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ABSTRACT The primary challenge of a cost-effective and low-complexity near-field millimeter-wave
(mmWave) imaging system is to achieve high resolution with a few antenna elements as possible.
Multiple-input multiple-output (MIMO) radar using simultaneous operation of spatially diverse transmit
and receive antennas is a good candidate to increase the number of available degrees of freedom. On the
other hand, higher integration complexity of extremely dense transceiver electronics limits the use of MIMO
only solutions within a relatively large imaging aperture. Hybrid concepts combining synthetic aperture
radar (SAR) techniques and sparseMIMOarrays present a good compromise to achieve short data acquisition
time and low complexity. However, compared with conventional monostatic sampling schemes, image
reconstruction methods for MIMO-SAR are more complicated. In this paper, we propose a high-resolution
mmWave imaging system combining 2-D MIMO arrays with SAR, along with a novel Fourier-based image
reconstruction algorithm using sparsely sampled aperture data. The proposed algorithm is verified by both
simulation and processing real data collected with our mmWave imager prototype utilizing commercially
available 77-GHzMIMO radar sensors. The experimental results confirm that our complete solution presents
a strong potential in high-resolution imaging with a significantly reduced number of antenna elements.

INDEX TERMS Millimeter-wave radar (mmWave), near-field radar imaging, synthetic aperture radar
(SAR), frequency-modulated continuous-wave (FMCW), multiple-input multiple-output (MIMO) radar,
IWR1443 mmWave sensors.

I. INTRODUCTION

Millimeter-wave (mmWave) imaging technology has gained
significant attention in recent years and it now plays
an important role in many applications including medical
diagnostics [1]–[3], security screening [4]–[9], and structure
inspection [10]. The major challenges of building mmWave
imaging systems are the cost and complexity arising from the
need for a large number of transceiver elements.

The cross-range image resolution and the spatial sampling
criteria are two key system parameters that determine the
required number of antennas. While the range resolution is
directly related to the bandwidth of the transmitting signal,
the cross-range resolution is also determined by the effec-
tive length of the radar aperture. For example, an effective

The associate editor coordinating the review of this manuscript and
approving it for publication was Lin Wang.

aperture size of 50 wavelengths (λ) along both horizontal and
vertical directions is needed to achieve a 5 mm resolution in
both axes at 50 cm range [4], [5]. On the other hand, λ/4 spac-
ing is necessary between the measurement points to prevent
the formation of unwanted imaging artifacts in a near-field
scenario [4]. Hence, in order to satisfy the above mentioned
image resolution under the required spatial sampling criteria,
an ideal imaging system would consist of a two-dimensional
(2-D) array with approximately 40000 antenna elements.

In recent years, great progress has been made in the
semiconductor technology to enable cost-effective sen-
sor solutions. Complementary metal-oxide semiconduc-
tor (CMOS) based frequency-modulated continuous-wave
(FMCW) mmWave radars integrate all the analog and
radio-frequency (RF) functionality as well as the low-level
signal processing capability into a single chip with a compact
form factor [11]. Such a highly integrated device enables the

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

31801

https://orcid.org/0000-0001-7229-1765
https://orcid.org/0000-0001-8682-4577


M. E. Yanik, M. Torlak: Near-Field MIMO-SAR mmWave Imaging With Sparsely Sampled Aperture Data

mmWave radar systems to be cost-effective and miniaturized.
However, implementing densely placed transceivers required
for high-resolution imaging is still a challenging effort.
A well-known approach to mitigate this challenge is the

realization of multiple-input multiple-output (MIMO) array
topologies [12]–[14]. Fully electronic multistatic sampling of
large radar apertures using MIMO arrays has been incorpo-
rated into various near-field imaging systems [6], [15], [16].
While real-time operation is an ultimate goal for many appli-
cations, higher hardware complexity of integrating a large
number of transceiver antennas makes fully electronic sam-
pling less likely to be widely deployed. As a result, using a
hybrid concept based on the combination of synthetic aper-
ture radar (SAR) technique [17], [18] and MIMO array leads
to lower hardware complexity than fully electronic sampling
solutions [5], [19]. On the other hand, employing computa-
tionally efficient image reconstruction algorithms remains
a challenge for MIMO-SAR configurations, especially in
near-field imaging applications.
In near-field, the plane-wave assumption is invalid and

the spherical electromagnetic wave model has to be used.
The image reconstruction process must be able to com-
pletely compensate for the curvature of the wavefront.
Although the time-domain correlation (or backprojection)
method [5], [20], which provides a straightforward solution
to estimate target area reflectivity by correlating the recorded
data with the signature of a unit reflector at each spatial
coordinate, can be used for any arbitrary multistatic array
configuration, it suffers from high computational load.
For monostatic sampling schemes, where the mea-

surements are taken by collocated transmit and receive
antennas over regular spatial intervals, near-field image
reconstruction has long been implemented using Fourier
based inversion methods for both planar [4], [21], [22] and
cylindrical/spherical [23], [24] scanning geometries. Unfor-
tunately, these methods cannot be directly used for multistatic
systems due to their need to consider the different trajectories
of the incident and reflected electric fields.
Modified wavenumber domain image reconstruction algo-

rithms accounting for multistatic array topology along with
wavefront curvature in near-field have been presented for
2-D planar MIMO arrays [25], and for the systems synthesiz-
ing the 2-D aperture with one-dimensional (1-D) SAR along
with 1-D MIMO sampling [19]. However, these techniques
require uniform spatial sampling and involve computation-
ally expensive wavenumber space interpolation. Hence, such
needs limit the use of these algorithms for arbitrary array
configurations and make them equally or less efficient than
the direct time-domain reconstruction [5] in high throughput
applications.
In response to all these major challenging requirements,

we propose a novel near-field mmWave imaging solution that
combines 2-D sparse MIMO arrays and SAR. We investigate
the wavenumber domain of the backscattered data by expand-
ing the study in [26] for SAR configuration. We establish the
nonlinear relation between the wavenumber spectrum of the

backscattered data and the reconstructed image, which, to our
knowledge, has not been studied in the previous literature.
We analyze the analytical effect of aliasing due to sparse sam-
pling both on the wavenumber and spatial domains. We then
propose an efficient Fourier based imaging algorithm for
sparse MIMO-SAR to recover the spectrum of alias-free
images by properly combining the overlapped spectrum of
sparse subchannels.

The proposed image reconstruction algorithm for sparse
multistatic sampling is based on the expansion of extremely
efficient and interpolation-free Fourier based monostatic
SAR imaging. To reconstruct near-field images from spa-
tially diverse transmit and receive antennas, we introduce a
multistatic-to-monostatic phase correction approach. In addi-
tion, the proposed reconstruction formula compensates the
propagation loss, which is typically ignored in existing
studies, to improve the imaging quality for the near-field
operations.

To demonstrate the effect of sparse sampling and to vali-
date the proposed image reconstruction algorithm, we build a
mmWave imaging prototype utilizing commercially available
MIMO sensors and a custom designed two-axis automatic
rail system. We investigate key system parameters such as
image resolution and spatial sampling criteria. We imple-
ment a calibration method to compensate the gain and
phase mismatches of the MIMO array elements [27], [28].
We present real imaging results to show the effectiveness
of proposed system that achieves high-resolution imaging
performance with a significantly reduced number of antenna
elements.

The rest of the paper is organized as follows. Section II
presents the proposed MIMO-SAR configuration, and dis-
cusses the virtual antenna array concept in near-field using
a multistatic-to-monostatic correction factor to improve
Fourier based image formation. Section III reviews the
standard monostatic SAR image reconstruction framework,
which forms the basis of our MIMO-SAR image formation.
Section IV addresses the signal processing steps involved in
the proposed sparse MIMO-SAR image reconstruction start-
ing with the wavenumber spectrum analysis of subsampling
and its effect on the image domain, followed by the proposed
novel image reconstruction technique that is compatible with
the sparsely sampled aperture data. Section V discusses the
image resolution, which is an important performance metric
in imaging. Section VI presents the hardware architecture of
the prototyped imager and MIMO array calibration. Simula-
tions and measurement results are reported in Section VII,
which is followed by conclusions.

II. SYSTEM MODEL

In this paper, we propose to synthesize a 2-D SAR aper-
ture by mechanically scanning a MIMO array in a parallel
track pattern as shown in Fig. 1. In the following subsec-
tions, we present the geometrical setup for the proposed
MIMO-SAR system.
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A. MIMO-SAR CONFIGURATION

The radar measurements are performed by moving a MIMO
array continuously across xy plane, along parallel lines,
as shown in Fig. 1. Both SAR and MIMO apertures can
be sparse. The unprimed and primed coordinates represent
the measurement positions on the scan aperture and image
pixel positions over a target aperture, respectively. In the
established right-handed (x, y, z) Cartesian coordinate sys-
tem, x−axis, y−axis, and z−axis denote horizontal, vertical,
and depth directions, respectively.

FIGURE 1. Geometry of SAR scanned in a parallel track pattern with a
sparse MIMO array.

The reference point (x, y, 0) is the position of the MIMO
array at a specific measurement instant. The target aperture
is at the distance of z0. The image pixel coordinates are given
as (x ′, y′, z0). In this paper, the target is assumed to be a 2-D
object and parallel to the scanning plane. We will report our
3-D image formation results in a future article.

B. THE VIRTUAL ARRAY CONCEPT

We consider a sparseMIMOarray equippedwithMT transmit
and MR receive antenna elements. Let the uth transmit and
the vth receive antennas be located at ru ∈ R

3 and rv ∈ R
3,

respectively, as shown in Fig. 2a. The transmit and receive
antenna locations are characterized by

gT (r) =
MT−1
∑

u=0

δ(r − ru), gR(r) =
MR−1
∑

v=0

δ(r − rv). (1)

In a far-field scenario, assume that the distance to the target
aperture is much larger than the distance between the transmit
and receive elements of the MIMO array. This assumption
leads to a conventional midpoint approximation that holds
for a small fraction of ǫ for each u ∈ {1, . . . ,MT } and

v ∈ {1, . . . ,MR} as reported in [29],

|ru − rv| ≤
√
4ǫλR, (2)

where λ is the wavelength and R is the distance from the
midpoint of the antennas to the ideal point scatterer. Then the
corresponding transceiver antenna pair is approximated by a
single monostatic virtual element located at [13], [29], [30]

ruv = (ru + rv)/2. (3)

FIGURE 2. (a) MIMO array in near-field for uth transmit and v th receive
antennas. (b) An example of MIMO array with two transmit and three
receive antennas, and corresponding virtual array.

The scaling factor of 1/2 is due to the round-trip prop-
agation. The location of this monostatic virtual element as
depicted in Fig. 2a is also called equivalent phase center.
An example of MIMO array with MT = 2 and MR = 3
antennas and the corresponding virtual array are depicted
in Fig. 2b. Thus, a MIMO array with MT + MR physi-
cal antennas can be approximated by a virtual array with
L = MT × MR monostatic elements. We can simplify the
virtual element subscript as ℓ, where ℓ ∈ {1, . . . ,L}, for
simplicity. Then the corresponding distribution function of
the virtual array elements can be obtained by performing con-
volution of the transmitter and receiver element distributions
in (1) as

gV (r) = gT (r)⊛ gR(r) =
L−1
∑

ℓ=0

δ(r − rℓ). (4)

Therefore, the virtual array, which describes the set of inde-
pendent monostatic elements that can collect the equivalent
data, is half the size of the physical MIMO array (i.e., sum
of the transmit and receive array aperture sizes) in each
dimension. To create this virtual array architecture, receiver
antennasmust be able to separate the signals corresponding to
different transmitter antennas. In this paper, the orthogonality
between the transmit antennas is achieved by employing time
division multiplexing (TDM) technique.

C. THE VIRTUAL ARRAY RESPONSE

IN NEAR-FIELD IMAGING

For near-field imaging applications, small fraction of ǫ
assumption in (2) does not hold and an improved approxima-
tion is necessary. In the following, we will derive an efficient
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proper adjustment factor to create an equivalent virtual array
from a MIMO array for near-field scenarios.
Let us express the total round-trip distance associated with

the uth transmitter element at (xu, yu, 0) and the vth receiver
element at (xv, yv, 0) to a point scatterer at (x ′, y′, z0) as

Rℓ = Ru + Rv =
√

(xu − x ′)2 + (yu − y′)2 + z20

+
√

(xv − x ′)2 + (yv − y′)2 + z20. (5)

Let us denote the location of the virtual antenna element
corresponding to the uth transmitter and the vth receiver
as (x, y). We can express the uth transmitter and the vth
receiver locations as

xu = x + dxℓ /2, yu = y+ d
y
ℓ/2,

xv = x − dxℓ /2, yv = y− d
y
ℓ/2, (6)

where dxℓ and dyℓ are the distances between the transmitter
and receiver elements in x and y axes, respectively, as shown
in Fig. 2a. Applying multivariate Taylor series expansion
to (5) up to third order terms with respect to the parameters
dxℓ and d

y
ℓ around zero, as described in the Appendix C,

we can obtain

Rℓ ≈ 2R+
(dxℓ )

2 + (dyℓ )
2

4R
−

((x − x ′)dxℓ + (y− y′)dyℓ )
2

4R3
,

(7)

where

R =
√

(x − x ′)2 + (y− y′)2 + z20, (8)

is the distance between the midpoint and the scatterer.
Considering (x−x ′), (y−y′) ≪ z0 for the second order terms
in (7), we can obtain an improved approximation to the total
round-trip distance associated with the ℓth virtual element in
terms of

Rℓ ≈ 2R+
(dxℓ )

2 + (dyℓ )
2

4z0
. (9)

D. SIGNAL MODEL

In recent years, several mmWave sensors based on FMCW
signaling have been successfully constructed especially tar-
geting automotive radar applications. FMCW (also known
as chirp waveform) offers several advantages, i.e., large sig-
nal bandwidth, range processing gain, the inherent isola-
tion between transmitters and receivers, and low sampling
rate. Based on the improved virtual antenna array con-
cept presented in the previous section and TDM technique,
the transmit and receive antennas are paired to approximate
a monostatic radar operation. Thus, let us briefly review a
single element monostatic radar signal model.
Consider an FMCW signal transmitted by the monostatic

antenna element in complex form as

m(t) = ej2π(f0t+0.5Kt2), 0 ≤ t ≤ T , (10)

where f0 is the carrier frequency at time t = 0, K = B/T is
the slope of frequency computed from the sweep bandwidth
of B, and the chirp duration of T . Assuming an ideal point

scatter at a distance of R, the received signal by the same
monostatic antenna element is delayed and scaled version of
the transmitted signal

ŝ(t) = σm(t − τ ) = σej2π (f0(t−τ )+0.5K (t−τ )2), (11)

where τ = 2R/c is the round-trip delay of the echo for the
target distance of R, c is the speed of light, and σ is the
combination of target reflectivity and round-trip amplitude
decay with range [25], [31]

σ = p/R2, (12)

where p is the complex reflectivity of the ideal point target.
The radar demodulates the received signal by mixing it with
a copy of the transmitted signal to reduce the required system
sampling rate. This is known as dechirping and results in a
complex intermediate frequency (or beat) signal [32]

s(t) = σej2π (f0τ+Kτ t−0.5Kτ 2), (13)

where Kτ term is the beat frequency which carries the range
information. The last term of (13) is known as the residual
video phase (RVP), which is found to be negligible [33].
Therefore, the beat signal can be rewritten in the wavenumber
domain as

s(k) = p
ej2kR

R2
,

2π f0
c

≤ k ≤ 2π fT
c
, (14)

where fT = f0 + KT is the maximum swap frequency of
FMCW radar and k = 2π f /c is the wavenumber correspond-
ing to the frequency f .

Nowwe are ready to introduce themidpoint approximation
derived in Section II-C. The approximation in (9) allows
a MIMO array with sparsely placed transmit and receive
elements to be converted to a virtual monostatic array more
accurately for near-field imaging applications. The effective-
ness of the image reconstruction is mainly determined by
proper handling of the phase in (14), and any improvement
in the amplitude decay with range will have little impact on
the reconstructed image. Therefore, substituting (9) into the
phase term in (14), we can express the received signal by
the ℓth hypothetical monostatic virtual element as

sℓ(k) ≈ p
ejkRℓ

R2
= s(k)ejφℓ(k), (15)

where s(k) is the signal that would be received by a physical
monostatic element located at the same midpoint between
actual transmitter and receiver antennas, and

φℓ(k) = k
(dxℓ )

2 + (dyℓ )
2

4z0
, (16)

is the nonlinear phase term as a result of the improved approx-
imation in (9) needed for near-field applications.
In the MIMO-SAR imaging configuration, the acquired

3-D backscattered data cube sℓ(x, y, k) from the ℓth vir-
tual channel is a function of two spatial coordinates,
antenna pair spacing, target distance and the wavenumber.
If the 2-D distributed target at z0 is characterized by its com-
plex reflectivity function p(x ′, y′), the main purpose of the
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MIMO-SAR imaging algorithm is to recover p(x ′, y′) from
the reflected signals sℓ(x, y, k) captured by all independent
and arbitrary located virtual elements.

III. IMAGE RECONSTRUCTION WITH MONOSTATIC SAR

Here, we review the standard monostatic SAR image recon-
struction framework [4], [21], which forms the basis of
our proposed algorithms. We adopt the signal model that
assumes continuously recorded aperture data. Based on this
model, we will determine the important relationship between
k−domain (or spectral domain) and image domain (or spatial
domain) when the imaging aperture is sparsely sampled by
MIMO-SAR in Fig. 1.
We assume the linearized scattering model with the target

reflectivity of p(x ′, y′). By expanding the signalmodel in (14),
we can express the received backscattered data from a planar
target at a distance of z0 as

s(x, y, k) =
∫∫

p(x ′, y′)
ej2kR

R2
dx ′ dy′, (17)

where R is the distance between the transceiver element and
a general point on the target given in (8). We include the
amplitude factor in the signal model due varying distance of
MIMO array to the target. The amplitude factor (i.e., path
loss) is typically ignored in the existing derivations. The
target points are located at an average distance of z0 from the
aperture plane. Therefore, R−2 in (17) can be approximated
by (z0R)−1. The error introduced by this approximation will
be negligible in the near-field applications [34]. z0 is con-
stant for a stationary object and, therefore, it can be ignored.
As a result, the 2-D image reconstruction will be effectively
approximated by a combination of the phase terms and the
retained R−1 dependence that yields

s(x, y, k) =
∫∫

p(x ′, y′)
ej2kR

R
dx ′ dy′. (18)

Our derivation builds on the spirit of Weyl’s idea [35] of
the representation of a spherical wave as a superposition of
plane waves [36]

ej2kR

R
= j

2π

∫∫
ej(kx (x−x

′)+ky(y−y′)+kzz0)

kz
dkx dky, (19)

where

kz =
√

4k2 − k2x − k2y . (20)

It is important to note that the plane waves are homoge-
neous when k2x + k2y ≤ 4k2, but they are inhomogeneous
(significant only close to the plane z0 = 0) otherwise. The
entire derivation of (19) is given in the Appendix B.
After substituting (19) into (18), the backscattered data

becomes

s(x, y, k) = j

2π

∫∫∫∫

p(x ′, y′)

× 1

kz
ej(kx (x−x

′)+ky(y−y′)+kzz0) dkx dky dx
′ dy′.

(21)

Rearranging the order of integrals and using the 2-D
Fourier transform definitions in the Appendix A gives

s(x, y, k) = j

2π

∫∫ [ ∫∫

p(x ′, y′)e−j(kxx
′+kyy′) dx ′ dy′

]

︸ ︷︷ ︸

FT2D
[

p(x, y)
]

= P(kx , ky)

× ejkzz0

kz
ej(kxx+kyy) dkx dky. (22)

The distinction between the primed and unprimed coordi-
nate systems above is dropped in the forward Fourier trans-
form operation (denoted as FT2D) because they coincide. The
outer double integral above represents a 2-D inverse Fourier
transform over the xy domain. Hence, after dropping the
constant terms, (22) becomes

s(x, y, k) = IFT2D

[

P(kx , ky)
ejkzz0

kz

]

, (23)

that yields

P(kx , ky) = S(kx , ky, k)kze
−jkzz0 . (24)

In (23), IFT2D denotes 2-D inverse Fourier transform oper-
ation over the xy domain. (24) is then evaluated at multi-
ple wavenumbers and coherently summed within an image
plane [16] to reconstruct the 2-D target reflectivity as

p(x, y) =
∫

IFT2D
[

S(kx , ky, k)kze
−jkzz0] dk. (25)

Therefore, a monochromatic approach is assumed in the
rest of the paper and k variable in the backscattered data is
dropped for simplicity.

IV. DEVELOPMENT OF IMAGE RECONSTRUCTION

WITH SPARSE MIMO-SAR

The mmWave imager proposed and prototyped in this paper
exploits sparse MIMO array configurations to reduce the
cost and scanning time while providing high-resolution imag-
ing. To recover images without any reconstruction arti-
facts, we investigate the response of the sparsely sampled
MIMO-SAR imaging system to the target being imaged by
establishing properties between spectral and spatial domains.
As a first step, we review the analysis of the 1-D k−domain
spectrum in terms of the dimensions of the target and the
continuous finite SAR aperture. This analysis will enable
us to develop a novel Fourier based imaging formulation
compatible with sparsely sampled MIMO-SAR data.

A. WAVENUMBER SPECTRUM ANALYSIS

AND SAMPLING CRITERION

Consider an imaging scenario, where the target area is
centered with respect to the scanning system, as depicted
in Fig. 3. While the analysis of the wavenumber spectrum
here is limited to x−axis, the expressions can be easily
expanded to y−axis. This approach is based on a prior knowl-
edge of the total size of the target region under consideration
instead of an unknown physical target geometry.
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FIGURE 3. Spectral domain of the backscattered data in x−axis.

Denote θx as the limit of the system operating angle in
x−axis, which is the lesser of the full beamwidth of the
antenna or the angle covered by the aperture over the corre-
sponding axis. Assuming the angle subtended by the aperture
is less than the beamwidth of the antenna, we can express

sin θx = (DSx + DTx )/2
√

(DSx + DTx )
2/4 + z20

, (26)

where DSx and DTx are the SAR and target aperture sizes,
respectively, as depicted in Fig. 1. As a result, the spectrum
of the backscattered signal along x−axis will be limited to
the region [−kbwx , kbwx ] where kbwx is the highest wavenumber
component defined as

kbwx ≈ 2k sin θx . (27)

Substituting (26) into (27) yields the bandwidth of the
backscattered data collected along x−axis as

kbwx ≈ 2π (DSx + DTx )

λ

√

(DSx + DTx )
2/4 + z20

. (28)

In MIMO-SAR imaging configuration, the backscattered
signals are spatially sampled by transmit/receive antenna
locations. While the proposed system employs sparse sam-
pling, its development will be facilitated by understanding
of the spatial sampling requirements based on monostatic
scenario. As in the traditional time domain signals, sampling
needs to satisfy the Nyquist criterion to avoid aliasing, but
in space. The maximum theoretical limit of monostatic sam-
pling of infinite aperture is λ/4where λ is the wavelength [4].
However, the spectrum of the backscattered data captured
over a finite SAR aperture is limited by its size, spatial
extent of the target aperture, and the distance between both
apertures.
Consider a continuous spatial domain signal s(x) captured

in an imaging scheme in Fig. 3 and its Fourier transform (i.e.,
its wavenumber spectrum) S(kx). As expressed in (28), S(kx)
is band-limited to |kx | ≤ kbwx . The corresponding minimum
sampling wavenumber (i.e., the Nyquist rate) along x−axis

is given by

ksx ≥ 2kbwx = 4π (DSx + DTx )

λ

√

(DSx + DTx )
2/4 + z20

. (29)

Hence, s(x) can be perfectly reconstructed from its samples
without aliasing as long as the spatial sampling interval is [5]

1x ≤ 1
Nyq
x = π

kbwx
=
λ

√

(DSx + DTx )
2/4 + z20

2(DSx + DTx )
. (30)

FIGURE 4. Illustration of periodically nonuniform sampling of the
continuous two-dimensional SAR aperture.

B. ANALYSIS OF SPARSELY SAMPLED

CONTINUOUS SAR APERTURE DATA

MIMO array configurations can be used to reduce the hard-
ware cost, software complexity, and data acquisition time.
Our imaging setup is based on a sparse MIMO array, which
is scanned mechanically in a plane as shown in Fig. 1. The
radar waveforms transmitted by the MIMO array sample the
continuous xy plane as illustrated in Fig. 4. Based on the
conversion of the MIMO array to the monostatic operation
in (4) and the phase correction factor in (15), we can express
spatially sampled version of the continuous SAR aperture
data by the ℓth virtual channel as

sℓ(x, y) = s(x, y)ejφℓ

×
∑

p∈Z

∑

q∈Z
δ(x − p1x − xℓ, y− q1y − yℓ), (31)

where 1x and 1y are the sampling distances along x and y
dimensions, respectively, as shown in Fig. 1. s(x, y) above
represents the backscattered data that would be received by a
physical monostatic element over the continuous xy aperture.
xℓ and yℓ are the virtual element midpoint offsets in x and y
axes, respectively, as depicted in Fig. 4.
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Using the Fourier transform definitions in Appendix A,
we can express the 2-Dwavenumber spectrum of the sampled
signal associated with the ℓth channel as

Sℓ(kx , ky) = ejφℓ

1x1y
×

∑

m∈Z

∑

n∈Z
S(kx − mksx , ky − nksy)

× e−j(mk
s
xxℓ+nksyyℓ), (32)

subject to

(kx − mksx)
2 + (ky − nksy)

2 ≤ 4k2, ∀m, n ∈ Z, (33)

where

ksx = 2π

1x
, ksy = 2π

1y
, (34)

are the spatial sampling frequencies.

FIGURE 5. Wavenumber domain spectrum of the continuous SAR data
and its sampled version along x−axis.

The imaging system working at a specific frequency range
can be used to image targets with unknown sizes and prox-
imity. Thus, our goal in this paper is to obtain the alias-free
wavenumber spectrum within the visible region, [−2k, 2k].
Due to sparsity ofMIMO array and subsampling of the scene,
the visible region can contain multiple aliasing components
as shown in Fig. 5. The overlapping spectral components due
to aliasing are centered at (mksx , nk

s
y) for ∀m, n ∈ Z with

{m, n} 6= {0, 0}. We will focus on the visible region defined
in (33) that limits the number of shifted copies as

|mksx − kbwx | ≤ 2k, |nksy − kbwy | ≤ 2k. (35)

Recall that the Nyquist rate of ksx > 4k (equivalently,
1x < λ/4) ensures alias-free images within the visible
region. However, our goal is to work with a sampling rate
ksx ≪ 4k .

C. EFFECT OF ALIASING ON THE IMAGE DOMAIN

Fourier transform properties are powerful tools for analyz-
ing linear time invariant (LTI) systems. On the other hand,
the relation between the wavenumber spectrum of the sub-
sampled backscattered data and the reconstructed image is
inherently nonlinear. To our knowledge, there is no prior work
on establishing this nonlinear relation. Here, starting with the
analysis in Section IV-B, we derive the analytical response
of the reconstructed image to the aliasing components in the
subsampled data spectrum.

Recall that the aliasing spectral component with index m
and n (for {m, n} 6= {0, 0}) of the ℓth subchannel is defined
in (32) as

Sℓmn(kx , ky) = ej(φℓ−(mksxxℓ+nksyyℓ))

1x1y
︸ ︷︷ ︸

Cℓmn

S(k̂x , k̂y), (36)

where

k̂x = kx − mksx , k̂y = ky − nksy . (37)

Using the relation between the backscattered data and the
image spectra in (24), (36) becomes

Sℓmn(kx , ky) = CℓmnP(k̂x , k̂y)
ejk̂zz0

k̂z
, (38)

where

k̂z =
√

4k2 − (k̂x)2 − (k̂y)2. (39)

Substituting (38) into (24) yields the wavenumber spec-
trum of the imaging artifact (i.e., ghost image) created by the
aliasing component as

Pℓmn(kx , ky) = Sℓmn(kx , ky)kze
−jkzz0

= CℓmnP(k̂x , k̂y)
kz

k̂z
ej(k̂z−kz)z0 . (40)

From (20) and (39), let us define the amplitude and the
phase terms in (40) as

ϑ(kx , ky) = kz

k̂z
=

√

4k2 − k2x − k2y
√

4k2 − k̂2x − k̂2y

, (41)

and

ϕ(kx , ky) = (k̂z − kz)z0

=
(√

4k2 − k̂2x − k̂2y −
√

4k2−k2x −k2y
)

z0. (42)

Applying first-order multivariate Taylor series expansion
to (41) and (42) with respect to the parameters (kx , ky) around
(mksx , nk

s
y), as described in the Appendix C, the linear approx-

imations of the amplitude and the phase terms become

ϑ(kx , ky) ≈ 2k

Gmn
︸︷︷︸

ϑmn

− mksx

2kGmn
︸ ︷︷ ︸

x̂mn

kx −
nksy

2kGmn
︸ ︷︷ ︸

ŷmn

ky,
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ϕ(kx , ky) ≈ 2kz0

(

1− 2k

Gmn

)

︸ ︷︷ ︸

ϕmn

+ mksxz0

Gmn
︸ ︷︷ ︸

xmn

kx +
nksyz0

Gmn
︸ ︷︷ ︸

ymn

ky, (43)

where

Gmn =
√

4k2 − (mksx)
2 − (nksy)

2. (44)

Substituting (43) into (40), the wavenumber spectrum of
the ghost image is approximated as

Pℓmn(kx , ky) ≈ CℓmnP(k̂x , k̂y)e
jϕmn × (ϑmn − x̂mnkx − ŷmnky)

× ej(kxxmn+kyymn). (45)

Using (37) and (45), let us define

Qℓmn(kx , ky) = (αℓmn − βℓmnkx − γ ℓmnky)

×P(kx − mksx , ky − nksy), (46)

where

αℓmn = ϑmnC
ℓ
mne

jϕmn

βℓmn = x̂mnC
ℓ
mne

jϕmn

γ ℓmn = ŷmnC
ℓ
mne

jϕmn . (47)

Substituting (46) into (45) yields

Pℓmn(kx , ky) ≈ Qℓmn(kx , ky)e
j(kxxmn+kyymn). (48)

Using the Fourier transform definitions in the Appendix A,
the ghost image created by the aliasing component is calcu-
lated as

pℓmn(x, y) ≈ qℓmn(x + xmn, y+ ymn), (49)

where (from (46))

qℓmn(x, y) = IFT2D
[

Qℓmn(kx , ky)
]

= αℓmne
j(mksxx+nksyy)p(x, y)

+ jβℓmne
jnksyy

∂(ejmk
s
xxp(x, y))

∂x

+ jγ ℓmne
jmksxx

∂(ejnk
s
yyp(x, y))

∂y
. (50)

Hence, from (49) and (50), the ghost image created by an
aliasing component in the subsampled wavenumber spectrum
is the nonlinear operated alias-free image shifted by

xmn = mksxz0

Gmn
, ymn =

nksyz0

Gmn
. (51)

D. IMAGE RECONSTRUCTION WITH SPARSELY

SAMPLED MIMO-SAR DATA

As given in Section IV-B, if the spatial sampling intervals1x

and1y do not meet the Nyquist criterion, aliasing that creates
artifacts (i.e., ghosts) in the reconstructed image will occur
as detailed in Section IV-C. Here, we propose a method for
a sparse MIMO-SAR configuration to perfectly reconstruct
alias-free images based on a multichannel combining tech-
nique using properly chosen complex gains. In other words,
we show that the aliasing components in (36), which creates

ghost images in (49), can be canceled by properly choosing a
complex gain vector

w =
[

w0 w1 . . . wL−1
]T
, (52)

for L virtual channels, where (.)T denotes the transpose
operation. The flow diagram of the MIMO-SAR sampling
(as given in (31)) and the proposed image reconstruction
scheme is depicted in Fig. 6.

FIGURE 6. Reconstruction of image using sparsely sampled backscattered
data by L virtual channels.

Recall that the image reconstruction filter h(x, y) in Fig. 6
is given in (24) as

h(x, y) = IFT2D
[

kze
−jkzz0], (53)

where kz is given in (20) and IFT2D denotes 2-D inverse
Fourier transform operation over the xy domain. Combination
of L subchannel spectrum in (32) using the complex gain
vector in (52) is expressed as

S̃(kx , ky) =
L−1
∑

ℓ=0

wℓSℓ(kx , ky) = 1

1x1y

L−1
∑

ℓ=0

wℓe
jφℓ

×
∑

<m>

∑

<n>

S(kx−mksx , ky−nksy)e−j(mk
s
xxℓ+nksyyℓ).

(54)

In Section IV-B, we analyze the number of shifted copies
in the wavenumber spectrum that must be canceled to recon-
struct alias-free images of the targets with unknown sizes
and proximity. Therefore, (35) yields the total number copies
within the entire visible region. However, for a finite SAR
aperture configuration with a prior knowledge of the target
(see Section IV-A), the total number of aliasing terms in (54)
that has to be canceled is limited by the indexes m and n as

|mksx | ≤ 2kbwx , |nksy | ≤ 2kbwy , (55)

where kbwx and kbwy are the highest wavenumber components
in x and y axes, respectively, as detailed in Section IV-A.
Using the following vector notation

αm,n =
[

mksx nksy
]

, βℓ = [xℓ yℓ]T , (56)
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we can rearrange (54) as

S̃(kx , ky) = 1

1x1y

[( L−1
∑

ℓ=0

wℓe
jφℓ

)

S(kx , ky)

+
( L−1

∑

ℓ=0

wℓe
j(φℓ−α0,1βℓ)

)

S(kx , ky − ksy)

+
( L−1

∑

ℓ=0

wℓe
j(φℓ−α0,2βℓ)

)

S(kx , ky − 2ksy) + . . .

+
( L−1

∑

ℓ=0

wℓe
j(φℓ−α1,0βℓ)

)

S(kx − ksx , ky) + . . .

]

.

(57)

Therefore, if the equation below has a solution forw, all the
aliasing terms are canceled to obtain alias-free backscattered
data wavenumber spectrum S(kx , ky) in (57)












ejφ0 ejφ1 . . . ejφL−1

ej(φ0−α0,1β0) ej(φ1−α0,1β1) . . . ej(φL−1−α0,1βL−1)

ej(φ0−α0,2β0) ej(φ1−α0,2β1) . . . ej(φL−1−α0,2βL−1)

...
...

...
...

ej(φ0−α1,0β0) ej(φ1−α1,0β1) . . . ej(φL−1−α1,0βL−1)

...
...

...
...













︸ ︷︷ ︸

A

×








w0
w1
...

wL−1








︸ ︷︷ ︸

w

= 1x1y








1
0
...

0








︸ ︷︷ ︸

e

. (58)

Hence, expanding the reconstruction formula in (25),
the solution for the gain vector in (58)

w = (AH
A)−1

A
H
e, (59)

finally yields the 2-D monochromatic image reconstruction
for MIMO-SAR as

p(x, y) = IFT2D
[

w
T
S(kx , ky)kze

−jkzz0], (60)

where

S(kx , ky) =
[

S0(kx , ky) . . . SL−1(kx , ky)
]T
, (61)

is constructed by the wavenumber spectrum of the backscat-
tered data sampled by L virtual channels. In (59),
(.)−1 denotes the inverse and (.)H denotes the conjugate
transpose of a matrix. Using the same approach in (25), (60)
is then evaluated at multiple wavenumbers and coherently
summed within the image plane. As detailed in Section IV-B,
each subchannel data sℓ(x, y) is uniformly sampled over the
xy domain. Therefore, the 2-D fast Fourier transform (FFT)
may be used to obtain a sampled version of Sℓ(kx , ky). Assum-
ing a discretization of Nx × Ny points in the continuous xy
plane with Nk sample points in the wavenumber domain,

the computational complexity of the image reconstruction,
which is dominated by the 2-D FFT operations in (61), can
be approximated as LNxNyNk (log(Nx) + log(Ny)).
It is important to note that, using the complex gains in (59),

L−1 aliasing terms can be canceled using L subchannels. The
proposed imaging method makes no assumption on the posi-
tions of the transmitters and receivers as long as the antenna
layout and the sampling scenario ensure a well-conditionedA
matrix in (58). Therefore, the proposed algorithm can be used
for MIMO-SAR configurations using arbitrarily distributed
transmit and receive antennas.

V. IMAGE RESOLUTION

The theoretical limit of the spatial resolution achieved in the
reconstructed image is determined bywidth of the coverage in
the wavenumber spectrum domain. In one dimension, a spec-
tral coverage of width 1k results in a spatial pulsewidth of
2π/1k [4]. The spatial frequency width of the backscattered
data in kz−axis is 2(kT − k0), where k0 and kT are the
wavenumbers correspond to the lowest and highest operating
frequencies of the system (f0 and fT , respectively, in (14)).
Therefore, the depth (z−axis) resolution is determined by the
bandwidth as

δz ≈ 2π

2(kT − k0)
= c

2(fT − f0)
= c

2B
. (62)

Similarly, from Section IV-A, the total bandwidth in the x
and y axes are

1kx ≈ 2kbwx ≈ 4π (DSx + DTx )

λ

√

(DSx + DTx )
2/4 + z20

,

1ky ≈ 2kbwy ≈
4π (DSy + DTy )

λ

√

(DSy + DTy )
2/4 + z20

, (63)

where the physical lengths of the SAR aperture and the target
distance are depicted in Fig. 1. Hence, the horizontal (x−axis)
and vertical (y−axis) cross-range resolutions become

δx ≈ 2π

1kx
≈
λ

√

(DSx + DTx )
2/4 + z20

2(DSx + DTx )
,

δy ≈ 2π

1ky
≈
λ

√

(DSy + DTy )
2/4 + z20

2(DSy + DTy )
. (64)

For an aperture-limited system with range z0 much greater
than the aperture size DSx and D

S
y , the cross-range resolutions

can be approximated for the center of the imaging scene (i.e.
DTx = DTy = 0) as [4], [5]

δx ≈ λz0

2DSx
, δy ≈ λz0

2DSy
. (65)

VI. IMAGING HARDWARE PROTOTYPE

A. SYSTEM OVERVIEW

A mmWave imaging prototype system has been built using
commercial off-the-shelf (COTS) components to validate
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the proposed image reconstruction techniques and theoreti-
cal relationships established between image and wavenum-
ber domains. The prototype system consists of a mmWave
radar, a two-axis mechanical scanner, a motor controller,
and a host personal computer (PC). The mmWave radar is
combination of three hardware modules from Texas Instru-
ments: (1) IWR1443-Boost, (2) mmWave-Devpack, and
(3) TSW1400 boards as shown in Fig. 7a.

FIGURE 7. mmWave imager prototype. (a) FMCW radar hardware stack.
(b) Two-axis motorized scanner.

IWR1443-Boost is an evaluation module based on the
single-chip IWR1443 mmWave sensor. It features FMCW
transceiver with a 4 GHz frequency bandwidth from 77 GHz
to 81 GHz. It integrates four receive and three transmit
antennas making an ideal candidate for sparse MIMO array
configurations. Fig 8a shows the physical antenna layout
of IWR1443-Boost and its corresponding virtual array con-
figuration. In the default layout, the receive antennas are
uniformly spaced along y−axis by λ/2 (tuned to the center
frequency of 79 GHz). Transmit antennas are also uniformly
spaced in y−axis by λwith the exception of the second trans-
mitter, which has an offset of λ/2 along x−axis. In the imag-
ing experiments, we select different antenna pairs (i.e., virtual
channels) to emulate various sparse MIMO operations.
TSW1400 and mmWave-Devpack are add-on boards used

with IWR1443-Boost to enable high speed raw data cap-
ture for post processing. Captured raw data are imported
to the host PC with a serial port for the image reconstruc-
tion. All algorithms and software controls are implemented
in MATLAB.
The other component of the prototype system is the

two-axis mechanical scanner built using linear rails and
stepper motors, as shown in Fig. 7b. The scanner provides
movements in horizontal and vertical directions. The radar
hardware stack is installed on the horizontal track bywhich an
equivalent 2-D scanning is achieved. The maximum scanning
ranges in both horizontal and vertical directions are 400 mm.
The motor controller, which is configured to operate linear
rails at a maximum speed of 20 mm/s, is connected to the host

PC with a serial port. The positional accuracy of the scanning
is about 0.05 mm. While the current scanner is slow, our goal
is to demonstrate the proof of concept. We are working on
a much faster mechanical scanner, and we will report our
results in a future article.

The diagram shown in Fig. 8b is a simplified view of the
main elements and the high-level system architecture of the
imaging system. Both radar and rail system are controlled via
a MATLAB graphical user interface (GUI) shown in Fig. 9.

B. MIMO ARRAY CALIBRATION

In a practical system, measurement errors in the MIMO array
may arise due to sensor gain and phase mismatches. Espe-
cially, phase mismatches can affect the image reconstruction
adversely. In fact, the algorithms proposed in this paper are
derived under the assumption that the response of the imaging
system is known.
In this paper, we utilize a well-known calibration method

for multistatic radar systems based on the ideal backscattered
signal model from a reference point target (a corner reflector)
at a known position. Let us define the total round-trip delay τ̃ℓ
of the FMCW signal reflected off the point target between the
uth transmit and vth receive antennas, and the corresponding
transceiver gain aℓ. We model the delays between antenna
pairs as the superposition of a common instrument delay and
residual delays between antenna elements: τ̃ℓ = τi + τℓ.
Ignoring the additive noise, the uncalibrated measured beat
signal (see Section II-D) can be defined as

s̃ℓ(t) = aℓe
j2π (f0+Kt)(τi+τℓ) = aℓe

jψi
︸ ︷︷ ︸

ηℓ

ej2π fit

︸ ︷︷ ︸

wℓ(t)

sℓ(t), (66)

where sℓ(t) is the reference beat signal model, fi = Kτi is the
beat frequency that cause a range bias in the system, and ηℓ
is the residual complex gain factor. Given the measurements
s̃ℓ(t), the calibration error signal can be computed by a simple
demodulation process

wℓ(t) = s̃ℓ(t)s
∗
ℓ(t), (67)

where (.)∗ denotes the complex-conjugate operation. Esti-
mating fi and ηℓ from (67) reduces to the parameter estima-
tion problem of a single-frequency complex tone from noisy
observations [37], [38]

f̂i = argmax
f

∑

<ℓ>

|Wℓ(f )|2 , (68)

whereWℓ(f ) is defined as

Wℓ(f ) =
∫ T

0
wℓ(t)e

−j2π ft dt. (69)

Finally, the complex gain factors ηℓ for each transceiver
pair can be computed by plugging the estimate f̂i in (66).
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FIGURE 8. (a) MIMO array topology of IWR1443-Boost with three transmit and four receive antenna elements, and
corresponding virtual array. (b) The hardware architecture of mmWave imager prototype.

FIGURE 9. MATLAB GUI for MIMO-SAR imaging. (a) Platform and radar configuration menu tab. (b) SAR
scenario generation menu tab.

FIGURE 10. Measured PSF along x−axis provides the lateral image
resolution that can be achieved by the imaging prototype system at a
distance of 808 mm.

VII. MEASUREMENTS AND IMAGING RESULTS

The reconstruction quality of the imaging systems is
described by the point spread function (PSF). We mea-
sure the PSF of our system using a corner reflector. Then,
simulations are performed to examine the potential of
the proposed algorithms. Finally, the experimental image
results of uncovered and concealed targets are provided.

FIGURE 11. Measured PSF along y−axis demonstrates the impact of
subsampling in spatial domain. Two visible artifacts are due to aliasing
within the visible region.

In all experiments, FMCW waveforms are configured to
vary from f0 = 77.38 GHz to fT = 80.93 GHz, where
the signal duration T ≈ 56.02 µs and the frequency slope
K ≈ 63.37 MHz/µs. The wavelength λ is computed accord-
ing to the center frequency of 79 GHz unless otherwise
noted. The target distance z0 is estimated from the index
of the maximum of the combined range spectrum computed
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FIGURE 12. Simulated image reconstruction scenario with sparsely sampled aperture data: (a) simulated sparse MIMO array with three transmit and
three receive antenna elements, and corresponding virtual array, (b) reconstructed image from single channel (1st), and (c) reconstructed image from
nine channels combined using properly chosen w gains.

FIGURE 13. Various experimental images of the small test target: (a) optical, (b) reconstructed from single
channel (1st), (c) reconstructed from three channels (1st, 4th, and 12th) combined without any correction
factor, and (d) reconstructed from three channels (1st, 4th, and 12th) combined using properly chosen w
gains.

from the beat signals. The image slices obtained at multiple
frequencies from f0 = 77.38 GHz to fT = 80.93 GHz are
coherently combined to form the final image. Before the
image reconstruction process, each subchannel is calibrated

as detailed in Section VI-B. All the images presented here are
reconstructed on a host PC with Intel Core i7-7700 3.6 GHz
central processing unit (CPU) and 64 gigabytes of random
access memory (RAM).
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FIGURE 14. Various experimental images of the big test target: (a) optical, (b) reconstructed from single
channel (2nd), (c) reconstructed from three channels (1st, 7th, and 11th) combined using properly chosen
w gains, and (d) reconstructed from five channels (1st, 2nd, 6th, 7th, and 11th) combined using properly
chosen w gains.

A. MEASURED POINT SPREAD FUNCTION

To demonstrate the experimental image resolution of our
hardware prototype, we measure the PSF along x−axis
between a transmit and receive antenna pair of MIMO radar.
The measured PSF is shown in Fig. 10. In this measurement,
a corner reflector is placed at a distance of z0 = 808 mm
in front of the scanner. The scanner moves the radar along
x−axis. The speed of the scan and radar chirp intervals are
configured such that a sampling distance of 1x ≈ 0.96 mm
(≈ λ/4) is realized. The SAR aperture length is DSx =
400 mm along the scanning direction. As given in (64),
the theoretical image resolution under this configuration is
about δx ≈ 4 mm. As shown in Fig. 10, the measured PSF
demonstrates the same theoretical image resolution.
An important contribution of this investigation is to estab-

lish the analytical relationship between imaging ambiguities
and the subsampled SAR aperture parameters. The measured
response of a single transceiver pair along y−axis generated
with a sampling distance of 1y = 7.59 mm (well over
the required Nyquist interval) shows the presence of two
imaging artifacts (i.e., ghosts), as shown in Fig. 11. In this
experiment, the same corner reflector is placed at a distance of

z0 = 808 mm in front of the imager. The radar is configured
with the same chirp parameters. We verify the positions of
two artifacts along the y−axis due to subsampling using the
expression in (51) as

ymn|(m=0,n=±1) = ±
ksyz0

√

4k2 − (ksy)
2

≈ 213.3 mm,

at the center frequency of f0 = 77.38 GHz, where the ghost
image positions marked in Fig. 11 confirm the estimated ones
above.

B. SIMULATED IMAGING RESULTS

To evaluate the performance of the proposed algorithm for
recovering ghost-free imageswhen both axes are subsampled,
a simulation scenario is performed. A 50 mm by 75 mm
small test target, which has different types of small cutouts,
is simulated and placed at a distance of z0 = 282 mm from
the scanner. The size of the SAR aperture is DSx ≈ 200 mm
byDSy ≈ 200 mm. The spatial sampling intervals are selected
as 1x = 1y = 8 mm. An arbitrary sparse MIMO array with
three transmit and three receive antennas shown in Fig.12a is
simulated.
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FIGURE 15. Various experimental images of the small test target concealed in a cardboard box: (a) optical,
(b) reconstructed from single channel (1st), (c) reconstructed from three channels (2nd, 4th, and 10th)
combined using properly chosen w gains, and (d) reconstructed from five channels (1st, 3rd, 9th, 10th, and
12th) combined using properly chosen w gains.

SAR aperture is subsampled along both x and y axes.
The reconstructed image shown in Fig. 12b using a single
virtual channel shows eight ghosts targets within the visible
region of 200 mm × 200 mm as expected. The ghosts are
located at a distance of (0,±68.8 mm), (±68.8 mm, 0), and
(±71.0 mm,±71.0 mm) from the correct target as predicted
in (51). Fig. 12c shows the alias-free image obtained using
nine sparse channels with properly chosen w gains such that
the all eight ghosts are canceled. On the other hand, an ideal
imaging system, which needs λ/4 ≈ 0.95 mm spacing
between the measurement points, would employ a uniform
2-D array with about 80 virtual elements.

C. EXPERIMENTAL IMAGING RESULTS

The imaging process and the proposed image reconstruction
algorithmswith subsampled SAR aperture are experimentally
verified with screening various targets. The antenna layout of
IWR1443-Boost in Fig. 8a enables to emulate sparse MIMO
configurations along y−axis. Therefore, in all experiments,
we configure the MIMO-SAR setup in Fig. 1 to create
various sparsely sampled aperture scenarios along y−axis.
As discussed in Section II-B, TDM technique is employed

across the transmitters of IWR1443-Boost module. Table 1
summarizes the common system parameters used in each
experiment.

TABLE 1. Summary of the system parameters for each experiment.

A small test target with a size of 50 mm by 75 mm is cut
out from a copper clad laminate to create a similar imaging
setup to simulations. The test target has similar small cutouts
as shown in Fig. 13a. In this scenario, the target is placed
at a distance of z0 = 280 mm from the scanner. The SAR
aperture is synthesized to cover an area of DSx ≈ 200 mm
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by DSy ≈ 200 mm. This configuration provides the lateral
resolution of δx = δy ≈ 3 mm. The spatial sampling intervals
are selected as1x ≈ 0.98 mm and1y = 8 mm along x and y
axes, respectively. Themeasurement time required to scan the
entire aperture, which is limited by the relatively slow linear
rails as discussed in Section VI-A, is about 4 min.

The sampling interval along x−axis satisfies the Nyquist
criterion. On the other hand, SAR aperture along y−axis
is subsampled. The reconstructed image shown in Fig. 13b
using a single virtual channel shows two obvious ghosts (false
copies) along y−axis within the visible region of 200 mm ×
200 mm. The correct target suffered from aliasing is at the
center of the image. The ghosts are located at a distance of
±68.4 mm (for m = 0 and n = ±1) from the correct target
as predicted by theoretical results. Fig. 13c shows the image
reconstructed by coherently combining the signals from the
1st, 4th, and 12th virtual channels without any correction
factor. The ghosts due to aliasing are partially removed but
not completely. In Fig. 13d, the reconstruction method pre-
sented in Section IV-D is applied and the spectrum from the
same subchannels are coherently combined with the properly
computed weights w from (59) to eliminate all ghosts. This
demonstrates that the image can be reconstructed without
aliasing in a subsampled scenario (1y = 8 mm > 2λ) using a
sparse virtual array. The reconstruction of the image slices at
each frequency takes less than 100 ms. Hence, the processing
time of the final image formation using 64 uniformly spaced
frequencies is about 6 s. The latency introduced byMATLAB
would be considered in real-time practical implementations.
In the second imaging experiment, a bigger test target with

dimensions 100 mm by 150 mm (shown in Fig. 14a) is cut to
illustrate the distortion due to aliasing more effectively. The
target distance is z0 = 275 mm and the SAR aperture size is
about 400 mm×400 mm.Under this configuration, the lateral
resolution is approximately 1.6 mm. The spatial sampling
intervals are selected as 1x ≈ 0.98 mm and 1y = 7.59 mm.
The sampling interval along x−axis satisfies the Nyquist

criterion. However, the aperture is subsampled along y−axis.
Fig. 14b shows the reconstructed image from a single chan-
nel. The image has four ghosts within a visible region of
400 mm × 400 mm. The ghosts are located at a distance
of ±71.0 mm and ±158.8 mm (for m = 0, n = ±1, and
n = ±2) from the correct target, as predicted by theoretical
expressions. Fig. 14c shows the image obtained by combining
signals from the 1st, 7th, and 11th channels with properly
chosen w gains such that the first two ghosts are canceled.
Fig. 14d shows the ghost-free image obtained using the 1st,
2nd, 6th, 7th, and 11th channels.
The third imaging experiment demonstrates the capability

of the prototyped system for screening of concealed items.
The smaller test target in Fig. 13a is concealed in a cardboard
box as shown in Fig. 15a. The box is placed at a distance of
z0 = 288 mm from the scanner. The SAR aperture size and
the spatial sampling intervals are same as the first imaging
experiment. Therefore, the imaging scenario is subsampled
along y−axis. The reconstructed image of a single channel

shown in Fig. 15b shows four ghost targets within a visible
region of 400 mm× 400 mm. The ghosts are located at a dis-
tance of ±70.3 mm and ±155.2 mm from the correct target,
where the experimental locations satisfy the exact theoretical
result. In Fig. 15c, the images from the 2nd, 4th, and 10th
channels are coherently combined with properly chosen w
gains to cancel the first two ghost targets. Fig. 15d shows the
image obtained by combining the spectrum of the 1st, 3rd,
9th, 10th, and 12th channels with properly chosen w gains
such that all four ghosts are canceled.
Finally, two additional experiments are performed to

demonstrate the capability of the prototyped system in
real-world security screening scenarios. In both experiments,
the SAR aperture size is about 400 mm × 400 mm. The
spatial sampling intervals are selected as1x ≈ 0.98 mm and
1y = 7.59 mm. The eight virtual channels (1st to 4th and
9th to 12th) are used with their properly chosen w complex
gains. For both scenarios, the lateral resolution achieved is
about 1.6 mm.

FIGURE 16. Imaging scenario with multiple objects concealed in a
cardboard box: (a) optical image, and (b) reconstructed image from
eight channels combined using properly chosen w gains.

The imaging scenario in Fig. 16a shows multiple objects
(two different wire cutters, a pair of scissors, a wire stripper,
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and a pair of tweezers) concealed in a cardboard box. Fig. 16b
shows the reconstructed image focused at z0 = 270 mm.
All the objects are clearly visible without spatial aliasing.

FIGURE 17. Imaging scenario with small items concealed in a leather
bag: (a) optical image, and (b) reconstructed image from eight channels
combined using properly chosen w gains.

Fig. 17a shows the final imaging scenario for a secu-
rity screening application. Smaller objects (a pair of small
scissors, two coins, a knife, a nail clipper, a pair of small
tweezers, a key, and a leather wallet) are concealed in a
leather bag. Fig. 17b shows the reconstructed image focused
at z0 = 254 mm. All the objects are clearly identified, even
the non-metallic wallet and very small objects such as key
and nail cutter.

VIII. CONCLUSION

In this paper, we presented a near-fieldmmWave imaging sys-
tem utilizing 2-DMIMO array in SAR configuration.We pro-
posed and experimentally verified a computationally efficient
novel image reconstruction algorithm based on sparsely sam-
pled aperture data. We analyzed the effect of sparse sam-
pling both on wavenumber spectrum and spatial domains.
We involved the calibration method for MIMO array, as well

as the complete signal processing chain necessary for the
image formation. We investigated the design considerations
including the system’s bandwidth, spatial sampling criteria,
and image resolution. We built a mmWave imaging prototype
using commercially available MIMO sensors to validate the
proposed image reconstruction method with measurements.
We characterized the system performance by the evaluation
of PSF, simulations, and real images. The results show that
the prototyped system is able to achieve high image quality
with a significantly reduced number of antenna elements, thus
making the system more affordable and less complex.

APPENDIX A

FOURIER TRANSFORM DEFINITIONS

The 2-D spatial Fourier transform and its inverse are
defined by

S(kx , ky) =
∫∫

s(x, y)e−j(kxx+kyy) dx dy

= FT2D
[

s(x, y)
]

, (70)

s(x, y) = 1

(2π )2

∫∫

S(kx , ky)e
j(kxx+kyy) dkx dky

= IFT2D
[

S(kx , ky)
]

. (71)

If the function is shifted in the spatial domain, there is a
corresponding phase shift in the Fourier domain:

FT2D
[

s(x − x0, y− y0)
]

= e−j(kxx0+kyy0)S(kx , ky). (72)

If the function is shifted in the Fourier domain, there is a
corresponding phase shift in the spatial domain:

IFT2D
[

S(kx − kx0 , ky − k
y
0)

]

= ej(k
x
0 x+k

y
0y)s(x, y). (73)

The 2-D spatial Fourier transform of a 2-D spatial impulse
train is given by

FT2D

[
∑

p∈Z

∑

q∈Z
δ(x − p1x , y− q1y)

]

= (2π )2

1x1y

∑

m∈Z

∑

n∈Z
δ(kx − mksx , ky − nksy), (74)

where ksx and k
s
y are given in (34).

Multiplication in the spatial domain corresponds to a con-
volution in the Fourier domain:

FT2D
[

s1(x, y)s2(x, y)
]

= 1

(2π)2
S1(kx , ky)⊛ S2(kx , ky).

(75)

Differentiation in the spatial domain yields

FT2D

[
∂s(x, y)

∂x

]

= jkxS(kx , ky),

FT2D

[
∂s(x, y)

∂y

]

= jkyS(kx , ky). (76)
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APPENDIX B

THE METHOD OF STATIONARY PHASE

The method of stationary phase (MSP) provides an analytical
solution for integrands, which have a wide phase variation
and an envelope of g(x, y), as [39], [40]
∫∫

g(x, y)ejφ(x,y) dx dy ≈ j2π
√

φxxφyy − φ2xy

× g(x0, y0)e
jφ(x0,y0), (77)

where φ(x, y) is the phase of the exponential that is assumed
to be twice-continuously differentiable. A small neighbor-
hood near the points, where the two first derivatives of φ(x, y)
vanish, gives the major contribution to the integral in (77).
These points are known as points of stationary phase, where
the phase φ(x, y) takes an extreme value as

∂φ(x, y)

∂x

∣
∣
∣
∣
(x=x0,y=y0)

= 0,

∂φ(x, y)

∂y

∣
∣
∣
∣
(x=x0,y=y0)

= 0. (78)

In (77), φxx , φyy, and φxy denote the second partial deriva-
tives ofφ(x, y) evaluated at the stationary points. It is assumed
that φxxφyy − φ2xy 6= 0. The derivation of (77) is already
given in previous studies for single variable [41] or without
an envelope g(x, y) factor [21]. Here, the exact analytical
solution is given to evaluate the 2-D Fourier transform of
spherical wave formula in (19) asymptotically by using MSP.

Substituting (8) into (19), the spherical wave formula
becomes

ej2kR

R
= e

j2k
√

(x−x ′)2+(y−y′)2+z20
√

(x − x ′)2 + (y− y′)2 + z20

. (79)

Using the Fourier transform definitions in Appendix A,
the 2-D Fourier transform of (79) is evaluated as

FT2D

[
ej2kR

R

]

= e−j(kxx
′+kyy′) ×

∫∫
e
j2k

√

x2+y2+z20
√

x2 + y2 + z20

× e−j(kxx+kyy) dx dy. (80)

The double integral above can be solved analytically using
MSP in (77). Let us define the phase and the envelope terms
in (80) as

φ(x, y) = 2k
√

x2 + y2 + z20 − kxx − kyy, (81)

g(x, y) = 1/
√

x2 + y2 + z20. (82)

The first derivatives of (81)

φx(x, y) = ∂φ(x, y)

∂x
= 2kx

√

x2 + y2 + z20

− kx ,

φy(x, y) = ∂φ(x, y)

∂y
= 2ky

√

x2 + y2 + z20

− ky, (83)

give the stationary points in (78) as

x0 = kxz0
√

4k2 − k2x − k2y

,

y0 = kyz0
√

4k2 − k2x − k2y

. (84)

In order to ensure the asymptotic expansion provided by
the MSP valid, the coordinates must be both real such that the
frequency wavenumber must satisfy the following inequality

k2x + k2y ≤ 4k2. (85)

Substituting (84) into (81) and (82), the phase and the
envelope evaluated at the stationary points yield

φ(x0, y0) =
√

4k2 − k2x − k2y z0, (86)

g(x0, y0) =

√

4k2 − k2x − k2y

2kz0
, (87)

respectively. Similarly, the second partial derivatives of the
phase evaluated at the stationary points are calculated as

φxx =

√

4k2 − k2x − k2y (4k
2 − k2x )

4k2z0
,

φyy =

√

4k2 − k2x − k2y (4k
2 − k2y )

4k2z0
,

φxy = −

√

4k2 − k2x − k2y kxky

4k2z0
, (88)

which yields the denominator in (77) as

√

φxxφyy − φ2xy =
(4k2 − k2x − k2y )

2kz0
. (89)

Substituting (86), (87) and (89) into (77), the resulting 2-D
Fourier transform expression in (80) is expressed as

FT2D

[
ej2kR

R

]

= j2π

kz
e−j(kxx

′+kyy′−kzz0), (90)

where the spatial wavenumber kz is given in (20). Finally,
from the 2-D inverse Fourier transform operation in
Appendix A, the spherical wave formula is computed as

ej2kR

R
= j

2π

∫∫
ej(kx (x−x

′)+ky(y−y′)+kzz0)

kz
dkx dky. (91)

APPENDIX C

MULTIVARIATE TAYLOR SERIES EXPANSION

Let f be an infinitely differentiable real or complex-valued
function in some open neighborhood around (x, y) = (x0, y0).
Let x =

[

x y
]

and let x0 =
[

x0 y0
]

. With this vector notation,
the Taylor series of f (x) in a neighborhood of x0 is

f (x) = f (x0) + [(x − x0) · ∇f(x0)]

+ 1

2! [(x − x0) · H(x0) · (x − x0)
T ] + . . . , (92)

VOLUME 7, 2019 31817



M. E. Yanik, M. Torlak: Near-Field MIMO-SAR mmWave Imaging With Sparsely Sampled Aperture Data

where ∇f is the vector of first derivatives

∇f(x, y) =
[

fx(x, y)
fy(x, y)

]

, (93)

and H is the matrix of second derivatives, called the Hessian
matrix

H(x, y) =
[

fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

]

. (94)

A. TAYLOR SERIES EXPANSION OF

THE ROUND-TRIP DISTANCE

Substituting the transmitter and receiver locations in (6)
into (5), the total round-trip distance associated with the uth
transmitter element at (xu, yu, 0) and the vth receiver element
at (xv, yv, 0) to a point scatterer at (x ′, y′, z0) becomes

Rℓ =
√

(x + dxℓ /2 − x ′)2 + (y+ d
y
ℓ/2 − y′)2 + z20

+
√

(x − dxℓ /2 − x ′)2 + (y− d
y
ℓ/2 − y′)2 + z20. (95)

Evaluating the first derivatives of (95) at (dxℓ = 0, dyℓ = 0)
yields

∂Rℓ

∂dxℓ

∣
∣
∣
∣

(dxℓ=0,dyℓ=0)

= ∂Rℓ

∂d
y
ℓ

∣
∣
∣
∣
∣
(dxℓ=0,dyℓ=0)

= 0. (96)

Similarly, the second partial derivatives of (95) evaluated
at (dxℓ = 0, dyℓ = 0) yields

∂2Rℓ

∂(dxℓ )
2

∣
∣
∣
∣

(dxℓ=0,dyℓ=0)

= 1

2R

[

1 − (x − x ′)2

R2

]

,

∂2Rℓ

∂(dyℓ )
2

∣
∣
∣
∣
∣
(dxℓ=0,dyℓ=0)

= 1

2R

[

1 − (y− y′)2

R2

]

,

∂2Rℓ

∂dxℓ ∂d
y
ℓ

∣
∣
∣
∣
∣
(dxℓ=0,dyℓ=0)

= − (x − x ′)(y− y′)

2R3
, (97)

where R is given in (8). Substituting (96) and (97) into (92),
quadratic approximation of Rℓ is given by

Rℓ ≈ 2R+
(dxℓ )

2 + (dyℓ )
2

4R
−

((x − x ′)dxℓ + (y− y′)dyℓ )
2

4R3
.

(98)

B. TAYLOR SERIES EXPANSION OF THE GHOST IMAGE

SPECTRUM COMPONENTS

Evaluating the amplitude factor (41) at (kx = mksx , ky = nksy)
gives

ϑ(mksx , nk
s
y) = Gmn

2k
, (99)

where Gmn is given in (44). Similarly, the first derivatives
of (41) evaluated at (kx = mksx , ky = nksy) yields

∂ϑ(kx , ky)

∂kx

∣
∣
∣
∣
(kx=mksx ,ky=nksy )

= − mksx

2kGmn
,

∂ϑ(kx , ky)

∂ky

∣
∣
∣
∣
(kx=mksx ,ky=nksy )

= −
nksy

2kGmn
. (100)

Substituting (99) and (100) into (92), linear approximation
of ϑ(kx , ky) becomes

ϑ(kx , ky) ≈ Gmn

2k
− mksx

2kGmn
(kx − mksx) −

nksy

2kGmn
(ky − nksy),

(101)

which can be further simplified as

ϑ(kx , ky) ≈ 2k

Gmn
− mksx

2kGmn
kx −

nksy

2kGmn
ky. (102)

Evaluating the phase factor in (42) at (kx = mksx , ky = nksy)
results in

ϕ(mksx , nk
s
y) = (2k − Gmn)z0. (103)

Similarly, the first derivatives of (42) evaluated at (kx =
mksx , ky = nksy) yields

∂ϕ(kx , ky)

∂kx

∣
∣
∣
∣
(kx=mksx ,ky=nksy )

= mksxz0

Gmn
,

∂ϕ(kx , ky)

∂ky

∣
∣
∣
∣
(kx=mksx ,ky=nksy )

=
nksyz0

Gmn
. (104)

Substituting (103) and (104) into (92), linear approxima-
tion of ϕ(kx , ky) becomes

ϕ(kx , ky) ≈ (2k − Gmn)z0 + mksxz0

Gmn
(kx − mksx)

+
nksyz0

Gmn
(ky − nksy), (105)

which can be further simplified as

ϕ(kx , ky) ≈ 2kz0

(

1 − 2k

Gmn

)

+ mksxz0

Gmn
kx +

nksyz0

Gmn
ky. (106)
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