\right|_{\pi}=-j k I l \sin e_{0} \frac{e^{-j k s^{\prime}}}{s^{\prime}} \tag{27}
\end{equation*}
$$

where is the angle of the incident ray with respect to the edge. From Equation (27)

$$
\begin{equation*}
I \frac{e^{-j k s^{\prime}}}{s^{T}}=\left.\frac{-1}{j k \ell \sin e_{0}^{-}} \frac{\partial E^{s i}}{\partial!}\right|_{\pi} \tag{28}
\end{equation*}
$$

and substituting into Equation (?6) gives the slope diffracted field in terms of the slope of the incident field,

$$
\begin{equation*}
E^{s d}=-\left.\frac{1}{j k \sin } \frac{\partial E^{s i}}{\partial \psi}\right|_{\pi} \frac{\partial D_{0}, h}{\partial \phi_{0}} \Delta \Delta_{0} A(s) e^{-j k s} \tag{29}
\end{equation*}
$$

From Figures $4 a$ and b

$$
\begin{equation*}
\theta=n^{\prime} \Delta t_{0}=s^{\prime} \sin _{0}{\Delta t_{0}}^{0} \tag{30}
\end{equation*}
$$

and substituting into Equation (29) gives

$$
\begin{equation*}
\Gamma^{c, 1}=\left.\frac{-1}{j k s s^{\prime} \sin _{0}^{2}} E_{0}^{s i}\right|_{0} ^{D_{s, h}} A(s) e^{-j k s} \tag{31}
\end{equation*}
$$

Figure 4. Slope diffraction for a wedge.

The slope of the incident field at the edge can be expressed in terms of the normal to the edge as shown in Figure 4c. Thus

$$
\begin{equation*}
\left.\frac{\partial E^{s i}}{\partial \psi}\right|_{\pi}=-n^{\prime} \frac{E^{s i}}{\partial n}=-s^{\prime} \sin \beta_{0} \frac{\partial E^{s i}}{\partial n} . \tag{32}
\end{equation*}
$$

Thus the slope diffracted field can be expressed in terms of the normal derivative of the incident field at the diffraction point Q_{E} as

$$
\begin{equation*}
E^{s d}=\frac{1}{j k \sin B_{0}} \frac{\partial E^{s i}}{\partial n} D_{0}, h(s) e^{-j k s} \tag{33}
\end{equation*}
$$

For grazing incidence the parallel components of the incident and reflected waves combine to form the geometrical optics field as discussed before and, consequently,

$$
\begin{equation*}
E_{11}^{s d}=\frac{1}{j k \sin \beta_{0}} \frac{\partial E^{s i}}{\partial n} D_{P I}\left(L, \phi, \beta_{0}, \eta\right) A(s) e^{-j k s} \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{P I}\left(L, \neq \beta_{0}, n\right)=\frac{D_{I}\left(L, \phi, R_{0}, n\right)}{\partial \phi_{0}} \tag{35}
\end{equation*}
$$

Equation (34) applies for grazing incidence where $D_{P I}$ is used in the same manner as D_{I} was used in Equation (?0).

CHAPTER III
FAR-FIELD PATTERN ANALYSES

E-Plane Pattern

In the case of standard gain horn antennas, the feed waveguide dimension is small; therefore, the dominant propagating mode within the horn can be approximated as a spherical wave with a TE_{10} mode distribution,

$$
\begin{equation*}
E^{G .0}=\frac{e^{-j k R_{0}}}{R_{0}} \cos \frac{\pi \tan \theta_{H}}{2 \tan \theta_{O H}} \tag{36}
\end{equation*}
$$

where R_{o} is the distance from the apex of horn to the observation point, θ_{H} is the angle measured from the H-plane, and $\theta_{O H}$ is the half-flare angle in the H-plane as shown in Figure 5 . Here it is assumed that the source is located at the apex. From the $T C_{10}$ mode distribution, one obtains a uniform amplitude distribution in the E-plane and a cosine amplitude distribution in the $H-p l a n e$.

Our purpose for calculating the far field patterns is to find the phase center in each principal plane. Then the amplitude center for the on-axis radiated field can be determined from the phase center information as will be discussed later. The E-plane pattern can be approximated by superimposing the contributions from the geometrical optics field and the first order diffracted field from the two diffraction points $Q_{E_{1}}$ and $Q_{E_{2}}$ shown in Figures
5 and 6. The doubly diffracted field and higher-order fields are usually small for most horns and are often neglected. For a more detailed analysis in the E-plane pattern see Reference [3]. In the E-plane $\theta_{H}=0^{\circ}$, and thus the geometrical optics field is given by

$$
\begin{equation*}
E^{G .0 .}=\frac{e^{-j k R_{0}}}{R_{0}}, \tag{37}
\end{equation*}
$$

where R_{O} is the distance from the E-plane apex to the observation point. For far field distances,

$$
\begin{equation*}
R_{o}=R_{E 1}+L_{E} \cos \left(\theta_{O E}-0\right) \tag{38}
\end{equation*}
$$

Since the source is located at the apex of the horn walls the Eplane diffracted fields are given by Equation (20) which applies for grazing incidence. Thus the diffracted field from the diffraction point $Q_{E, l}$ is given by

Figure 5. Horn geometry.
where

$$
\begin{align*}
& \beta_{0}=\frac{\pi}{2} \tag{40}\\
& n=2 \tag{41}\\
& L=L_{E} \tag{42}\\
& A\left(R_{E 1}\right)=\sqrt{\frac{L_{E}}{R_{E 1}\left(R_{E 1}+L_{E}\right)}} \approx \frac{\sqrt{L_{E}}}{R_{E 1}} \quad \approx \frac{\sqrt{L_{E}}}{R_{0}} \quad \text { for } R_{E 1} \gg L_{E} \tag{43}\\
& R_{E 1} \quad \approx R_{0}-L_{E} \cos \left(\theta{ }_{o E}{ }^{-\theta}\right) \text {, for } R_{E l}, R_{0}>L_{E}
\end{align*}
$$

and

$$
\begin{equation*}
E^{i}\left(Q_{E l}\right)=\frac{e^{-j k L_{E}}}{L_{E}} \tag{44}
\end{equation*}
$$

Thus the diffracted field from $0_{E l}$ can be expressed as

$$
\begin{equation*}
E_{1}^{d}=\frac{e^{-j k R_{0}}}{R_{0}} \cdot \frac{e^{-j k L_{E}}}{\sqrt{L_{E}}} \cdot D_{I}\left(L_{E}, \pi-A E^{+\theta}, \frac{\pi}{2}, 2\right) \cdot e^{j k L_{E} \cos (\hat{m}} o E^{\left.-{ }^{-1}\right)} \tag{46}
\end{equation*}
$$

Similarly, the diffracted field from the diffraction point $Q_{E 2}$
is given by

$$
\begin{equation*}
E_{2}^{d}=\frac{e^{-j k R_{0}}}{R_{0}} \cdot \frac{e^{-j k L_{E}}}{\sqrt{L_{E}}} \cdot D_{I}\left(L_{E}, \pi-\theta{ }_{\left.o E^{-\theta}, \frac{\pi}{2}, 2\right)}^{2} \cdot e^{j k L_{E} \cos (\rho}{ }_{\left.o E^{+\cdots}\right)}^{(\Delta 7)}\right. \tag{47}
\end{equation*}
$$

For far field distances, the ravs corresponding to the three terms. $E^{G .0}, E_{1}^{d}$ and E_{2}^{d} are almost parallel and thus the three field vectors can be summed as scalars. The total field in the E-plane pattern is given by

$$
\begin{equation*}
E^{T O T}(0)=E^{G .0}+E_{1}^{d}+E_{2}^{d} \tag{48}
\end{equation*}
$$

Also, these three terms have a common factor $\frac{e^{-j k R_{0}}}{R_{0}}$, which can be suppressed for the convenience of our E-plane pattern analysis.

Each term in Equation (48) contributes to the field only in certain regions as shown in Figure 7 because of shadowing ty the horn walls. Each region and the terms used there are defined in Table 1.

Table 1
Boundary Regions for Geometrical Optics
and diffracted fields

Region	${ }^{0} \min$	\max	Terms
I	$-\theta_{0}$	θ_{0}	$E^{G .0 .}+E_{1}^{d}+E_{2}^{d}$
II	θ_{0}	$\frac{\pi}{2}$	$E_{1}^{d}+E_{2}^{d}$
IV	$\frac{\pi}{2}$	$\pi-\theta_{0}^{\theta}$	E_{1}^{d}
V	$-\theta_{0}$	$-\pi+\theta_{0}$	$E_{1}^{d}+E_{2}^{d}$
VI	$-\frac{\pi}{2}$	$-\theta_{0}$	$-\frac{\pi}{2}$

An example of an E-plane pattern is shown in Figure 8 for the Scientific-Atlanta (S/A) standard gain horn antenna (model number 12-8.2) for a frequency of 10 GHz . The flare angle of the S/A horn in the E-plane is 13^{0} and the aperture width is 14.4 cm or 4.8λ at 10 GHz .

Figure 6. E-plane cross section of horn for far-field pattern analysis.

Figure 7. Boundary regions for geometric optics and diffracted fields.

Figure 8. E-plane pattern for Scientific-Atlanta horn (model 12-8.2).

H-plane pattern

In Reference [4], GTD was used to calculate the H-plane pattern by representing the $T E$ waveguide mode as a pair of plane waves. The analysis is tedious because there are multiple reflections between the horn walls. This makes it necessary to consider many reflections and diffractions in the process. The use of slope diffraction in conjunction with a simple source at the H-plane apex gives a much simpler model for the H-plane. Thus the slope diffraction concept [5] will be used here.

In the H-plane, for grazing incidence along the horn walls, the tangential component of the electric fie?d vanishes on the surfaces and thus only slope diffraction is used to obtain the $H-p l a n e ~ p a t t e r n$. The $H-p l a n e ~ p a t t e r n ~ c a n ~ b e ~ a p p r o x i m a t e d ~ b y ~ s u p e r-~$ imposing the contributions from the geometrical optics field and the slope diffracted fields from the two diffraction points $Q_{H_{1}}$, $Q_{H_{2}}$ as shown in Figure 9. The contribution of the E-plane edge
will not significantly affect the $H-p l a n e ~ p a t t e \cdot n$ shape but will slightly affect the computed front/back ratio. The contribution of doubly diffracted and higher order fields are usually small for most horns. Therefore, the contribution of the E-plane edge, doubly diffracted and higher order fields will not be included in our study.

Figure 9. H-plane cross section of horn for far-field pattern analysis.

The phase reference is taken at the H-plane apex as shown in Figure 9. The geometrical optics field is approximated as

$$
\begin{aligned}
E^{G .0} & =\cos \left(\frac{\pi}{a} L_{H} \cos ^{\prime \prime}{ }_{o H} \operatorname{tant}\right) \cdot e^{-j k R_{0}} \\
& =\cos \left(\frac{\tan R_{0}}{\partial \tan }{ }_{o H}\right) \cdot \frac{e^{-j k R_{0}}}{R_{0}}
\end{aligned}
$$

$$
180
$$

where

$$
a=2 L_{H} \sin \theta{ }_{O H}
$$

'an'

For narrow flare angle $\left(\% \mathrm{OH}^{\circ}\right)$.
$E^{\mathrm{G} \cdot 0 .}+\cos \frac{0^{\circ}}{2 \mathrm{OH}} \cdot \mathrm{e}_{\mathrm{R}}^{-j k R_{0}}$.
Since the source is located at the apex, the H-plane diffractpo fields are given ry Equation (34) which applies for grazing incidence. The slope of the field incident on the diffraction points $Q_{H 1}$ and $\mathrm{Q}_{\mathrm{H} 2}$ is given by
where the slope of the pattern is determined as

$$
\begin{aligned}
& \therefore \frac{E^{S i}}{n}=\frac{1}{L_{H}} \cdot \frac{E^{i}\left(Q_{H 1,2}\right)}{O_{0}} \\
& =-\left.\frac{1}{L_{H}} \cdot \frac{E^{i}\left(Q_{H}, ?\right)}{}\right|_{U=\|} \\
& =-\left.\frac{1}{L_{H}} \cdot \frac{{ }^{i}\left(O_{H}, ?\right)}{0}\right|_{\theta=\theta}
\end{aligned}
$$

$$
\begin{equation*}
\left.\therefore\left(\cos \frac{\tan }{2 \tan ^{\prime \prime}}\right)\right|_{O H}-\sin ^{\prime 2}{ }_{\mathrm{OH}} \tag{1,?}
\end{equation*}
$$

Thus we get,

$$
\begin{align*}
& \frac{E^{s i}}{n}=\frac{e^{-j k L_{H}}}{L_{H}^{\prime}} \frac{}{\sin 2} o \\
& A(s)=\sqrt{\frac{L_{H}}{R_{H 1}}{ }^{-1} R_{H 1}+L_{H} T} \quad \frac{\sqrt{L_{H}}}{\bar{R}_{H 1}} \text {, for } R_{H 1} L_{H} \tag{55}
\end{align*}
$$

$$
156!
$$

Similarly,

$$
E_{2}^{s d}={ }_{j k \sin 2 \cdot}^{o H} \cdot \frac{e^{-j k L_{H}}}{L_{H}^{3 / 2}} \cdot D_{P I}\left(L_{H}, \cdots{ }_{o H^{-}}, \cdots, 2\right) e^{-j k R_{H ?}}
$$

$$
157{ }^{\prime}
$$

For far field distances,

$$
\begin{align*}
& R_{H 1}=R_{0}-L_{H} \cos (\cdots o H-\cdots) \tag{1581}\\
& R_{H 2}=R_{0}-L_{H} \cos (\cdots o H+\cdots) \tag{1501}
\end{align*}
$$

and for narrow flare angel ($\mathrm{oH}^{2 n^{\circ}}$, the sine diffraction field
become

$$
\begin{equation*}
E_{2}^{S d}=\frac{\pi}{j k \sum_{o H}} \frac{e^{-j k L_{H}}}{L_{H}^{3 / 2}} D_{P I}\left(L_{H}, n-0{ }_{o H^{-\eta}}, \frac{n}{2}, 2\right) \frac{e^{-j k R_{0}}}{R_{0}} e^{j k L_{H} \cos \left(:{ }_{o H}+\cdots\right.} \tag{61}
\end{equation*}
$$

The total field in the H-plane pattern is given by

$$
\begin{equation*}
E^{T O T}(0)=E^{G .0 .}+E_{1}^{S d}+E_{2}^{s d} \tag{62}
\end{equation*}
$$

The factor, $\frac{e^{-j k R_{0}}}{R_{0}}$, can be suppressed for the convenience of the Heplane pattern analysis.

The regions for the geometrical optics and the slope diffracted fields are the same as for the E-plane shown in Figure 7 and given in Table 1.

An example of an H-plane pattern is shown in Figure 10 for the S/A standard gain horn (model number 12-8.2) for a frequency of 10 GHz . The flare angle of the S / A horn in the $H-p l a n e$ is 16.5° and the aperture width is 19.43 cm or 6.48λ at 10 GHz .

Figure 10. H-plane pattern for Scientific-Atlanta horn (model 12-8.2).

CHAPTER IV
ANALYSIS OF HORN'S ON-AXIS NEAR FIELD
USING GTD

The GTD analysis of the on-axis near field radiated by a rectangular horn is similar to the far field pattern cases. As shown in Figure 11, the source is located at the apex, the total field at the observation point is the sum of incident and diffracted fields as given by

$$
\begin{equation*}
\bar{E}^{\mathrm{TOT}}=\overline{\mathrm{E}}^{\mathrm{G} .0}+\bar{E}_{1}^{\mathrm{d}}+\bar{E}_{2}^{\mathrm{d}}+\overline{\mathrm{E}}_{1}^{\mathrm{Sd}}+\overline{\mathrm{E}}_{2}^{\mathrm{sd}} \tag{63}
\end{equation*}
$$

where $\bar{E}^{G .0}, \bar{E}_{1}^{d}, \bar{E}_{2}^{d}, \bar{E}_{1}^{S d}$ and $\bar{E}_{p}^{S d}$ are defined as before except that the distances, ange parameters, and spreading factors are modified for the near field case as will be defined later.

As shown in Figure 12, for the on-axis near field in the E-plane, the amplitudes of the two diffracted fields from Q_{E} and ${ }^{\text {Q }}$ 2 in the E-plane are equal because of symmetry in the ray geometry. Thus the diffracted fields are given by Equation (20), where

$$
\begin{align*}
& L=\frac{L_{E} R_{E 1}}{L_{E}+R_{E 1}} \tag{64}\\
& S=R_{E 1}=R_{E 2} \tag{65}\\
& 4=\pi-9 O E^{-01} \tag{66}\\
& \theta^{\prime}=\tan ^{-1} \frac{B}{2 Z_{A}} \tag{67}\\
& \therefore A(s)=\sqrt{\frac{L_{E}}{R_{E I}}\left(R_{E I}+L_{E}\right)} \tag{68}\\
& \therefore E_{1}^{d}=E_{?}^{d}=\frac{e^{-j k L_{E}}}{\sqrt{L_{E}}} D_{I}\left(\frac{L_{E}^{R} E I}{L_{E}+R_{E l}},{ }_{o E^{-}}^{,}, \frac{2}{2}\right) \cdot \frac{\Omega^{-j k R_{E 1}}}{\sqrt{R_{E I}\left(R_{E 1}+L_{E}\right)}} \tag{69}
\end{align*}
$$

Fiours 11. Basic field contributions for the ovramidal hern at the ohservation doint.

Figure 12. E-plane geometry.

However, the two diffracted electric field vectors are not in the same direction at the observation point as shown in Figure 13. The cosi' components are in the same direction and can be added together, but the sin components are in the opposite direction and cancel each other. Thus the sum of the diffracted fields from the diffraction points $Q_{E 1}$ and $Q_{E 2}$ in the E-plane is given by

$$
\begin{aligned}
E_{D I F} & \left.=\left(E_{1}^{d}+E_{2}^{d}\right) \cos \theta\right)^{\prime} \\
& =2 \cdot \frac{e^{-j k L_{E}}}{\sqrt{L_{E}}} D_{I}\left(\frac{L_{E}^{R} E 1}{L_{E}+R_{E 1}},{ }^{\pi-\theta}{ }_{o E^{-0}}, \frac{\pi}{2}, 2\right) \frac{e^{-j k R_{E 1}}}{\sqrt{R_{E 1}\left(R_{E 1}+L_{E}\right)}} \cos
\end{aligned}
$$

(70)

Similarly, as shown in Figure 14, for the on-axis near field in the H-plane, the diffracted fields from points $Q_{H 1}$ and $Q_{H 2}$ are given by Equation (34), where

$$
\begin{align*}
& L=\frac{L_{H} R_{H I}}{L_{H}+R_{H 1}} \tag{71}\\
& S=R_{H 1}=R_{H 2} \tag{72}\\
& L=: H_{O H^{-A "}} \tag{73}
\end{align*}
$$

Figure 13. Analysis of the direction of EM field propaqation in the F-plane.

$$
\begin{align*}
& \theta^{\prime \prime}=\tan ^{-1} \frac{A}{2 Z_{A}} \tag{1741}\\
& \left.A^{\prime} s\right)=\sqrt{\frac{L_{H}}{R_{H 1}\left(R_{H 1}+L_{H}\right)}} \tag{75}\\
& \therefore E_{1}^{s d}=E_{2}^{s d} \\
& =\frac{\pi}{2 \frac{\pi}{\theta}}{ }_{o H} \cdot-\frac{e^{-j k L_{H}}}{j k L_{H}}{ }^{3 / 2} \cdot D_{P I}\left(\frac{L_{H} R_{H 1}}{L_{H}+R_{H 1}}, \pi-\theta_{O H^{-\theta \prime}}, \frac{\pi}{2}, 2\right) \frac{e^{-j k R_{H 1}}}{\frac{R_{H 1}\left(R_{H 1}+L_{H}\right)}{}} \tag{75}
\end{align*}
$$

Since the two diffracted E-fields are in the same direction at the observation point as shown in Figure 15, the sum of the diffracted fields from the diffraction points $Q_{H 1}$ and $Q_{H_{2}}$ is given t

$$
\begin{aligned}
& H_{\text {DIF }}=E_{1}^{s d}+E_{2}^{s d}
\end{aligned}
$$

Figure 14. H-plane geometry.

The E-plane apex is chosen as the phase reference point such that the same phase point is used reference for both the E- and $H-p l a n e ~ i n ~ t h e ~ c a l c u l a t i o n . ~ T h e r e f o r e, ~ i n ~ t h e ~ H-p l a n e, ~ t h e ~ d i f-~$ fracted field given in Equation (77) should be multiplied by the $j k\left(H_{H}{ }^{-H_{E}}\right)$
phase term e H_{E} then the sum of the diffracted fields from the diffraction points $\mathrm{Q}_{\mathrm{H} 1}$ and $\mathrm{Q}_{\mathrm{H} 2}$ in the H -plane becomes

$$
\begin{equation*}
H_{D I F}=2\left(\frac{\pi}{2 \theta_{O H}}\right) \frac{e^{-j k L_{H M}}}{j k L_{H}^{3 / 2}} \cdot D_{P I}\left(\frac{L_{H}^{R} H I}{L_{H}+R_{H I}}, \pi^{-9} o H^{-e "}, \frac{\pi}{2}, 2\right) \cdot \frac{e^{j k R_{H I}}}{\left.\sqrt{R_{H I}\left(R_{H I}+L_{H}\right.}\right)} \tag{78}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{H M}=L_{H}-\left(H_{H}-H_{E}\right) \cos _{0_{O H}} \tag{79}
\end{equation*}
$$

Finally, the on axis total field at the ohservation point is the sum of the geometrical optics and the diffracted fields from the four diffraction points as given by

Figure 15. Basic field contributions for the pyramidal horn at the observation point.

$$
\begin{aligned}
E^{T O T}= & E^{G \cdot 0}+E_{D I F}+H_{D I F} \\
= & \frac{e^{-j k R_{0}}}{R_{0}}-\left[1+2 D_{I}\left(\frac{L_{E} R_{E I}}{L_{E}+R_{E I}},-{ }_{o E^{-\theta \cdot}}, \frac{\pi}{2}, 2\right) \frac{e^{-j k L_{E}}}{\sqrt{L_{E}}} \cdot e^{j k\left(R_{0}-R_{E 1}\right)}\right. \\
& \cdot \frac{R_{0}}{\sqrt{R_{E 1}\left(R_{E I}+L_{E}\right)}} \cos \theta^{\prime}+2 D_{P I}\left(\frac{L_{H} R_{H I}}{L_{H}+R_{H I}}, \pi-\theta{ }_{o H^{-\theta \prime}}, \frac{\pi}{2}, 2\right) \\
& \left.\cdot \frac{\pi}{2 \theta} \cdot \frac{e^{-j k L_{H M}}}{j k L_{H}^{3 / 2}} \cdot \frac{R_{0}}{\sqrt{R_{H I}\left(R_{H I}+L_{H}\right)}} \cdot e^{j k\left(R_{0}-R_{H I}\right)}\right]
\end{aligned}
$$

1801

However, for small horn dimensions, the normal GTD calculations are not accurate enough. In that case, the accuracy can be improved hy using the LSI method for non-corrugated horns and by using API method for corrugated horns which are discussed in Appendix A and B, respectively.

CHAPTER V
AMPLITUDE CENTER FOR ON-AXIS WAVE

The on-axis gain of a horn antenna is not uniquely defined in the near field. In this research the near field gain $G(R)$ is defined through the following equation for the incident power density at points on the horn axis:

$$
\begin{equation*}
S^{i}=\frac{P_{T} G(R)}{4 \pi R^{?}} \tag{81}
\end{equation*}
$$

where P_{T} is the transmitted power. Still, the near field gain $G(R)$ depends on how the range R is defined. In most published research the range is defined as that from the horn aperture. Thus the aperture to aperture distance is usually used to define the gains of two horn antennas through the coupling formula

$$
\begin{equation*}
\frac{P_{R}}{P_{T}}=\left(\frac{\lambda}{4 \pi R}\right)^{2} G_{T}(R) G_{R}(R) \tag{82}
\end{equation*}
$$

Then near field corrections [7-11] are applied to determine the far field gain.

A more appropriate way to define the range R is to use the concept of an astigmatic ray tube which is often used in GTD. In an astigmatic ray tube there are two caustics from which the power appears to emanate as shown in Figure 16. A spherical wave is radiated when the two caustics are coincident t) form ari ordinary focus.

Figure 16. Astiqmatis tube of ravs.

The on-axis wave of a pyramidal horn can be represented as an astigmatic ray tube in which the E- and H-plane phase centers of the horn form the caustics.

The power spread in an astigmatic ray tube is given by

$$
\begin{equation*}
s^{i}(s)=C_{1} \frac{\rho_{1} \rho_{2}}{\left(\rho_{1}+s\right)\left(\rho_{2}+s\right)}=\frac{C_{2}}{R^{2}} \tag{83}
\end{equation*}
$$

where each distance is shown in Figure 16. For the horn, $\rho_{1}=D_{F}$ and $\rho_{2}=D_{H}$, the distances of the E - and H-plane phase centers ffom the aperture. The distance s is measured from the aperture to the observation point. Thus the range R is defined through Equation (83) as

$$
\begin{equation*}
R^{2}=\left(s+D_{E}\right)\left(s+D_{H}\right)=s^{2}+\left(D_{E}+D_{H}\right) S+D_{E} D_{H} \tag{84}
\end{equation*}
$$

For distances s large compared to the distances of the phase centers from the aperture,

$$
\begin{equation*}
R \approx s+\frac{1}{2}\left(D_{E}+D_{H}\right) \tag{85}
\end{equation*}
$$

Thus the amplitude center is located half way between the E- and H-plane phase centers, or a distance

$$
\begin{equation*}
D=\frac{D_{E}+D_{H}}{2} \tag{86}
\end{equation*}
$$

from the horn aperture.
Thus one should first compute the phase centers for the Eand H-planes. The phase center of a horn can be determined from the far field pattern. In our calculation of the E- and H-plane patterns the horn apex was used as our phase reference. Therefore, the far field can be represented by

$$
\begin{equation*}
E(\theta)=|F(\theta)| e^{j \phi(\theta)} e^{-j k R_{0}} \tag{87}
\end{equation*}
$$

where $\phi(\theta)$ is the phase of the calculated pattern and R_{0} represents the distance from the apex to the observation point as shown in Figure 17. The equivalent line source integration (LSI) method was used to calculate the H-plane phase centers because the slope diffraction method is not as accurate for small horns. For far distances,

$$
\begin{equation*}
R_{0}=R_{p}+\lambda x \cos 0 \tag{88}
\end{equation*}
$$

where $\wedge x$ is the distance from the apex to the phase center.

Figure 17. Phase center of the horn.

For small pattern angles the pattern will have no phase variation when referred to the phase center for the on-axis wave.
Thus the far field also can be represented by

$$
\begin{equation*}
E(0)=|F(1)| e^{j B} e^{-j k R_{p}} \tag{89}
\end{equation*}
$$

where B is a constant phase and R_{B} represents the distance from the phase center to the observation point. From Equations (37) and (89), one obtains

$$
\begin{equation*}
B=\phi(1)-k \wedge x \cos \theta . \tag{90}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\therefore x=\frac{\phi(i)-(0)}{k(\cos \pi-1)} \tag{91}
\end{equation*}
$$

In free space medium,

$$
\begin{equation*}
k=\frac{2 \pi}{1} \tag{92}
\end{equation*}
$$

thus

$$
\begin{equation*}
\frac{x}{i}=\frac{\phi(0)}{2 \pi(\cos -1)} \tag{93}
\end{equation*}
$$

The distance from the aperture to the phase center is given by

$$
\begin{equation*}
D_{x}=H_{x}-x, \tag{94}
\end{equation*}
$$

where H_{x} is the distance from the apex to the aperture.

The following examples show the calculation of the E- and H-plane phase centers for the Scientific Atlanta 12-8.2 horn at 10 GHz . The computer listings give the pattern magnitude in dB and the phase in degrees.

Example of determining the phase center of E-plane:

UIDTHE	4.801 (LANBA)	
LEM6THE	10.397 (LAMDA)	
FREQUENCY=10.000		
*** E PL	ME ***	
THETA	mab.	PHASE
-10.00	-5.73060	9.70596
-9.00	-4.74633	7.00847
-8.00	-3.52313	5.53553
-7.00	-2.26580	5.42624
-6.00	-1.09745	6.31997
-5.00	-0.08109	7.76276
-4.00	0.75675	9.37060
-3.00	1.40758	10.86202
-2.00	1.87055	12.04648
-1.00	2.14723	12.80216
0.00	2.23924	13.06105
1.00	2.14723	12.80256
2.00	1.87056	12.04684
3.00	1.40759	10.86237
4.00	0.75675	9.37018
5.00	-0.08109	7.76254
6.00	-1.09744	6.32045
7.00	-2.26580	5.42597
8.00	-3.52313	5.53583
9.00	-4.74633	7.00857
0.00	-5.75059	9.70641

$$
\begin{aligned}
& \phi\left(1^{0}\right)=12.80256^{\circ} \\
& \phi\left(0^{\circ}\right)=13.06105^{\circ} \\
& \Delta x_{E}=\frac{\phi\left(1^{\circ}\right)-\phi\left(0^{\circ}\right)}{360(\cos 1-\cos 0)}=4.724^{(\lambda)} \\
& \therefore D_{E}=10.397-4.724=5.67^{(\lambda)}
\end{aligned}
$$

Example of determining the phase center of H-plane:

UIDTH=	6.477 (L	(LANDA)
LEMBTHE	10.947 (L	(lamea)
FREQUENCY $=10.000$		
*** H-PL	ME ***	
theta	mag.	PHASE
-10.00	-5.23606	-11.25019
-9.00	-4.43553	-8.93096
-8.00	-3.63083	-6.81771
-7.00	-2.84653	-4.78290
-6.00	-2.11113	-2.79789
-5.00	-1.45086	-0.90495
-4.00	-0.88683	0.81359
-3.00	-0.43463	2.26580
-2.00	-0.10495	3.36932
-1.00	0.09535	4.05762
0.00	0.16252	4.29179
1.00	0.09535	4.05806
2.00	-0.10495	3.36932
3.00	-0.43463	2.26624
4.00	-0.88683	0.81314
5.00	-1.45086	-0.90494
6.00	-2.11113	-2.79787
7.00	-2.84653	-4.78290
8.00	-3.63083	-6.81724
9.00	-4.43553	-8.93097
10.00	-5.23606	-11.25018

$$
\begin{aligned}
& \phi\left(1^{\circ}\right)=4.05762^{\circ} \\
& \phi\left(0^{\circ}\right)=4.29179^{\circ} \\
& \Delta x_{H}=\frac{\phi\left(1^{\circ}\right)-\phi\left(0^{\circ}\right)}{360(\cos 1-\cos 0)}=4.271^{(\lambda)} \\
& \therefore D_{H}=10.947-4.271=6.68^{(\lambda)} .
\end{aligned}
$$

The incident power density at the observation point is given
by

$$
\begin{equation*}
S^{i}(R)=\frac{\mid E^{T 0 T}}{Z_{0}} \frac{\left.(R)\right|^{2}}{} \tag{94}
\end{equation*}
$$

where $E^{T 0 T}(R)$ is given by Equation (80) and Z_{0} is the free space intrinsic impedance. From Equations (81) and ${ }^{\circ}(94)$,

$$
\begin{equation*}
G(R)=\frac{4 \pi R^{2}}{P_{T}} \left\lvert\, \frac{E^{T 0 T}(R) L^{2}}{Z_{0}}\right. \tag{95}
\end{equation*}
$$

where $G(R)$ is the near field gain of transmitting horn at a distance R from the amplitude center of the horn. In the coupling analysis the range R is the distance between the amplitude centers of the two horns as shown in Figure 18. Thus the observation point of the transmitting horn is located at the amplitude center of the receiving horn. P_{T} is the transmitting power which is obtained through the geometric optics field

$$
\begin{equation*}
E^{G \cdot 0} \cdot\left(R_{0}\right)=\cos ^{\pi 9} \frac{y}{o y} \frac{e^{-j k R_{0}}}{R_{0}} \tag{96}
\end{equation*}
$$

and

$$
\begin{align*}
& =\int_{-0}^{0} 0 x \int_{-\theta}^{0} \int_{0 y}^{o y} \cos ^{2} \frac{\pi y}{2^{2 \theta}}-\frac{d y}{Z_{0}} d \theta x d \theta y \\
& =\frac{20 x^{\theta} o y}{Z_{0}}=\frac{A B}{2 L_{E} L^{2} Z_{0}} . \tag{97}
\end{align*}
$$

where R is the distance from the apex of one horn as shown in Figure 18 . The geometric optics gain is given by

$$
\begin{align*}
& G^{G .0}=\frac{4_{1} R_{0}^{2}}{P_{T}} \frac{\left|E^{G \cdot 0} \cdot\left(R_{0}\right)\right|^{2}}{Z_{0}} \text {, or } \\
& G^{G .0}=\frac{R_{n} L^{L} E_{H}}{A B} \tag{18}
\end{align*}
$$

Dividing Equation (95) by Equation (98)

$$
\begin{equation*}
\frac{G(R)}{G^{G .0} .}=\left(\frac{R}{R_{0}}\right)^{2}\left|\frac{E^{T O T}(R)}{E^{G \cdot 0} \cdot\left(R_{0}\right)}\right|^{2}=\left(\frac{R}{R_{0}}\right)^{2}\left|E^{G T D}(R)\right|^{2} \tag{99}
\end{equation*}
$$

Figure 18. Transmitting and receiving horn antenna geometry. where $E^{G T D}(R)$ is the on-axis normalized near field and is given by

$$
\begin{align*}
& E^{G T D}(R)=1+2 D_{I}\left(\frac{L_{E}^{R} E 1}{L_{E}+R_{E 1}}, \pi-\theta E^{-1}, \frac{\partial}{2}, 2\right) \frac{e^{-j k L_{E}}}{j L_{E}} \cdot \frac{R_{0}}{\sqrt{R_{E 1}\left(R_{E 1}+L_{E}\right)}} \\
& \text { - } e^{j k\left(R_{0}-R E 1\right)} \cos \cdots \\
& +2 D_{P_{I}}\left(\frac{L_{H}+R_{H I}}{L_{H}+R_{H 1}},{ }^{n-6} \mathrm{OH}^{-(1)}, \frac{\pi}{2}, 2\right) \frac{;}{2 n_{O H}} \cdot \frac{j e^{-j k L_{H M}}}{k L_{L H}^{3 / 2}} \cdot \frac{R_{0}}{\sqrt{R_{H 1}\left(R_{H I}+L_{H}\right.}} \\
& \text { - } e^{j k\left(R_{0}-R_{H I}\right)} \tag{100}
\end{align*}
$$

For far distances, i.e., as R approaches infinity, the far fielt gain is given by

$$
G(\cdots)=G^{F \cdot F}=G^{G \cdot 0} \cdot\left|E^{G T D}(\omega)\right|^{2}, \text { since } \frac{R}{R_{0}} \cdot 1
$$

Then, the gain correction (gain ratio) is given by

$$
R_{G A N}=\frac{G(R)}{G}=\left(\frac{R}{R_{0}}\right)^{2}\left|\begin{array}{l}
E_{G T D}(R) \tag{107}\\
E^{G T D}(\cdots)
\end{array}\right|^{2}
$$

For the convenience of the reader. Tables ? and 3 qiun summaries of the variables used in the horn andivsis.

Table 2
Summary of Horn Parameters
$\left.\begin{array}{lll}\text { Parameter }\end{array} \begin{array}{ll}\text { H plane width of the waveguide } \\ \text { E-plane width of the waveguide } \\ \text { H plane aperture width of the horn }\end{array}\right)$

Table 3
Summary of Horn Geometry Relationshins
1)
$D=\bar{D}_{E}+D_{H}$
2)
$Z_{A}=Z_{A A}+D$
3)
$R=Z_{A A}+2 D$
4)
$R_{0}=Z_{A A}+{ }^{0+H} E$
5)
$R_{E 1}=\sqrt{\binom{B}{2}^{?}+Z_{A}^{2}}$
6)
$R_{H 1}=\sqrt{\left(\frac{A}{7}\right)^{2}+Z_{A}^{?}}$
7)
$0^{\prime}=\tan ^{-1}\left(\frac{B}{2 Z_{A}}\right)$
n.
$\therefore "=\tan ^{-1}\left(\frac{A}{37}\right)$

ON-AXIS COUPLING AND NEAR FIELD CORRECTION

The near field gain of an antenna is often defined through the coupling equation

$$
\begin{equation*}
\frac{P_{R}}{P_{T}}=\left(\frac{\lambda}{4 \pi R}\right)^{2} G_{T}(R) G_{R}(R) \tag{103a}
\end{equation*}
$$

However, this definition causes the near field gain of each antenna to be dependent on the antenna with which it is measured, especially at close range. We have defined the near field gain through its on-axis power density in Equation (81). This gives a definition which is independent of the other antenna.

However, Equation (103a) is then not exact because the coupling depends on how the two antennas react. Equation (103a) is equivalent to assuming each antenna would radiate a uniform spherical wave from its amplitude center. A more accurate equation for coupling is derived in Appendix C which approximates the near axis fields of each antenna more accurately at close range. The more accurate coupling equation is given by

$$
\begin{equation*}
\frac{P_{R}}{P_{T}}=\left(\frac{\lambda G(R)}{4 \pi R}\right)^{2} \frac{1}{\sqrt{1+T_{E}^{2}}} \frac{1}{\sqrt{1+T_{H}^{2}}} \tag{103b}
\end{equation*}
$$

where $G(R)=\sqrt{G_{T}(R) G_{R}(R)}, G T(R)$ and $G(R)$ are the near field gains of the transmitting and receiving horts at distance R petween the amplitude centers of the horns. The factors $\left[1+T_{E,}^{2}\right]^{-\frac{-1}{2}}$, derived in Appendix C, give more accuracy at close range. E, From Equation (103b), we get

$$
\begin{equation*}
G(R)=\frac{4 \pi R}{\lambda} \sqrt{\frac{P_{R}}{P_{T}}}\left[\left(1+T_{E}^{2}\right)\left(1+T_{H}^{2}\right)\right]^{\frac{1}{4}} \tag{104}
\end{equation*}
$$

From Equation (102) and Equation (104), we get the far-field gain

$$
\begin{equation*}
{ }_{G} F \cdot F \cdot=\frac{C_{3}(R)}{R_{G A N}}=\frac{4_{n} R}{\lambda R_{G A N}}-\sqrt{\frac{P_{R}}{P_{T}}}\left[\left(1+T_{E}^{2}\right)\left(1+T_{H}^{2}\right)\right]^{\frac{1}{\Delta}} \tag{105}
\end{equation*}
$$

Therefore, we can express the far field gain in $d B$ as

$$
\begin{equation*}
G_{d B}^{F \cdot F}=R_{G C}+\frac{1}{2}\left(\frac{P_{R}}{P_{T}}\right)_{d B}^{M e a s} \tag{:06}
\end{equation*}
$$

where $R_{G C}$ includes the near field gain correction and is given in $d B$ as
and $\left(\frac{P_{R}}{P_{T}}\right)_{d B}^{\text {Meas. }}$ is the measured coupling in $d B$.

It is convenient to express the range correction parameter $R_{G C}$ as

$$
R_{G C}=R_{G U}+F_{C}
$$

where

$$
R_{G U}=10 \log \left[\frac{4^{\pi} R}{\lambda R_{G A N}}\right]
$$

is the basic range correction parameter (assumes wide beams or large separations). The correction factor for narrow beams at close range is given by

$$
\begin{equation*}
F_{c}=10 \log \left[\left(1+T_{E}^{2}\right)\left(1+T_{H}^{2}\right)\right]^{\frac{1}{4}}=2.5 \log \left[\left(1+T_{E}^{2}\right)\left(1+T_{H}^{2}\right)\right] \tag{110}
\end{equation*}
$$

where, from Appendix C,

$$
\begin{align*}
& T_{E}=\frac{C_{E}}{R} \\
& C_{E}= \begin{cases}\frac{2 \lambda}{\pi} A_{E} & \text { for like horns } \\
\frac{\lambda}{\pi}\left(A_{E 1}+A_{E 2}\right) & \text { for different horns }\end{cases} \\
& T_{H}=\frac{C_{H}}{R}
\end{align*}
$$

and

$$
C_{H}= \begin{cases}? A_{H} & \text { for like horns } \\ \frac{1}{\square}\left(A_{H I}+A_{H 2}\right) & \text { for different horns }\end{cases}
$$

It is necessary to measure the coupling over a range of aperture separations in order to average out the ripple caused by interactions between the horn structures. For practical purposes, the coupling value used in Equation (106) can be obtained by drawing a smooth curve through the coupling data as shown in Figure 19.

In summary, we can determine the far field gain by the following procedure:

1. Measure the coupling data, P_{R} / P_{T}.
2. Compute the range corrected gain parameter R_{GC}.
3. Determine the far field gain from Equation (106).

Figure 19. Measured coupling between two SA model 12-8.2 horns at 10 GHz .

CHAPTER VIII
RESULTS AND DISCUSSION

The procedure for determining the far field gain from the near field measurement data of coupling between two horns, usina the near field range correction (R_{GC}) data, is presented in this chapter. The measured coupling data used in the examples are based on measurements taken at the Measurement Standards and Microwave Laboratory at Newark Air Force Station. The line source integration (LSI) method is used for conventional standard gain horns and the aperture integration (API) method is used for corrugated horns because they are considered to be more accurate than the basic GTD method.

Figure 20a shows the gain ratio or gain correction ($R_{G A N}$) curve for the Scientific-Atlanta Model 12-8.2 standard gain GAOrn at 10 GHz . We can see here that the gain correction is small (less than 0.2 dB), because the range is measured between the amplitude centers of each horn. For example, the gain correction is less than 0.01 when the separation (distance between the horn apertures) is 300 cm (100λ at 10 GHz). Figure 20b shows the calculated coupling (P_{R} / P_{T}) between two Scientific-Atlanta standard gain horns at 10 GH2. Figure 20c shows the near field range correction of gain (R_{G}) for two Scientific-Atlanta standard gain horns at 10 GHz . Figdres 21 and 22 shows the near field correction and coupling curves for the Narda model 640 and corrugated horns, respectively. Figures 23 and 24 show the far field gain variation with frequencv for the Scientific-Atlanta and Narda standard gain horns, respectively, as calculated from Equation (105).

The range correction data are given for 10 GHz in Tables 5 through 9 for both standard qain horns and the corrugated horn. Tables are given for both GTD and LSI for the non-corrugated horns. It is noted that the $R_{G C}$ values for each horn model by GTD and those by LSI (Tables 5 Gthrough 8) agree with in about 0.1 dB for aperture separations greater than 200 cm . The range correction data for 11 GHz are given in Tables 10 through 12 for both standard gain horns and the corrugated horn. A list of the variables in each column is given below:

$$
\begin{aligned}
& \text { ZAA }=\text { Aperture separation in } \mathrm{cm} . \\
& \text { R }=\text { Distance between amplitude centers in } \mathrm{cm} . \\
& \text { RGAN }=\text { Ratio of near field gain to far field gain. } \\
& \text { PRPT }=\text { Calculated coupling. } \\
& \text { NFGAIN }=\mathrm{G}(R)=\text { calculated near field gain. } \\
& \text { RGU }=\text { Basic ange correction parameter. } \\
& \text { RGC }=\text { Final range correction parameter. }
\end{aligned}
$$

Note that the calculated coupling values PRPT are given only for information purposes. Only the actual measured coupling values should be used with the theoretical range correction parameter RGC to determine the gain.

Procedure for Horns of Same Model

As an example of how to use the near field range correction tables, consider the following case in which the gain is determined from the measured coupling between two Scientific-Atlanta standard qain horns. The measured coupling curve for aperture separations hetween 250 cm and 300 cm is shown in Figure 19. The ripple caused hy interactions between the horns and their mountina structures has a period of about 1.5 cm for each cycle, which corresponds to $\lambda /$? as expected. The 0.25 dB peak to peak ripple at 750 cm corresponds to a multipath level from horn interactions of about -37 dB below the direct coupling. A -37 dB multipath will cause a ripple maximum of +0.122 dB and a ripple minimum of -0.124 dB with respect to the direct coupling. Consequently the direct coupling can be accurately measured by drawing a smooth curve through the average of the ripple minima and maxima.

The procedure for determining the far field gain is outlined below:

1. The coupling values are sampled at 250,275 and 300 cm and are recorded in Table 4.
2. Next the theoretical range correction values are read from the appropriate table (Table 5 for SA model 128.2 at 10 GHz$)$. These values are recorded in Table 4.
3. The far field gain values are determined for each point from Equation (106) which is repeated below:

$$
\begin{equation*}
G^{F F}=R_{G C}+\frac{1}{2}\left(P_{R} / P_{T}\right)_{d B} \tag{106}
\end{equation*}
$$

TABLE 4
Example of Procedure for Range Correction

| $Z_{A A}$ |
| :--- | :---: | :--- | :--- |
| $c m$ |\quad| Coupling |
| :---: |
| $d B$ |\quad| $R_{G C}$ |
| :---: |
| $d B$ |

For example, the coupling at 250 cm is -17.44 dB . The $R_{G C}$ value from Table 5 is 30.95 dB . We set the desired far field GC gain from Equation (106) as

$$
G_{S / A}=30.95+\frac{1}{2}(-17.44)=22.23 \mathrm{~dB} .
$$

Note that the spread in gain values in Table 4 is $22.26-22.23=0.03$ dB . Thus this coupling measurement indicates an effective gain for the two horns of 22.24 ' B.

Procedure for Horns of Different Models

The next example shows how to use the tables to determine the range correction for coupling measured between two horns of different models. Three coupling values should be chocked as was done in the previous example. However, only one coupling value is used in this example to illustrate the use of the range correction tables for coupling hetween horns of different mode?s.

First, the phase center information must be used to ralculatt U, listance between the amplitude rentars :if : ie twritiornc. Rofor-

$$
\begin{aligned}
& \left.\left({ }_{E}+T_{H}\right)_{S / A}=(16.98+22.55)_{S / A}=30.53\right)^{(C M} \\
& \left(D_{E}+D_{H}\right)_{\text {NARDA }}=(1.09+1.55)_{\text {NARDA }}=2.64(\mathrm{CM})
\end{aligned}
$$

$$
\left(D_{E}+D_{H}\right)_{A V G}=(39.53+2.64) / 2=21.08 \text { (CM) }
$$

For an aperture separation of $Z_{A A}=150 \mathrm{~cm}$ this gives an effective range between horns as

$$
R=150+21.08=171.1^{(C M)}
$$

We get the near field range correction of qain at $R=17^{1} .1^{C M}$ by interpolating the $R_{G U}$ values from Tables 5 and 7 as follows:

$$
\begin{aligned}
& \left(R_{G U}\right)_{S / A}=? 3.67 \mathrm{~dB} \\
& \left(R_{G U}\right)_{\text {NARDA }}=29.54 \mathrm{~dB} \\
& \left(R_{G U}\right)^{\prime}{ }^{\prime}=(29.67+23.54) / 2=23.60 \mathrm{~dB}
\end{aligned}
$$

Note that the $R_{G C}$ value cannot be directly obtained from the $R_{G C}$ values of the individual horns because the F_{C} factor in Equation (ilo) has a non-linear relationship for the two hiurns. The values of C_{E} and C_{H} in Equations (111) and (112) can be calculated by averaging the values for the individual horns as given at the top of Tables 5 and 7. Thus

Horn	C_{E} cm	C_{H} Cm
S/A	66.30	52.71
Narda	12.41	11.50
Average	39.40	32.15

Since $R=171.1 \mathrm{~cm}$ for this example, $T_{E}=0.230$ and $T_{H}=0.188$. The correction factor fur close range is calculated from Equation (110) as $F=0.094 \mathrm{~dB}$. The final range correction $R_{G C}$ for the S/A to Narga coupling at $Z A A=150 \mathrm{~cm}$ is calculated fyom

$$
\begin{aligned}
\left(R_{G C}\right)_{A V G} & =R_{G U}+F_{C} \\
& =28.60 \mathrm{~dB}+0.09 \mathrm{~dB} \\
& =28.69 \mathrm{~dB} .
\end{aligned}
$$

The measured coupling for 150 cm between the Scientific-Atlanta to Narda horns was -18.80 dB . Thus the effective far field gain of the two horns is determined as

$$
\begin{aligned}
G_{S / A-N a r d a}^{M e a s} & =\left(R_{G C}\right)_{A V G}+\frac{1}{2}\left(\frac{P_{R}}{P_{T}}\right)_{\text {Meas }} \\
& =? 8.69+\frac{1}{2}(-18.80)=19.29 \mathrm{~dB} .
\end{aligned}
$$

The results of coupling measurements taken at the Measurements Standards Laboratory at NAFS are summarized in Tables 13 through 17 for 10 GHz and Tables 18 through 22 for 11 GHz . The Scientiric Atlanta model 12-8.2 and the Narda model 640 were used along with an experimental corrugated horn (Ladar Systems model CX-20). The procedure for range corrected gain was used to determine the far field gain values for aperture separations $Z_{A A}$ from 100 cm to 320 cm in each table. Tables 13 and 18 show the coupling data, the range correction $R_{G C}$, and the far field gain when two horns of the same model are measured together at 10 and 11 GHz , respectively. The next three tables in each series shows the results of measuring coupling between horns of different models. In each of these cases the basic range correction parameter $R_{G U}$ is the average of those for the two individual horn models. However, the two $R_{G H}$ values must correspond to the distance R between the amplitude cênters of the two orns and not the aperture separation $Z_{A A}$. The correction factor F for narrow beams at close range, as calculated from Equation ($£ 10$) is thenused to calculate the final range correction parameter $R_{G C}$. The measured gain value $G_{A \not G G}$ represents the mean gain (average in $d B$) of the two horns. Afte last table for each frequency summarizes the far field gain values when the three horn models are measured in the six possible combinations.

Referring to Table 17, there are six combinations of measurements, we find they are good agreement except for tr - corrugated to Narda horns case. There is about 0.23 dB difference Detween Meas. ${ }^{\text {G Corr-Narda }}$ and (GCorr-Narda)AVG. This difference may he caused by measurement errors. The (GCorr-Narda)AVG is the average of individual horn gain measurements from columns 3 and 4; and is gotten as follows

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{AA}}=150 \mathrm{~cm} \\
& \mathrm{G}_{\text {Corr }}=20.48 \mathrm{~dB} \\
& \mathrm{G}_{\text {Narda }}=16.25 \mathrm{~dB}
\end{aligned}
$$

$$
\left(G_{\text {Corr-Narda) }) A V G}=\frac{G_{C o r r}{ }^{+G}{ }^{\text {Narda }}}{2}=18.36 \mathrm{~dB} .\right.
$$

Figure 20a. Gain ratio curve for Scientific-Atlanta standard gain horn at $10 \mathrm{GHz}\left(\mathrm{R}_{\mathrm{GAN}}\right)$.

Figure 20b. Coupling between two Scientific-Atlanta standard gain horns at $10 \mathrm{GHz}\left(P_{R} / P_{T}\right)$.

Figure 20c. Near field range correction of gain for two ScientificAtlanta standard gain horns at $10 \mathrm{GHz}\left(\mathrm{R}_{\mathrm{GC}}\right)$.

Figure 21a. Gain ratio curve for Narda standard gain horn at $10 \mathrm{GHz}\left(\mathrm{R}_{\mathrm{GAN}}\right)$.

Figure 21b. Coupling between two Narda standard gain horns at $10 \mathrm{GHz}\left(\mathrm{P}_{\mathrm{R}} / \mathrm{P}_{\mathrm{T}}\right)$

Figure 21c. Near field ranqe correction of gain for two Narc'a standard gain horns at $10 \mathrm{GHz}\left(\mathrm{R}_{\mathrm{GC}}\right)$.

Figure 22a. Gain ratio curve for corrugated horn at $10 \mathrm{GHz}\left(\mathrm{R}_{\mathrm{GAN}}\right)$.

Figure 22b. Coupling between two corrugated horns at $10 \mathrm{GHz}\left(\mathrm{P}_{\mathrm{R}} / \mathrm{P}_{\mathrm{T}}\right)$.

Figure 22c. Near field range correction of gain for two corrugated horns at $10 \mathrm{GHz}\left(\mathrm{R}_{\mathrm{GC}}\right)$.

$$
\begin{array}{ll}
A= & 19.44(\mathrm{CM}) \\
B= & 14.40(\mathrm{CM}) \\
L E= & 32.00(\mathrm{CM}) \\
L H= & 34.25(\mathrm{CM})
\end{array}
$$

Figure 23. Far field gain vs. frequency curve for ScientiticAtlanta standard gain horn.

Figure 24. Far field gain vs. frequency curve for Narda standard gain horn.

Table 5: Range correction data for Scientific-Atlanta (model 12-8.2) standard gain horn by LSI method.

Table 6: Range correction data for Scientific-Atlanta (model 12-8.2) standard gain horn by GTD method.

*****65D*****		(FREQUENCY $=10.000$	OH2)		
DE $=16.98$	CH $\mathrm{DH}^{2}=20.0$	CH CEF 66.39	CH CH	48.51	
IE 14.40	CMr 4.8000	LAMDA) $A=19.44$	CMS 6.	800	A)
$E L=32.00$	CM(10.6667	LAMDA) HL= 34.25	CH(

zaA	R	RGAM PRPT	MFBAIN	RGU	RGC
(CN)	(CK)	DB DB	DB	DB	D8
7558.27	7595.29	0.00000-45.166	22.443	45.026	45.026
100.00	137.02	-0.43439-11.874	22.009	28.023	28.380
110.00	147.02	-0.38813-12.306	22.055	28.283	28.596
120.00	157.02	-0.35004-12.729	22.093	28.531	28.808
130.00	167.02	-0.31823-13.141	22.125	28.767	29.014
140.00	177.02	-0.29131-13.541	22.152	28.992	29.214
150.00	187.02	-0.26830-13.928	22.175	29.208	29.408
160.00	197.02	-0.24838-14.303	22.195	29.414	29.595
170.00	207.02	-0.23106-14.666	22.212	29.612	29.776
180.00	217.02	-0.21581-15.017	22.228	29.802	29.952
190.00	227.02	-0.20238-15.356	22.241	29.984	30.122
200.00	237.02	-0.19037-15.684	22.253	30.159	30.286
210.00	247.02	-0.17965-16.002	22.264	30.328	30.445
220.00	257.02	-0.16997-16.310	22.274	30.491	30.599
230.00	267.02	-0.16124-16.609	22.282	30.648	30.748
240.00	277.02	-0.15335-16.899	22.290	30.799	30.893
250.00	287.02	-0.14608-17.180	22.297	30.946	31.033
260.00	297.02	-0.13948-17.453	22.304	31.088	31.170
270.00) 307.02	-0.13342-17.718	22.310	31.226	31.302
280.00	317.02	-0.12781-17.976	22.316	31.360	31.431
290.00	327.02	-0.12265-18.227	22.321	31.489	31.557
300.00	337.02	-0.11785-18.471	22.326	31.615	31.679
310.00	347.02	-0.11339-18.709	22.330	31.738	31.798
320.00	357.02	-0.10926-18.941	22.334	31.857	31.914
330.00	367.02	-0.10541-19.167	22.338	31.973	32.027
340.00	377.02	-0.10181-19.388	22.342	32.086	32.137
350.00	387.02	-0.09838-19.603	22.345	32.197	32.245
360.00	397.02	-0.09525-19.814	22.348	32.304	32.350
370.00	407.02	-0.09226-20.019	22.351	32.409	32.453
380.00	417.02	-0.08939-20.220	22.354	32.512	32.554
390.00	427.02	-0.08675-20.417	22.357	32.612	32.652
400.00	437.02	-0.08422-20.609	22.359	32.710	32.748

Table 7: Range correction data for Narda (model 640) standard gain horn by LSI method.

*****LSI*****				1 (frequency $=10.000$		GHZ))		
DE	1.08	CM	$D H=1.55$	55 CH C	$C E=12.41$	CM CH	$C H=11.59$	M
=	5.95	CMI	1.9833	LAMDA)	$A=7.86$	CHI 2.	2.6200	MDA)
EL=	12.75	CMI	4.2500	(AMDA) H	$H L=14.25$	CM(4.	4.7500	(DDA)

	ZAA		R	RGAN	PRPT	NFGAIN	N RGU	RGC
	(CK)		(CH)	DB	DB	DB	DB	DB
	1235.59		1238.22	0.00000	- 40.556	16.871	137.149	37.149
	100.00		102.63	0.03343	-18-917	16.905	526.300	26.330
	110.00		112.63	0.03132	32-19.719	16.903	326.706	26.730
	120.00		122.63	0.02941	41-20.454	16.901	127.077	27.098
	130.00		132.63	0.02760	60-21.132	16.899	927.420	27.437
	140.00		142.63	0.02601	601-21.762	16.897	27.737	27.752
	150.00		152.63	0.02450	-22.350	16.896	28.033	28.046
	160.00		162.63	0.02319	$19-22.900$	16.894	428.310	28.321
	170.00		172.63	0.02193	-23.419	16.893	328.570	28.580
	180.00		182.63	0.02073	73-23.908	16.892	228.816	28.825
	190.00		192.63	0.01973	-34.371	16.891	129.048	29.057
	200.00		202.63	0.01880	30-24.811	16.890	- 29.269	29.277
	210.00		212.63	0.01800	-25.230	16.889	29.479	29.486
	220.00		222.63	0.01702	02-25.629	16.888	829.680	29.686
	230.00		232.63	0.01641	41-26.011	16.888	29.871	29.877
	240.00		242.63	0.01561	61-26.378	16.887	370.055	30.060
	250.00		252.63	0.01492	-26.729	16.886	30.231	30.236
	260.00		262.63	0.01438	38-27.066	16.886	630.400	30.404
	270.00		272.63	0.01385	-27.391	16.885	530.563	30.567
	280.00		282.63	0.01315	15-27.705	16.884	30.720	30.724
	290.00		292.63	0.01254	54-28.008	16.884	30.871	30.875
	300.00		302.63	0.01206	-28.300	16.883	31.018	31.021
	310.00		312.63	0.01173	3-28.583	16.883	31.159	31.163
	320.00		322.63	0.01114	14 -28.857	16.882	21.297	31.300
	330.00		332.63	0.01077	77-29.123	16.882	231.430	31.433
	340.00		342.63	0.01040	40-29.380	16.882	231.559	31.561
	350.00		352.63	0.01004	-29.631	16.881	131.684	31.687
	360.00		362.63	0.00975	75-29.874	16.881	131.806	31.808
	370.00		372.63	0.00950	50-30.110	16.881	31.924	31.926
	380.00		382.63	0.00910	10-30.341	16.880	O 32.040	32.042
	390.00		392.63	0.00857	57-30.566	16.880	O 32.152	32.154
	400.00		402.63	0.00834	34-30.785	16.880	- 32.262	32.263

Table 8: Range correction data for Narda ! model 640) standard gain horn by GTD method.

****				(1FREQUENCY $=10.000$		0H2:)		
DE $=$	1.08	CH	DH= 7.	42 CH C	$C E=12.41$	CH CH	$\mathrm{CH}=7.18$	
\%	5.95	CHI	1.9833	LAMDA)	$A=7.86$	CHI 2.	2.6200 LA	(ndA)
EL=	12.75	Chi	4.2500	Lamda)	HL= 14.25	CHI 4.	4.7500 LA	MDA)

	ZAA		R	RGAM	PRPT	NFGAIM	1 RGU	RGC
	(CN)		(CK)	D8	D8	D8	DB	DB
	1235.59		1244.09	0.00000	000-39.671	17.334	437.169	37.170
	100.00		108.50	0.36413	13-17.791	17.698	26.211	26.230
	110.00		118.50	0.33522	22-18.609	17.669	926.623	26.639
	120.00		128.50	0.31020	20-19.358	17.644	427.000	27.013
	130.00		138.50	0.28823	$23-20.049$	17.622	27.347	27.359
	140.00		148.50	0.26881	$31-20.691$	17.603	37.669	27.679
	150.00		158.50	0.25165	65-21.289	17.586	627.969	27.978
	160.00		168.50	0.23616	16-21.849	17.570	- 28.251	28.258
	170.00		178.50	0.22226	26-22.376	17.556	628.515	28.522
	180.00		188.50	0.20974	7-22.873	17.544	428.764	28.770
	190.00		198.50	0.19835	35-23.343	17.532	229.000	29.006
	200.00		208.50	0.18783	83-23.790	17.522	229.224	29.229
	210.00		218.50	0.17830	30-24.215	17.512	229.437	29.442
	220.00		228.50	0.16950	50-24.621	17.504	29.640	29.644
	230.00		238.50	0.16134	34-25.009	17.495	529.834	29.838
	240.00		248.50	0.15401	101-25.379	17.488	30.020	30.024
	250.00		258.50	0.14681	81-25.736	17.481	130.199	30.202
	260.00		268.50	0.14026	26-26.078	17.474	30.370	30.373
	270.00		278.50	0.13434	-26.407	17.468	830.535	30.538
	280.00		288.50	0.12862	62-26.725	17.463	330.694	30.696
	290.00		298.50	0.12329	$29-27.031$	17.457	30.847	30.850
	300.00		308.50	0.11816	$16-27.327$	17.452	230.995	30.998
	310.00		318.50	0.11353	53-27.613	17.448	831.138	31.141
	320.00		328.50	0.10910	10-27.890	17.443	331.277	31.279
	330.00		338.50	0.10486	(36-28.159	17.439	31.412	31.414
	340.00		348.50	0.10087	(28.420	17.435	311.542	31.544
	350.00		358.50	0.09732	$32-28.672$	17.431	131.668	31.670
	360.00		368.50	0.09377	-28.918	17.428	31.791	31.793
	370.00		378.50	0.09015	-29.158	17.424	31.911	31.913
	380.00		388.50	0.08702	-292-390	17.421	132.028	32.029
	390.00		398.50	0.08364	-29.618	17.418	832.142	32.143
	400.00		408.50	0.08071	1-29.839	17.415	5 32.252	32.253

Table 9: Range correction data for corrugated (model CX-20) horn by API method.

*****API***** ((1FREQUENCY = 10.000		GH2) 1		
$D E=5.94 \mathrm{CH}$	DH=	6.50 CM	CE $=28.46$	CM CH	27.73	CH
$\mathrm{g}=12.65 \mathrm{CM}$	A $=12$	12.65 CH	$E L=22.60$	CH HL	24.84	
**						
ZAA	R	RGAN	PRPT	WFGAIN	RGU	RGC
(CM)	(CN)	DB	D8	DB	DB	DB
3200.45	3212.89	0.00000	-41.639	20.470	41.290	41.290
100.00	112.44	-0.07020	-12.923	20.400	26.800	26.932
110.00	122.14	-0.05916	-13.601	20.411	27.159	27.271
120.00	132.44	-0.05058	-14.234	20.420	27.492	27.587
130.00	142.44	-0.04378	-14.827	20.427	27.801	27.884
140.00	152.44	-0.03829	-15.385	20.432	28.090	28.163
150.00	162.44	-0.03379	-15.911	20.437	28.362	28.426
160.00	172.44	-0.03006	-16.408	20.440	28.617	28.674
170.00	182.44	-0.02693	-16.879	20.443	28.859	28.910
180.00	192.44	-0.02428	-17.327	20.446	29.088	29.134
190.00	202.44	-0.02202	-17.754	20.448	29.306	29.347
200.00	212.44	-0.02006	-18.161	20.450	29.513	29.551
210.00	222.44	-C.01836	-18.551	20.452	29.711	29.746
220.00	232.44	-0.01688	-18.924	20.453	29.901	29.932
230.00	242.44	-0.01557	-19.282	20.455	30.083	30.112
240.00	252.44	-0.01442	-19.627	20.456	30.257	30.284
250.00	262.44	-0.01339	-19.958	20.457	30.425	30.449
260.00	272.44	-0.01247	-20.277	20.458	30.586	30.609
270.00	282.44	-0.01165	-20.586	20.459	30.742	30.763
280.00	292.44	-0.01091	-20.884	20.459	30.892	30.912
290.00	302.14	-0.01024	-21.172	20.460	31.038	31.056
300.00	312.14	-0.00963	-21.451	20.461	31.178	31.196
310.00	322.44	-0.00907	-21.721	20.461	31.314	31.331
320.00	332.14	-0.00857	-2!.993	20.462	31.447	31.462
330.00	342.44	-0.00811	-22.238	20.462	31.575	31.589
340.00	352.14	-0.00768	-22.486	20.463	31.699	31.713
350.00	362.44	-0.00729	-22.726	20.463	31.821	31.834
360.00	372.14	-0.00693	-22.961	20.463	31.938	31.951
370.00	382.44	4 -0.00660	-23.189	20.464	32.053	32.065
380.00	392.14	-0.00629	-23.411	20.464	32.165	32.176
390.00	402.44	-0.00600	-23.628	20.464	32.274	32.284
400.00	412.44	-0.00573	-23.840	20.465	32.380	32.390

Table 10: Range correction data for Scientific-Atlanta (model 12-8.2) standard gain horn by LSI method.

			(FREQUENCY=		GHZ 11		
DE $=20.80$	CH	$D H=26.55$	55 Lh CE	$E=71.32$	CH CH	= 52.91	CH
$y=14.40$	CHI	5.2800	LAMDA) ${ }_{\text {ch }}$	$\hat{H}=19.44$	CMI 7.	1280 L	(ADA)
$E L=32.00$	CHI	11.7333	LAMDA) HL	L= 34.25	CH(12.	5583	MDA)
***	***	**********	**********	*********		***	
ZAA		R	RGAN	PRPT	HFGAIM	RGU	RGC
(CN)		(CM)	D8	D8	D8	DB	D8
8314.10		8361.45	0.00000	-46.354	22.681	45.858	45.858
100.00		147.35	-0.24572	-12.486	22.435	28.564	28.924
110.00		157.35	-0.20647	-12.896	22.475	28.810	29.129
120.00		167.35	-0.17514	-13.300	22.506	29.046	29.331
130.00		177.35	-0.14976	-13.694	22.531	29.273	29.528
140.00		187.35	-0.12898	-14.079	22.552	29.490	29.721
150.00		197.35	-0.11175	-14.453	22.569	29.699	29.908
160.00		207.35	-0.09735	-14.816	22.584	29.899	30.089
170.00		217.35	-0.08519	-15.168	22.596	30.092	30.265
180.00		227.35	-0.07489	-15.510	22.606	30.277	30.436
190.00		237.35	-0.06606	-15.841	22.615	30.455	30.601
200.00		247.35	-0.05844	-16.161	22.623	30.626	30.762
210.00		257.35	-0.05188	-16.472	22.629	30.792	30.917
220.00		267.35	-0.04613	-16.774	22.635	30.952	31.068
230.00		277.35	-0.04113	-17.067	22.640	31.106	31.215
240.00		287.35	-0.03669	-17.351	22.644	31.256	31.357
250.00		297.35	-0.03282	-17.628	22.648	31.400	31.495
260.00		307.35	-0.02941	-17.896	22.652	31.541	31.629
270.00		317.35	-0.02633	-18.158	22.655	31.677	31.760
280.00		327.35	-0.02362	-18.412	22.657	31.809	31.887
290.00		337.35	-0.02115	-18.659	22.660	31.937	32.011
300.00		347.35	-0.01898	-18.900	22.662	32.061	32.131
310.00		357.35	-0.01701	-19.135	22.664	32.183	32.249
320.00		367.35	-0.01526	-19.365	22.666	32.301	32.363
330.00		377.35	-0.01369	-19.588	22.667	32.416	32.475
340.00		387.35	-0.01229	-19.807	22.669	32.528	32.584
350.00		397.35	-0.01100	-20.020	22.670	32.638	32.691
360.00		407.35	-0.00977	-20.228	22.671	32.744	32.795
370.00		417.35	-0.00867	-20.432	22.672	32.848	32.897
380.00		427.35	-0.00775	-20.632	22.673	32.950	32.997
390.00		437.35	-0.00683	-20.826	22.674	33.050	33.094
400.00		447.35	-0.00596	-21.017	22.675	33.147	33.190

-****SI*****				(FREQUENCY:		GH2)		
DE $=$	1.34	CH	DH: 1.88	B CM L	$L E=13.56$	CM CH	C.H: 12.63	CM
$B=$	5.95	CHI	2.1817 L	LAMDA)	$A=7.86$	CHI 2.	2.8820 LA	ADA)
t.L=	12.15	CAl	4.6750 L	LAMDA) H	$H L=14.25$	CHC S.	5.2250 LA	(DA)
**								
ZAA			k	RGAN	PRPT	WFGAIN	N RGU	RGC
(Ch)			(CA)	DB	DB	[18	08	I1B
1359.15			1362.37	0.00000	20-40.758	17.599	937.978	32.978
100.00			103.22	0.03289	89-18.350	17.632	26.740	26.774
110.00			113.22	0.03103	103-19.146	17.630	- 27.143	27.172
120.00			123.22	0.02930	30-19.875	17.628	87.512	27.537
130.00			133.22	0.02772	2-20.549	17.627	727.853	27.874
140.00			143.22	0.02611	11-21.176	17.625	5 28.169	28.187
150.00			153.22	0.02471	11-21.760	17.624	428.463	28.479
160.00			163.22	0.02347	17-22.308	17.622	228.739	28.753
170.00			113.22	0.02231	31-22.824	17.621	128.998	29.011
180.00			183.22	0.02125	25-23.311	17.620	029.243	29.254
190.00			193.22	0.02024	24-25.772	17.619	929.475	29.485
200.00			203.22	0.01930	30-24.210	17.618	829.695	29.704
210.00			213.22	0.01840	40-24.628	17.617	729.905	29.913
220.00			223.22	0.01765	65-25.026	17.617) 30.104	30.112
230.00			233.22	0.01678	78-25.407	17.616	630.296	30.303
240.00			243.22	0.01608	60 -25.772	17.615	1 30.479	30.485
250.00			253.22	0.01539	39-26.122	17.614	430.654	30.660
260.00			263.22	0.01464	464-26.459	17.614	130.823	30.829
270.00			273.22	0.01404	104-26.784	17.613	330.986	30.991
280.00			283.22	0.01365	55-27.096	17.613	331.142	31.147
290.00			293.22	0.01311	11-21.398	17.612	$2 \quad 31.294$	31.298
300.00			303.22	0.01266	66-27.690	17.612	231.440	31.144
310.00			313.22	0.01212	12-27.972	17.611	131.581	31.585
320.00			323.22	0.01172	72-28.245	17.611	131.718	31.822
330.00			333.22	0.01130	30-28.510	17.610	031.851	31.854
340.00			343.22	0.01086	786-28.768	17.610	$0 \quad 31.980$	31.983
350.00			353.22	0.01023	23-29.018	17.609	32.105	32.108
360.00			363.22	0.01002	002-29.261	17.609	9 32.226	32.229
370.00			373.22	0.00965	65-29.497	17.609	9 32.345	32.347
380.00			383.22	0.00912	12-29.121	17.608	+ 32.460	32.463
390.00			393.22	0.00886	- 29.951	17.608	32.572	32.575
400.00			403.2 ?	0.0088)) 30.169	17.608	32.681	32.684

Table 12: Range correction data for corrugated (model $\mathrm{C} \times 20$) horn by API method.

*****API*****		(1FREQUENCYx		6HZ))		CH
DE $=7.15 \mathrm{CH}$	$\mathrm{BH}=$	7.81 CH	CE $=30.60$	CM	29.65	
$B=12.65 \mathrm{CH}$	$1{ }^{\text {a }}=12$	12.65 CM	EL= 22.60	CM	24.84	
ZAA	R	ROAN	PRPT	NFGAIM	R6U	R6C
(CM))	DB	DB	DB	DB	DB
3520.49	3535.45	50.00000	-42.142	21.048	42.119	42.119
100.00	114.96	-0.08356	6-12.840	20.965	27.324	27.468
110.00	124.96	-0.07056	-13.495	20.978	27.673	27.796
120.00	134.96	6-0.06042	2-14.109	20.988	27.997	28.103
130.00	144.96	- 0.05235	-14.686	20.996	28.300	28.391
140.00	154.96	-0.04584	-15.230	21.002	28.583	28.663
150.00	164.96	-0.04049	-15.744	21.008	28.849	28.920
160.00	174.96	-0.03604	-16.231	21.012	29.100	29.164
170.00	184.96	-0.03231	1-16.693	21.016	29.338	29.395
180.00	194.96	-0.02914	4-17.133	21.019	29.563	29.615
190.00	204.96	-0.02643	-17.552	21.022	29.778	29.824
200.00	214.96	-0.02408	-17.953	21.024	29.982	30.025
210.00	224.96	-0.02205	-18.337	21.026	30.178	30.216
220.00	234.96	-0.02027	-18.704	21.028	30.365	30.400
230.00	244.96	- 0.01870	-19.058	21.029	30.544	30.577
240.00	254.96	-0.01732	-19.397	21.031	30.717	30.747
250.00	264.96	-0.01609	-19.725	21.032	30.883	30.911
260.00	274.96	-0.01498	-20.040	21.033	31.042	31.068
270.00	284.96	-0.01400	-20.345	21.034	31.197	31.221
280.00	294.96	-0.01310	-20.640	21.035	31.346	31.368
290.00	304.96	-0.01230	-20.925	21.036	31.490	31.511
300.00	314.96	-0.01157	-21.201	21.037	31.629	31.649
310.00	324.96	-0.01091	-21.469	21.037	31.764	31.783
320.00	334.96	-0.01029	-21.729	21.038	31.895	31.913
330.00	344.96	-0.00974	-21.981	21.038	32.022	32.039
340.00	354.96	-0.00922	-22.226	21.039	32.146	32.161
350.00	364.96	-0.00876	-22.465	21.039	32.266	32.281
360.00	374.96	-0.00833	-22.697	21.040	32.383	32.397
370.00	384.96	-0.00793	-22.924	21.040	32.497	32.510
380.00	394.96	-0.00755	-23.145	21.041	32.608	32.620
390.00	404.96	-0.00721	-23.360	21.041	32.716	32.728
400.00	414.96	-0.00689	-23.570	21.041	32.822	32.833

Tabl: 13: Range corrected gain measurements.

	$\begin{aligned} & \text { NARDA }(\text { Mode } 1.640) \\ & C E=12.41, \mathrm{~cm}, \mathrm{CH}=11.59 \mathrm{~cm} \end{aligned}$			$\begin{gathered} \text { CORR. (Mode I CX-20) } \\ C E=28.46, ~ \\ \text { cm }, ~ C H=27.73 . c m . ~ \end{gathered}$			$C E=6 / \mathrm{A}, 39 \mathrm{Model} \mathrm{~cm}, \mathrm{CH}=-82.21 \mathrm{~cm}$		
? 5	R_{GC} (dB)	Coupl. (dB)	Gain (dB)	R_{GC}. (dB)	Coupl. (dB)	Gain (dB)	$R_{G C}$ (dB)	Coupl. (dB)	Gain (dB)
ar	26.33	-20.16	16.25	26.93	-12.85	20.51	28.24	-11.96	22.26
250	28.05	-23.50	16.25	28.43	-15.90	20.48	29.29	-14.08	22.25
290	29.28	-26.06	16.25	29.55	-18.15	20.48	30.19	-15.88	22.25
$\therefore 50$	30.24	-28.00	16.24	30.45	-19.92	20.49	30.95	-17.44	22.23
300	31.02	-29.52	16.26	31.20	-21.40	20.50	31.61	-18.70	22.26
$3 ? 0$	31.20	-30.10	16.25	31.46	-21.98	20.47	31.85	-19.18	22.26
Meas. Date	7-19-1979			8-6-1979			7-19-1979		
x mtr.	Narda \#06137			Corrugated \#41			S/A \#1221		
Revr.	Narda \#07057			Corrugated \#4?			S/A \#122?		

Table 14: Range corrected gain measurements

Table 15: Range corrected gain measurements.

Frequ	$\mathrm{Cy}=10 \mathrm{GH}$		$C E=4$	$42 \mathrm{~cm} ;$	$\mathrm{CH}=40$	22 cm		
$\begin{aligned} & 2_{A n} \\ & (r m) \end{aligned}$	$\begin{aligned} & \text { Meas: } \\ & \text { Coupling } \\ & \text { (dB) } \end{aligned}$	$\begin{gathered} \mathrm{K} \\ \text { ((} \mathrm{l} 1 \mathrm{I}) \end{gathered}$	Corr \| 113!	$\frac{G U}{S / A}$	AVGi $\cdots 11$,	F_{c}	R_{GC}	$G_{\text {AVG }}^{\text {Meas }}$
100	-12.50	126.0	27.28	27.50	27.39	0.25	27.64	21.39
15]	-15.00	176.0	28.70	28.73	28.72	0.13	28.85	21.35
? 111	-17.00	226.0	29.77	29.81	29.79	0.08	29.87	31.37
? 50	-18.65	276.0	30.64	30.65	30.65	0.05	30.70	21.37
300	-20.05	326.0	31.36	31.36	31.36	0.04	31.40	21.38
3.0	-20.56	346.0	31.62	31.61	31.62	0.03	31.65	21.37
1. Transmitter: Corr (CX20) \#41; 2. $R=Z_{A A}+\left(0_{E}+O_{H}\right)_{A V G}$								
3. $\left(D_{E}+D_{H}\right)_{A V G}=\left[\left(D_{E}+D_{H}\right)_{\text {Corr }}+\left(D_{E}+D_{H}\right) S_{S / A}\right] / 2=2.6 \mathrm{~cm}$								
Measurement at Nals on 7 August, 1970								

Table 16: Range corrected gain measurements

Frequency $=10 \mathrm{GHz}$			$C E=20.44 \mathrm{~cm}, \quad C H=19.66 \mathrm{~cm}$					
	Mpas. (cmpling (111) -17.00	$\begin{gathered} R \\ (\mathrm{cIII}) \end{gathered}$? ${ }^{\text {riu }}$			F_{c}	R_{GC}	$\mathrm{G}_{\text {AVG }}^{\text {Meas }}$
$\begin{aligned} & ?_{A A} \\ & (1 . \mathrm{m}) \end{aligned}$			Corr '1ll:) Narda (lli)		nvi (1Il)			
100		107.5	26.61	26.50	26.56	0.07	26.63	18.13
150	-20.20	157.5	28.23	28.17	28.20	0.03	28.23	18.13
? 00	-22.56	207.5	29.41	29.37	29.39	0.02	29.41	18.13
. 50	-24.4?	257.5	30.34	30.31	30.33	0.01	30.34	18.13
300	-25.95	307.5	31.11	31.09	31.10	0.01	31.11	18.14
370	-26.50	327.5	31.38	31.36	31.37	0.01	31.38	18.13
1. Transmitter: Corr (CX20) \#41; Receiver: Narda (2. $R=Z_{A A}+\left(D_{E}+D_{H}\right)_{A V G}$ 3. $\left.\left(D_{E}+D_{H}\right)_{A V G}=\left[\left(D_{E}+\right)_{H}\right)_{\text {Corr }}+\left(D_{E}+D_{H}\right)_{\text {Narda }}\right] / 2=7.5 \mathrm{~cm}$ 4. Measurement at NAI S on 7 August, 1979							6137	

Table 17: Summary of range corrected gain measurements

Table 18: Range corrected gain measurements

Table 19: Range corrected gain measurements

Frequency $=11 \mathrm{GHz}$			CE $=42.44 \mathrm{~cm}$		$\mathrm{CH}=32.77 \mathrm{~cm}$			$G_{\text {AVG }}^{\text {Meas. }}$
	Meas.			${ }_{\text {RGU }}$				
$\begin{aligned} & z_{A A} \\ & (\mathrm{~cm}) \end{aligned}$	Coupling (dil)	$\begin{gathered} R \\ (\mathrm{~cm}) \end{gathered}$	$\begin{gathered} S / A \\ (d B) \end{gathered}$	Narda (dib)	AVG (111)	F_{c}	R_{GC}	
100	-16.66	125.3	28.00	27.58	27.79	0.19	27.98	19.65
150	-19.28	175.3	29.22	29.05	29.14	0.10	29.24	19.60
200	-21.34	225.3	30.24	30.14	30.19	0.06	30.25	19.58
250	-23.12	275.3	31.07	31.01	31.04	0.04	31.08	19.5 ?
300	-24.50	325.3	31.78	31.74	31.76	0.03	31.79	19.54
370	-25.04	345.3	32.03	32.00	32.02	0.03	32.05	19.53
1. Transmitter: S/A (12-8.2 \#1222; Receiver: Narda (640) \#07057 2. $R=Z_{A A}+\left(D_{E}+D_{H}\right)_{A V G}$ 3. $\left(D_{E}+D_{H}\right)_{A V G}=\left[\left(D_{E}+D_{H}\right)_{S / A}+\left(D_{E}+D_{H}\right)_{\text {Nardal }}\right] / 2=25.3 \mathrm{~cm}$								

Table 20: Range corrected gain measurements.

Table 21: Range corrected gain measurements.

Frequency - 11 GHz CE $=22.09 \mathrm{~cm}, \quad \mathrm{CH}=21.14 \mathrm{~cm}$								
101	-16.70	109.1	27.10	26.98	27.04	0.08	27.12	18.77
150	-19.90	159.1	28.70	28.63	28.67	0.04	28.71	18.76
? 111	-22.20	209.1	29.87	29.82	29.85	0.02	29.87	18.77
251)	-24.14	259.1	30.79	30.75	30.77	0.02	30.79	18.72
100	-25.68	309.1	31.55	31.52	31.54	0.01	31.55	18.71
(:1)	-26.20	329.1	31.82	31.79	31.81	0.01	31.82	18.7 ?
1. Tranimillir: Corr. (CX 20) \#41; Receiver: Narda (540) \#07057$\therefore R=l_{A A}+\left(0_{E}+D_{H}\right)_{A V C_{1}}$								
4. Medsurament at NA ', on 27 Nov., 1970								

Table 22: Summary of range corrected gain measurements

In the method developed here for determining the far field gain of pyramidal horn antennas, the range is defined as that between the calculated amplitude centers of the two horns. Consequently, the correction for near field gain is very small. At 10 GHz , the near field gain ratio for aperture separations greater than 150 cm is less than 0.1 dB for the Scientific-Atlanta X band standard gain horn and is less than 0.03 dB for the Narda X band standard gain horn. The accuracy of the calculated near field range correction data is estimated to be within 0.1 dB . Therefore, the accuracy of the far field gain measurements is practically limited by the accuracy of the measured coupling data.

The following observations demonstrate the validity and accuracy of the theory and the calculated results for the finite range correction data. The calculated finite range correction data given nearly the same value for far field gain of each horn over a wide range of aperture separations. When the finite range correction data were applied to coupling between mixed horns, the effective gain of each horn pair was consistent with the gains of the two horns when measured separately.

APPENDIX A
 EQUIVALENT LINE SOURCE INTEGRATIO., METHOD (LSI)

The slope diffraction method described in Chapter I was used for the GTD calculations of the diffracted fields from the H-plane edges of the horn antennas. As seen from Equation (24) slope diffraction is exact for an incident wave with a sin pattern where Ring . This is equivalent to a $\sin \left(0_{0 H^{-\theta}}\right)$ pattern for the wave incident on the H -plane edge of the h8 f n Shown in Figure 5. However the geometrical optics or incident wave in the H-plane of a horn has a $\cos \frac{\pi \theta}{2 \theta} \mathrm{H}$ pattern. Furthermore, in the GTD calculations the diffracted field ${ }^{0} \mathrm{from}$ each E-plane edge is calculated as that of a uniform spherical wave. Thus, the amplitude of the incident wave along the E-plane edges is assumed to be uniform when it actually varies as $\cos \frac{{ }^{\pi A} \mathrm{H}}{2 \mathrm{~N}_{\mathrm{OH}}}$. Nevertheless, for large norn dimensions, the normal GTD calculations are accurate. For small horn dimensions the accuracy can be improved by using LSI which integrates over the $\cos \frac{\pi / 4}{2 "}$ incident wave to calculate the diffracted fields from the E-plane ${ }^{0}$ edges, and performs a linear integration in the $H-p l a n e$ of the aperture to calculate diffracted fields from the H -plane edges.

The concept of the equivalent current method states that we can get the equivalent diffracted field from the equivalent line source current. We can assume that there is an equivalent magnetic current along each E plane edge and therefore it generates the electromagnetic field at the observation point.

Referring to [12], the magnetic field from the equivalent magnetic current M at the distance r is given by

$$
\begin{align*}
& H_{z}^{d}=-Y_{o} k M \sqrt{\frac{j}{8 \pi k r}} e^{-j k r} \tag{A-1}\\
& E_{=}^{d}=-k M \sqrt{\frac{j}{8 \pi k r}} e^{-j k r} \tag{A-2}
\end{align*}
$$

The diffracted field at a distance r close to a wedge is given $E_{E^{d}}=E^{i}\left(Q_{E}\right) D_{I}\left(L, A, B_{0}, m\right) \frac{e^{-j k r}}{\sqrt{r}}$

The diffraction coefficient $D_{\text {I }}$ in Equation (A-3) becomes independent of the distance parameter L outside the transition regions around the shadow boundary. Furthermore, the diffraction coefficient can be approximated as that for the centerl diffraction point on the edge. Thus, comparing Equations (A-2) and (A-3), we get the equivalent magnetic current, as shown in Figure A. 1 ,

$$
M=\frac{2}{k} \int_{-}^{2 \cdots \bar{j}}\left[D_{1}^{i}\left(, \therefore, A_{0} n\right) \quad(2-A)\right.
$$

The magnetic vector potential is given by

$$
\begin{equation*}
F=\frac{1}{4} \frac{i^{\frac{A}{2}}}{\frac{-A}{2}} \frac{\mathrm{Me}^{-j k r}}{r} d x \tag{A-5}
\end{equation*}
$$

and the rlpctric field is qiven by

$$
\begin{aligned}
& F^{\text {d }}=-. j k F \cos { }^{\prime \prime} \quad(A-\sigma)
\end{aligned}
$$

$$
\begin{aligned}
& \text { ? }
\end{aligned}
$$

The incident or genmetric optirs field is given by Equation (51) as

$$
r^{i} \quad r^{-j k R} \cos \cdots
$$

n : oli, is half argle of the H-plane (A-n)
Def ine the $\lambda^{\text {jntegral }}$

A

$$
\begin{align*}
& L_{E M}=\frac{H_{H}}{\cos _{o E}} \tag{A-11}\\
& R=\sqrt{L_{E M}^{2}+x^{2}} \\
& \therefore L_{E M}+\frac{x}{2 L_{E M}} \text {, for } L_{E M} \geqslant x \tag{A-12}\\
& r \cdots R_{E 1}+\frac{x^{2}}{2 R_{E 1}}, \text { for } R_{E 1} \Rightarrow x \tag{A-13}\\
& \prime=\tan ^{-1} \frac{x}{L_{E M}} \tag{A-14}\\
& \therefore I L_{E M} E 1 e^{-j k R} E 1 \int_{\frac{-A}{2}}^{\frac{A}{2}} \cos \frac{\pi \theta}{2}-e^{-j \frac{k x^{2}}{2 R_{2}} E 1} e^{-j k R} d x \tag{A-15}
\end{align*}
$$

The convenience in checking the computer programs the following factor $F_{\text {is }}$ is defined for calculating the diffracted field from the E-pIGTR edges:

$$
\begin{align*}
& =\int_{\frac{-A}{2}}^{\frac{A}{2}}{ }_{0}^{\cos \frac{n!1}{2!}} e^{-j \frac{k x^{2}}{2 R} E 1} e^{-j k R} d x \\
& \ldots e^{-j \frac{k x^{2}}{2 R_{E 1}}} e^{-j k R} d x \\
& \overbrace{-A}^{A} \cos \frac{\sigma_{0}-e^{-j \frac{k x^{2}}{2 R} E 1}}{\theta_{0}} e^{-j k R} d x \tag{A-16}
\end{align*}
$$

$$
\begin{equation*}
\int_{-\infty} e^{-j \frac{k x}{2}}\left(\frac{1}{R_{E 1}}+\frac{1}{L_{E M}}\right) d x=e^{j \frac{3}{4} \sqrt{\frac{R_{E 1} L_{E M}}{R_{E 1}+L_{E M}}}} \tag{A-17}
\end{equation*}
$$

The diffracted electric field on the horn axis by using LSI method can be gotten from Equation (70) multiplied by $F_{C T R}$,

$$
\begin{aligned}
& E^{d}=E_{\text {DIF }} \times F_{C T R}
\end{aligned}
$$

$$
\begin{align*}
& =2 D_{I} \frac{e^{-j k\left(L_{E} L_{E M}\right)}}{\sqrt{L_{E M} L_{E}}} \cdot \frac{e^{-j k R_{E 1}}}{R_{E 1}} \sqrt{\frac{R_{E 1} L_{E}}{R_{E 1}+L} E M} \cos { }^{\prime \prime} e^{-j \frac{\pi}{4}} \\
& x \int_{\frac{-A}{2}}^{\frac{A}{2}} \cos \frac{r_{0}^{2}}{e_{0}} e^{-j \frac{k x^{2}}{2 R} E 1} e^{-j k R} d x \tag{A-18}
\end{align*}
$$

Referring to Figure $A-2$, the sum of the geometric optics field and the H-plane diffracted field is given by

$$
\begin{equation*}
E^{G .0}+H_{D I F}=F_{H} \times E_{I N C} . \tag{A-10}
\end{equation*}
$$

where F_{H} is defined by

$$
(A-29)
$$

$$
\begin{aligned}
& R^{\prime}=\sqrt{H_{H}^{2}+x^{2}} \\
& H_{H}+\frac{x^{2}}{2 H_{H}} \text { for } H_{H} \cdots x \\
& \int_{-\infty}^{\infty} e^{-j \frac{k x^{2}}{2 Z_{A}}} e^{-j k R^{\prime}} d x=e^{-j k H_{H}} e^{j \frac{\pi}{4}} \sqrt{\frac{H_{H} Z^{2}}{H_{H}+Z_{A}}} \\
& F_{H}=e^{-j \frac{\pi}{4}} \sqrt{\frac{H_{H} Z_{A}}{H_{H}+Z_{A}}} e^{-j k H_{H}} \int_{\frac{-A}{2}}^{\frac{A}{2}} \cos \frac{\pi^{9}}{2 \theta} \theta_{0} e^{-j \frac{k x^{2}}{2 Z_{A}}} e^{-j k \sqrt{H_{H}^{2}+x^{2}} d x} d(A-24)
\end{aligned}
$$

Therefore, the total electric field is given by

$$
\begin{equation*}
E^{T O T}=E_{D I F} \times F_{C T R}+F_{H} \times E_{I N C} \tag{A-25}
\end{equation*}
$$

Figure A-1. Equivalent magnetic current along an E-plane edge.

Figure A-2. Equivalent magnetic current along the central part of the H-plane.

APPENDIX B

APERTURE INTEGRATION METHOD (API)

The corrugated horn, as shown in Figure B-1, is formed by replacing the conventional E-plane horn walls by impedance walls which force the tangential magnetic field to zero along the walls. The effect of the capacitive corrugated surface is to modify the uniform field distribution in the E-plane to a cosine distribution in the horn aperture when the horn is properly designed, as shown in Figure B-2. The reason for using the LSI method for non-corrugated horns as discussed in Appendix A, also aplies in a similar way for corrugated horns. With corrugated horns, the aperture has a cosine distribution in both the E-plane and the H-plane. Therefore, the aperture integration method will be used here for computing the on-axis near field of the corrugated horn. The aperture field for a corrugated horn as shown in Figures B-2 and B3 is given by

$$
\begin{equation*}
\bar{E}^{i}=\hat{y} \frac{e^{-j k s^{\prime}}}{s^{\prime}} \cos \frac{\pi 0 x}{2{ }_{0}^{\prime 0}} \cos \frac{\pi \theta}{2 \theta} \mathrm{y} \tag{3-1}
\end{equation*}
$$

where

$$
\begin{align*}
& s^{\prime}=\sqrt{H_{A V E}^{?}+x^{2}+y^{2}} \tag{B-2}\\
& \because H_{A V E}+\frac{x^{2}}{2 H_{A V E}}+\frac{y^{2}}{2 H_{A V E}}- \\
& H_{A V E}=\frac{1}{2}\left(H_{E}+H_{H}\right) \tag{B-3}\\
& { }_{o x}=\tan ^{-1} \frac{A}{2 H_{H}} \tag{B-4}\\
& \theta x=\tan ^{-1} \frac{x}{H_{A V E}} \tag{B-5}\\
& 0 \tag{B-6}\\
& o y=\tan ^{-1} \frac{B}{2 H_{E}} \tag{B-7}\\
& y_{y}=\tan ^{-1} \frac{y}{H_{A V E}}
\end{align*}
$$

Figure B-1. Side view of corrugated horn.

Figure B-2. Corrugated horn model.

Figure B-3. Coordinate system.

The equivalent magnetic current is given by

$$
\begin{align*}
\bar{M} & =2 \bar{E}^{i} \times \hat{n} \\
& =\hat{x} 2 \frac{e^{-j k s^{\prime}}}{s^{\prime}} \cos \frac{n 0 x}{2_{0 x}^{0}} \cos \frac{n \theta y}{2 \theta} 0 y \tag{B-8}
\end{align*}
$$

Therefore, the total electric field on the horn axis is given by

$$
\begin{aligned}
E= & \frac{j k}{4} \int_{-x_{0}}^{-x_{0}} \int_{-y_{0}}^{y_{0}} \frac{M e^{-j k s}}{s} d x d y \\
& =\frac{j}{\lambda} \int_{-x_{0}}^{x_{0}} \int_{-y_{0}}^{y_{0}} \frac{e^{-j k s^{\prime}}}{s^{\prime}} \cos \frac{x}{2 \theta_{0 x}} \cos \frac{\pi y}{2 \theta} \cdot \frac{e^{-j k s}}{s} d x d y
\end{aligned}
$$

where

$$
\begin{align*}
s= & \sqrt{x^{2}+y^{2}+z_{A}^{2}} \\
& \therefore Z_{A}+\frac{x^{2}}{2 Z_{A}}+\frac{y^{2}}{2 Z_{A}} \tag{B-10}\\
\therefore & E=\frac{j e^{-j k Z_{A}} e^{-j k H_{A V E}}}{Z_{A} H_{A V E}} \int_{0}^{x_{0}} \int_{0}^{y_{0}} e^{-j \frac{y_{0}}{2}} e^{-j \frac{k x^{2} H^{2} H_{Z A}}{2}} \\
& \cdot \cos \frac{\pi x}{2 \theta}{ }_{0 x} \cos \frac{\pi \theta y}{2 \theta} d x d y \tag{B-11}
\end{align*}
$$

where

$$
\begin{equation*}
H_{Z A}=\frac{1}{H_{A V E}}+\frac{1}{7_{A}}=\frac{H_{A V E}+Z_{A}}{H_{A V E}} \tag{B-1?}
\end{equation*}
$$

The geometric notics field can he expressed as

$$
\begin{align*}
& E^{G .0 .}=\frac{j e^{-j k\left(H_{A V E}+Z_{A}\right)}}{\lambda H_{A V E} Z_{A}} \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-j \frac{k x^{2} H_{Z A}}{2}} e^{-j \frac{k y^{2} H_{Z A}}{2}} d x d y \tag{B-13}\\
& e^{-j \frac{k x^{2} H_{Z A}}{2}} d x=\int_{-\infty}^{\infty} e^{-j \frac{k y^{2} H_{Z A}}{2}} d y{ }^{\infty}(B-13) \tag{B-14}\\
&=\sqrt{\frac{1}{H_{Z A}}} e^{-j \frac{\pi}{4}}
\end{align*}
$$

For convenience in checking the computer programs the following factors $F_{c x}$ and $F_{c y}$ are defined as

$$
\begin{align*}
& F_{c x}=\frac{\int_{-x_{0}}^{x_{0}} e^{-j-\frac{k x^{2} H_{Z A}}{2}} \cos \frac{\pi A}{2 \theta_{0 x}} \cdot \cdots \cdot\left(e^{-j \frac{k x^{2} H_{Z A}}{2}} d x\right.}{e^{H_{Z A}} e^{j \frac{\pi}{4}} \int_{-x_{0}}^{x_{0}}} \\
& e^{-j-\frac{k x^{2} H z A}{e^{-}}} \cos \frac{\pi \theta}{20} 0 x d x \tag{B-15}\\
& F_{c y}=\frac{\int_{-y_{0}}^{y_{0}} e^{-j \frac{k y^{2} H_{Z A}}{2}} \cos \frac{{ }^{n \theta} y}{2 \theta} 0 y}{0} d y \\
& e^{-j \frac{k y^{2} H}{?} H_{A}} \cos \frac{\pi n}{2 n o y} d y \tag{B-16}
\end{align*}
$$

Therefore, the total electric field on the axis is given by

$$
\begin{equation*}
E^{T O T}=F_{c x} \times F_{c y} \tag{B-17}
\end{equation*}
$$

APPENDIX C
COUPLING BETWEEN NON ISOTROPIC SOURCES

The near field coupling between two antennas with wide beamwidths (i.e., assuming each antenna would illuminate the other antenna with a nearly uniform spherical wave from its amplitude center) can be expressed as

$$
\frac{P_{R_{0}}}{P_{T}}=\left(\frac{\lambda}{4 \pi R}\right)^{2} G_{T}(R) G_{R}(R)
$$

$$
(C-1)
$$

where

However. Equation ($C-1$) is not highly accurate if the twn antennas are separated by a small distance compared to their beam widths An improved calculation of the coupling can be delived for close antenna separations hy using the principle of reaction [1i]. This principle is based on two sets of sources which represent the transmitting and receiving antennas as shown in Figure C-l The current I of source a produces the fields E_{a}, H_{a}; and $I_{\text {p }}$ produces E_{D}, H_{b}. ${ }^{\text {a }}$ The reaction principle is based on ${ }^{\text {a }}$ the ${ }^{a^{\prime}}$ followifio Equatioh

$$
\begin{align*}
-\oiint_{S} & \left(\bar{E}_{a} \times \bar{H}_{h}-\bar{H}_{b} \times \bar{H}_{a}\right) d \bar{s} \\
& =\iint_{V}\left(E_{a} \cdot \overline{\bar{v}}_{b}-\bar{H}_{a} \cdot \bar{M}_{b}-\bar{E}_{b} \cdot \bar{J}_{a}+\bar{H}_{b} \cdot \bar{M}_{a}\right) d v \tag{0-2}
\end{align*}
$$

Since each source is represented he elnctric currents onlv, the manetic currents are zern ($M=M_{b}=0$). The volume V of integration will be taken as the right haff-spare as shown in Fiqume c.-'. Thus the volume integral in Equation (r,-2) reduces to

$$
\begin{equation*}
\iint_{V} \int_{a} \bar{E}_{b} J_{h} d v=\int_{h} \bar{F}_{a} I_{h} \overline{J l}_{l}=V_{a b} I_{h} \tag{0,-2}
\end{equation*}
$$

$$
\begin{aligned}
& P_{\text {ro }}=\text { Power received assuming uniform amplitude waves. } \\
& P_{T}=\text { Power transmitter } \\
& R=\text { Effective range (between amplituce centers) } \\
& { }^{G}(R), G_{R}(R)=\text { Near field aains at distance } R \text { as defined bv } \\
& \text { Equatinn (95) for transmitting and receiving } \\
& \text { antennas, respectivelv. }
\end{aligned}
$$

where V is voltage induced hy source a into source h when it is recepling.

Let both sources be identical to represent the coupline hetween like horns. Also assume unit currents for hoth sources I $I_{b}=1$. Then Equation ($C-2$) can he written as

$$
v_{a b}=-\iint\left(E_{t a} H_{t b}-E_{t b} H_{t a}\right) d s
$$

where $E_{\text {ta }}, H_{\text {t }}{ }^{\text {face }} \mathrm{E}$.

$$
\begin{align*}
& E_{t a}=E_{t b}: E_{a} \tag{0-5}\\
& H_{t a}=-H_{t b} ; H_{a} \tag{C-5}
\end{align*}
$$

Which can he approximated as the total field components for small ancles. Then the received voltage can he anproximated as

$$
v_{a t)} \because \iint_{S} E_{a} H_{a} d S \because ?_{0} \iint_{S} E_{a}^{?} d S
$$

where Z_{0} is the impedance of free space.
As seen from Chapter VII the coupling between two horns is represented as that between two point sources located at the re spective amplitude centers of each horn as shown in Figure C?. In Equation (C-l) the spherical wave from each ampliture center is assumed to have uniform amplitude. In this derivation the spherical wave from each amplitude center is assumed to have a Gaussiar amplitude. Thus a more accurate representation of the near axis pattern is given by

$$
F(:)=C e^{-A^{\prime+2}}
$$

$$
(r-8)
$$

where A is a constant which can he determined from the calculated horn patterns as follows: First, use the normalized field pattorn aiven by

$$
F_{n}(\ldots)=\frac{F(n)}{F(0)}=0^{-A^{2}}
$$

$$
(0-0)
$$

Then A can he nealunted fore a small anale 'let's chence la^{n} '/180 radians). Thus

Figure C-1. Fields of source a and source b over sourface S of integration.

Figure C-?. Coupling between two horns.

$$
A=\frac{-\ln F_{n}\left(1^{0}\right)}{(\pi / 180)^{2}}
$$

Calculated horn paterns are usually expressed in $d B$ as

$$
\begin{equation*}
F_{d B}(\cdot)=20 \log F_{n}(v) \tag{C-11}
\end{equation*}
$$

Then

$$
\begin{equation*}
F_{n}(i)=(10)^{F_{d B} / ? 0} \tag{C-12}
\end{equation*}
$$

Thus

$$
\begin{array}{ll}
A=-\left(\frac{180}{3}\right)^{2} \frac{\ln 10}{20} F_{A B}\left(1^{0}\right) & (0-13) \\
A=-378 F_{A B}{ }^{\prime \prime}, & (r-10)
\end{array}
$$

where $F^{\prime} d^{0}$, is the value of the normalized horn pattern in
at $n B$
The field of each horn on surface S as shown in Fiaure C. ? is given by

$$
\begin{equation*}
E(r, 4, \psi)=F_{E}(\theta) F_{H}\left(i, H^{(1)} e_{-r}^{-j k r}\right. \tag{0-15}
\end{equation*}
$$

where F and F_{H} are the E - and H-plane patterns, respectively. Thus the voltage received by one horn with an identical transmittina horn is given by Equation (C-7) as

$$
V_{R}=\frac{2}{Z_{0}} \iint_{S} E^{2} d s=\frac{?}{Z_{0}} \iint_{S}\left[F_{E}\left(\|_{E}\right) F_{H}(\theta H) \frac{e^{-j k r}}{r}\right]^{2} d S \quad(C-16)
$$

Because of stationary phase effects most of the contrihutions to the integral in Equation ($C-16$) will result from the rear-axis reqion where

$$
\begin{array}{lr}
r: h+\frac{9}{\bar{T} h} & (r-17) \tag{r-17}\\
x: h r e r & (0.10)
\end{array}
$$

$$
\begin{equation*}
y \therefore h_{H} \tag{c-19}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu^{2}=x^{2}+y^{2} \because h^{2}\left(0 E_{E}^{2}+\theta^{2}\right) \tag{c-20}
\end{equation*}
$$

Using these approximations in Equation (C-14) gives the received voltaqe as

$$
\begin{aligned}
v_{R}= & \frac{2 e^{-i 2 k h}}{Z_{0} h^{2}} \int_{-\pi / 2}^{\pi / 2} e^{-\left(2 A_{E}+j k h\right) t^{2}} E n d{ }_{E} \\
& \times \int_{-1 / 2}^{1 / 2} e^{-\left(2 A_{H}+j k h\right)} t_{H}^{2} h d \theta_{H}
\end{aligned}
$$

(C..?!)
where the Gaussian pattern of Equation (C-9) has heen used.
The coupling power ratio in Equation ($C-1$) assumes spherical waves with uniform amplitudes, i.e. $A_{E}=A_{H}=0$. Thus the ratio of the received voltage V_{R} to the voltage $E_{V_{R}} H$ received with assumed uniform amplitude waves is given by

$$
\begin{equation*}
\frac{V_{R}}{V_{R o}}=\frac{\int_{-\infty}^{-\left(2 A_{2}+j k h\right) \theta_{E}^{2}} d \theta E \int_{-\infty}^{\infty} e^{\left.-!2 A_{H}+j k h\right) 0_{H}^{2}} d \theta}{\int_{-\infty}^{\infty} e^{-j k h} E} d \theta \int_{-\infty}^{\infty} e^{-j k h \theta^{2}} d \theta H \tag{C-22}
\end{equation*}
$$

Berause of stationary phase offects the limits of integration in Equation ($C-? 7$) can be treated as infinite. Then the intearals can be analytically evaluater hy

$$
\begin{equation*}
\int_{-} e^{-(2 A+j B) e^{2}} d=\frac{\sqrt{\pi}}{\sqrt{2(A+j B)}} \tag{C-23}
\end{equation*}
$$

Then Equation (C-23) can be evaluated as

$$
\begin{equation*}
\frac{V_{R}}{V_{R o}}=\sqrt{\frac{j k h}{2 A_{E}+j k h} \sqrt{2 A_{H}+j k h}}=\frac{1}{\sqrt{1-j T_{E}}} \frac{1}{\sqrt{1-j T_{H}}} . \tag{C-24}
\end{equation*}
$$

where

$$
\begin{align*}
& T_{E}=\frac{2 A_{E}}{k h}=\frac{4 A_{E}}{k R}=\frac{C_{E}}{R} \\
& C_{E}=\frac{2 \lambda A_{E}}{\pi} \tag{C-25b}\\
& T_{H}=\frac{2 A_{H}}{k h}=\frac{4 A_{H}}{k R}=\frac{C_{H}}{R} \tag{C-26a}\\
& C_{H}=\frac{2 \lambda A_{H}}{\pi} \tag{C-26b}
\end{align*}
$$

and R is the range between amplitude centers. Finally the ratio of the received powers is given by

$$
\begin{equation*}
\frac{P_{R}}{P_{R o}}=\left|\frac{V_{R}}{V_{R o}}\right|^{2}=\frac{1}{\sqrt{1+T_{E}^{2}}} \frac{1}{\sqrt{1+T_{H}^{2}}} \tag{C-27}
\end{equation*}
$$

Thus combining Equation ($\mathrm{C}-27$) and ($\mathrm{C}-1$) the coupling between two horns can be more accurately calculated from

$$
\begin{equation*}
\frac{P_{R}}{P_{T}}=\left(\frac{\lambda}{4 \pi R}\right)^{2} \quad G_{T}(R) G_{R}(R) \frac{1}{\sqrt{1+T_{E}^{2}}} \frac{1}{\sqrt{1+T_{H}^{2}}} \tag{C-28}
\end{equation*}
$$

where T_{E} and T_{H} are calculated by using Equations (C-25), (C-26) and ($\mathrm{C}-14$).

For different horn models the patterns for each horn can be used in Equations ($C-4$) and ($C-16$). Thus coupling between horns of different dimensions can be calculated from Equation ($C-27$) with

$$
\begin{equation*}
T_{E}=\frac{2 A_{E 1}+2 A_{E 2}}{k R}=\frac{C_{E}}{R} \tag{C-7.9a}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{E}=\frac{\lambda}{\pi}\left(A_{E 1}+A_{E 2}\right) \tag{C-29b}
\end{equation*}
$$

The pattern constants $A_{E 1}$ and $A_{E 2}$ are those for the E-plane patterns of horns 1 and 2 , respectively. Similarly, for the H-plane, we have

$$
\begin{equation*}
T_{H}=\frac{2 A_{H 1}+2 A_{H 2}}{k R}=\frac{C_{H}}{R} \tag{C-30a}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{H}=\frac{\lambda}{\pi}\left(A_{H 1}+A_{H 2}\right) . \tag{C-30b}
\end{equation*}
$$

REFERENCES

1. R. C. Rudduck, "Application of Wedge Diffraction to Antenna Theory," Report 1691-13. 30 June 19F5. The Ohio State University ElectroScience Laboratory, Department of Electrical Engineering; prepared under Grant No. NSG-448 for National Aeronautics and Space Administration. Washington, D.C. Alsn puhlished as NASA Report CR-372.
2. P. M. Russo, R. C. Rudduck, and L. Peters, Jr.. "A Method for Computing E-Plane Patterns of Horn Antennas," IEEE Trans. on Antennas and Propagation. AP-13, No. 2 March 1965, pp. 219-22.4
3. J. S. Yu, R. C. Rudduck, and L. Peters, Jr. "Comprehensive Analysis for E Plane of Horn Antennas for Edge Diffraction Theory," IEEE Trans. Antennas and Propagation, Vol. AP-1A March 1966, pp. 138-149.
4. J. S. Yu and R. C. Rudduck, "H-Plane Pattern of a Pyramidal Horn," IEEE Trans. on Antennas and Propagation Comm., Vol. AP-17, No. 5, September 1969.
5. C. A. Mentzer, L. Peters, Jr., and R. C. Rudduck, "Slope Diffraction and Its Application to Horns," IEEE Trans. on Ant. and Prop. AP-23, No. 2, March 1975.
6. R. G. Kouyoumjian and P. H. Pathak, "A Uniform Geometrical Theory of Diffrartion for an Edge in a Perfectly-Conductino Surface," Proc. IEEE, vol. 62, November 1074, pp. 1448-! 461.
7. T. S. Chu and R. A. Semplak, "Gain of Electromagnetic Horns," The Bell System Technical Journal, March 1065, pp. 527-527, Vol. 14, No. 3.
8. R. R. Bowman, "Absolute Gain Measurements for Horn Antennas," Technical Report No. RADC.TR-68-349, November 1968, Final Report.
9. E. V. Jull, "Finite Range Gain of Sectorai and Pyramidal Horns," Electron. Lett.. Vol. 6. Octoher 15, 1970.
10. A. C. Ludwig and R. A. Norman. "A New Methnd of Calculating Correction Factor for Near Field Gain Measurements," if[E Trans. on Ant. and Prop. AP-21. No. 5, September 1973, pp. 623628.
11. A. C. Newell, R. Baird and P. F. Wacker, "The Accurate Measurement of Antenna Gain and Polarization at Reduced Distances by an Extrapolation Technique," IEEE Trans. on Ant. and Prop., AP-21, No. 4, July 1973, pp. 4!8-431.
12. R. F. Harrington, Time-Harmonic Electromagnetic Fields, McGrawHill, 1961.
