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A review of recent advancements in photonic forces is presented. We discuss in detail
the interaction of light and sub-wavelength particles on a substrate illuminated by
total internal reflection, and we study the optical forces experienced by the particles.
The effects of plasmon-mode excitations on the resulting photonic forces on metallic
particles are also addressed. Moreover, we explore the possibility of using the metallic
tip of a classical apertureless microscope to create optical tweezers, and thus to
achieve a selective manipulation of nanoparticles.
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1. Introduction

The manipulation of micro- and nanostructures by means of the mechanical action
of light on matter has opened a new field of study at these scales. In 1986 the optical
tweezer was invented (Ashkin et al . 1986) as a by-product resulting from exten-
sive studies of the radiation pressure exerted by light on cells, particles and atoms.
Ever since, this device has permitted the non-destructive handling of structures in
a variety of techniques ranging from spectroscopy (Sasaki et al . 1991; Misawa et al .
1992), phase transitions in polymers (Hotta et al . 1998) and light-assisted ordering of
dielectric particles (Burns et al . 1990) to photonic force spectroscopy of cells (Pralle
et al . 1998) and biological molecules (Smith et al . 1996).

The high resolution of these procedures, provided by high field concentrations in
sub-wavelength regions near tips, objects or surfaces, involves a large contribution of
evanescent waves, namely, of inhomogeneous plane-wave components of both the illu-
minating and scattered light field. Therefore, in any analysis of the forces exerted by
near fields on particles, the role of the evanescent waves is of paramount importance.

One contribution of 13 to a Theme ‘Nano-optics and near-field microscopy’.
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The light-intensity enhancements in near-field regions near surfaces may give rise
to enhanced gradient forces capable of trapping particles within nanometric scale
regions (Novotny et al . 1997; Chaumet et al . 2002a, b). On the other hand, evanescent
waves are used in experiments to control the position of a particle suspended over a
surface and to estimate the colloidal interaction force between the particle and the
surface (Sasaki et al . 1997; Clapp et al . 1999; Dogariu & Rajagopalan 2000).

This paper presents a review of the main advances in basic studies aimed at under-
standing the action of optical forces in the near field. After an introduction to the
theory of electromagnetic forces in § 2, an illustration of the action of an evanescent
wave in a dipolar particle is given in § 3, which provides an interpretative value of
the role of the so-called gradient and scattering-plus-absorption force components.
Then, the effect of multiple scattering of light on particles over flat substrates is
addressed in § 4. This also permits the analysis of the effects of particle nature and
size, as well as distance to the substrate, which form the basis for performing con-
trolled experiments. The role of near-field forces upon particles employed as probes
for surface-topography sensing is addressed in § 5. Here the role of plasmon–polariton
resonances of metallic particles in the signal provided by force enhancements is dis-
cussed. Optical binding between illuminated particles is discussed in § 6. Finally,
in § 7 we review studies of optical manipulation of nanoparticles with apertureless
probes and the interplay of photonic forces and surface-enhanced Raman scattering
(SERS), respectively.

2. Basic theory of forces due to electromagnetic fields

(a) Maxwell’s stress tensor

The force F on a charge q, moving with velocity v in an external electromagnetic
field in a medium that can be characterized by a permittivity ε and permeability µ,
is given by F = q(E + v/c × B), where E and B denote the electric field and the
magnetic induction vectors, respectively. B = µH, H being the magnetic vector. In
a system of charges the total force equals the variation dPmec/dt of the mechanical
momentum of the system, and it is known (Jackson 1975; Stratton 1941) that one
has the conservation law

dPmec

dt
+

dPfield

dt
=

∫
S

T · n ds. (2.1)

In (2.1) S is any arbitrary closed surface that includes a volume V containing the
system of charges; Pfield is the total electromagnetic momentum given by Gordon
(1973): Pfield =

∫
V

S dv/c2, c denoting the speed of light and S = c/4π(E ×H) being
the Poynting vector. T is Maxwell’s stress tensor, whose components are given by

Tij =
1
4π

[εEiEj + µHiHj − 1
2δij(εE2 + µH2)], i, j = 1, 2, 3. (2.2)

In the common case of an electromagnetic field incident on a finite body, S and
V are its surface and volume, respectively, or any surface and volume enclosing it.
The electromagnetic vectors in (2.1) and (2.2) correspond to the total field, namely,
incident and field re-emitted by the body.

Most experiments are conducted at optical frequencies and thus involve time-
averaged electromagnetic fields. Let those fields be time-harmonic, so that E(r, t) =
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Re[E(r)e−iωt] and H(r, t) = Re[H(r)e−iωt] (where Re means the real part). Then,
the time average 〈·〉 = limT→∞ 1/2T

∫ T

−T
(·) dt in (2.1) yields the mean force:

〈F 〉 =
〈

dPmec

dt

〉
=

∫
S

〈T 〉 · n ds. (2.3)

In (2.3) one has that 〈dPfield/dt〉 = 0, since

〈S(r, t)〉 =
c

8π
Re[E(r) × B(r)∗]

(Antoci & Mihich 1998; Chaumet & Nieto-Vesperinas 2000c; Chaumet 2004), where
∗ denotes the complex conjugate. Also, the time-average of Maxwell’s stress tensor
is

〈Tij〉 =
1
8π

[Re(EiεE
∗
j ) + Re(HiµH∗

j ) − 1
2δij(ε|E|2 + µ|H|2)], i, j = 1, 2, 3. (2.4)

Modelling electromagnetic forces therefore involves knowledge of the total field.
Several procedures have been used to evaluate these fields in different configurations.
The multiple-multipole method has been employed to find the force exerted by a
near-infrared illuminated metal tip on a nanometric particle suspended in a liquid
(Novotny et al . 1997). The coupled-dipole method was used to calculate the force on
one or more particles due to an illuminated flat dielectric surface (Chaumet & Nieto-
Vesperinas 2000a, b) as well as to study the optical binding between the particles
(Chaumet & Nieto-Vesperinas 2001). The finite-difference-time-domain method has
also been employed to study these last two phenomena (Okamoto & Kawata 1999).
The integral method has been used to derive the force near a corrugated surface
(Lester et al . 2001; Arias-Gonzalez et al . 2002).

(b) The dipole approximation

Small particles with radius a � λ respond to an external electromagnetic field with
an induced dipole moment P . Therefore, they experience a force (Gordon 1973)

F = (P · ∇)E +
1
c

∂P
∂t

× B. (2.5)

Let the external field be time-harmonic. By making use of the relations P =
Re[p(r)e−iωt], B = (c/iω)∇×E and p = αE, α being the particle polarizability, one
can write the time-averaged force on the particle as (Chaumet & Nieto-Vesperinas
2000c)

〈Fj(r)〉 = 1
2 Re

[
αEk

∂E∗
k(r)

∂xj

]
, j, k = 1, 2, 3. (2.6)

The polarizability of the small particle, including the radiation-reaction term, is

α =
α0

1 − 2
3 ik3α0

,

where α0 is the static polarizability given by the Claussius–Mossotti equation, α0 =
a3(ε−1)/(ε+1) and ε = ε2/ε0 is the ratio of the particle permittivity ε2 to that of the
surrounding medium ε0 (Draine 1988). The wavenumber k =

√
ε0k0, with k0 = ω/c.
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For a wave propagating along k, the electric-field vector can be written as

E(r) = E0(r)eik·r. (2.7)

Substituting (2.7) into (2.5), one obtains the force experienced by a dipolar particle

〈F 〉 = 1
4 Re[α]∇|E0|2 + 1

2k Im[α]|E0|2 − 1
2 Im[α] Im[E0 · ∇E0], (2.8)

where Im denotes the imaginary part. The first term is the gradient component of
the force, whereas the second term represents the radiation-pressure contribution to
the scattering force. In the case of a Rayleigh particle (ka � 1), by substituting the
above approximation for α: α = α0 + 2

3 ik3|α0|2, the second contribution can also be
expressed as (Van de Hulst 1981) (

|E|2
8π

)
C

k

k
,

C being the particle scattering cross-section: C = 8
3πk4|α0|2. The last term of (2.8)

is zero when the field has a single plane-wave component, as in the next case.

3. Force on a dipolar particle due to an evanescent wave

Let the small particle be immersed in the electromagnetic field of an evanescent wave,
whose electric vector is E = Ae−qzeiK·R, where r = (R, z) and k = (K, kz); K and
kz satisfy K2 + k2

z = k2, k2 = ω2ε0/c2, with kz = iq = i
√

K2 − k2.
We assume that this field is created by total internal reflection (TIR) at a flat

interface between two media of dielectric permittivity ratio 1/ε. The incident wave,
s or p polarized (i.e. with the electric vector either perpendicular or in the plane
of incidence), impinges from the denser medium. Without any loss of generality we
can choose Oxz as the incidence plane, so that K = (K, 0). Let t⊥ and t‖ be the
transmission coefficients for s and p polarizations, respectively. The electric vector is

E = (0, 1, 0)t⊥eiKxe−qz, (3.1)

for s polarization, and

E = (−iq, 0, K)
t‖
k

eiKxe−qz (3.2)

for p polarization.
By introducing the above expressions for the electric vector E into (2.8), we read-

ily obtain the average total force components. The scattering force is contained in
the (x, y)-plane (that is, the plane containing the propagation wave vector of the
evanescent wave), namely:

〈Fx〉 = 1
2 |t|2K Im[α]e−2qz, (3.3)

whereas the gradient-force component, which is directed along Oz, reads

〈Fz〉 = −1
2 |t|2q Re[α]e−2qz. (3.4)

In (3.3) and (3.4) t stands for either t⊥ or t‖, depending on whether the polarization
is s or p, respectively.
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For an absorbing particle, by using (2.6) for α in (3.3) and (3.4), one gets for the
scattering and absorption force

〈Fx〉 = 1
2 |t|2Ke−2qz Im[α0] + (2

3)k3|α0|2

1 + (4
9)k6|α0|2

, (3.5)

and for the gradient force

〈Fz〉 = −1
2 |t|2q Re[α0]

1 + (4
9)k6|α0|2

e−2qz. (3.6)

It should be noted that, except for Re[ε] between −2 and 1, Re[α0] is positive, thus
making the gradient force directed toward the interface. On the other hand, since
Im[α0] and |α0|2 are always positive, the scattering force (3.5) pushes the particle
in the direction of propagation K of the evanescent wave. Of course, these forces
increase with decreasing distance from the interface, and are larger for p polarization
due to the orientation of the induced polarization in the particle.

In particular, if ka � 1, (3.5) becomes

〈Fx〉 = 1
2 |t|2Ke−2qz

[
a3 Im

(
ε − 1
ε + 2

)
+ 2

3k3a6
∣∣∣∣ε − 1
ε + 2

∣∣∣∣
2]

. (3.7)

The first term of (3.7) is the radiation pressure of the evanescent wave on the par-
ticle due to absorption, whereas the second term corresponds to scattering. This
expression can be further condensed as

〈Fx〉 =
|t|2
8π

K

k
e−2qzCext, (3.8)

where the particle extinction cross-section Cext has been introduced

Cext = 4πka3 Im
(

ε − 1
ε + 2

)
+ 8

3πk4a6
∣∣∣∣ε − 1
ε + 2

∣∣∣∣
2

. (3.9)

4. Forces on particles upon surfaces

Trapping dielectric particles and micro-organisms was proved to be feasible through
the action of gradient-force components, and is at the heart of the optical-tweezer
technique (Ashkin et al . 1986). However, it is well established that the predominance
of scattering and absorption components, and their repulsive effect on metallic parti-
cles which have large extinction coefficients (Ashkin & Dziedzic 1974), make the trap-
ping of such particles more delicate. Later, gradient-force trapping of sub-wavelength
metallic particles was reported (Svoboda et al . 1993).

The first experiments on forces due to evanescent waves, created by TIR at a
sapphire–water interface, upon microspheres suspended close to the interface, were
reported by Kawata & Sugiura (1992). Further experiments were done either on a
waveguide (Kawata & Tani 1996), or by attaching the sphere to an atomic force
microscope (AFM) cantilever (Vilfan et al . 1998). This work aimed at estimating
the magnitude of the force, although they did not conclusively establish its sign,
which, as shown in the previous section and in what follows, depends on the particle
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Figure 1. Normalized force in the z-direction on a glass sphere with radius a = 10 nm,
λ = 632.8 nm. The angle of incidence is θ = 42◦ > θc. The solid line corresponds to p polar-
ization, and the dashed line to s polarization. The inset is the geometry of the configuration
used.

polarizability. Further experiments on the trapping potentials for metallic particles in
evanescent fields were conducted (Sasaki et al . 2000), confirming the aforementioned
dependence on size and polarizability. Next, we shall analyse this further.

Since the contribution of evanescent waves to fields near surfaces is dominant, it is
of interest to study the effect of these components on the force acting on a particle
near a flat interface and the effect of multiple scattering on the wave field in which
the particle is immersed. Concerning large particles, Mie’s scattering theory (Almaas
& Brevick 1995) and ray optics (Walz 1999) have been employed, neglecting the
multiple interaction with the substrate. However, further calculations showed that
multiple scattering is not at all negligible, and hence it can only be neglected in
cases of dielectric particles whose size does not exceed a third of the wavelength and
at a distance from the surface no less than the particle radius. Nevertheless, it was
shown by Arias-Gonzalez & Nieto-Vesperinas (2002) that for metallic particles this
is only true for the scattering-force component parallel to the surface. However, the
oscillations observable in the vertical component of the gradient force as the distance
varies are also present at larger separations even in the case of such smaller particles.

(a) Dipolar particles

The inset in figure 1 shows the geometry used for figures 1 and 2. Figure 1 shows the
z-component of the force normalized to 4πε0|E0|2, where |E0|2 is the intensity of the
incident field computed at the position of the particle and ε0 = 8.8542×10−12 F m−1

is the permittivity of free space. The particle is a small dielectric sphere (ε = 2.25),
its radius a = 10 nm and λ = 632.8 nm. The angle of incidence is larger than the
critical angle θc. Assuming the sphere to be small, we used (2.6) as well as a self-
consistent method to compute the field and its derivative at the centre of the sphere
(Chaumet & Nieto-Vesperinas 2000a). As the sphere gets closer to the substrate, the
normalized force decays significantly. This is due to the interaction of the sphere with
the evanescent field scattered by itself and reflected by the substrate at the sphere
location. As this field diminishes when z increases, the interaction between the sphere
and its own field always produces a negative gradient force. Notice that the decay
of the force is stronger for p polarization, since in that case the z component of
the dipole associated with the sphere produces a stronger field than the component
parallel to the substrate. When the sphere is far from the substrate, the normalized
force becomes constant. As this force is divided by the intensity of the incident field
at the particle location, this reflects the fact that the force decreases as e−2qz with
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Figure 2. Normalized force in the z direction on a sphere with radius a = 100 nm. (a) Glass
sphere with λ = 632.8 nm, θ = 42◦ > θc. Solid line, p polarization; dashed line, s polarization.
(b) Silver sphere with θ = 50◦ for the following wavelengths: solid line, λ = 255 nm; dashed
line, λ = 300 nm and; thick solid line, λ = 340 nm; symbol +, s polarization; without symbol, p
polarization.

the distance z from the surface (see also (3.3) and (3.4)). This shows that the force
only depends on the incident field and there is no interaction between the sphere and
the surface.

(b) Particles with sizes of the order of the wavelength

For larger spheres, the object is represented as a set of dipoles. The self-consistent
field at each dipole is computed and used in (2.6) to obtain the force on each element
of the discretization (Chaumet & Nieto-Vesperinas 2000a). Far from the Rayleigh
scattering regime (a = 100 nm), figure 2a shows, for a dielectric sphere, that the two
polarizations produce oscillations of the z component of the force with period λ/2.
These oscillations are due to the interaction of the sphere with both the incident field
and the propagating waves scattered by the sphere and reflected by the surface. These
propagating waves are negligible in the case of a sphere which is small compared with
the wavelength. There is also a large difference in the magnitude of these oscillations
depending on the polarization. This is a consequence of the different orientations
with respect to the substrate of the set of dipoles forming the spheres.

Figure 2b shows the z component of the normalized force on a silver sphere with
a = 100 nm, θ = 50◦. Three wavelengths of illumination (λ = 255, 300, 340 nm) are
considered. When the sphere is close to the substrate, we observe, as in the dielectric
case, a decay of the force due to the interaction of the sphere with itself. Again, far
from the surface, oscillations due to propagating waves appear. However, now the
force is always positive, except for p polarization at λ = 300 nm. We saw in the
previous section (see (3.5)–(3.9)) that for a dipolar particle the z component of the
force is due to the gradient force only, whereas the x component is proportional to
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Figure 3. Geometry of the system as discussed in § 5.

the absorption and scattering cross-sections. But for larger particles, the scattering
and absorption forces acquire a positive z component due to multiple reflections
inside the sphere. Since the absorption and gradient forces are both proportional to
a3, they have the same order of magnitude. For λ = 255 nm or 340 nm the real part
of the polarizability is negative; hence, both the gradient and the absorption forces
are positive (see (3.6)). For λ = 300 nm the real part of the polarizability is positive;
thus, there is a negative gradient force and a positive absorption force, which entails
different behaviours for the two polarizations. Assuming that the radiative part of
the field in the normal direction is larger for s polarization, the absorption force
becomes larger than the gradient force. Conversely, for p polarization the gradient
force remains larger than the absorption force, yielding a negative total force.

5. Forces and surface topography. Nanoparticle resonances

Field-intensity enhancements due to the excitation of morphology-dependent reso-
nances in small particles (Kreibig & Vollmer 1995) are well known for both isolated
particles and arrays of particles (Maier et al . 2003). Such metallic nanosystems have
interesting optical properties. In particular, they can alter radiation pressure (Ashkin
& Dziedzic 1977), and hence they can play a role in near-field photonic forces. They
can also be used to enhance the near-field optical signature of confined electromag-
netic fields. Gu & Ke (1999, 2000) have demonstrated the use of a laser-trapped
metallic particle as a new form of near-field probe. In their experiment the photonic
force is used to create a localized probe that will scatter the near field. However,
photonic forces can also be used directly to detect topographic variations.

We next discuss the use of particles in transducing surface topography into a force
signal. This constitutes a form of near-field photonic force microscopy.

Figure 3 illustrates the geometry for studying the near-field photonic force on
a nanometric particle from a surface with defects: a cylinder (the two-dimensional
version of a particle) immersed in water (ε0 = 1.7769) varies its position over a
water–glass interface (ε1 = 2.3104). An incident Gaussian beam of half-width at
half-maximum W , either s or p polarized, is incident from the glass side at angle
θ0. We address the electromagnetic force on the nanocylinder illuminated under
TIR, so that θ0 is larger than the critical angle θc = 61.28◦. Multiple interactions
of the scattered wave between the object and the rough interface are considered.
Silver cylinders of radius a at distance d + a from the flat portion of the surface
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Figure 4. |H/H0|2; p polarization from a silver cylinder with a = 60 nm immersed in water on
a glass substrate with defect parameter X0 = 191.4 nm, h = 127.6 nm and σ = 63.8 nm at
a distance d = 162.6 nm. Gaussian beam incidence with W = 4000 nm. (a) λ = 387 nm (on
resonance), θ0 = 0◦. (b) λ = 387 nm (on resonance), θ0 = 66◦. (c) λ = 316 nm (off resonance),
θ0 = 66◦. (d) λ = 387 nm (on resonance), θ0 = 66◦. The cylinder is placed at (0, 192.6) nm in
(a)–(c), and at (191.4, 192.6) nm in (d).

are addressed. The defects are two protrusions on the flat surface described by the
height:

z = h

[
exp

(
− (x − X0)2

σ2

)
+ exp

(
− (x + X0)2

σ2

)]
.

For this configuration there is no depolarization in the scattering of either s or p
waves (Nieto-Vesperinas 1991). The field is rigorously calculated by a self-consistent
method, e.g. the extinction-theorem boundary condition (Arias-Gonzalez & Nieto-
Vesperinas 2002). The electromagnetic forces are then obtained from Maxwell’s stress
tensor (2.4).

The near-field intensity distribution |H/H0|2 corresponding to the configuration
of figure 3 is shown in figure 4 (Arias-Gonzalez et al . 2002). A silver cylinder of
radius a = 60 nm varies its position at constant distance d = 162.6 nm above the
interface. The system is illuminated by a p-polarized Gaussian beam (W = 4000 nm)
at θ0 = 0◦ and λ = 387 nm (ε2 = −3.22+i0.70). Figure 4a shows the aforementioned
distribution when the particle is centred between the protrusions. A plasmon reso-
nance is excited, as manifested by the field-intensity enhancement on the cylinder
surface. At this resonant wavelength, the main Mie coefficient contributor is n = 2,
which corresponds to the number of lobes (2n) along this surface (Barber & Chang
1988). Figure 4b shows the same situation but with θ0 = 66◦. The field intensities are
markedly different to those of figure 4c, in which the wavelength has been changed
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Figure 5. Force on a silver cylinder with a = 60 nm immersed in water, scanned at constant
distance on a glass surface with defect parameters X0 = 191.4 nm and σ = 63.8 nm along
Ox. The incident field is a p-polarized Gaussian beam with W = 4000 nm and θ0 = 66◦.
(a) Horizontal force, h = 127.6 nm, d = 15 nm. (b) Horizontal force, h = −127.6 nm, d = 15 nm.
(c) Vertical force, h = 127.6 nm, d = 162.6 nm. (d) Vertical force, h = −127.6 nm, d = 15 nm.
Solid curves, λ = 387 nm (on resonance); dashed curves, λ = 316 nm (off resonance). Thin lines
in (c) show |H/H0| (in arbitrary units), averaged on the perimeter of the cylinder cross-section,
while it scans the surface. The actual magnitude of the intensity in the resonance case is almost
seven times larger than in the non-resonant one.

to λ = 316 nm (ε2 = 0.78 + i1.07) so that there is no particle resonance excitation
at all. Figure 4d shows the same as in figure 4b but at a different x-position of the
particle. Figure 4b, d shows strong perturbations of the intensity map by the presence
of the particle. This strong signal makes possible optical force microscopy at reso-
nant conditions with such small metallic particles used as nanoprobes. One can also
notice the interference pattern at the left side of the particle, between the evanescent
wave and the strongly reflected waves from the cylinder, which in resonant condi-
tions behaves as an efficient radiating antenna (Krenn et al . 1999) due to its much
larger scattering cross-section on resonance. The fringe spacing is λ/2 (λ being the
corresponding wavelength in water), and it is the same as that of the fringes below
the particle in figure 4a.

The variation of the Cartesian components of the electromagnetic force (Arias-
Gonzalez & Nieto-Vesperinas 2002) are shown in figure 5 (Fx, figure 5a, b; Fz,
figure 5c, d) on displacing the particle at constant distance d above the interface,
at either plasmon-resonance excitation (λ = 387 nm, solid lines), or off resonance
(λ = 316 nm, dashed lines). Notice that the resonant wavelength does not change
appreciably with the particle position in this system. The incident beam power (per
unit length) is 3.9320 W m−1, both on resonance and at λ = 316 nm. Figure 5a, c
shows the force when h = 127.6 nm (protrusions) and d = 162.6 nm. On the other
hand, figure 5b, d displays the force when h = −127.6 nm (grooves) and d = 15 nm.
The illumination is done with a p-polarized Gaussian beam of W = 4000 nm at
θ0 = 66◦. It is seen from these curves that the force distributions resemble the sur-
face topography on resonant conditions with a signal which is remarkably larger than
off resonance. This feature is especially manifested in the z component of the force,
in which the two protrusions are clearly distinguished from the rest of interference
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ripples, as explained above. Figure 5c also shows (thin lines) the signal that conven-
tional near-field microscopy would measure in this configuration, namely, the nor-
malized magnetic near-field intensity, averaged on the cylinder cross-section. These
values are shown in arbitrary units, and in fact the curve corresponding to plasmon
resonant conditions is almost seven times larger than that off-resonance. The force
distributions also show that resonance excitation also enhances the contrast of the
surface-topography image. This has also been observed with other profiles, including
surface-relief gratings. Figure 5b, d shows some results for h inverted, namely, the
protrusion now being grooves; the vertical component of the force distribution then
presents an inverted contrast. Notice that in figure 5b, d the particle is closer to the
surface (d = 15 nm) thus giving a higher image contrast. These results show that
both the positions and sign of the defect height can be distinguished by the optical
force scanning.

In the case of larger particles, multiple scattering with the surface increases, and
the presence of a resonance also enhances the intensity around the particle. This,
however, yields force signals with less resolution, and whose spatial distribution may
present Goos–Hänchen shifts due to evanescent components, and that in some cases
may not follow so faithfully the surface topography (Arias-Gonzalez et al . 2002).

6. Optical binding

A few years ago Dufresne & Grier (1998) (see also Dufresne et al . 2001) showed
the possibility of creating nanocomposite materials with an array of optical tweezers
generated by diffractive optics. More recently, Eriksen et al . (2002) demonstrated the
possibility of assembling microstructures with multiple-beam optical tweezers gener-
ated by the generalized phase-contrast method (Macdonald et al . 2002). Another way
of creating microstructures is to use the interaction between the particles themselves
to achieve the assembling. The idea of optical binding was illustrated by Burns et al .
(1989) on particles immersed in water illuminated by an intense beam. They observed
that the preferred relative separations between the particles related directly to the
wavelength of illumination. This effect can be explained from (2.6). We consider two
spheres immersed in water under a plane-wave illumination (figure 6a).

For dipolar spheres, the field at the position of the second sphere is the sum of the
incident field and the field scattered by the first sphere

E(r2) = E0(r2) + S(r2, r1)α1E(r1), (6.1)

where S(r2, r1) is free-space field-susceptibility tensor (Jackson 1975). Using (6.1)
for the first and second sphere in (2.6) and the fact that the incident wave is a plane
wave in the z-direction, the x component of the force for the second sphere can be
written

Fx(r2) = 1
2 Re

(
α2Ei(r2)α∗

1E
∗
i (r1)

∂

∂x
S∗

ii(r2, r1)
)

, (6.2)

where i stands for x if the polarization of the field is along the x-axis and y if the
polarization of the field is along the y-axis. To get the force on the first sphere the
indices ‘1’ and ‘2’ must be exchanged. In the case of the experiments of Burns et al .
(1989) the particles were identical (α1 = α2); hence the force becomes

Fx(r2) = 1
2 |α1Ei(r1)|2 Re

(
∂

∂x
Sii(r2, r1)

)
. (6.3)
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Figure 6. (a) Scheme of the geometry used for studying the optical binding. Both spheres are
in glass with a = 10 nm, and λ = 632.8 nm, the wavelength in vacuum. (b) Force in near field
on the left sphere and (c) force in far field on the left sphere. Solid line is obtained when the
polarization of the field is along the x-axis; dashed line is obtained when the polarization of the
field is along the y-axis.

Figure 6b, c shows the optical force in near-field and far-field regimes. To under-
stand the behaviour of the forces, we use (6.3) with some approximations. In near
field, i.e. when the distance between the two spheres is small compared with the
wavelength, we can make the non-retarded approximation (k = 0), which yields, for
the derivative of the free-space field-susceptibility tensor,

∂

∂x
Sii(r2, r1) =

−6(x2 − x1)
|x2 − x1|5

if i = x, (6.4)

∂

∂x
Sii(r2, r1) =

3(x2 − x1)
|x2 − x1|5

if i = y. (6.5)

Under the assumption that α1Sii(r2, r1) is smaller than one (this approximation
assumes that the dipoles associated to the sphere are only induced by the incident
field, which is perfectly valid for small glass spheres) we get

Fx(r2) =
−3|α1E0x |2
|x2 − x1|4

for i = x, (6.6)

Fx(r2) =
3
2 |α1E0y |2
|x2 − x1|4

for i = y. (6.7)

It appears clear that, according to the polarization of the incident field, the spheres
either attract (i = x) or repel (i = y) each other. From (6.6) and (6.7) it is easy to
explain the repulsive or attractive force. When the field is polarized along x, the field
due to the first sphere at the location of the second sphere and the dipole associated
to the second sphere are in phase. Owing to the gradient force, the second sphere is
attracted by the higher-intensity field and goes towards the first sphere. When the
polarization of the field is along the y-axis the field due to the first sphere at the
location of the second sphere and the dipole associated to the second sphere have
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Figure 7. Potential of trapping normalized to kBT for two identical glass spheres in water.
(a) a = 100 nm; (b) a = 200 nm. Solid line, polarization following the x-axis; dashed line,
polarization following the y-axis. The height of the vertical bars corresponds to a normalized
potential equal to three.

opposite phases. Hence the second sphere is attracted by the lower intensity field
and moves away from the first sphere.

Equation (6.3) in the far field can be written, using the expression of
(

∂

∂x

)
Sii(r2, r1) for |r2 − r1|

large compared with the wavelength, as

Fx(r2) = |α1E0x |2 cos(k|x2 − x1|)
(x2 − x1)2

for i = x, (6.8)

Fx(r2) = −|α1E0y |2 sin(k|x2 − x1|)
(x2 − x1)2

for i = y. (6.9)

The previous argument still applies; following the phase relation between the dipole
associated to the sphere and the field scattered by the other sphere, the optical force
is either attractive or repulsive. This explains the oscillations observed in figure 6c.
Notice that the oscillations for the two polarizations are shifted by λ/4 because they
involve cosine and sine terms.

One can also compute the trapping potential normalized to kBT (with T = 290 K
and kB, the Boltzmann’s constant) for a large particle in water. The diameter of
the particle is 200 nm (figure 7a) and 400 nm (figure 7b), and the irradiance of the
laser beam is 0.2 W µm−2 and λ = 632.8 nm. The trapping potential needs to be
larger than the Brownian motion. For instance, we want the potential wells to be
deeper than 3kBT . The bars plotted in figure 7 correspond to the 3kBT limit. We
see that when the size of the particle increases, the potential well becomes deeper.
The trapping potential is deeper when the polarization is along the y-axis and it has
a period of one wavelength. These results accurately reproduce the experiments of
Burns et al . (1989). Notice that they used larger particles but the irradiance of the
laser was weaker.
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Figure 8. Schematic of the configuration used to manipulate a nanoparticle over a substrate:
a dielectric sphere (radius 10 nm) on a flat dielectric substrate is illuminated under TIR. A
tungsten probe is used to create an optical trap.

7. Optical tweezers: nanomanipulation with an apertureless probe

One of the most interesting applications of optical forces is optical tweezers. They
have proved useful not only for trapping particles, but also for assembling objects
ranging from microspheres to biological cells (Dufresne et al . 2001; Dufresne & Grier
1998; Macdonald et al . 2002). More recently, optical tweezers have been used to
transport Bose–Einstein condensates over large distances (Gustavson et al . 2002).
However, most of these manipulations involve objects whose size is of the order of
one to several micrometres. It would be interesting to deal with neutral particles of
a few nanometres.

One solution consists of using a sharp metallic tip, and the strong enhancement
of the field at this metallic tip apex. Novotny et al . (1997) used a gold tip in water
illuminated by a monochromatic wave at λ = 810 nm; at this wavelength the rela-
tive permittivity of gold is large and yields a strong enhancement of the field. The
direction of the laser beam was perpendicular to the axis of the tip and the field was
polarized along the axis of the tip. Due to the strong discontinuity of the field at the
tip apex, one gets a significant enhancement of the field localized at the tip apex.
When a particle is in the region of enhancement of the field, the optical force, here
the gradient force, attracts the particle towards the tip apex. The particle can be
moved by the tip, and then released by turning off the laser illumination.

The technique of Novotny et al . (1997) requires one to find, in water, a particle a
few nanometres in size. A possibility would be to wait until a particle falls in the trap,
but such an operating mode would not allow for a selective capture. Recently, we
have proposed a method for selectively capturing particles (Chaumet et al . 2002a, b).
The idea of this nanomanipulation scheme is illustrated in figure 8. A particle with
relative permittivity ε = 2.25 and radius a = 10 nm is in either air or vacuum above
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Figure 9. The z component of the force experienced by the sphere versus the distance between the
tip and the substrate. We have a = 10 nm, λ = 514.5 nm and θ = 43◦, and the arrow indicates
the direction along which the tip is moved. (a) Situation when the tip approaches the sphere
(TM polarization). The inset is an enhancement of (a) near the sign reversal. (b) Situation when
the tip approaches the sphere (TE polarization). (c) The tip lifts the sphere in p polarization.

a dielectric substrate. The particle is illuminated by two evanescent waves created by
TIR (θ = 43◦ > θc = 41.8◦) at the substrate–air interface. The two evanescent waves
are counterpropagating, i.e. k‖ = −k′

‖, with the same polarization and a random
phase relation; this is to ensure that the lateral force vanishes. The optical trap is
created by the interaction of the incident waves with a tungsten probe with a radius
of curvature r = 10 nm at the apex. The forces are computed for an irradiance of
0.05 W µm−2, which corresponds, for an argon laser (λ = 514.5 nm) with a power of
5 W, to a beam focused over an area of 100 µm2.

Figure 9a, b shows the z component of the force experienced by the sphere versus
the tip–substrate distance for both transverse electric (TE) and transverse magnetic
(TM) polarization. As the tip gets closer to the sphere one can see that the two
polarizations yield different behaviours. First, when the tip is not present (far away
from the substrate) one can see that the force is negative. This is due to the fact
that the sphere is immersed in the evanescent incident field (which decays with the
distance to the substrate), hence the gradient force is negative. For TE polarization,
the z component of the force becomes more negative when the distance between the
tip and the sphere decreases. Assuming that the sphere and the apex of the tip are two
dipoles, it is easy to understand this effect. In TE polarization we have two dipoles,
in a first approximation, parallel to the substrate; hence they tend to repel each
other, as explained in the previous section. For TM polarization the force becomes
positive when the tip gets closer to the sphere. Due to the z component of the field,
we obtain the effect described by Novotny et al . (1997), i.e. a large enhancement of
the field at the tip apex. Hence, when the tip approaches the sphere, it experiences
a positive gradient force which can counterbalance the negative force due to the
incident field when the tip is close enough to the particle (inset of figure 9a). This
leads to the trapping of the sphere at the tip apex. It is then possible (figure 9c)
to lift the particle off the substrate in TM polarization. Note that the optical force
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decays slowly as the angle of illumination nears the critical value (in TE polarization
the force is always negative).

The procedure for selectively manipulating a nanometric particle with an aper-
tureless microscope is as follows. First TE illumination is used, while the tip scans
the surface in tapping mode (or in constant-height mode if the area under investiga-
tion is small enough). Once an object has been selected, the tip is placed above the
object and the polarization of the illumination is rotated to TM. The probe is then
brought down over the particle to capture it. Then the tip lifts the particle away from
the substrate and moves it to a new position, where it can be released by switching
back to a TE polarization. This shows that the lack of trapping capability of the tip
under TE illumination is actually an important asset during the imaging/selection,
and the release of the particle phases of the manipulation.

Note that while the conventional optical-tweezer technique can be used to trap Mie
metallic particles (Gu & Morrish 2002), the scheme described above can be employed
to manipulate metallic nanoparticles. Such particles of gold or silver possess unique
qualities for creating localized enhancement of electromagnetic fields. One of the
most exciting uses of these enhanced electromagnetic near fields is to amplify the
weak Raman scattering by molecules for application in biophysics and biochemistry
(Kneipp et al . 2002). SERS using metallic nanoparticles can greatly enhance the
intrinsic Raman signature of a molecule and has the potential to achieve molecular
identification at the single-molecule level.

8. Conclusion

Since the first realization that radiation pressure could be used to manipulate matter,
the applications of photonic forces have ranged from laser cooling and trapping of
atoms and molecules to manipulation and assembling of small particles and biologi-
cal systems. With the advent of near-field optics and nanophotonics, the possibility
of shaping optical fields on the sub-wavelength scale has opened a new realm of
applications for photonic forces: a domain where evanescent modes of the electro-
magnetic fields prevail and where light can be confined to nanometric regions. This
paper reviews the basic conceptual and analytical tools needed to address the use
of near-field photonic forces for trapping and manipulating small particles. Whereas
the use of photonic forces in the near field is still at an early stage, the properties
of confined optical fields allied to the advances in far-field photonic forces offer an
exciting prospect for the development of new applications in areas such as multipar-
ticle assembling (Dufresne et al . 2001; Eriksen et al . 2002) or micromotors (Collett
et al . 2003; Sacconi et al . 2003).

Thanks are given to Ricardo Arias-Gonzalez for work shared through the years. M.N.-V. acknow-
ledges financial support from the Spanish Ministry of Science and Technology.
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