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Abstract: Target localization is a fundamental problem in array signal processing. The problem
of locating near-field targets with multiple-input multiple-output (MIMO) radar has been studied
extensively; however, most of the conventional matrix-based approaches suffer from limitations in
terms of the representation and exploitation of the multidimensional nature of MIMO radar signals.
In this paper, we addressed the problem of localizing multiple targets in the near-field region, aiming
at pursuing a solution applicable for multidimensional signal that is able to achieve sufficient accuracy.
A tensor-based signal model impinging on a monostatic frequency diverse array multiple-input
multiple-output (FDA-MIMO) radar was formulated, and a corresponding tensor decomposition-
based localization algorithm (TenDLA) that showcases the connection between the tensor-based
analysis and the localization problem was developed. Additionally, a correction procedure to mitigate
the estimation deviations on the range and angle was presented, yielding significant improvements
in estimation accuracy. Numerical examples demonstrated the validity and effectiveness of the
proposed approach, and it was shown that this approach is superior to conventional methods due to
its high-resolution estimation accuracy as well as its relatively low computational costs.

Keywords: target localization; parameter estimation; near-field; tensor decomposition; frequency
diverse array

1. Introduction

Near-field target localization has attracted considerable attention in recent research,
as this technique is widely applied from daily applications to scientific research, such as
automotive driving, indoor positioning, speech enhancement, and underground investi-
gations [1–5]. Similar to far-field target localization, near-field target localization is aimed
at finding the direction and distance of identifiable targets. However, it is certain that the
thoroughly studied far-field target localization techniques are not applicable in near-field
situations, as the wavefront is considered as a plane wave under far-field assumptions,
while waves propagated in the near-field scenario have a spherical wavefront; hence, the
phase difference across the array is characterized by a nonlinear function of both the az-
imuth angle and range [6]. This characteristic makes the parameter estimation issue more
challenging for near-field targets than it is for the existing far-field approaches.

There have been numerous related works focused on near-field target localization or
source localization, which can be found in refs. [6–13]. These works realized distinct ap-
proaches and algorithms, including classic spectral searching methods (e.g., two-dimensional
MUSIC (2D-MUSIC) [6] and Capon [7]), subarray-based method (e.g., ESPRIT [8]), the
maximum-likelihood estimator (MLE) [9], second-order statistics (SOS) based methods [10,11],
and higher-order statistics (HOS) based methods [12,13]. Nevertheless, most of these meth-
ods suffer from limitations, such as the heavy computational burden owing to multidi-
mensional searching (e.g., MUSIC or MLE), massive efforts on eigen-decomposition (e.g.,

Remote Sens. 2022, 14, 4392. https://doi.org/10.3390/rs14174392 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14174392
https://doi.org/10.3390/rs14174392
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-3170-4636
https://orcid.org/0000-0002-9513-8648
https://orcid.org/0000-0002-0989-2418
https://orcid.org/0000-0002-8205-8067
https://doi.org/10.3390/rs14174392
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14174392?type=check_update&version=3


Remote Sens. 2022, 14, 4392 2 of 21

subspace-based or HOS), and the restriction on array geometry (e.g., subarray-based). Thus,
this motivates us to seek a novel approach that provides sufficiently good performance that
is only at the cost of relatively low computation consumption.

On the other hand, the implementation of radar systems is another matter to be concerned
about. Although most of the aforementioned methods are implemented via MIMO radar, due
to its advantages of flexible waveform diversity and spatial diversity [14], the coupling of angle
and range in the near-field signal model means that the estimation of the location parameters
cannot be resolved directly. Different from conventional MIMO radar, the combination of FDA
and MIMO radar that is referred to as the FDA-MIMO radar, which can provide a range-angle-
dependent beampattern and maintain the superiorities of MIMO radar [15–17], paves a new
way to resolve the parameter estimation problem. Several related studies have been conducted
during the past decade [18–21], with almost all of these approaches being applicable to the
far-field model. To our knowledge, the application of FDA-MIMO for near-field targets has
been seldom reported in the literature. Furthermore, FDA-MIMO radar signals are essentially
multidimensional, and the matrix-based representation and analysis in conventional methods
cannot fully exploit the inherent algebraic structure of these multidimensional data [22,23],
this problem requires further investigation.

Tensor algebra and tensor analysis allow us to deal with high-dimensional signals
from a new perspective [24–26]. Literature addressing the problem of target localiza-
tion based on tensor analysis can be found in refs. [27–32] for far-field targets and in
refs. [33–37] for near-field targets. The authors of [27] systematically developed tensor-
based signal model formulations and their corresponding solutions under three types
of MIMO radar configurations, establishing a theoretical foundation for follow-up stud-
ies, including trilinear-decomposition based methods [29,30]; the unitary parallel factor
(PARAFAC) method [31]; and the higher-order singular value decomposition (HOSVD)
method [32]. However, directly extending these methods to near-field situations degrades
their performance, and the methods may even fail, owing to the nonlinear property in
the signal model. In contrast, ref. [33] used a quadric wavefront approximation model
for the two-dimensional near-field localization problem and successfully achieved target
parameter estimation based on tensor decomposition. However, there was a non-neglected
systematic error in the estimated range and angle caused by the use of the Fresnel approxi-
mation model [34], leading to a degradation in accuracy. To overcome this drawback, some
effective approaches have been proposed via the correction procedure [35] or via formula-
tion with an exact model [36,37]. The above tensor-based approaches exhibit significant
superiority over conventional methods, which motivates us to establish a solution based
on the power of multilinear algebra rather than on conventional matrix-based methods.

In this paper, we focus on the problem of localizing multiple targets in the near-
field region via a symmetric monostatic FDA-MIMO radar. Motivated by the existing
tensor-based signal model that is applicable to far-field scenarios, we extend it to near-field
situations and propose a corresponding parameter estimation approach by leveraging the
power of tensor analysis and the advantage of FDA-MIMO radar. The main contributions
of this paper are summarized as follows:

1) A tensor-based signal model applicable to near-field multiple target localization is
formulated in this work. Meanwhile, an improved trilinear decomposition algorithm is
introduced to improve the numerical stability when solving tensor decomposition.

2) A novel target localization algorithm named TenDLA is developed based on tensor
analysis. Joint range and angle estimation can be solved using TenDLA with relatively
good accuracy, and the aforementioned systematic errors encountered in some existing
localization methods are mitigated effectively.

3) Compared to conventional methods, the proposed tensor-based method has the merits
of simplicity and efficiency, owing to its advantage of search-free and automatic pairing.

The remainder of this paper is organized as follows. Section 2 introduces the signal
model of monostatic FDA-MIMO radar. In Section 3, the proposed joint estimation of angle
and range as well as the corresponding correction procedure are presented. The perfor-
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mance analysis and numerical simulations are presented in Sections 4 and 5, respectively.
Finally, conclusions are drawn in Section 6.

Notations: (.)*, (.)T, (.)−1 and (.)† denote the complex conjugation, transpose, inverse
and psedo-inverse operations, respectively. || .||F stands for the Frobenius norm and diag(a)
stands for the diagonal matrix of vector a. Scalars, column vectors, matrices, and tensors
are denoted by lowercase letters, boldface lowercase letters, boldface uppercase letters and
calligraphic uppercase letters, respectively, such as x, x, X and X . The symbol of ⊗, �, ⊕
and ◦ represent the Kronecker product, Khatri-Rao product, Hadamard product and the
vector outer product, respectively. Definitions of product rules used in this paper are given
in Table 1.

Table 1. Definitions of product rules.

Notation Definition

C = A⊗ B
The Kronecker product of matrices A ∈ CI×J and B ∈ CK×L yields

C =
[
a1 ⊗ b1, a1 ⊗ b2, · · · , aJ ⊗ bL−1, aJ ⊗ bL

]
∈ C(I×K)×(J×L).

C = A� B
The Khatri-Rao product of matrices A ∈ CI×K and B ∈ CJ×K yields

C ∈ C(I×J)×K with columns ck = ak ⊗ bk.

C = A⊕ B The Hadamard product of matrices A ∈ CI×J and B ∈ CI×J yields
C ∈ CI×J with entries cij = aijbij.

X = a(1) ◦ a(2) ◦ · · · ◦ a(N)
The outer product of vectors a(n) ∈ CIn yields a rank-one tensor

X ∈ CI1×I2×···×IN with entries xI1 I2 ···IN
= a(1)I1

a(2)I2
· · · a(N)

IN
.

2. Signal Model

We consider a symmetric monostatic FDA-MIMO radar system in which the transmit-
ter is an FDA and the receiver is a phased array. As shown in Figure 1, the FDA-MIMO
radar consists of 2M + 1 uniformly spaced transceiver antennas, and the transmit array
and receive array are collocated. There are P uncorrelated targets located away from the
antenna array with deterministic location parameters {θp, ρp}, where θp and ρp are the
angle and range of the pth target relative to the center of the antenna array, respectively.
It is assumed that all of the targets in this paper are located in the near-field region (also
called the Fresnel region [38]) of the antenna array, i.e., the distance between the target
and antenna array is within the range of [0.62(D3/λ)1/2, 2D2/λ], where D is the array’s
aperture given by D = 2Md, and d is the array element spacing.

Figure 1. The structure of the FDA−MIMO radar.
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We assume that the carrier frequency and the transmitted signal of the mth transmit
antenna are given as

fm = f0 + m∆ f , m = −M, . . . , 0, . . . , M (1)

and

sm(t) = rect
(

t
Tp

)
φm(t)ej2π fmt, 0 ≤ t ≤ Tp (2)

where f 0 is the carrier frequency of the reference element in the transmit array, ∆f is the linear
frequency increment between adjacent elements, φm denotes the mth orthogonal baseband
waveform with unit power, and Tp is the radar pulse duration. Without loss of generality,
we assume that the entire radar detection process consists of L consecutive pulses.

Let the array center be the phase reference point, then the signal received by the nth
element can be expressed as

xn(t) =
P

∑
p=1

M

∑
m=−M

rect
{ t− τt,(m,p) − τr,(n,p)

Tp

}
βp(t)φm(t− τt,(m,p) − τr,(n,p))e

j2π fm(t−τt,(m,p)−τr,(n,p)) (3)

where βp(t) is the complex-valued reflection coefficient of the pth target, and t denotes the
sampling instant. τt,(m,p) and τr,(n,p) are the transmit and receive time delays, respectively,
which have a positive correlation with the wave path differences of δt,(m,p) and δr,(n,p),
which are given as.

δt,(m,p) =
√
(ρp sin θp −md)2 + (ρp cos θp)

2 − ρp (4)

and
δr,(n,p) =

√
(ρp sin θp − nd)2 + (ρp cos θp)

2 − ρp (5)

Since the path difference in the signal model is a nonlinear function of range and angle,
one general decoupling strategy with lower computational complexity is to approximate
the path difference with second-order Taylor expansion, e.g., refs. [8,10]. It follows that the
approximation of (4) and (5) are denoted as

δ̃t,(m,p) = mωp + m2 ϕp (6)

and
δ̃r,(m,p) = nωp + n2 ϕp (7)

where ωp = −dsin(θp), ϕp = [d2cos2(θp)/ρp]/2.
After coherent processing and matched filtering as shown in Figure 2, the output of the

receiver array for the lth pulse period can be stacked as a column vector, which is written as

xs(l) =
P

∑
p=1

βp(l)ar(θp, ρp)⊗ at(θp, ρp) (8)

where ar(θp, ρp) and at(θp, ρp) denote the receive and transmit steering vector with respect
to the pth target, respectively, which are given by.

ar(θp, ρp) =


e

j 2π
λ

{
(−M)d sin θp− 1

2
(−M)2(d cos θp)2

ρp

}
...

e
j 2π

λ

{
(M)d sin θp− 1

2
M2(d cos θp)2

ρp

}


(9)
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and

at(θp, ρp) =


e

j 2π
λ

{
(−M)d sin θp− 1

2
(−M)2(d cos θp)2

ρp −(−M)
2ρp∆ f

f0

}
...

e
j 2π

λ

{
Md sin θp− 1

2
M2(d cos θp)2

ρp −M
2ρp∆ f

f0

}


(10)

Figure 2. Block diagram of echo data conversion processing.

Now let us consider the coherent processing interval (CPI) with L consecutive pulses.
For some specific applications, such as low-slow-small (LSS) target detection, the radar
cross section coefficient (RCS) of the target is no longer constant during the CPI, i.e., the
RCS of the target fluctuates from time to time. Under this circumstance, the general scheme
to fit the RCS fluctuations is modeled using the Swerling II target model [39]. It follows
that the final output of the radar system with L consecutive pulses can be written as the
following compact form, which is based on the derivations in refs. [18,27].

Xs = [xs(1), xs(2), · · · , xs(L)] + N = Ar(θ,ρ)�At(θ,ρ)ST + N (11)

Herein, we take into consideration the impact of noise in realistic scenarios, where
N is the additive noise term and is typically modeled as additive white Gaussian noise
(AWGN), Ar(θ,ρ) ∈ C(2M+1)×P and At(θ,ρ) ∈ C(2M+1)×P denote the receive and transmit
steering matrices, respectively, and S ∈ CL×P is the RCS coefficient matrix containing the
complete RCS information during the CPI, which is defined by S= [s(1), · · · , s(L)]T and
s(l) = [β1(l), · · · , βP(l)] .

Based on multilinear algebra, (11) is a typical three-way parallel factor (PARAFAC)
model, i.e., Xs is the matrix unfolding of a three-order tensor X ∈ C(2M+1)×(2M+1)×L,
whereas X ∈ C(2M+1)×(2M+1)×L can be tensorized from its unfolding form. As discussed
in the Introduction section, conventional matrix-based approaches only exploit the pairwise
interactions of this flattened model, in other words, only the “one-dimensional” information
is used, which leads to performance deterioration, especially in lower signal-to-noise-ratio
(SNR) cases; see [23,32]. To overcome this limitation, by leveraging the power of multilinear
algebra, we reformatted the data model to be a tensor-based signal model, making it possible
to exploit the multiple interactions and couplings hidden in the multidimensional nature of
received signals. Detailed analysis and derivations are provided in the following sections.



Remote Sens. 2022, 14, 4392 6 of 21

3. The Proposed Approach

In this section, we present the solution to the joint range and angle estimation problem
via mathematical explanation and derivation. We first explore the issue of achieving reliable
estimation of the whole directional matrices. Then, the joint range and angle estimation is
resolved using a two-step estimation procedure, and the corresponding correction method
to mitigate systematic bias is finally proposed.

3.1. Overview of Methods

The basic flow of the proposed tensor-based near-field target localization approach
is illustrated in Figure 3. Firstly, FDA radar transmits consecutive pulses to scan areas of
interest, and the echoes reflected by multiple targets are then received and sampled by
receive antennas. After multistage signal processing procedures have been carried out,
including synchronization, matched filtering, and rearranging, the outputs obtained in the
receive array are converted into a trilinear data structure. Based on this PARAFACT model,
it is possible to transform the localization issue into an algebraic decomposition problem,
under the commonly used CANDECOMP/PARAFAC (CP) decomposition framework.
Finally, the joint range and angle estimation can be resolved from the obtained estimates of
the factor matrices, via the use of certain conventional parameter estimation algorithms,
e.g., LS approximation, MLE, etc. A detailed description of the algorithm will be presented
at the end of Section 3.

Figure 3. The basic flow of target localization based on tensor decomposition.

3.2. Estimation of the Steering Matrices

In order to accurately estimate the factor matrices from the observed tensor X̃ , solving
the CP decomposition of X̃ is the primary task. The most extensively used approach is the
well-known alternating least squares (ALS) algorithm proposed in ref. [24], in which the
problem can be settled by minimizing the following optimization cost functions:

Ar = argmin
Ar

||
~
X(1) −Ar(S�At)

T ||2F (12)

At = argmin
At

||
~
X(2) −At(S�Ar)

T ||2F (13)

S = argmin
S
|

~
X(3) − S(At �Ar)

T ||2F (14)

where
~
X(1),

~
X(2) and

~
X(3) denote the mode-n (n = 1, 2, 3) matricization of tensor X̃ respectively.

The ALS approach of solving (12)–(14) can be achieved by implementing LS fitting for
each cost function, i.e., fix At and S to solve for Ar, and then repeat the above procedures
given below alternatively until the convergence criterion is satisfied:

Ar =
~
X(1)[(S�At)(STS⊕At

TAt)
†
] (15)
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At =
~
X(2)[(S�Ar)(STS⊕Ar

TAr)
†
] (16)

S =
~
X(3)[(At �Ar)(At

TAt ⊕Ar
TAr)

†
] (17)

ALS is simple and that this is the reason why it is widely applied, but the problem of
slow convergence encountered in some ill-conditioned cases, which is referred to as the
swamp [40], leads to degradation when solving for the factor matrices. Swamps may be
caused by various reasons, e.g., the initialization of the factor matrices or collinearity in
the factor matrices. To overcome this drawback, we utilized an improved algorithm called
regularized ALS (RALS) instead of using ALS, which is proven to be effective in solving
the CP decomposition, according to the theoretical analysis and numerical simulations in
ref. [41]. Thus, by adding regularization term to the LS estimators, the expressions (15)–(17)
can be rewritten as

Ar
(k+1)= [

~
X(1)(S

(k) �At
(k))+τ(k)Ar

(k)]×
[
(S(k))

T
S(k) ⊕ (At

(k))
T

At
(k) + τ(k)I]

−1
(18)

At
(k+1)= [

~
X(2)(S

(k) �Ar
(k+1))+τ(k)At

(k)]× [(S(k))
T

S(k) ⊕ (Ar
(k+1))

T
Ar

(k+1) + τ(k)I]
−1

(19)

S(k+1)= [
~
X(3)(At

(k+1) �Ar
(k+1))+τ(k)S(k)]× [(At

(k+1))
T

At
(k+1) ⊕ (Ar

(k+1))
T

Ar
(k+1) + τ(k)I]

−1
(20)

where τ(k) is the regularization parameter and is updated after every iteration of the loop by
the equation of τ(k+1) = δ·τ(k). Herein parameter δ is the scaling factor, which is a constant
and is greater than zero in general. I is the identity matrix.

The operation of adding regularization terms makes the update of the factor matrix
after every iteration is weakly correlated with previous results, resulting in the outcomes
of every iteration being smoother than those of the ALS algorithm [42]. Furthermore, the
regularized cost functions are component-wise strictly quasiconvex, and this contributes to
the guarantee of convergence [41]. Therefore, the introduced RALS algorithm enhances the
numerical stability of solving the CP decomposition, which is characterized as removing (if
not, shortening) the swamp problem to some degree; thereby it is possible to improve the
level of reliability when solving target parameters.

3.3. Joint Range and Angle Estimation for Multiple Targets

In the previous works of [29,30], the estimation of direction-of-angle (DoA) can be
resolved by LS estimation directly after obtaining the estimates of Âr and Ât. However,
since the path difference in near-field situations is characterized by a combined function of
angle and range, the existing far-field model based methods are no longer valid. Moreover,
owing to the property of the FDA, the signal model is quite different from its counter-
part in conventional MIMO radar, which contains an extra range-frequency-dependent
term. Therefore, it is necessary to develop an improved solution for joint range and angle
estimation that is applicable to the near-field model impinging on FDA-MIMO radar.

3.3.1. Data Pre-processing Procedure

One solution for dealing with the problem of decoupling the angle and range from the
combined signal model is to exploit the cross-correlation across the symmetrical array [43].
Before that, a normalization operation is first required. Then, similar to [43], we can separate
the first-order phase terms (i.e., angle-dependent only) from Âr by

Â(odd)
r = JMÂr ⊕ Âr

* (21)

where JM ∈ C(2M+1)(2M+1) is the unitary anti-diagonal matrix. Equivalently, the second-
order phase terms (i.e., the angle-range-combined terms) can be extracted as follows:

Â(even)
r = JMÂr ⊕ Âr (22)
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For the transmit steering matrix Ât, we can perform the same transforms to obtain

Â(odd)
t and Â(even)

t as well. It is worth noting that, the separated first-order phase term

Â(odd)
t regarding the transmit steering matrix contains a set of extra range-frequency-

dependent components, which are distinct from their counterparts in the receive steering
matrix. Relying on this, it is possible to solve the ρp if these components are extracted from
the phase factor of Ât. We will develop the procedure later on.

3.3.2. Unambiguous Estimation of Range

As previously mentioned, the range parameter can be resolved according to the specific
array structure of Ât. However, the inherent phase period ambiguity problem introduced
by the FDA is the other annoyance to be resolved. This problem arises due to the phase
angle of one component in (10) being ambiguous, i.e., there are several possible solutions in
the range domain with an uncertain additional phase angle of 2kπ. The ambiguous phase
angle Ω can be expressed as

Ωt,(m,p) = 2π

[
m

d sin θ

λ
− 1

2
m2(d cos θp)

2

λρp
−m

2ρp∆ f
c0

]
∈ [−π − 2kπ, π − 2kπ] (23)

where m = −M, . . . , M, k ∈ N. Obviously, range estimation cannot be solved until the coef-
ficient k is determined. To deal with this ambiguity problem, the proposed unambiguous
solution for range is developed below.

Let us consider the array structure of Â(odd)
t . For simplicity, only consider the solution

for the pth target as an example. The other targets can be resolved using the same procedures.

The pth column vector of Â(odd)
t is as seen below:

â(odd)
t, p =


e

j2π

{
−2M

ω̂p
λ +

2ρ̂p
c0

(∆ f(−M,0)−∆ f(M,0))

}
...

e
j2π

{
2M

ω̂p
λ +

2ρ̂p
c0

(∆ f(M,0)−∆ f(−M,0))

}


(24)

where ∆f (m,0) indicates the frequency offset between the mth element and the reference
element, denoted by ∆f (m,0) = fm − f 0, m = −M, . . . ,M. By means of the angle operation, the
ambiguous phase angle ĥt, p is given as.

ĥt, p = angle(â(odd)
t, p ) = 2π



−2M ω̂p

λ +
2ρ̂p
c0

(∆ f−M,M)
...

2M ω̂p
λ +

2ρ̂p
c0

(∆ fM,−M)

−
kt,−M

...
kt,M


 (25)

where kt,m is an unknown integer. Let the first 2M equations subtract the last 2M equations,
and a new linear system with respect to ρ̂p is obtained.

1
2π


angle

(
â(odd)

t, p (−M)

â(odd)
t, p (−M+1)

)
...

angle

(
â(odd)

t, p (M−1)

â(odd)
t, p (M)

)


= −

2ω̂p

λ
+

2ρ̂p

c0

∆ f−M,M − ∆ f−(M−1),M−1
...

∆ fM−1,−(M−1) − ∆ fM,−M

−
 gt,−M

...
gt,M−1

 (26)

where gt,m is denoted by gt,m = kt,m − kt,m+1, m = −M, . . . ,M − 1. Note that the sign of each

component in
{

∆ fm,−m − ∆ fm+1,−(m+1)

}
is consistent, and the subtraction operation is to
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facilitate the subsequent calculation. For simplicity, let us assume the adjacent frequency
increment across the array is negative and uniform, thus

{
∆ fm,−m − ∆ fm+1,−(m+1)

}
for

any m that is positive and equal.

Similarly, by repeating the above operations for Â(odd)
r , we obtain

1
2π


angle

(
â(odd)

r, p (−M)

â(odd)
r, p (−M+1)

)
...

angle
(

â(odd)
r, p (M−1)

â(odd)
r, p (M)

)
 = −

2ω̂p

λ
−

 gr,−M
...

gr,M−1

 (27)

where gr,m is similar to gt,m.
Let us consider Equations (26) and (27) simultaneously. Clearly, the range can be

resolved by the elimination method, i.e., let (26) subtract (27), resulting in only a range-
dependent linear equation system being obtained, as seen below:

2ρ̂p

c0

∆ f(−M,M) − ∆ f(−(M−1),M−1)
...

∆ f(M−1,−(M−1)) − ∆ f(M,−M)

 =
1

2π




angle

(
â(odd)

t, p (−M)

â(odd)
t, p (−M+1)

)
...

angle

(
â(odd)

t, p (M−1)

â(odd)
t, p (M)

)


−


angle

(
â(odd)

r, p (−M)

â(odd)
r, p (−M+1)

)
...

angle
(

â(odd)
r,p (M−1)

â(odd)
r, p (M)

)



+

 g−M
...

gM−1

 (28)

The pending issue is determining {gm} in (28). It is easy to figure out that the range

of possible values of 1
2π angle

(
â(odd)

t, p (m−1)

â(odd)
t, p (m)

)
is (−1/2,1/2), with the same being true for

1
2π angle

(
â(odd)

r, p (m−1)

â(odd)
r, p (m)

)
; thus, the possible range of values of the terms on the right-hand

side, with the exception of gm, should be (−1,1). Besides, by taking into account that the
value of gm must be an integer, the ambiguity of ρp can be resolved uniquely if the following
condition is satisfied as it was in ref. [19]:

0 ≤
2ρ̂p

c0
max

m
(∆ fm,−m − ∆ fm+1,−(m+1)) ≤ 1 (29)

With this range constraint, the undetermined coefficient gm can be uniquely deter-
mined with the following criterion: gm = 0, i f 1

2π

[
angle

(
â(odd)

t, p (m−1)

â(odd)
t, p (m)

)
− angle

(
â(odd)

r, p (m−1)

â(odd)
r, p (m)

)]
≥ 0

gm = 1, otherwise
(30)

Finally, substituting (30) into (28) and utilizing the known arguments of the frequency
increment ∆f, ρp can be resolved unambiguously via LS approximation.

3.3.3. Estimation of Angle with Correction

For angle estimation, {θp} can be resolved by solving the following LS estimation

θ̂p = argmin
θp

||f(θp)− â(odd)
r, p ||2F (31)
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where â(odd)
r, p is the column vector of Â(odd)

r with respect to the pth target, and f(θp) is the
function of angle-dependent only given by

f(θp) =
[
ej2(−M) 2π

λ [−d sin(θp)], . . . , ej2(M) 2π
λ [−d sin(θp)]

]T
(32)

There is no doubt that the systematic biased error occurs inevitably with regard
to angle in this method, due to the use of the approximation model. Inspired by [36],
we constructed a correction equation based on the exact expression of the path difference
instead of the second-order approximation, in order to deal with this deficiency. Specifically,
by adjusting the terms with respect to θp and ρp in (5) to the left side and arranging the
known terms to the other side, we obtain a correction function as

2ndρp sin θp + 2ρp δ̂r,(n,p) = n2d2 − δ̂2
r,(n,p) (33)

where δ̂r,(n,p) is the estimate of δr,(n,p), which can be computed from Âr. Since the fine-
grained estimation of range was resolved in the previous section, it can be regarded as the
known parameter in this step. By substituting the solved ρ̂p, all n and the corresponding
obtained δ̂r,(n,p) into (33), the correction equation for the angle is established as below and
the fine-grained estimation of θp can be achieved.

2dρ̂p



−M
...
0
...

M

 sin θp =



(−M)2

...
0
...

M2

d2 −



δ̂2
r,(−M,p)

...
0
...

δ̂2
r,(M,p)


− 2ρ̂p



δ̂r,(−M,p)
...
0
...

δ̂r,(M,p)


(34)

In conclusion, the brief description of the proposed TenDLA is summarised in Algorithm 1.

Algorithm 1: Tensor Decomposition-based Localization Algorithm (TenDLA)

Input:
{

xs(l) ∈ C(2M+1)×(2M+1)
}

for l = 1, 2, . . . , L.

Output:
{

θ̂p
}

and
{

ρ̂p
}

for p = 1, 2, . . . , P.

Initialization: initialize Âr
(0),Ât

(0) and Ŝ(0) with random number, set k = 0.
Operations:

1. Rearrange matched-filter output {xs(l)} and obtain X̃ ∈ C(2M+1)×(2M+1)×L;

2. Calculate
~
X(n) for n = 1, 2, 3 based on matrix unfolding;

3. Iterations:

1) Obtain Âr
(k+1), Ât

(k+1) and Ŝ(k+1) according to (18)–(20);
2) Update τ(k+1) = δ · τ(k);

3) If
∣∣∣∣∣∣X (k+1) −X (k)

∣∣∣|2F < ε , terminate the algorithm, outputs Â(k+1)
r andÂ(k+1)

t ;
otherwise, set k = k + 1, go to 1).

4. Calculate Â(odd)
r , Â(even)

r , Â(odd)
t and Â(even)

t with normalization and phase
factor separation.

5. For p = 1, 2, . . . , P:

1) Estimation of range: Solve ρ̂p according to (28) with a range constraint defined
in (29).

2) Estimation of angle: Obtain the coarse estimation of θ̂p according to (31); Then make
angle correction with (34).

Remark: There are distinct differences between the proposed approach and existing methods:
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(1) In terms of range estimation, by exploiting the geometry relationship between
the array and the target (e.g., [33]) or by directly calculating it from the estimated phase
factor of ϕp (e.g., [36,44]), the parameter of ρp is solved with relatively coarse precision
when using the existing methods. In the proposed approach, the range is resolved based
on the additional DoF and the corresponding range-frequency-dependent phase factors
introduced by the FDA, which is capable of exploiting a higher number of DoFs to improve
the resolution. Moreover, to solve ρp, we employ the elimination method to fully exploit
the signal correlation implied in both the transmitter side and the receiver side, instead of
only utilizing the information implied in the transmit steering vector. This results in an
evident improvement in range estimation eventually.

(2) It is common to carry out angle estimation using the LS estimation according to
(31). In the proposed method, we estimate the angle by appending a correction procedure
to achieve improved precision. The most significant difference compared to the existing
correction-based methods (see, e.g., [36,37]) is that only angle correction is required, since
the systematic error in range has been alleviated by the elimination method, as mentioned
in the preceding paragraph.

(3) On the basis of the aforementioned discussions, systematic bias can be mitigated
effectively in the proposed approach, both for range and angle. It is worth mentioning that
the efforts of parameter pairing for multiple targets are not required before carrying out
the procedures above, because the transmit and receive steering vectors for the pth target
are automatically paired, which contributes to the uniqueness of the CP decomposition.

4. Performance Analysis

In this section, the identifiability and computational complexity of our proposed approach
are investigated with theoretical analysis. In addition, the Cramér-Rao bounds of the unknown
parameters are derived to provide a benchmark to evaluate algorithm performance.

4.1. Identifiability Analysis

Identifiability refers to the maximum number of targets that can be identified in target
localization. Based on the analysis in ref. [26], identifiability depends on the Kruskal rank of
each factor matrix, and thus the maximum number of detectable targets can be formulated as

kAr + kAr + kS ≥ 2R + 2 (35)

where kAr , kAt and kS are the Kruskal ranks of Ar, At, and S, respectively. Assume that there
are deterministic uncorrelated targets being distributed in different locations; thus the matri-
ces Ar and At must be full rank, i.e., the Kruskal rank of Ar and At are kAr = kAt = 2M + 1
with the assumption of P being larger than the number of array elements. Moreover, based
on the definition of Kruskal rank, it is easy to obtain kS = min(R, L). It follows that (35)
can be rewritten as.

2(2M + 1) + min(Pmax, L) ≥ 2Pmax + 2 (36)

If we assume that the amount of data sampling is adequate enough, i.e., L > Pmax, then
the maximum number of targets that can be identified in our proposed method must satisfy

Pmax ≤ 4M (37)

However, if the condition L > Pmax cannot be satisfied when the pulse numbers are
small in specific cases, the identifiability condition will be determined by

Pmax ≤
⌊

2M +
L
2

⌋
(38)

where b·c denotes the floor operation.
Consequently, the proposed approach can work effectively under mild conditions.
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4.2. Computational Complexity Analysis

The computational complexity of the major steps in our proposed method is analyzed
as follows:

The complexity of the RALS: assuming that the algorithm takes Niter iterations to
achieve convergence, according to ref. [31], the total computational complexity for the CP
decomposition is O(Niter{3P3 + 2[(2M + 1)(2M + 1 + 2L)]P2 + 6(2M + 1)2LP}).

The complexity of the pre-processing operations: the computations of (21) and (22)
require O(P(2M + 1)2) for each argument, including for the normalization operations.

The complexity of the joint estimation of range and angle: the most significant compu-
tational costs contribute to the solution of the location parameters for each target via LS
approximation, which is approximately equal to O(P(2M + 1)).

Obviously, the overall computational complexity is dominated by the computations for the
CP decomposition. In contrast, the computational complexity of the well-known 2D-MUSIC al-
gorithm is known as O((2M + 1)4L + (2M + 1)6+nθnρ{(2M + 1)2[(2M + 1)2 − P]}), where
nθ and nρ are the numbers of searching grids in angle and range domains, respectively. It
follows that the computation costs of the proposed approach are much lower than those of
the 2D-MUSIC algorithm since the number of searching grids in MUSIC-like algorithms is
always incredibly large to meet the requirements to achieve high resolution.

4.3. Cramér–Rao Bound Analysis

The Cramér–Rao bound (CRB) is defined as the lower bound on the variance of any
unbiased estimator. Without loss of generality, we derive the CRBs of unknown parameter
vector {θ,ρ} by assuming that the reflection coefficient of the target is known. Let the
unknown parameter vector {θ,ρ} be Ψ so that the Fisher information matrix (FIM) can be
calculated as

F = 2LξRe

{
(

∂b(θ, ρ)

∂ψ
)

H
R−1

n (
∂b(θ, ρ)

∂ψ
)

}
(39)

where b(θ, ρ) = ar(θ, ρ)⊗ at(θ, ρ) is the joint transmit–receive steering vector. Rn = σ2I
is the covariance matrix of noise, ξ is the signal power, and L is the number of snapshots.
Based on the definition of the Cramér–Rao bound, we can obtain the CRBs of angle and
range using.

CRB = F−1 (40)

Detailed derivations are given in Appendix A.

5. Results and Discussion

In this section, a series of numerical simulations are conducted to verify the validity
and effectiveness of the proposed approach. For consistency and believability, unless stated
otherwise, the experiments are conducted with the parameters shown in Table 2. Note that
the element spacing is d = λ/4, in order to avoid phase ambiguity [10]. Meanwhile, the
pulse width was chosen to be Tp = 1/∆ f , according to ref. [45]. It can be assumed that
there are three near-field targets located at (0,9λ), (3λ,6λ), and (−6λ,3λ), representing three
types of azimuth angles: zero, minor, and major azimuth angles, respectively. Echo data
were generated according to the PARAFAC model in Section 2, and it was assumed that
the additive noise was AWGN.

Table 2. Parameters of the numerical experiments.

Parameters Value Parameters Value

Reference frequency 3 GHz Element numbers 11
Frequency increment 10 MHz Element spacing 0.025 m

Pulse width 0.1 µs Pulse numbers 128
SNR 10 dB Target numbers 3
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The performance evaluation was determined using the root mean square error (RMSE)
and the successful detection ratio via hundreds of independent Monte Carlo trials. The
RMSEs of angle and range are defined as

RMSE| θ =

√√√√ 1
KP

K

∑
k=1

P

∑
p=1

(θ̂k,p − θp)
2

(41)

and

RMSE| ρ =

√√√√ 1
KP

K

∑
k=1

P

∑
p=1

(ρ̂k,p − ρp)
2 (42)

where K is the total number of Monte Carlo trials, and θp and ρp indicate the true angle
and range of the pth target, respectively. Moreover, the detection in one trial is defined as a
success when the Euclidean distance between the estimated location and the real location
of the target is within a given tolerance. Consequently, the successful detection ratio is
defined as the number of successful cases divided by the total number of cases.

5.1. The Impact of Radar Parameters

According to the theoretical analysis in Section 3, the estimation of angle and range
are sensitive to radar parameters, including the number of array elements N (herein
N = 2M + 1), the number of transmitted pulses L, and the frequency increment ∆f in the
FDA radar. To explore the association between these parameters and estimation perfor-
mance, the control variable method is utilized in the following experiments.

Figure 4 shows the association between radar parameters and estimation performance,
where the red dashed line indicates the RMSE of angle versus the variation in N, L, and
∆f, respectively, and the blue dashed line represents the tendency of the RMSE of range.
Numerical simulations are conducted by varying one parameter and fixing the other two,
and then alternating them. From Figure 4a,b, it is certain that the estimation accuracies
of angle and range are enhanced as the array element numbers increase, owing to the
diversity gain in the spatial domain. However, increasing element numbers requires greater
computational and hardware overhead costs. Similarly, Figure 4c,d show that the estimation
performance is improved when the number of pulses is multiple, due to the diversity gain
in the time domain. Note that the use of multiple of pulses will lead to huge computational
costs; hence, increasing the number of pulses to a high number does not represent an
efficient method to pursue performance improvement. Furthermore, the impact of the
frequency increment in the FDA is different from the other two parameters. Experiments
were conducted by changing the argument of ∆f from ∆f 0 to seven times ∆f 0, in which
∆f 0 = 2.5 MHz. From Figure 4e,f, it is clear that the RMSE of angle was independent of the
frequency increment, whereas the RMSE of range was sensitive to ∆f. This is reasonable
since the estimation of range was computed using the range-frequency-dependent terms
in the steering vector, while solving angle was unrelated to this argument. It seems that
the larger the frequency increment is, the more accurate the estimation of range will be.
However, if a larger frequency increment was chosen in the FDA, the fundamental premise
of ∆f << f 0 was no longer satisfied, leading to the signal model of (8) becoming invalid.
Moreover, according to the range constraint defined in (29), the unambiguous range is
inversely proportional to the frequency increment. Based on numerical experiments, it is
appropriate to set ∆f to be around a megahertz for near-field scenarios.

Consequently, in order to achieve better performance as well as to balance the compu-
tational cost, it is necessary to make a trade-off regarding the choice of N, L, and ∆f.
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Figure 4. The impact on estimation performance in terms of radar parameters. (a) RMSE of angle
versus element numbers; (b) RMSE of range versus element numbers; (c) RMSE of angle versus
number of pulses; (d) RMSE of range versus number of pulses; (e) RMSE of angle versus frequency
increment; (f) RMSE of range versus frequency increment.

5.2. Numerical Comparison of the RALS and ALS

Since solving the factor matrices with RALS is an integral part of TenDLA, it is necessary
to make a comparison with the ALS algorithm in order to investigate its capacity against the
swamp problem, which has a great influence on follow-up procedures. The performance
evaluation was conducted with a total of 1500 independent Monte Carlo runs under three
types of scenarios. To guarantee fairness and believability, the comparison was conducted
using the same input data and factor matrix initialization for every Monte Carlo trial.

The performance indicators in this comparison are the average number of iterations
(AIS), the average computational time (ACT, in seconds), and the ratio of trials above
the set maximum iterations (RaMAX). All of the numerical simulations were performed
on a desktop computer with an i7-6700 CPU and 16 GB of memory. Table 3 shows the
quantitative analysis of the comparison between RALS and ALS. It is clear that RALS
outperformed ALS, since it achieved a relatively better performance both on convergence
rate and computational cost which is characterized as the AIS of RALS being much lower
than that of the ALS algorithm. It is also indicated that RALS can shorten the swamp
problem encountered in some ill-conditioned trials to some degree. This is demonstrated
in Figure 5 as well, in which RALS effectively shortens the swamp phenomenon with
only 1029 iterations compared with the over 13,000 ALS iterations under the condition of
encountering an ill-conditioned trial. Furthermore, since the real ALS iteration number in
this trial is over the predetermined maximum iteration number, the iterative procedure
terminates within the allotted steps whereas the convergence criterion has not been satisfied,
leading to a large relative error to solve the CP decomposition and then resulting in
performance degradation or incorrect estimation. In contrast, when employing RALS
instead of ALS, the number of biased trials can be reduced. The experiment results are
consistent with the theoretical analysis in Section 3.2 and demonstrate the superiority
of RALS.
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Table 3. Performance comparison between RALS and ALS in three scenarios.

Stop Criterion Algorithms AIS ACT RaMAX (%)

ε = 1 × 10−7 RALS 196 0.2394 0.8
ALS 222 0.3230 1.4

ε = 1 × 10−8 RALS 207 0.2716 1
ALS 251 0.400 2.6

ε = 1 × 10−9 RALS 244 0.2915 1.4
ALS 260 0.3953 2.8

Figure 5. Comparison of convergence rate between RALS and ALS in one ill−conditioned trial.

5.3. Performance Evaluation of TenDLA

In this section, we compare the performance of different localization techniques via
Monte Carlo experiments. Comparisons were made with two existing tensor-based ap-
proaches as well as an extensively applied method, including the approximation model
based method with the bistatic MIMO radar (Bis-MIMO(AM)) proposed in ref. [33], the
corresponding exact model based method (Bis-MIMO(EM)) proposed in ref. [37], and
the 2D-MUSIC presented in ref. [7]. To better illustrate performance enhancement via the
correction procedure, we also included the estimates achieved using our approach both
with correction and without correction.

Figure 6a,b show the estimation accuracy versus the SNR. For each SNR value, we
conducted 200 independent Monte Carlo runs. From the graphs, we can observe that the
proposed approach achieves the most optimal estimation performance for both angle and
range compared to the other approaches. On angle estimation, the proposed approach
achieved good accuracy that is close to that of Bis-MIMO(EM), and it outperformed the Bis-
MIMO(AM) and 2D-MUSIC, demonstrating a significant improvement; in other words, it is
possible to achieve comparable estimation accuracy to the exact model based method after
angle correction, even if only an approximation model is used. For range estimation, the
proposed TenDLA achieved the most optimal resolution compared with the other methods.
This can be attributed to the improvement in the spatial resolution by the FDA-MIMO radar
and the full exploitation of the signal correlation, which has been discussed in Section 3.2.
Additionally, in terms of the comparison between the estimates with correction and without
correction in TenDLA, we can clearly observe that the RMSEs of angle and range in the
cases with correction decreased as the SNR grew, revealing that the systematic bias caused
by the use of the approximation model was mitigated effectively.
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Figure 6. Comparison of estimation performance versus SNR. (a) RMSE of angle versus SNR, (b) RMSE
of range versus SNR.

Figure 7 shows the comparison of the successful detection ratio versus the SNR. In
this experiment, the parameter settings were the same as they had been previously, and the
admitted tolerance for successful detection was determined to be λ/4. On the whole, the
successful detection ratio increased as the SNR grew. This makes sense since the estimation
accuracy will improve as the noise decreases. Individually, it can be seen from the graph
that, although all the methods achieved a high success ratio that was close to 100% in cases
where the SNR was high, the proposed approach had a lower SNR threshold compared
with other methods. Particularly in low-SNR situations (lower than 10 dB), the proposed
method outperformed the other methods, showing improvements of over 10%. It is obvious
that the proposed approach is more appropriate in difficult situations than the contrast
methods in terms of detection.

Figure 7. Comparison of successful detection ratio versus SNR.

Another prime evaluation indicator is the resolving capability versus the SNR for two
closely spaced targets, which can be evaluated via the possibility of the successful detection
defined in ref. [37]. We chose the acknowledged super-resolution 2D-MUSIC algorithm as a
comparison method. As shown in Figure 8, our proposed method has a much better robust
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resolution capability than the comparison method; more specifically, it can successfully
distinguish two closely spaced targets, even when the distance between the two targets
is smaller than half of a wavelength at an SNR of 20 dB and smaller than almost a full
wavelength at an SNR of 10 dB.

Figure 8. Resolution threshold versus SNR for two closely spaced targets.

We also performed a computational cost comparison among different methods. In this
experiment, we computed the AIS and ACT by averaging the data obtained during each
trial. In terms of AIS, it can be observed from Figure 9 that the proposed approach requires
approximately equal iterations to achieve convergence compared to the other two existing
tensor-based approaches. This can be verified from the ACT results as well. Since the
2D-MUSIC algorithm requires no iterations, the corresponding computational complexity
is indicated by the ACT. Obviously, the computational costs of the proposed approach are
much lower than those of the extensively used MUSIC-like algorithm.

Figure 9. Comparison of AIS and ACT.

5.4. Discussion

The results obtained from various numerical experiments confirmed the effectiveness
and robustness of our proposed TenDLA. In conclusion, the attractive advantages of the
proposed approach relative to the existing methods are as follows:
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1) Improved estimation accuracy: judging from the numerical experiments on estima-
tion accuracy, compared with existing methods, it is clear that TenDLA provides a much
better estimation accuracy relative to the recently proposed tensor-based methods, and
even outperforms the acknowledged super-resolution algorithm (MUSIC-like algorithms).
The systematic biased error encountered in the approximation propagation model based
cases was mitigated effectively. Furthermore, the proposed method has a relatively good
resolution capability to distinguish two closely spaced targets. The improvement in res-
olution contributes to the power of tensor-based signal processing and the advantage of
FDA-MIMO radar.

2) Simplicity: from the abovementioned numerical experiments on computational cost,
we determined that TenDLA has fewer computational costs than conventional spectral
searching-based method. This makes sense because the proposed approach is search-free,
i.e., the target parameters are resolved via a well-designed strategy that is composed of an
algebraic decomposition and a low-cost LS estimation. It does not require taking efforts
on multidimensional spectral searching and parameter pairing. Moreover, relative to the
existing tensor-based methods, the proposed method has a similar level of complexity.
Only a few extra computations are required to fulfill the correction procedures, which are
inexpensive and result in improvements in accuracy.

3) Robustness: in some situations, such as the power of the echoes is too low or when
two targets are closely spaced, conventional methods (e.g., MUSIC) are usually unable to
detect or distinguish the targets clearly. Judging from the results in Figures 6 and 8, it is
clear that the proposed method exhibits better performance in difficult situations, both
in low-SNR cases and in cases where there are two closely spaced targets. Additionally,
when calculating the CP decomposition encountering ill-conditioned cases, the TenDLA
offers the capacity to shorten the swamp problem relative to the conventional ALS-based
approach, making it possible to gain improvement in numerical stability.

6. Conclusions

In this paper, a tensor decomposition-based localization algorithm (TenDLA) for near-
field multiple targets with a symmetric monostatic FDA-MIMO radar was proposed. In
the TenDLA, the joint range and angle estimation was resolved by converting the target
localization into the problem of solving the tensor decomposition. Benefiting from the
introduced RALS algorithm, the reliability on numerical calculation is enhanced evidently.
Additionally, the improved solution on the joint range and angle estimation proposed in
this work can mitigate the systematic biased errors with limited extra correction procedures,
yielding a significant improvement in estimation accuracy. Numerical experiments illustrate
the validity and accuracy of the proposed approach, and it showcases its potential in
applications for detecting and sensing near-field multiple targets in a variety of fields.

Author Contributions: N.X. conducted the methodology, designed and performed the experiments,
and wrote the draft of the manuscript; K.L. and H.W. analyzed the data; J.J. performed validation
and visualization; S.O. contributed to the conceptualization, supervision, and revised the manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 61871425, the Guangxi special fund project for innovation-driven development (No.
GuikeAA21077008), the Fund of Guangxi Key Laboratory of Wireless Wideband Communication and
Signal Processing (GXKL06170110), and the Ba-Gui Scholars Program of Guangxi.

Data Availability Statement: Not applicable.

Acknowledgments: We thank all of the editors and reviewers for their valuable comments and
suggestions to improve the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2022, 14, 4392 19 of 21

Appendix A Derivation of CRBs for Range and Angle

Let the unknown parameter vector {θ,ρ} be Ψ, the Fisher information matrix (FIM) can
be expressed as

F = 2LξRe

{
(

∂b(θ, ρ)

∂ψ
)

H
R−1

n (
∂b(θ, ρ)

∂ψ
)

}
(A1)

where b(θ, ρ) = ar(θ, ρ)⊗ at(θ, ρ) is the joint transmit-receive steering vector, ar(θ, ρ) and
at(θ, ρ) have been defined in (9) and (10). Rn = σ2I is the covariance matrix of noise, ξ is
the signal power and L is the number of snapshots.

Consider the partial derivative of b(θ, ρ), which is given as

∂b(θ, ρ)

∂ψ
=

[
∂b(θ, ρ)

∂θ
,

∂b(θ, ρ)

∂ρ

]
(A2)

where the partial derivatives with respect to θ and ρ are, respectively, given by

∂b(θ,ρ)
∂θ = ∂(ar(θ,ρ)⊗at(θ,ρ))

∂θ

= ∂(ar(θ,ρ))
∂θ ⊗ at(θ, ρ) + ar(θ, ρ)⊗ ∂(at(θ,ρ))

∂θ

(A3)

∂b(θ,ρ)
∂ρ = ∂(ar(θ,ρ)⊗at(θ,ρ))

∂ρ

= ∂(ar(θ,ρ))
∂ρ ⊗ at(θ, ρ) + ar(θ, ρ)⊗ ∂(at(θ,ρ))

∂ρ

(A4)

According to the characteristic of monostatic radar, the transmit steering vector is
characterized by a similar expression to receive steering vector, except appending a range-
frequency-dependent term, thus the expression of at(θ, ρ) can be rewritten as

at(θ, ρ) = ar(θ, ρ)⊕ a∆f(ρ) (A5)

where a∆f(ρ) is the appending range-frequency-dependent term in transmit steering vector,
which is denoted by

a∆f(ρ) =

[
ej2π(M

2ρp∆ f
v0

), · · · , ej2π(−M
2ρp∆ f

v0
)
]T

(A6)

Substituting (A5) into (A3) and (A4), the partial derivative of ar(θ, ρ) and at(θ, ρ) can
be derived by

∂(ar(θ, ρ))

∂θ
= j

2π

λ

[
dΛ cos θ − 1

2
d2Λ2

ρ
(− sin 2θ)

]
ar(θ, ρ) (A7)

∂(ar(θ, ρ))

∂ρ
= j

2π

λ

[
1
2

d2Λ2 cos2 θ
1
ρ2

]
ar(θ, ρ) (A8)

∂(at(θ, ρ))

∂θ
=

∂(ar(θ, ρ))

∂θ
⊕ a∆f(ρ) (A9)

∂(at(θ, ρ))

∂ρ
=

∂(ar(θ, ρ))

∂ρ
⊕ a∆f(ρ) + ar(θ, ρ)⊕ ∂(a∆f(ρ))

∂ρ
(A10)

with
∂(a∆f(ρ))

∂ρ
= −j

4π

v0
Λ∆fa∆f(ρ) (A11)

Λ= diag(−M, . . . , 0, . . . , M) (A12)

Λ2= diag(( −M)2, . . . , 0, . . . , M2
)

(A13)

Λ∆f= diag(∆ f(−M,0), . . . , 0, . . . , ∆ f(M,0)

)
(A14)
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Finally, substituting (A7)–(A14) into (A3) and (A4) and computing FIM based on (A1)
mathematically, the FIM can be obtained. The CRBs of the angle and range are the inverse
of (A1)

CRB(Ψ) = diag
(

F−1) (A15)

where the CRBs of angle and range are the first element and the last element in (A15) respectively.
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