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CHAPTER 19

Near-Field Scanning Measurements:
Theory and Practice

MICHAEL H. FRANCIS and RONALD C. WITTMANN

19.1 INTRODUCTION

As antennas increase in size or operating frequency, it becomes increasingly difficult to
obtain adequate real estate to measure antenna properties in the far field. Typically, a
distance of nD2/λ is specified as the beginning of the far-field region, where n is often
2 for routine work, D is the diameter of the smallest sphere that encloses the antenna’s
radiating parts, and λ is the wavelength. At this distance and for a spherical wavefront,
the phase differs by π/8 between the center and edge of the antenna. For precision
measurements, n often must be much greater than 2 [1, Chap. 14]. Table 19.1 shows the
far-field distances for some sample antenna diameters and operating frequencies. We see
that even for antennas of modest size, the far-field distance can become prohibitively
large when the frequency is high enough. Thus there are situations where measuring an
antenna in the near field would be advantageous because large amounts of real estate
are not required. There are other advantages as well. Since the near-field method is
usually employed inside a chamber, it is not subject to the effects of the weather and
also provides a more secure environment.

Determining the far-field pattern of an antenna from near-field measurements requires
a mathematical transformation and correction for the characteristics of the measuring
antenna (hereafter referred to as the probe). The first efficient near-field-to-far-field
transformation for the planar geometry was developed by Kerns and Dayhoff [2] at
the National Bureau of Standards (now the National Institute of Standards and Tech-
nology). Subsequently Kerns [3, 4] introduced probe correction. (Probe correction was
developed earlier for a two-dimensional case (scanning on a circle) by Brown and Jull
[5].) Within a few years the transformations were formulated for the spherical geometry
by Jensen [6, 7] and Larsen [8] at the Technical University of Denmark. Wacker [9] of
the National Bureau of Standards also made important contributions to the early devel-
opment of spherical near-field scanning. The cylindrical transformation was developed,
using reciprocity, by Leach and Paris [10–11] at the Georgia Institute of Technology. Sub-
sequently, Yaghjian [12] at the National Bureau of Standards elaborated the cylindrical
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TABLE 19.1 Sample Far-Field Distances

Diameter Frequency Far-Field
(m) (GHz) Distance (m)

1 3 20
3 3 180

10 3 2000
1 30 200
3 30 1800

10 30 20000
1 100 667
3 100 6000

10 100 66700

transformation based on a scattering-matrix approach. A detailed history of the develop-
ment of near-field scanning methods can be found in Gillespie [13], especially the papers
by Baird et al. [14], Hansen and Jensen [15], and Joy [16]. An extensive bibliography
is given in these historical papers and also in Yaghjian [17]. A good, complementary
reference that also treats all three geometries is Appel-Hansen et al. [18].

In principle, it is possible to transform to the far-field from measurements made on
an arbitrary near-field surface. However, the transformation can be done efficiently for
only three scanning geometries: planar (Section 19.2.3), spherical (Section 19.2.4), and
Cylindrical (Section 19.2.5). These transformations require complex data (amplitude
and phase).

19.2 NEAR-FIELD MEASUREMENT THEORY

19.2.1 Overview

Near-field measurement methods require the development of formulas that describe the
coupling of two antennas in close proximity. Avoiding the polarization issue for now, we
outline the process using the simpler example of a scalar field u(r). (Near-field scanning
measurements have also been developed for applications in acoustics [19–22].)

First, we expand the field of the test antenna in a complete set of modes un(r):

u(r) = a0

N∑
n=1

tnun(r) (19.1)

where a0 is the excitation. (In cases where modes are not discrete, the sum is replaced
by an integral.) It must be possible to represent u(r) to acceptable accuracy by use of a
finite summation. The expansion (19.1) must be valid throughout the region of interest,
including the region where measurements are made.

Practical probes do not (or only approximately) measure the field at a point in space.
This fact is especially important near a source where fields may vary significantly over
the volume of the probe. To account for probe effects, it is necessary to catalog the
response of the probe to each mode in the expansion (19.1):

w′
n(r

′, R′) = [Pun]
(
r′, R′) (19.2)
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where the arguments must specify probe position (location and orientation). In this case,
the vector r′ gives the location and the matrix R′ (Section 19.2.2.2.) determines the
orientation. The probe is represented as a linear operator P . (The probe can be modeled
effectively as a differential operator [23], [24, Chap. 8]). As discussed in subsequent
sections, w′

n can be calculated from the known receiving function of the probe.
The response of the probe to the field in Eq. (19.1) can be approximated as a super-

position of the responses of the probe to the contributing modes:

w′(r, R)

a0
=

N∑
n=1

w′
n(r, R)tn (19.3)

We assume that the presence of the probe does not affect the test-antenna field.
Discrepancies due to probe–test antenna interaction are called multiple-reflection or
mutual-coupling errors. (Multiple reflections are accounted for in developments that use
a full scattering-matrix theory [12, 25, 26]; however, practical implementations (so far)
retain only the direct interaction term discussed here.)

To determine the coefficients tn we can, in principle, make independent measurements
at the probe positions (locations and orientations) (ri , Ri ), 1 ≤ i ≤ P , P ≥ N , and find
the least-squares solution of the system of linear equations generated from the transmis-
sion equation (19.3). This would require O(N3) operations using, for example, Gaussian
elimination. For many practical antenna problems 104 < N < 106 and computational
efficiency is a major concern. For this reason, near-field measurements are commonly
made so that data points lie on planar, spherical, or cylindrical surfaces. The separation
of coordinates, orthogonalities, and simple rotational and translational properties, which
characterize the modes in these geometries, allow for significant reduction in processing
time. Computational complexity is O(N log N) for the planar and cylindrical geome-
tries, and O(N3/2) for the spherical geometry. (Recent developments [27] suggest the
possibility of a practical O(N log N) algorithm for spherical scanning.)

As separation increases, the coupling between test antenna and probe reduces to a
simple asymptotic form. The resulting simpler theory (Friis transmission equation) and
data acquisition requirements are the primary motivations for making far-field measure-
ments . For electrically large antennas, however, obtaining adequate separation may not
be practical. Additionally, the ability to use smaller separation distances means that many
antenna measurements can be made within a controlled laboratory environment. This fact
may result in improved security and accuracy.

Theory presented here represents a mathematical ideal. An effective, practical imple-
mentation requires the spirit of intelligent compromise that embodies the “art” of mea-
surement.

19.2.2 General Considerations

19.2.2.1 Maxwell’s Equations and Plane Waves We consider time-harmonic
fields with frequency f = ω/2π , wavenumber k = 2π/λ, and wavelength λ. (Time
domain near-field measurements are discussed in [28].) The time-dependent factor
exp(−iωt) is suppressed. In free space, the complex electromagnetic fields obey the
equations

∇ · E(r) = ∇ · H(r) = 0 (19.4)
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1

k
∇ × E(r) = iZ0H(r)

(19.5)

1

k
∇ × H(r) = 1

iZ0
E(r)

The impedance of free space is Z0 = √
µ0/ε0 ≈ 377 �. In particular, the electric and

magnetic fields each satisfy the Helmholtz equation:

(∇2 + k2)E(r) = 0 (19.6)

(∇2 + k2)H(r) = 0

Perhaps the simplest solution of Eqs. (19.4)–(19.6) is the plane wave,

Epw(r) = 1

2π
A(k̂) exp(ik · r) (19.7)

Hpw(r) = 1

iZ0
ik̂ × Epw(r)

where

k · A(k̂) = 0 (19.8)

k · k = k2 (19.9)

k̂ = k/k (19.10)

When k is real, Epw is organized into planes of constant phase that are perpen-
dicular to k. These phase fronts propagate in the k direction at the speed of light
c = λf ≈ 3 × 108 m/s. We define the unit vector corresponding to a as â = a/

√
a · a

so that â · â = 1; however, â · â∗ �= 1 when a is complex.

19.2.2.2 Coordinate Systems The laboratory system is specified by the set
(O, x̂, ŷ, ẑ), where O is the origin and the unit vectors x̂, ŷ, and ẑ give the directions
of the x, y, and z axes in a right-handed Cartesian coordinate system. We also embed
a local Cartesian coordinate system (O0, x̂0, ŷ0, ẑ0) in an antenna. The location of the
antenna is given by the coordinates of the point O0 in the laboratory coordinate system.
The orientation of the antenna is defined by expressing x̂0, ŷ0, and ẑ0 in terms of x̂,
ŷ, and ẑ; for example, x̂0 = Rx̂, ŷ0 = Rŷ, and ẑ0 = Rẑ, where R is the 3 × 3 matrix
(Cartesian basis) that induces a specified rotation [29, Eq. (C.45)].

The minimum sphere is the smallest sphere, centered on O0, that encloses the antenna.
The mathematical description of an antenna is most efficient if O0 is chosen so that the
minimum sphere is as small as possible. Additionally, we assume that ẑ0 is directed
away from the antenna , usually along an axis of mechanical symmetry. This axis often
corresponds closely to the axis of maximum gain or effective area. See Figures 19.1
and 19.18.
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The term reference position is used to describe the state (O0, x̂0, ŷ0, ẑ0) = (O, x̂, ŷ, ẑ)
for the test antenna and (O′

0, x̂′
0, ŷ′

0, ẑ′
0) = (z′ẑ, −x̂, ŷ, −ẑ) for the probe. When the test

antenna and probe are in their reference positions, they face each other along the lab-
oratory z axis (Figure 19.1). For any valid z′, there will be a plane z = z0 such that
the test antenna is contained in the region z < z0 and the probe is contained in the
region z > z0. It is convenient to begin in the reference positions when describing the
translations and rotations that effectively move the probe over the measurement surface.
(In some near-field scanning implementations, the test antenna rotates in the laboratory
coordinate system. See Figure 19.14, for example.)

19.2.2.3 Waveguide Feeds We assume that an antenna is coupled to a generator or
to a load through a single-moded, lossless waveguide feed (which may be coaxial). Phase
is measured relative to a reference plane that is usually located at the point (waveguide
port) where the antenna connects to the RF system. See Refs. 25 and 30 for a complete
discussion of waveguide circuit theory.

The power accepted by a transmitting antenna is

P0 = K|a0|2
(
1 − |�|2) (19.11)

where a0 is the (complex) amplitude of the incident waveguide mode and � is the
reflection coefficient looking into the antenna through its feed.

The constant of proportionality K is arbitrary since it depends on the normalization
chosen for the waveguide modes. Once K is specified, |a0| can be uniquely determined
by a measurement of power. (The phase of a0 is often not important.) For convenience
we use

K = 1

2k2Z0
(19.12)

Thus a0 has the dimension V/m.

19.2.2.4 Transmitting and Receiving Functions Far from an antenna that is
transmitting, the radiated electromagnetic fields can be characterized simply:

z

y

x

z0

z′0

x0ˆ

ˆ

ˆ

ˆ

ˆ

x̂′0

y0

y′0O0

O′0

Figure 19.1 A test antenna and a probe in their reference positions in the laboratory coordinate
system; that is, (O0, x̂0, ŷ0, ẑ0) = (O, x̂, ŷ, ẑ) and

(
O′

0, x̂′
0, ŷ′

0, ẑ′
0

) = (
z′ẑ,−x̂, ŷ, −ẑ

)
.
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E(r) ∼
r→∞ a0t(r̂)

exp(ikr)

ikr
, r̂ · t(r̂) = 0

H(r) ∼
r→∞

1

iZ0
ir̂ × E(r)

(19.13)

The transmitting function t(r̂) depends only on direction, which is specified by the unit
vector r̂.

Next, consider a plane wave (Eq. (19.7))

Epw(r) = 1

2π
A(k̂) exp(ik · r)

that is incident on an antenna that is receiving. The receiving function s(k̂) is defined so
that the received signal is

w = (1 − ���)b0 = s(k̂) · A(k̂) (19.14)

Here, b0 is the (complex) amplitude of the emergent waveguide mode and �� is the
reflection coefficient of the load; that is, w is the amplitude of the emergent waveguide
mode that would be present were the load nonreflecting.

The forms of the functions t and s depend on the position (location and orientation) of
the antenna in the laboratory coordinate system. For the special case (O0, x̂0, ŷ0, ẑ0) =
(O, x̂, ŷ, ẑ) in which the antenna is located at the origin and is pointed in the ẑ direction,
we add a subscript 0, so that

t(k̂) → t0(k̂), s(k̂) → s0(k̂) (19.15)

For the special case (O0, x̂0, ŷ0, ẑ0) = (O, −x̂, ŷ, −ẑ) in which the antenna is located at
the origin and is pointed in the −ẑ direction, we add a subscript π , so that

t(k̂) → tπ (k̂), s(k̂) → sπ(k̂) (19.16)

The functions tπ (r̂) and sπ(r̂) can be obtained by rotating t0(r̂) and s0(r̂) by 180◦ about
the laboratory y axis.

In accordance with our conventions, we may take

s(k̂) = t(−k̂) (19.17)

when an antenna is reciprocal . See Kerns [25, Chap. II, Appendix A] for a detailed
discussion of reciprocity.

19.2.2.5 Basic Antenna Parameters Following IEEE Standard 145-1993 [31],
the gain G(r̂) and effective area σ(r̂) of an antenna are

G(r̂) = 4π

1 − |�|2 ‖t0(r̂)‖2 (19.18)
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σ(r̂) = λ2

1 − |�|2 ‖s0(r̂)‖2 (19.19)

When an antenna is reciprocal (Eq. (19.17)),

σ(r̂) = λ2

4π
G(−r̂) (19.20)

We use the term pattern to refer to a transmitting or receiving “function” of unspecified
normalization. Any pattern can be normalized to satisfy Eq. (19.18) or (19.19) if � is
known and if the gain or effective area is available in some direction.

The directivity D(r̂) is given by

D(r̂) = G(r̂)
P0

PT

= 4π∫ 2π

0

∫ π

0 ‖t0(r̂)‖2 sin θ dθ dϕ
‖t0(r̂)‖2 (19.21)

where PT is the total radiated power. Due to ohmic losses, PT < P0 and so G(r̂) < D(r̂).
Equation (19.21) holds regardless of the normalization used for the pattern. Calculation
of directivity in planar or cylindrical scanning is subject to truncation error because the
measurement surfaces never completely enclose the test antenna. Spherical scanning,
however, provides the simple result (see Eq. (19.60))

∫ 2π

0

∫ π

0
‖t0(r̂)‖2 sin θ dθ dϕ =

∑
nm

(∣∣t1
nm

∣∣2 + ∣∣t2
nm

∣∣2
)

(19.22)

In addition to the above parameters, the equivalent isotropic radiated power (EIRP)
[31]

EIRP (r̂) = G(r̂)P0 (19.23)

is often of interest, particularly for communication satellite applications. Near-field mea-
surement of EIRP may require a specialized technique since the antenna’s waveguide
port is not accessible in some systems [32].

19.2.2.6 Miscellaneous Conventions We assume the “standard” branch when
specifying square roots; that is, if

a + ib =
√

x + iy

then a ≥ 0, b ≥ 0 when y ≥ 0, and b < 0 when y < 0. In particular, the square root of
a nonzero real number is either positive real or positive imaginary .

Quantities associated with a probe are marked with primes (single or double) when
such distinctions are desirable.

In this development, the probe always receives and the test antenna always transmits.
Transmission equations for transmitting probes and receiving test antennas may be found
by straightforward generalization of our arguments. For the convenience of the reader,
however, Appendix A lists transmission equations for transmitting probes and receiving
test antennas.
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For the most part, theories of near-field planar, spherical, and cylindrical scanning have
developed independently. We have attempted to bring some uniformity to the notation.
Here, for example, (1) modal functions are dimensionless, (2) pattern functions (and the
scattering matrix, in general) are dimensionless, and (3) the modal coefficients carry the
dimensions of the electric field (V/m).

19.2.3 Planar Scanning

19.2.3.1 Plane Wave Representation Scalar solutions of Eq. (19.6), separated in
Cartesian coordinates (Figure 19.2), are given by plane waves

uαβ(r) = 1

2π
exp(ik · r) (19.24)

= 1

2π
exp(iαx + iβy) exp(iγ z)

where
k · k = k2

In Eq. (19.24) we restrict k so that

kx = α, ky = β, kz = γ

−∞ < α, β < ∞
γ =

√
k2 − α2 − β2

(19.25)

In formulas where α, β, or γ appear explicitly, it is to be understood that k = αx̂ +
βŷ + γ ẑ.

When γ is real (corresponding to k2 > α2 + β2), uαβ(r) describes a plane wave that
propagates into the half-space z > z0. When γ is imaginary (corresponding to k2 <

α2 + β2), uαβ(r) is an “evanescent” wave that decays exponentially as z increases. When

x

z

y

O0

O′0

x0

x′0

y0ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

y′0

z0

z′0

Figure 19.2 Planar scanning geometry. The scan plane is z = d. The test antenna is in its reference
position (see Figure 19.1). The probe is shown at the position (x, y, z) with x = d/2, y = d/2,
and z = d . Furthermore, x̂′

0 = −x̂, ŷ′
0 = ŷ, and ẑ′

0 = −ẑ.
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sources are confined to the region z < z0, the functions uαβ(r) form a complete basis for
representing fields in the free-space region z > z0.

Vector solutions of Eqs. (19.4) and (19.6) follow directly from the scalar solutions
(Eq. (19.24)):

mαβ(r) = 1

k
∇ × nαβ(r) = uαβ(r)e1(k̂)

(19.26)

nαβ(r) = 1

k
∇ × mαβ(r) = uαβ(r)e2(k̂)

k̂ · mαβ(r) = k̂ · nαβ(r) = 0 (19.27)

Here,

e1(r̂) =



ẑ × r̂√
1 − (ẑ · r̂)2

, r̂ �= ±ẑ

±ŷ, r̂ = ±ẑ
(19.28)

e2(r̂) = ir̂ × e1(r̂)

Equation (19.27) is a direct restatement of Eq. (19.4).
The electromagnetic fields of a test antenna (in the reference position) can be

expanded as

E(r) = a0

∫ ∞

−∞

∫ ∞

−∞

[
t1
αβmαβ(r) + t2

αβnαβ(r)
] dα dβ

γ k

iZ0H(r) = a0

∫ ∞

−∞

∫ ∞

−∞

[
t2
αβmαβ(r) + t1

αβnαβ(r)
] dα dβ

γ k
, z > z0 (19.29)

When γ is real,
dα dβ

γ k
→ sin θ dθ dϕ (19.30)

so that dα dβ/γ k is a differential solid angle. For α2 + β2 > k2, the integrand in
Eq. (19.29) is exponentially attenuated with increasing |γ |. The resulting bandlimit has
important consequences in the practical implementation of the theory.

We write
t0(k̂) = t1

αβe1(k̂) + t2
αβe2(k̂) (19.31)

and, following Kerns [25] and Yaghjian [33, Eq. 8],

E(r) = a0

2π

∫ ∞

−∞

∫ ∞

−∞
t0

(
k̂
)

exp(ik · r)
dα dβ

γ k
, z > z0 (19.32)

Equation (19.32) is a superposition of vector plane waves of the form in Eq. (19.7) in
which k is restricted according to Eq. (19.25), so that kz = γ is positive real or positive
imaginary.
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A stationary-phase evaluation of Eq. (19.32) suggests the asymptotic result

E(r) ∼
r→∞ a0t0(r̂)

exp (ikr)

ikr
(19.33)

that confirms t0(r̂) as the transmitting function. Equation (19.33) can be justified rigor-
ously when the source is finite [34]. (A finite source can be enclosed within a sphere of
finite radius.)

The transverse field is

Et (r) = E(r) − ẑẑ · E(r) = a0

2π

∫ ∞

−∞

∫ ∞

−∞
tt (k̂) exp(ik · r)

dα dβ

γ k
(19.34)

This is a two-dimensional Fourier transform that can be inverted to give

tt (k̂) = γ k

2π

∫ ∞

−∞

∫ ∞

−∞

Et (r)
a0

exp(−ik · r)dx dy, z = d > z0 (19.35)

Because k̂ · t0(k̂) = 0,

t0(k̂) = 1

γ
k × [tt (k̂) × ẑ] (19.36)

Thus the transmitting function is determined by the transverse electric field on any plane
z = d > z0.

19.2.3.2 Probe Response We begin with the test antenna and probe in their refer-
ence positions. In planar scanning, the response of the probe is recorded as the probe is
translated (no rotation allowed) over the measurement plane z = z′ = d. See Figure 19.1.

In the laboratory coordinate system, position (location and orientation) of the probe is
described by the parameter set (x, y, z) with the probe reference position corresponding
to (0, 0, d). The position of a similarly translated test antenna is also described by these
parameters with the test antenna reference position corresponding to (0, 0, 0).

Consider the output when the test antenna is at its reference position and the probe
is at (x′, y ′, z′). The same output will be observed when the probe is at (0, 0, 0) and the
test antenna is at (−x ′, −y ′, −z′). This fact may be expressed mathematically as

w′(r′) = [P · E](x ′, y ′, z′) = [P · Ẽ](0, 0, 0) (19.37)

Here, P is a linear operator that represents the probe, E(r) is the field of the test antenna
(at its reference position), and Ẽ(r) is the field of the translated test antenna.

Now, let the “test antenna” radiate the plane wave

Eαβ(r) = 1

2π
t0(k̂) exp(ik · r)

so that

Ẽαβ(r) = 1

2π
t0(k̂) exp[ik · (r + r′)] = Eαβ(r) exp(ik · r′) (19.38)
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From Eqs. (19.37) and (19.38)

w′
αβ(r′) = exp(ik · r′)

[
P · Eαβ

]
(0, 0, 0) (19.39)

or
w′

αβ(r′) = s′
π(k̂) · t0(k̂) exp(ik · r′) (19.40)

where we have applied Eqs. (19.14) and (19.16). Equation (19.40) expresses the “obvi-
ous” fact that the output of a probe can vary only by a phase factor as it is translated
from location to location in the presence of an incident (propagating) plane wave field.
In the notation of Section 19.2.2.4,

s′
π(k̂) = s′

π(k̂) exp(ik · r′) (19.41)

where s′
π(k̂) is the receiving function of the translated probe at the location r′.

19.2.3.3 Kerns Transmission Equation In Eq. (19.32) we have a modal expan-
sion corresponding to Eq. (19.1). In Eq. (19.40) we have the response of the probe to
each mode corresponding to Eq. (19.2). Finally, corresponding to Eq. (19.3), we have
the Kerns transmission formula [25]

w′(r)
a0

=
∫ ∞

−∞

∫ ∞

−∞
s′
π (k̂) · t0(k̂) exp(ik · r)

dα dβ

γ k
(19.42)

Equation (19.42) is valid when multiple reflections can be ignored and when the probe
and test antenna can be physically separated by a plane perpendicular to ẑ.

The Fourier transforms in Eq. (19.42) may be inverted to yield

T ′
αβ = s′

π(k̂) · t0(k̂) = s1′
αβt1

αβ − s2′
αβt2

αβ

= γ k

4π2

∫ ∞

−∞

∫ ∞

−∞

w′(r)
a0

exp(−ik · r)dx dy, z = d (19.43)

with Eq. (19.31) and
s′
π(k̂) = s1′

αβe1(k̂) + s2′
αβe2(k̂) (19.44)

Since T ′
αβ can be computed from data w′(r)/a0 measured on the plane z = d, Eq. (19.43)

provides one equation for the two unknown components of t0(k̂). Data from a second
probe are needed to provide sufficient information to solve for t0(k̂). With two probes,
we have the linear system


 T ′

αβ

T ′′
αβ


 =


 s1′

αβ −s2′
αβ

s1′′
αβ −s2′′

αβ





 t1

αβ

t2
αβ


 (19.45)

Here, quantities associated with the second probe are marked with a double prime. Thus


 t1

αβ

t2
αβ


 = −i

k̂ · (
s′
π × s′′

π

)

 −s2′′

αβ s2′
αβ

−s1′′
αβ s1′

αβ





 T ′

αβ

T ′′
αβ


 (19.46)
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Obviously, probes should be selected so that s′
π

(
k̂
) × s′′

π

(
k̂
) �= 0. If the first probe is

linearly polarized, a “second” probe may be realized by rotating the first probe by 90◦

about its z axis.
In the most general setting, the Kerns transmission formula may be written

w′

a0
=

∫ ∞

−∞

∫ ∞

−∞
s′(k̂) · t(k̂)

dα dβ

γ k
(19.47)

This describes the coupling between two arbitrarily positioned antennas, provided they
can be separated by a planar surface (which is used to define the z direction). From this
point of view, both the spherical and cylindrical transmission formulas may be considered
special cases.

19.2.4 Spherical Scanning

19.2.4.1 Spherical Wave Representation Scalar solutions of Eq. (19.6), sepa-
rated in spherical coordinates (Figure 19.3), are given by spherical waves

unm(r) = fn(kr)Ynm(r̂) (19.48)

fn(x) = inh(1)
n (x)

(See Ref. 35, for example). Here, the h
(1)
n are spherical Hankel functions of the first

kind and the Ynm are (scalar) spherical harmonics. The multipole index is a nonnegative
integer, n = 0, 1, . . .. For a given n, the azimuthal (or component) index is an integer m

z

y

x

r

O0
x0

x′0

y0 y′0

z0

z′0

ˆ

ˆ

ˆ
ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

q

q

j

j

c

Figure 19.3 Spherical scanning geometry. The scan sphere is r = d. The test antenna is in its
reference position (see Figure 19.1). The probe is shown at the position (r, ϕ, θ, χ) with r = d,
ϕ = π/4, and θ = π/3. Furthermore, ŷ′

0 = ϕ̂ when χ = 0, ŷ ′
0 = θ̂ when χ = −π/2, and z′

0 = −r̂.
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in the range −n ≤ m ≤ n. (The nth multipole has 2n + 1 components.) Scalar spherical
waves satisfy the radiation condition

unm(r) ∼
r→∞ Ynm (r̂)

exp(ikr)

ikr
(19.49)

and the functions unm(r) form a complete basis for representing fields in free space out-
side the minimum sphere r = r0 that contains the sources. The plane wave representation

unm(r) =
∫ ∞

−∞

∫ ∞

−∞
Ynm

(
k̂
)
uαβ (r)

dα dβ

γ k

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
Ynm

(
k̂
)

exp (ik · r)
dα dβ

γ k
, z > 0 (19.50)

can be established rigorously. See Eq. (19.24).
Vector solutions of Eqs. (19.4) and (19.6) follow directly from the scalar solutions

(Eq. (19.48)):

mnm(r) = 1

k
∇ × nnm(r) = 1√

n (n + 1)
Lunm(r)

(19.51)

nnm(r) = 1

k
∇ × mnm(r)

where the differential operator L is

L = 1

i
r × ∇ = i

sin θ
θ̂∂ϕ − iϕ̂∂θ = i

sin θ
∂ϕ θ̂ − i

sin θ
∂θ sin θ ϕ̂ (19.52)

That mnm and nnm are solutions of Eq. (19.6) is a consequence of the commutation
relationships ∇2L = L∇2 and ∇2∇ = ∇∇2. Written out more fully,

mnm(r) = fn (kr) X1
nm (r̂)

(19.53)

nnm(r) = gn (kr) X2
nm (r̂) −

√
n (n + 1)

ikr
fn (kr) X0

nm (r̂)

with

fn (x) = inhn (x) ∼
x→∞

exp(ix)

ix (19.54)

gn (x) =
[

1

ix

d

dx
(xfn)

]
(x) ∼

x→∞
exp(ix)

ix

The (vector) spherical harmonics [36, Chap. 9]

X0
nm (r̂) = r̂Ynm (r̂)

X1
nm (r̂) = 1√

n (n + 1)
LYnm (r̂) = −

(
θ̂

m

sin θ
+ iϕ̂∂θ

) Ynm (r̂)√
n (n + 1)

(19.55)

X2
nm (r̂) = ir̂ × X1

nm (r̂)
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form an orthonormal set

∫ 2π

0

∫ π

0
Xa∗

νµ (r̂) · Xb
nm (r̂) sin θ dθ dϕ = δabδνnδµm (19.56)

We have the asymptotic formulas

mnm(r) ∼
r→∞ X1

nm (r̂)
exp (ikr)

ikr (19.57)

nnm(r) ∼
r→∞ X2

nm (r̂)
exp (ikr)

ikr

and the corresponding plane wave representations

mnm(r) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
X1

nm(k̂) exp (ik · r)
dα dβ

γ k (19.58)

nnm(r) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
X2

nm(k̂) exp (ik · r)
dα dβ

γ k
, z > 0

The electromagnetic fields of a test antenna (in the reference position) can be written
as the superposition

E(r) = a0

∞∑
n=1

n∑
m=−n

[
t1
nmmnm(r) + t2

nmnnm(r)
]

(19.59)

iZ0H(r) = a0

∞∑
n=1

n∑
m=−n

[
t2
nmmnm(r) + t1

nmnnm(r)
]

, r > r0

There is no monopole term (n = 0) in spherical wave expansions of the electromagnetic
fields in free space. Using Eq. (19.57), we obtain the asymptotic formula

E(r) ∼
r→∞ a0t0 (r̂)

exp (ikr)

ikr

where the transmitting function is

t0(r̂) =
∞∑

n=1

n∑
m=−n

[
t1
nmX1

nm(r̂) + t2
nmX2

nm(r̂)
]

(19.60)

From Eq. (19.59),

Et (r) = E (r) − r̂r̂ · E(r)

= a0

∞∑
n=1

n∑
m=−n

[
fn (kr) t1

nmX1
nm(r) + gn (kr) t2

nmX2
nm(r)

]
(19.61)
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An application of the orthogonalities in Eq. (19.56) yields

t1
nm = 1

fn (kr)

∫ 2π

0

∫ π

0
X1∗

nm(r̂) · E(r)
a0

sin θ dθ dϕ

(19.62)

t2
nm = 1

gn (kr)

∫ 2π

0

∫ π

0
X2∗

nm(r̂) · E(r)
a0

sin θ dθ dϕ, r = d > r0

Thus the transmitting pattern is determined by the tangential electric field on any sphere
r = d > r0.

19.2.4.2 Probe Response We begin with the test antenna and probe in their refer-
ence positions. In spherical scanning, the response of the probe is recorded as the probe
is rotated over a measurement sphere of radius r = r ′ = d. First the probe is rotated
by angle χ = χ ′ about the laboratory z axis. Then it is rotated by angle θ = θ ′ about
the laboratory y axis. Finally, the probe is again rotated about the laboratory z axis by
an angle ϕ = ϕ′. The members of the triplet (ϕ, θ, χ) are collectively known as Euler
angles .† (The positive sense of these angles is determined, in the usual manner, with the
“right-hand rule.”) The angles ϕ′ and θ ′ fix the location of the probe on the measurement
sphere. The angle χ ′ specifies a rotation about the probe axis. When χ ′ = 0, ŷ′

0 = ϕ̂,
and when χ ′ = −π/2, ŷ′

0 = θ̂ . See Figure 19.3.
In the laboratory coordinate system, position (location and orientation) of the probe is

described by the parameter set (r, ϕ, θ, χ) with the probe reference position corresponding
to (d, 0, 0, 0). The position of a similarly rotated test antenna is also described by these
parameters with the test antenna reference position corresponding to (0, 0, 0, 0).

Consider the output when the test antenna is at its reference position and the probe
is at

(
r ′, ϕ′, θ ′, χ ′). The same output will be observed when the probe is at its reference

position and the test antenna is at
(
0, −χ ′, −θ ′, −ϕ′,

)
. This fact may be expressed

mathematically as

w′ (r ′, ϕ′, θ ′, χ ′) = [P · E]
(
r ′, ϕ′, θ ′, χ ′,

) =
[
P · Ẽ

] (
r ′, 0, 0, 0

)
(19.63)

Here P is a linear operator that represents the probe, E (r) is the electric field of the test
antenna (at its reference position), and Ẽ (r) is the field of the rotated test antenna.

Now, let the “test antenna” radiate the vector spherical wave mnm (r) or nnm (r). As it
turns out, rotated n-poles can be reexpressed as superpositions of multipole components
with the same multipole index n:

m̃nm(r) =
n∑

µ=−n

mnµ(r)Dn
µm(−χ ′, −θ ′, −ϕ′)

(19.64)

ñnm(r) =
n∑

µ=−n

nnµ(r)Dn
µm(−χ ′, −θ ′, −ϕ′)

†The reader should be aware that several definitions of Euler angles are commonly used.
We apply the Euler angles as rotations about axes fixed in the laboratory coordinate system. An equivalent

result may be obtained by rotating about axes fixed in the body being moved. Begin with the laboratory and
body coordinate systems coincident: first rotate by angle ϕ about the body z axis; then rotate by angle θ about
the body y axis; finally, rotate by angle χ about the body z axis.
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We discuss the rotation functions Dn
µm later. From Eqs. (19.63) and (19.64)

w1′
nm

(
r ′, ϕ′, θ ′, χ ′) = [

P · m̃nm

] (
r ′, 0, 0, 0

) =
n∑

µ=−n

σ 1′
nµ(r ′)Dn

µm(−χ ′, −θ ′, −ϕ′)

w2′
nm

(
r ′, ϕ′, θ ′, χ ′) = [

P · ñnm

] (
r ′, 0, 0, 0

) =
n∑

µ=−n

σ 2′
nµ(r ′)Dn

µm(−χ ′, −θ ′, −ϕ′)

(19.65)

The translated probe coefficients are

σ 1′
nµ (r) = [

P · mnµ

]
(r, 0, 0, 0)

(19.66)
σ 2′

nµ (r) = [
P · nnµ

]
(r, 0, 0, 0)

Thus the response of the probe to the modes mnm(r) or nnm(r) can be summarized
in terms of the 2n + 1 numbers σ 1′

nµ or σ 2′
nµ that are the responses of the probe, in its

reference position, to the n-pole component functions.
Appendix C.2 discusses the evaluation of the translated probe coefficients (Eq.

(19.66)), which depend on the known receiving function of the probe.

19.2.4.3 Jensen Transmission Equation In Eq. (19.59) we have a modal expan-
sion corresponding to Eq. (19.1). In Eq. (19.65) we have the response of the probe to
each mode corresponding to Eq. (19.2). Finally, corresponding to Eq. (19.3), we have
the Jensen transmission formula [6]

w′(r, ϕ, θ, χ)

a0
=

∞∑
n=1

n∑
m=−n

n∑
µ=−n

[
σ 1′

nµ(r)t1
nm + σ 2′

nµ(r)t2
nm

]
Dn

µm(−χ, −θ, −ϕ) (19.67)

A full discussion of the rotation functions†

Dn
µm(−χ, −θ, −ϕ) = exp(iµχ)dn

µm(−θ) exp(imϕ) (19.68)

is beyond the scope of this chapter. The orthogonalities of the Dn
µm can be used to solve

for the unknown t1,2
nm . In particular, were the translated probe coefficients σ 1′

nµ and σ 2′
nµ

significant for |µ| ≤ Np, then measurements would be required at 2NP + 1 values of χ

for each (ϕ, θ). In order to require only two spin values per direction and to retain the
advantages of orthogonality, standard practice employs special probes [26] designed so
that σ 1′

nµ = σ 2′
nµ = 0 unless µ = ±1.

Consider such a µ = ±1 probe and define the measurement vector

w′(r) = w′
θ (r, ϕ, θ)θ̂ + w′

ϕ(r, ϕ, θ)ϕ̂ (19.69)

†We define the rotation functions according to the convention of Rose [37] and Tinkham [38]. To use the
convention of Edmonds [39], substitute Dn

µm(ϕ, θ, χ) for Dn
µm(−χ,−θ,−ϕ). To use the convention of Hansen

[26], substitute Dn
µm(χ, θ, ϕ) for Dn

µm(−χ,−θ,−ϕ).
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w′
ϕ(r, ϕ, θ) = w′(r, ϕ, θ, χ = 0)

(19.70)
w′

θ (r, ϕ, θ) = w′(r, ϕ, θ, χ = −π/2)

With

dn
±1,m(−θ) exp(imϕ) =

√
4π

2n + 1

(
θ̂ ∓ iϕ̂

) · X1
nm(r̂) (19.71)

the Jensen transmission formula Eq. (19.67) can be written [23, Eq. (27)]

w′(r)
a0

=
∞∑

n=1

n∑
m=−n

[
T 1′

nm (r) X1
nm(r̂) + T 2′

nm (r) X2
nm(r̂)

]
(19.72)

where in matrix form
 T 1′

nm

T 2′
nm


 = −i

√
4π

2n + 1


 σ 1′

n1 − σ 1′
n,−1 σ 2′

n1 − σ 2′
n,−1

σ 1′
n1 + σ 1′

n,−1 σ 2′
n1 + σ 2′

n,−1





 t1

nm

t2
nm


 (19.73)

Equations (19.67) and (19.72) are valid when multiple reflections can be ignored and
when the probe and test antenna can be physically separated by a plane perpendicular
to r̂.

Application of the orthogonalities in Eq. (19.56) gives

T 1′
nm =

∫ 2π

0

∫ π

0
X1∗

nm(r̂) · w′(r)
a0

sin θ dθ dϕ

(19.74)

T 2′
nm =

∫ 2π

0

∫ π

0
X2∗

nm(r̂) · w′(r)
a0

sin θ dθ dϕ, r = d

Finally, Eq. (19.73) provides two equations that can be solved for t1
nm and t2

nm:


 t1

nm

t2
nm


 =

i

√
2n + 1

16π

σ 1′
n1σ

2′
n,−1 − σ 1′

n,−1σ
2′
n1


 σ 2′

n1 + σ 2′
n,−1 −σ 2′

n1 + σ 2′
n,−1

−σ 1′
n1 − σ 1′

n,−1 σ 1′
n1 − σ 1′

n,−1





 T 1′

nm

T 2′
nm




(19.75)
Thus the transmitting function is determined by data w′(r)/a0 measured on the sphere
r = d. Unlike planar and cylindrical scanning, where the second probe may be distinct,
the present formulation of spherical scanning assumes that one probe is used in two
orientations. If this probe is circularly polarized, then Eqs. (19.73) will not be indepen-
dent; however, if a complete set of measurement data is obtained for both a right- and a
left-circularly polarized probe, then the resulting set of four equations can be solved for
t1
nm and t2

nm in a least-squares sense.
An example µ = ±1 probe is the conceptual ideal probe that directly measures a

component of the transverse electric field; however, physical µ = ±1 probes are not
difficult to construct (see Appendix A.2). In fact, any practical probe will approach a
µ = ±1 probe as the separation between test antenna and probe increases.

Formula (19.71) can be derived from first principles by forcing Eqs. (19.61) and
(19.67) to agree when the probe is ideal.

francis
Rectangle



Balanis c19.tex V3 - 07/03/2008 1:16am Page 946

946 NEAR-FIELD SCANNING MEASUREMENTS: THEORY AND PRACTICE

19.2.5 Cylindrical Scanning

19.2.5.1 Cylindrical Wave Representation Scalar solutions of Eq. (19.6), sepa-
rated in cylindrical coordinates (Figure 19.4), are given by the cylindrical waves

unβ(r) = 1√
2π

Fn (κρ) �n(ρ̂) exp (iβy) (19.76)

Fn (x) = in
√

π

2
H(1)

n (x)

�n(ρ̂) = 1√
2π

(
z + ix

ρ

)n

= exp(in�)√
2π

(19.77)

Here, the H
(1)
n are cylindrical Hankel functions of the first kind [40, Chap. 9] and

ρ =
√

r2 − y2

κ =
√

k2 − β2 (19.78)

ρ̂ = zẑ + xx̂
ρ

In order to keep the reference positions of the test antenna and the probe on the z axis,
we take the y axis as the axis of cylinders of constant ρ. Cylindrical waves propagate or
decay away from the y axis when κ is real (k > β) or imaginary (k < β), respectively.
If sources are confined to the region ρ < ρ0, then the functions unβ form a complete
basis for representing fields in free space ρ > ρ0. The plane wave decomposition

unβ(r) =
∫ ∞

−∞
�n(κ̂)uαβ(r)

dα

γ

= 1

2π

∫ ∞

−∞
�n(κ̂) exp(ik · r)

dα

γ
, z > 0 (19.79)

ρ
x

y

z

O0

O′0

x0

x′0

y0

y′0

z0

z′0ˆ

ˆ ˆ

Φ̂

Φ

Θ̂ˆ

ˆ

ˆ

ˆ

Figure 19.4 Cylindrical scanning geometry. The scan cylinder is ρ = d. The test antenna is in
its reference position (see Figure 19.1). The probe is shown at the position (ρ, �, y) with ρ = d,
� = π/3, and y = d/2. Furthermore, x̂′

0 = −�̂, ŷ′
0 = ŷ, ẑ′

0 = −ρ̂, and �̂ = �̂ × r̂.
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where

κ̂ = γ ẑ + αx̂
κ

(19.80)

can be established rigorously [41, Eqs. (3.753) and (3.754)]. See Eq. (19.24).
Vector solutions of Eqs. (19.4) and (19.6) follow directly from the scalar solutions of

Eq. (19.76):

mnβ(r) = 1

k
∇ × nnβ(r) = 1

iκ
ŷ × ∇unβ

(19.81)

= 1√
2π

[
−nFn(κρ)

κρ
ρ̂ + Gn(κρ)�̂

]
�n(ρ̂) exp(iβy)

nnβ(r) = 1

k
∇ × mnβ(r) = − β

ik
ŷ × mnβ(r) − κ

ik
unβ(r)ŷ

(19.82)

= 1√
2π

[
β

ik
Gn(κρ)ρ̂ + β

ik

nFn(κρ)

κρ
�̂ − κ

ik
Fn (κρ) ŷ

]
�n(ρ̂) exp (iβy)

with

Fn(x) = in
√

π

2
H(1)

n (x) ∼
x→∞

exp(ix)√
ix (19.83)

Gn(x) = 1

i

d

dx
Fn(x) ∼

x→∞
exp(ix)√

ix

From Eqs. (19.79), (19.81), and (19.82), we have the plane wave decompositions

mnβ(r) = 1

2π

∫ ∞

−∞
�1

n(k̂) exp(ik · r)
dα

γ (19.84)

nnβ(r) = 1

2π

∫ ∞

−∞
�2

n(k̂) exp(ik · r)
dα

γ
, z > 0

The angular functions are

�1
n(r̂) = ŷ × ρ̂�n(ρ̂) = �n(ρ̂)�̂

(19.85)
�2

n(r̂) = ir̂ × �1
n(ρ̂) = −i�n(ρ̂)�̂

The electromagnetic fields of a test antenna (in the reference position) can be written
as the superposition

E(r) = a0

∞∑
n=−∞

∫ ∞

−∞

[
t1
nβmnβ(r) + t2

nβnnβ (r)
] dβ

k
(19.86)

iZ0H(r) = a0

∞∑
n=−∞

∫ ∞

−∞

[
t2
nβmnβ(r) + t1

nβnnβ(r)
] dβ

k
, ρ > ρ0
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A substitution of Eq. (19.84) yields the plane wave expansion

E(r) = a0

2π

∫ ∞

−∞

∫ ∞

−∞
t0(k̂) exp(ik · r)

dα dβ

γ k
, z > ρ0

where the transmitting function is represented by the Fourier series

t0(r̂) =
∞∑

n=−∞

[
t1
n,ky/r�

1
n(r̂) + t2

n,ky/r�
2
n(r̂)

]
(19.87)

By inverting the Fourier transform and applying the orthogonality

∫ 2π

0
�∗

ν (ρ̂)�n(ρ̂)d� = δνn (19.88)

we can solve Eq. (19.86) for the cylindrical-mode coefficients

t1
nβ = 1

Gn(κρ)

k

2π

∫ 2π

0

∫ ∞

−∞

(
�̂ + nβ

κ2ρ
ŷ
)

· E(r)
a0

exp(−in� − iβy) dy d�

(19.89)

t2
nβ = 1

Fn(κρ)

k

2π

∫ 2π

0

∫ ∞

−∞

k

iκ
ŷ · E(r)

a0
exp (−in� − iβy) dy d�, ρ = d > ρ0

Thus the transmitting function is determined by the tangential electric field on any cylin-
der ρ = d > ρ0.

19.2.5.2 Probe Response We begin with the test antenna and probe in their refer-
ence positions. In cylindrical scanning, the response of the probe is recorded as the probe
is translated and rotated over a measurement cylinder of radius ρ = ρ′ = d. The probe
is translated in the ŷ direction by a distance y = y ′. Then the probe is rotated about the
y axis by an angle � = �′. (The positive sense of � is determined, in the usual manner,
with the “right-hand rule.”) See Figure 19.4.

In the laboratory coordinate system, position (location and orientation) of the probe is
described by the parameter set (ρ, �, y) with the probe reference position corresponding
to (d, 0, 0). The position of a similarly rotated and translated test antenna is also described
by these parameters with the test antenna reference position corresponding to (0, 0, 0).

Consider the output with the test antenna at its reference position and the probe at(
ρ′, �′, y ′). The same output will be observed with the probe at its reference position

and the test antenna at
(
0, −�′, −y ′). This fact may be expressed mathematically as

w′ (r′) = [P · E]
(
ρ′, �′, y ′) =

[
P · Ẽ

] (
ρ ′, 0, 0

)
(19.90)

Here P is a linear operator that represents the probe, E (r) is the field of the test antenna
(at its reference position), and Ẽ(r) is the field of the rotated and translated test antenna.

Now, let the “test antenna” radiate the vector cylindrical wave mnβ or nnβ . Then,

m̃nβ(r) = mnβ(ρ, � + �′, y + y ′) = mnβ(r) exp(in�′ + iβy ′)
(19.91)

ñnβ(r) = nnβ(ρ, � + �′, y + y ′) = nnβ(r) exp(in�′ + iβy ′)
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From Eqs. (19.90) and (19.91),

w1′
nβ(r′) = [

P · m̃nβ

] (
ρ′, 0, 0

) = σ 1′
nβ(ρ′) exp(in�′ + iβy ′)

(19.92)
w2′

nβ(r′) = [
P · ñnβ

] (
ρ′, 0, 0

) = σ 2′
nβ(ρ′) exp(in�′ + iβy ′)

The translated probe coefficients are

σ 1′
nβ(ρ) = [

P · mnβ

]
(ρ, 0, 0)

(19.93)
σ 2′

nβ(ρ) = [
P · nnβ

]
(ρ, 0, 0)

Thus w1′
nβ(r′) and w2′

nβ(r′) depend on the transverse location of the probe through a simple
phase factor.

Appendix C.3 discusses the evaluation of the translated probe coefficients in Eq.
(19.93), which depend on the known receiving function of the probe.

19.2.5.3 Transmission Equation In Eq. (19.86) we have a modal expansion cor-
responding to Eq. (19.1). In Eq. (19.92) we have the response of the probe to each
mode corresponding to Eq. (19.2). Finally, corresponding to Eq. (19.3), we have the
transmission formula [10–12]

w′(r)
a0

=
∞∑

n=−∞

∫ ∞

−∞

[
σ 1′

nβ(ρ)t1
nβ + σ 2′

nβ(ρ)t2
nβ

]
exp(in� + iβy)

dβ

k
(19.94)

(Brown and Jull [5] earlier developed a two-dimensional form of this equation.)
Equation (19.94) is valid when multiple reflections can be ignored and when the probe
and test antenna can be physically separated by a plane perpendicular to ρ̂.

Inversion of the Fourier transform and use of the orthogonality in Eq. (19.88) gives

T ′
nβ (ρ) = σ 1′

nβt1
nβ + σ 2′

nβt2
nβ

= k

4π2

∫ 2π

0

∫ ∞

−∞

w′(r)
a0

exp(−in� − iβy) dy d�, ρ = d (19.95)

Since T ′
nβ can be computed from data w′(r)/a0 measured on the cylinder ρ = d, Eq.

(19.95) provides one equation for the two unknown components of t0(k̂). Data from a
second probe are needed to provide sufficient information to solve for t0(k̂). With two
probes, we have the linear system

 T ′
nβ

T ′′
nβ


 =


 σ 1′

nβ σ 2′
nβ

σ 1′′
nβ σ 2′′

nβ





 t1

nβ

t1
nβ


 (19.96)

Here, quantities associated with the second probe are marked with a double prime. Thus
 t1

nβ

t1
nβ


 = 1

σ 1′
nβσ 2′′

nβ − σ 1′′
nβ σ 2′

nβ


 σ 2′′

nβ −σ 2′
nβ

−σ 1′′
nβ σ 1′

nβ





 T ′

nβ

T ′′
nβ


 (19.97)

If the first probe is linearly polarized, then a “second” probe may be realized by rotating
the first probe by 90◦ about its z axis.

francis
Rectangle



Balanis c19.tex V3 - 07/03/2008 1:16am Page 950

950 NEAR-FIELD SCANNING MEASUREMENTS: THEORY AND PRACTICE

19.3 NEAR-FIELD MEASUREMENT PRACTICE

19.3.1 General Considerations for Near-Field Scanning

19.3.1.1 Overview Here (Section 19.3.1) we discuss practical issues that are sub-
stantially the same for all implementations of near-field scanning methods. Later sections
deal with geometry-specific considerations: planar scanning (Section 19.3.2), spherical
scanning (Section 19.3.3), and cylindrical scanning (Section 19.3.4).

19.3.1.2 Implementation

RF Equipment Transformation from near field to far field requires complex data (both
amplitude and phase information). Figure 19.5 shows a typical antenna measurement
system. Key components include a phase/amplitude receiver and a phase-stable signal
source, such as that provided by a synthesizer. Because cables may be long, remote
mixing is often used to reduce attenuation.

Alignment Equipment Requirements and techniques vary from geometry to geometry,
but the basic alignment tools are the same. These include laser straightness interferom-
eters, electronic levels, and theodolites (with autocollimation capability). A laser tracker
can greatly reduce the time required by and improve the accuracy of some procedures.

Probe Characterization To evaluate the far-field properties of the test antenna from
near-field measurements, it is necessary to know the far-field properties of a reference
antenna (probe). These properties (gain, polarization, and pattern) are usually measured
with traditional far-field techniques, which are not in the scope of this chapter. See Refs.
42–44.

RF source

Test
antenna

RF

RF

Mixer
Positioner

Computer controller

Phase/amplitude
receiver

Positioner

LO

IF

Probe Mixer

RF

Reference channel

LO

IF

Signal
channel

Figure 19.5 Typical components of a near-field measurement system.
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Absorber and Absorber Placement The use of a good quality microwave absorber
helps to reduce the effects of stray signals. As discussed previously, the planar tech-
nique is best used for moderately to highly directive antennas. Since the antenna under
test (AUT) is fixed in the laboratory, it is usually sufficient to place absorber only in front
of the test antenna. The mounting structure behind the probe is especially critical. More
absorber coverage is needed for nondirective and/or rotating test antennas. For many
cylindrical and spherical scanning implementations, a full anechoic chamber is required.
Typically, a pyramidal absorber is used. The optimal size of the pyramids depends on
the operational frequency range.

Microwave absorber (even that treated with fire retardant salts) is flammable [45]. Once
ignited, absorber burns hot and produces many toxic gases, including cyanide, carbon
monoxide, carbon dioxide, and hydrochloric acid. Potential ignition sources should be
treated with care. These include high power RF radiation (beyond the rating of the
absorber), soldering and welding irons, and high intensity lights.

Cross-Talk and Leakage Cross-talk is the unwanted coupling between two ports
of a measurement system or subsystem. Examples include signals traveling from the
reference channel to the measurement channel of the receiver; signals traveling from the
x polarization port to the y polarization port of a dual-port probe; and signals traveling
from the LO (local oscillator) port to the RF port of a remote mixer. A good receiver
will have 80 dB or better of isolation between the reference and measurement channels.
Cross-talk problems are often due to poor isolation in switches, mixers, isolators, or
dual-port probes. The direct way to test for cross-talk is to insert a signal into one port
and measure the output at the other port.

Leakage is unwanted coupling due to imperfections in the cables, connectors, and
joints used to link the components of a measurement system. One technique of checking
for leakage is to make three near-field scans: a reference scan is taken with the AUT
transmitting and the probe receiving the signal; a second scan is taken with the transmit
signal terminated at the antenna and a third is taken with the receive signal terminated.
The second scan detects leakage in the circuit preceding the transmitting antenna The
third scan detects leakage in the circuit following the receiving antenna. (See Figure 19.6.)

The bias is the average leakage signal over the scan area. A nonzero bias can lead to
a spurious peak in the z direction.

A cross-talk/leakage contribution that is 20 dB lower than a signal of interest results
in a measurement uncertainty of about 1 dB.

Cable Flexing Ideally, the stressing of cables, connectors, and rotary joints should have
no effect on a measurement. Practically, of course, there will always be some undesirable
variation in amplitude and (especially) phase. The severity of the problem depends on
the quality and condition of the components. If the errors are repeatable, one can use
the reflectometer setup illustrated in Figure 19.7 to estimate the effect of cable flexing
and to correct for it. In this procedure, the probe (or test antenna) is replaced with a
reflectometer. The reflected signal is measured with respect to some reference point on
the scan surface, where for convenience the amplitude and phase are set to 1.0 and 0◦,
respectively. The measured signal at other points on the surface will be given by 1 + 2ε

for the amplitude and 2δφ for the phase, where ε is the amplitude error and δφ is the
phase error of the one-way path. An alternative method of measuring these errors is to
use the three-cable method of Hess [46]. This method involves the use of three cables
(with unknown properties) in pairs to determine the effect of cable flexing.
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Figure 19.6 Sample leakage test results. The solid line represents the measured near field of the
test antenna. The dashed line is a test result showing significant leakage problems. The − + −+
line is a test result showing more acceptable leakage levels.
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Figure 19.7 Reflectometer setup for estimating errors due to cable flexing.
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Noise and Dynamic Range Parseval’s theorem states that the root sum square (RSS)
noise in the near field is equal to the RSS noise in the far field. The far-field peak is
greater than the near-field peak by approximately the gain of the antenna. This implies
that for a 30-dB gain antenna, if the noise level were at −40 dB relative to the near-field
peak, we would expect it to be at about −70 dB relative to the far-field peak. A noise
level that is 20 dB lower than a signal of interest results in a measurement uncertainty
of about 1 dB.

Dynamic range is affected, not only by the noise level, but also by receiver saturation
at high signal levels.

Nonlinearity Many receivers that have been manufactured, since about 1990, and used
for antenna measurements are fairly linear in their optimal operating ranges. However,
other receivers, especially those manufactured earlier, may exhibit significant nonlinear-
ity. The effects of nonlinearity can be mitigated through comparison with a calibrated
rotary vane or step attenuator. The system linearity can be evaluated by inserting a cal-
ibrated rotary vane attenuator. The setting of the attenuator is varied and the receiver
output compared to the calibrated value of the attenuator. One obtains results similar to
those in Table 19.2, where measurements are typically made relative to some reference
point in the near field. (Table 19.2 is not intended to represent any particular receiving
system.) In Table 19.2, column 2 represents the best value of the attenuation for the
attenuator setting in column 1. Column 3 is the receiver reading for that attenuation. For
example, for an attenuator setting of 30 dB, the calibrated attenuation is 30.02 dB and
the receiver reading is −29.96 dB. That is, the receiver reading is 0.06 dB high since
it should be −30.02 dB. This information can be used to generate a correction to the
receiver output to obtain a calibrated value for each near-field data point.

Many modern devices, however, have better linearity than the rotary vane attenuator.
In this case, it makes no sense to construct and use a table to correct the receiver output;

TABLE 19.2 Attenuator Calibration

Attenuator Calibrated Attenuator Receiver
Setting (dB) Value (dB) Reading (dB)

0 0 0
2 2.00 − 2.00
4 4.00 − 4.00
6 6.01 − 6.01
8 8.01 − 8.01

10 10.01 −10.01
12 12.00 −12.00
14 14.00 −14.00
16 15.99 −15.99
18 17.99 −17.99
20 19.99 −19.99
25 24.98 −24.99
30 30.02 −29.96
35 35.02 −35.08
40 40.03 −40.12
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however, this linearity test is still useful to detect abnormalities due to, for example, a
faulty or improperly biased mixer.

Normalization There are several methods of determining the normalization ratios
(b′

0/a0 and b′′
0/a0). (1) Measure the insertion loss (a measurement of the power with

the probe antenna and test antenna inserted in the circuit relative to the power with
the generator and load connected directly together without the antennas) at a near-field
reference point, as illustrated in Figure 19.8. The insertion loss measurement requires
multiple connections and disconnections, so a connector of high quality is required. (2)
In the gain substitution method, a known reference antenna is scanned to calibrate the
measurement system. In this method we do not need to know the probe gain. (3) If the
ohmic losses are negligible or can be calculated, then the gain can be determined from
the directivity, Eq. (19.21). (4) The normalization can be accomplished using absolute
power measurements.

To normalize the two polarization components relative to each other, it is necessary
to refer them to a common signal. This can be done by measuring the signal at some
near-field reference point of each component relative to the through connection (with
the generator and load hooked directly together). Both the amplitude and phase must be
determined in order to perform the probe correction accurately.

19.3.2 Planar Scanning Measurements

19.3.2.1 Overview of Planar Scanning In the planar scanning geometry, the test
antenna is normally fixed and the probe antenna moves over the surface of a plane in front
of the AUT. The probe and scanner act as an x –y recorder. Because of truncation effects,
the planar near-field scanning geometry is most useful for measuring moderately to highly
directive antennas. For antennas with broad beams, the use of the planar near-field method
is not advised since much of the energy will not be intercepted by a finite measurement

Mixer

Mixer

Attenuator

Load

Load

Generator

Generator

Antenna
Under
Test Probe

10 dB Pad

Mixer

Coupler

Reference Line

LO

Source

Receiver

Figure 19.8 Illustration of the insertion loss measurement. The attenuator setting is usually higher
for the generator-to-load connection to avoid nonlinearity effects and damage to the mixer.
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region. Data are usually acquired “on the fly” in the scanning direction (e.g., the y

direction). The probe is then stepped in the orthogonal direction (e.g., the x direction)
and scanning reinitiated in the scanning direction.

19.3.2.2 Implementation

Alignment A properly aligned planar scanning measurement setup satisfies the fol-
lowing requirements. (1) The x and y axes are perpendicular. Furthermore, the plane
over which the probe moves must be flat to within a small fraction of a wavelength
(typically 0.01λ–0.02λ). (2) The probe z axis is perpendicular to the scan plane. The
probe y axis must be parallel to the laboratory y axis. (3) The AUT coordinate system
must be parallel to the laboratory coordinate system. (Translational displacement from
the reference position produces only a phase factor in the far field, which is usually
unimportant.)

The flatness required of the scan plane depends on the accuracy requirements and the
nature of the error [47, Eqs. (53)–(61)]. For example, periodic position errors produce
larger errors in the pattern, but these errors are concentrated in specific directions. The
scan plane can be efficiently aligned or characterized by use of a laser tracker. Often, a
mirror is positioned parallel to the scanner as a reference in the alignment of the probe
and AUT.

The alignment of the probe may be accomplished by aligning a theodolite to the
reference mirror mentioned above and using the autocollimation feature of the theodolite.
Mirrors used for alignment should be of high quality with good optical surfaces and
parallel front and back surfaces.

The AUT is generally aligned relative to an aligned probe.

Sampling Criteria Sampling considerations require that two data points be acquired
for the shortest period in the measured data. Provided the measurements are acquired in
a region where the evanescent (nonpropagating modes) are unimportant, increments of
less than λ/2 in both x and y will generally satisfy the sampling criteria. However, there
are error mechanisms that have periods that are less than a wavelength. In these cases,
a sample spacing of less than λ/2 is necessary to prevent such errors from being aliased
into the pattern.

Failure to satisfy the sampling criteria will lead to aliasing. One way to test for aliasing
is to acquire data at intervals of much less than λ/2 (e.g., 0.1λ) and to check whether
the pattern changes when fewer points (e.g., every other point) are used. Figure 19.9
shows how the root mean square error changes with spacing interval for a sample slotted
waveguide array. Since this array had low sidelobes and measurements were required
down to −60 dB, it was necessary to use spacing intervals of 0.4λ or less. The smaller
spacing size is required because of the high frequency errors (see Figure 19.10) that
occur due to probe–AUT multiple reflections. These errors are associated with the regular
spacing between the slotted elements.

Scan Area Truncation The theory assumes an infinite scan plane and this is obviously
not practical. Acquiring data over a finite area has two effects. First, the pattern beyond
±θv is invalid [47], where

θv = arctan

(
L − a

2d

)
(19.98)
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Figure 19.9 Example of the RMS error as a function of spacing size. Larger spacings lead to
higher errors due to aliasing effects.
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Figure 19.10 Near-field cut showing the ripple due to multiple reflections between the probe
and the slots of the Ultralow Sidelobe Array (ULSA). The period of these ripples requires spacing
sizes of less than about 0.38λ to avoid unacceptable aliasing errors.
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Figure 19.11 Illustration of the planar truncation geometry showing the angle of validity θv .

L is the scan length, a is the AUT diameter, and d is the separation distance between
the AUT aperture and the scan plane (see Figure 19.11). Second, there are errors in the
valid region due to ringing caused by the discontinuity at the edge of the scan plane.
Yaghjian [48, p. 29] showed that this truncation error can be estimated from a knowledge
of the measured data on the perimeter of the scan area. To determine whether the scan
area is large enough, we set the data in the outer perimeter of the scan area to zero and
observe how much the computed far field changes. As a rule of thumb, the scan area
should be large enough so that measurements, at the edges, are at least 30 dB below (and
preferably 40 dB or more below) the near-field peak.

Positioning Tolerances and Position Correction The fast Fourier transform, which
provides an efficient near-field-to-far-field transform for the planar geometry, requires
measurement points to be located on the plane z = d in a regular grid, equispaced in
x and equispaced in y. Errors can occur in the z coordinate (perpendicular to the scan
plane) due to imperfections in the scanner (see Figure 19.12). Errors can occur in the
step coordinate due to inertia in the scanner and errors in the y rails, which limit the step
resolution (see Figure 19.13). Lastly, errors can occur in the scan coordinate due to errors
in the x rails, the position encoders, the trigger timing accuracy, and the time to acquire a
measurement. Newell [47, Eqs. (53)–(61)] and Yaghjian [48, Eq. (61)] may be consulted
to estimate the errors in the far-field pattern due to position errors. Alternatively, one can
use a laser tracker to determine the actual positions where the data are acquired and use
a position-correction method such as that developed by Wittmann et al. [49] to perform
an efficient near-field-to-far-field transform.

In addition, other sampling grids have been proposed [50–53]. The method of
Wittmann et al. [49] can be used to process data acquired on a “nonstandard” grid.

Choosing a Separation Distance Several factors must be taken into account when
choosing a probe–test antenna separation distance. First, we must ensure that evanescent
(nonpropagating) modes do not contribute significantly to the measured near-field data
(since it is extremely difficult to determine the response of the probe to these modes).
A minimum separation of 3λ is often sufficient. The second consideration is that, as the
separation distance increases, the valid region of the pattern decreases for a given scan
area (see Eq. (19.98)). Thus we must choose a separation distance that allows adequate

francis
Rectangle



Balanis c19.tex V3 - 07/03/2008 1:16am Page 958

958 NEAR-FIELD SCANNING MEASUREMENTS: THEORY AND PRACTICE

Antenna
Under
Test

Probe

Upper x-axis rail

Ideal
plane

Y-axis
rail

Lower x-axis rail

Planar scanner

Figure 19.12 Illustration of z position error.
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Figure 19.13 Illustration of the step position error. For the NIST planar scanner the step axis
corresponds to the horizontal (x) axis.

pattern coverage. The final consideration is that of probe–AUT multiple reflections.
When the signal travels from the transmitting antenna to the receiving antenna, not all
the signal is received. Some of this signal is scattered from the receiving antenna back
to the transmitting antenna and re-reflected to the receiving antenna. These reflections
are not accounted for in the practical implementation of the theory. Multiple reflection
errors generally increase with decreasing separation distance. It is preferable to choose a
separation distance where the amplitude of the variation is smaller and where the gradient
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is small. The multiple reflection effect can be estimated by taking measurements on two
planes separated by λ/4, calculating the far field for each measurement, and computing
the difference, direction by direction.

In choosing a separation distance, the need of smaller separation distances to increase
pattern coverage (and improve signal to noise due to limited power) must be counterbal-
anced with the need to increase separation distance to decrease the effects of multiple
reflections and evanescent modes.

Choosing a Probe As shown in Section 19.2.3.3, probe correction for planar near-field
measurements is performed direction by direction after the transformation to the far field.
One consequence is that if the probe has a null in its pattern, the uncertainty in the probe
correction for that direction will be large. In planar scanning the probe should have good
sensitivity in any direction for which we need an accurate determination of the AUT
pattern.

Experience shows that the closer the probe and test antenna are in gain, the worse the
multiple reflections will be. Thus the gain of the probe should be considerably less than
that of the test antenna. However, if the gain is too small, then the insertion loss will
be large and cannot be measured accurately. These factors lead us to generally choose a
probe that has a gain that is approximately 20–30 dB less than that of the test antenna.

Finally, the return loss of the probe should be at least 10 dB (preferably 20 dB or
more) to reduce the impedance mismatch. Corrections can be made for the impedance
mismatch, but larger mismatch corrections are usually accompanied by larger measure-
ment uncertainties.

Probe Correction The theory of probe correction (Section 19.2.3.3) requires the com-
plex far-field patterns of two probes. The amplitude and phase of the second probe pattern
must be known relative to the first probe pattern. If the second probe is the first probe
rotated by 90◦ (as might be the case if one uses a linearly polarized probe to measure
first one polarization and then the other), then the second probe pattern is the first probe
pattern rotated by 90◦. (For circularly polarized probe, the orthogonal polarization cannot
be obtained by rotating the probe.) If the probe is a single antenna with more than one
port (for different polarizations), then we must know the relative phase and amplitude
between the ports. The amplitude difference can be calculated from the difference in
gain between the ports. The phase difference must be measured (in the far field) by
switching between the ports [43].

19.3.3 Spherical Scanning Measurements

19.3.3.1 Overview of Spherical Scanning A basic spherical scanning geometry
is shown in Figure 19.3. There are a number of practical implementations of spherical
scanning. (See Figures 19.14 and 19.15 for examples.) In all of them, the probe effectively
moves over the surface of a sphere. We focus on the implementation of Figure 19.14 in
which the test antenna is mounted on a roll-over-azimuth positioner. In this case, in
contrast to the planar scanning case, it is the probe, rather than the AUT, that is fixed.
The test antenna rotates in the two angular coordinates (see Figure 19.14). The spin angle
χ is controlled at the probe, which is located on the laboratory z axis.

For AUTs with broad beams, the spherical near-field method is preferred because
radiation in all directions is intercepted by the probe. Either θ ′ or ϕ′ can be used as
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Figure 19.14 Spherical scanning with a roll-over-azimuth positioner. The inset shows the probe
as viewed from the test antenna.
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Figure 19.15 Spherical scanning with the probe on an arch and the test antenna on an azimuth
rotator.

the scanning direction. The test antenna is then stepped in the orthogonal direction and
scanning reinitiated in the scanning direction.

19.3.3.2 Implementation

Alignment A properly aligned roll-over-azimuth measurement setup satisfies the fol-
lowing requirements. (1) The azimuth (vertical) axis must be coincident with the labo-
ratory y axis. The roll (horizontal) axis must be coincident with the laboratory z axis
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when θ = 0. (2) The AUT coordinate system must be coincident with the laboratory
coordinate system when θ = 0 and ϕ = 0. (3) The probe z axis must be coincident with
the laboratory z axis. The probe y axis must be parallel to the laboratory y axis when
χ = 0.

Actual alignment procedures will vary from situation to situation. Because adjustments
tend to be mutually dependent, it is necessary to iterate any procedure until further
improvement is not practical. Perfect alignment is prevented, of course, by mechanical
imperfections. For example, due to a lack of stiffness, it is generally not possible to
maintain alignment of the za axis as a function of the roll angle ϕ. The alignment for
spherical scanning is considerably more complex and time consuming than the alignment
for planar or cylindrical scanning.

Sampling Criteria We must obtain enough data to determine the contributions of all
relevant spherical modes. The magnitudes of the modal coefficients are observed to drop
sharply for n > N , where N ∼ kr0 and r0 is the radius of the minimum sphere. (The
minimum sphere is the smallest sphere, centered on the origin of the laboratory coordinate
system, that encloses the radiating parts of the AUT.) Sampling considerations then imply
that

�θ, �ϕ ≤ 2π

2N + 1
(19.99)

To provide a margin of safety, N is often chosen so that N = kr0 + 10. As in the planar
case, undersampling leads to aliasing. A similar test can be performed for aliasing; that
is, we obtain data with spacing about one-tenth that required by Eq. (19.99) and compare
the results using all of the data with those obtained using every other point, then every
third point, and so forth. In spherical scanning, oversampling can be used to reduce the
effects of room reflections.

Scan Area Truncation In theory, data must be acquired over a complete sphere.
Sometimes there are blockages (e.g., from mounting structures) so that obtaining data
over a complete sphere becomes impossible. Acquiring data over a partial sphere has
two effects. First, the pattern beyond ±θv is invalid [26, p. 233], where

θv = θm − arcsin
( r0

d

)
(19.100)

where θm is the angle to which we obtain measured near-field data (see Figure 19.16),
and d is the radius of the measurement sphere. Second, as in the planar case, there are
errors in the valid region due to ringing. To determine whether the scan area is large
enough, we set the data in the outer perimeter of the scan area to zero and observe how
much the computed far field changes. As a rule of thumb, the scan area should be large
enough so that measurements, at the edges, are at least 30 dB below (and preferably
40 dB or more below) the near-field peak. Some mitigation of truncation effects can be
accomplished with a procedure such as that outlined in Wittmann et al. [54].

Positioning Tolerances and Position Correction The standard algorithm, which
provides an efficient near-field-to-far-field transform for the spherical geometry, assumes
that measurement points are located on the sphere r = d in a regular grid, equispaced
in θ and equispaced in ϕ. The position error must be small compared to the maximum
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d

r0

qv

qm

Measurement surfaceSource
Region

Figure 19.16 The spherical truncation geometry illustrating the angle of validity θv .

sample size allowed by Eq. (19.99). If one is able to determine the actual positions where
the data are acquired, a position-correction method, such as that developed by Wittmann
et al. [55], will provide an efficient near-field-to-far-field transform.

In addition, other sampling schemes have been proposed [56]. The method of
Wittmann et al. [55] can be used to process data acquired on a “nonstandard” grid.

Choosing a Separation Distance In choosing the separation distance between
the AUT and the probe (the measurement radius), we must consider the effects of
probe–AUT multiple reflections and the effects of noise. An increased separation will
reduce the effects of multiple reflections. However, increasing the separation tends to
decrease the signal level so that the relative noise level is higher. Unlike the situation for
planar scanning, an increase in the separation distance (measurement radius) decreases the
effect of truncation for spherical scanning, Eq. (19.100). In spherical scanning, the sepa-
ration between probe and AUT can never be less than the radius of the minimum sphere.

Choosing a Probe As shown in Section 19.2.4.3, the spherical transform relies on
the probe having some special properties. The probe must have only spherical modes
corresponding to µ = ±1. That is, the probe response must have the form A cos (χ + χ0),
where χ is the rotation angle about the z axis of the probe. Also, the spherical transform
theory assumes that the second probe (used for measuring the orthogonal polarization) is
the same as the first probe but rotated 90◦. Since a circularly polarized antenna rotated
by 90◦ has the same polarization but a different tilt angle, this means we cannot use a
circularly polarized probe in spherical scanning (but see the discussion after Eq. (19.75)).

As in the planar case, the gain of the probe should be considerably less than that of
the test antenna. However, if the gain is too small, then the insertion loss will be large
and cannot be measured accurately. These factors lead us to generally choose a probe
that has a gain that is approximately 20–30 dB less than the test antenna.

Finally, the return loss of the probe should be at least 10 dB (preferably 20 dB or
more) to reduce the impedance mismatch. Corrections can be made for the impedance
mismatch, but larger mismatch corrections are usually accompanied by larger measure-
ment uncertainties.
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Probe Correction The theory of probe correction (Section 19.2.4.3) requires the com-
plex far-field pattern of a single probe that is essentially linearly polarized. This probe
is used in two χ orientations.

19.3.4 Cylindrical Scanning Measurements

19.3.4.1 Overview of Cylindrical Scanning In common implementations of
cylindrical scanning, both the probe and the AUT move. The AUT rotates in the angular
coordinate �, while the probe is usually translated in the y (vertical) direction. The net
result is equivalent to a probe moving over the surface of a cylinder about the test antenna
(see Figure 19.4). The cylindrical scanning method is particularly useful for fan-beam
antennas, which have a broad beam in one plane but a narrow beam in the orthogonal
plane. For antennas with broad beams in both planes, the use of the spherical near-field
method is preferred because radiation in all directions will be intercepted by the probe.
Either � or y can be used as the scanning direction; that is, either the AUT is stepped in
� and the probe scanned in y, or the probe is stepped in y and the AUT scanned in �.

19.3.4.2 Implementation

Alignment Cylindrical scanning is typically accomplished by use of an azimuth rotator
for the � rotation and a vertical transport to move the probe in the laboratory y direction.
The rotator is aligned so that its axis is coincident with the laboratory y axis. The probe
is aligned so that ŷ′

0 = ŷ and ẑ′
0 = −ẑ at � = 0 (see Figure 19.4).

Sampling Criteria For the angular coordinate the sampling requirement for cylindrical
scanning is similar to that for the spherical scanning case (see Eq. (19.99)). For the
translational coordinate the sampling requirement is similar to that for the planar scanning
case (see Section 19.3.2.2). That is,

�� ≤ 2π

2N + 1 (19.101)

�y ≤ λ

2

where N ∼ kρ0 and ρ0 is the radius of the minimum cylinder. (The minimum cylinder is
the smallest cylinder, centered on the y axis, that encloses the radiating parts of the AUT.)

Scan Area Truncation The theory requires data over an infinite cylinder. Acquiring
data over a finite cylinder has two effects. First, the pattern beyond the cutoff angle is
invalid. For the angular coordinate, the azimuthal angle of validity Av is similar to the
spherical case (Figure 19.16) and is given by

Av = �m − arcsin
(ρ0

d

)
(19.102)

where �m is the truncation angle for the near-field scan and d is the radius of the
measurement cylinder. The elevation angle of validity Ev is similar to the planar angle
of validity (Figure 19.11) and is given by

Ev = arctan

(
Ly − ay

2d

)
(19.103)
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where Ly is the scan length in the y direction, and ay is the antenna extent in the y

direction. Second, as in the planar case, there are errors in the valid region due to ringing.
To determine whether the scan area is large enough, we set the data in the outer perimeter
of the scan area to zero and observe how much the computed far field changes. As a rule
of thumb, the scan area should be large enough so that measurements, at the edges, are
at least 30 dB below (and preferably 40 dB or more below) the near-field peak.

Positioning Tolerances and Position Correction The standard algorithm, which pro-
vides an efficient near-field-to-far-field transform for the cylindrical geometry, requires
measurement points to be located on the cylinder ρ = d in a regular grid, equispaced
in y and equispaced in �. The position error must be small compared to the maximum
sample spacing allowed by Eq. (19.101). A probe-position correction algorithm for cylin-
drical scanning, such as those developed for spherical and planar scanning, has not been
implemented to date, although such a scheme is certainly possible.

In addition, other sampling grids have been proposed [57].

Choosing a Separation Distance In choosing the separation distance between the
test antenna and the probe (the measurement radius), we must consider the effects of
probe–AUT multiple reflections, truncation, and noise. An increased separation will
reduce the effects of multiple reflections. However, increasing the separation distance
decreases the signal level, so that the relative noise level is higher. Increasing the sepa-
ration distance has mixed results on the truncation in cylindrical scanning. It decreases
the effects of truncation for the � direction (increases the angle of validity) but increases
the truncation effect in the y direction (reduces the angle of validity). For cylindrical
scanning, the separation between the probe and AUT cannot be less than the radius of
the minimum cylinder.

Choosing a Probe As in the planar case, the gain of the probe should be considerably
less than that of the test antenna. However, if the gain is too small, then the insertion
loss will be large and cannot be measured accurately. These factors lead us to generally
choose a probe that has a gain that is approximately 20–30 dB less than the test antenna.

The return loss of the probe should be at least 10 dB (preferably 20 dB or more)
to reduce the impedance mismatch. Corrections can be made for the impedance mis-
match, but larger mismatch corrections are usually accompanied by larger measurement
uncertainties.

Probe Correction The theory of probe correction (Section 19.2.5.3) requires the com-
plex far-field patterns of two probes. The amplitude and phase of the second probe pattern
must be known relative to the first probe pattern. If the second probe is the first probe
rotated by 90◦ (as might be the case if one uses a linearly polarized probe to measure
first one polarization and then the other), then the second probe pattern is the first probe
pattern rotated by 90◦. (For a circularly polarized probe, the orthogonal polarization
cannot be obtained by rotating the probe.) If the probe is a single antenna with more
than one port (for different polarizations), then we must determine the relative phase
and amplitude between the ports. The amplitude difference can be calculated from the
difference in gain between the ports. The phase difference must be measured (in the far
field) by switching between the ports [43].
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19.3.5 Sources of Measurement Uncertainty

No measurement is truly complete without an uncertainty analysis that provides an esti-
mate of how large the measurement error might be. A detailed analysis for estimating
the errors in planar scanning has been presented by Newell [47]. For spherical scanning,
an analysis of error sources has been done by Hansen [26, Chap. 6]. The sources of
uncertainty are similar in all three scanning geometries. Tables 19.3 and 19.4 show the
sources of uncertainty for test antenna gain and pattern, respectively. These tables are
similar to the 18-term uncertainty table found in Newell [47].

Measurements of the AUT gain and the relative pattern share many sources of uncer-
tainty. There are exceptions, however. The “probe relative pattern” uncertainty does not
affect the resulting gain uncertainty of the AUT unless the AUT’s main beam is steered
off axis. Also, when the second probe is the same as the first probe but rotated 90◦, the
AUT relative pattern uncertainty is not affected by uncertainty in the “probe gain” or in
the “impedance mismatch.”

Near-field scanning has been used successfully to measure low sidelobe arrays [58,
59]. One example, the pattern of the ULSA for 3.0 GHz, is shown in Figure 19.17.
The uncertainties for the measurement for this antenna are discussed in detail in Fran-
cis et al. [58]. The uncertainties relative to peak for directions other than the main
beam and the grating lobe (at about 46◦) are shown in Table 19.5. These values cor-
respond to a coverage factor of 2. (Were we to assume a normal distribution, a cover-
age factor of 2 would correspond to a 95% (2σ ) confidence level.) If an uncertainty
source in Table 19.4 is not listed in Table 19.5 that is because its contribution is
−100 dB or less. Table 19.6 shows the corresponding uncertainties versus sidelobe level.

TABLE 19.3 Sources of Uncertainty for Gain Measurement

Probe gain Probe–AUT multiple reflections
Probe alignment System nonlinearity
Probe relative pattern System dynamic range
AUT alignment Flexing cables
Normalization constant Temperature (drift) effects
Impedance mismatch Room scattering
Aliasing Leakage and cross-talk
Measurement area truncation Random errors
Probe position errors

TABLE 19.4 Sources of Uncertainty for Relative Pattern Measurement

Probe polarization ratio Probe position errors
Probe gain Probe–AUT multiple reflections
Probe alignment System nonlinearity
Probe relative pattern System dynamic range
AUT alignment Flexing cables
Normalization constant Temperature (drift) effects
Impedance mismatch Room scattering
Aliasing Leakage and cross-talk
Measurement area truncation Random errors
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Figure 19.17 Azimuth cut of the far-field pattern of the ULSA as determined on the NIST planar
near-field range. This pattern generally agrees with the ULSA pattern measured on a far-field range
to within the uncertainties of measuremment. Note the grating lobe at 46◦.

TABLE 19.5 Relative Pattern Uncertainties for the
ULSA

Uncertainty Level
Uncertainty Source (dB relative to peak)

Probe–AUT multiple reflections −65
Room scattering −70
Cable flexing −70
Position errors −75
Random errors −75
Leakage and cros-stalk −75
Truncation −90
Aliasing −90

Root sum square −62

TABLE 19.6 Relative Pattern Uncertainties Versus
Sidelobe Level

Sidelobe Level Uncertainty
(dB relative to peak) (dB)

−30 ±0.25
−45 +1.2, −1.3
−55 +3.2, −5.0
−60 +5.0, −13.3

francis
Rectangle



Balanis c19.tex V3 - 07/03/2008 1:16am Page 967

APPENDIX A: TRANSMITTING PROBE, RECEIVING TEST ANTENNA 967

In the main beam region and the direction of the grating lobe, the probe–AUT multiple
reflections are greater, and separate uncertainty tables are required for these directions.

19.4 SUMMARY

There are three geometries in which near-field scanning can be performed efficiently: pla-
nar, spherical, and cylindrical. As compared to far-field measurements, near-field scanning
measurements use less real estate and provide a more controlled environment.
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APPENDIX A: TRANSMITTING PROBE, RECEIVING TEST ANTENNA

Transmission formulas for cases when the probe transmits and the test antenna receives
can be developed via slight generalization of the foregoing arguments. We list some key
formulas.

Planar scanning: Corresponding to Eq. (19.42),

w(r)
a′

0

=
∫ ∞

−∞

∫ ∞

−∞
t′π(−k̂) · s0(−k̂) exp(ik · r)

dα dβ

γ k
(19.104)

Spherical scanning: Corresponding to Eqs. (19.67), (19.60), and (19.104),

w (r, ϕ, θ, χ)

a′
0

=
∞∑

n=1

n∑
m=−n

n∑
µ=−n

[
τ 1′
nµ(r)s1

nm + τ 2′
nµ(r)s2

nm

]
Dn

µm(−χ, −θ, −ϕ)

(19.105)

s0(r̂) =
∞∑

n=1

n∑
m=−n

[
s1
nmX1

nm(r̂) + s2
nmX2

nm(r̂)
]

(19.106)

τ 1′
nm(r) =

∫ ∞

−∞

∫ ∞

−∞
t′π

(−k̂
) · X1

nm(−k̂) exp(iγ r)
dα dβ

γ k (19.107)

τ 2′
nm(r) =

∫ ∞

−∞

∫ ∞

−∞
t′π (−k̂) · X2

nm(−k̂) exp(iγ r)
dα dβ

γ k

Cylindrical scanning: Corresponding to Eqs. (19.94), (19.87), and (19.132),

w(r)
a′

0

=
∞∑

n=−∞

∫ ∞

−∞

[
τ 1′
n,−β (ρ) s1

n,−β + τ 2′
n,−β (ρ) s2

n,−β

]
exp(in� + iβy)

dβ

k
(19.108)

s0(r̂) =
∞∑

n=−∞

[
s1
n,ky/r�

1
n(r̂) + s2

n,ky/r�
2
n(r̂)

]
(19.109)
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τ 1′
n,−β (ρ) =

∫ ∞

−∞
t′π (−k̂) · �1

n(−k̂) exp(iγρ)
dα

γ (19.110)

τ 2′
n,−β (ρ) =

∫ ∞

−∞
t′π (−k̂) · �2

n(−k̂) exp(iγρ)
dα

γ

In all geometries
w

a′
0

= w′

a0
(19.111)

when both the probe and test antenna are reciprocal.

APPENDIX B: SPECIAL PROBES

The use of µ = ±1 probes leads to significant simplifications in the practical implemen-
tation of spherical near-field scanning techniques. These probes are often constructed by
attaching a section of circular waveguide to a rectangular waveguide feed via a “smooth”
transition. The guides are joined so they have a common axis and the transition region
is designed so that the probe has reflection symmetry through two perpendicular planes.
Figure 19.18 shows a µ = ±1 probe intended for applications near 16 GHz.

The first few circular waveguide modes and their cutoff frequencies fc are given in
Table 19.7 [60, Sec. 2.3], where c is the speed of light and d is the inside diameter
of the guide. Because of symmetry, the rectangular guide will not respond to TEµν or

O0

y0ˆ

z0ˆ

x0ˆ

Figure 19.18 A Ku-band probe for spherical scanning measurements constructed from a section
of WR-62 waveguide, followed by a symmetric transition to circular guide, followed by a section
of circular waveguide. The length of each section is 5 cm. The inside diameter of the circular guide
is 2 cm. The waveguide flange is not shown. The fiducial coordinate system has been chosen so
that the origin is at the center of the circular aperture, the z axis is parallel to the probe axis, and
the y axis is perpendicular to the broad side of the rectangular guide.
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TABLE 19.7 Circular Waveguide Modes

Mode fc

TE11 1.841
c

πd

TM01 2.405
c

πd

TE21 3.054
c

πd

TE01, TM11 3.832
c

πd

TE31 4.201
c

πd

TMµν modes when µ is even. To obtain the required µ = ±1 dependence, the circular
waveguide must filter out only the TE31 (and higher order) modes. When d = 2.2 cm,
the TE31 mode is exponentially attenuated below 18.2 GHz and the probe will be useful
over the full Ku band (12.4–18 GHz).

APPENDIX C: TRANSLATED PROBE COEFFICIENTS

C.1 Planar Geometry

The Kerns transmission formula (Eq. (19.42)) can be written

w′(r)
a0

=
∫ ∞

−∞

∫ ∞

−∞

[
σ 1′

αβ(z)t1
αβ + σ 2′

αβ(z)t2
αβ

]
exp(iαx + iβy)

dα dβ

γ k
(19.112)

where the translated probe coefficients are

σ 1′
αβ (z) = [

P · mαβ

]
(0, 0, z) = s1′

αβ exp(iγ z)
(19.113)

σ 2′
αβ (z) = [

P · nαβ

]
(0, 0, z) = −s2′

αβ exp(iγ z)

This form is directly comparable to Eqs. (19.67) and (19.94). Evaluation of the trans-
lated probe coefficients is considerably more complicated in the spherical and cylindrical
geometries.

C.2 Spherical Geometry

The translated probe coefficients are defined in Eq. (19.66). Using the Kerns transmission
formula (19.42) and plane wave representations for the spherical waves (19.58),

σ 1′
nm(r) = [

P · mnµ

]
(r, 0, 0, 0) =

∫ ∞

−∞

∫ ∞

−∞
s′
π(k̂) · X1

nm(k̂) exp(iγ r)
dα dβ

γ k
(19.114)

σ 2′
nm(r) = [

P · nnµ

]
(r, 0, 0, 0) =

∫ ∞

−∞

∫ ∞

−∞
s′
π(k̂) · X2

nm(k̂) exp(iγ r)
dα dβ

γ k
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Introducing the spherical-harmonic expansion

s′
π(r̂) =

∞∑
ν=1

ν∑
µ=−ν

[
s1′
νµX1

νµ(r̂) + s2′
νµX2

νµ(r̂)
]

(19.115)

we have

σ 1′
nm =

∞∑
ν=1

[
B (ν, −m|nm) s1′

ν,−m + C (ν, −m|nm) s2′
ν,−m

]

σ 2′
nm = −

∞∑
ν=1

[
C (ν, −m|nm) s1′

ν,−m + B (ν, −m|nm) s2′
ν,−m

] (19.116)

with

B (ν, −m|nm) =
∫ ∞

−∞

∫ ∞

−∞
X1

ν,−m(k̂) · X1
nm(k̂) exp(iγ r)

dα dβ

γ k

C (ν, −m|nm) =
∫ ∞

−∞

∫ ∞

−∞
X2

ν,−m(k̂) · X1
nm(k̂) exp(iγ r)

dα dβ

γ k

(19.117)

Products of vector spherical harmonics can be expanded in scalar spherical harmonics
[24, Chap. 6]:

X1
ν,−m(k̂) · X1

nm(k̂) =
ν+n∑

�=|ν−n|
b (�0|ν, −m, nm) Y�0

(
k̂
)

X2
ν,−m(k̂) · X1

nm(k̂) =
ν+n∑

�=|ν−n|
c (�0|ν, −m, nm) Y�0

(
k̂
) (19.118)

so that

B (ν, −m|nm) =
ν+n∑

�=|ν−n|

√
π (2� + 1)f� (kr) b (�0|ν, −m, nm)

C (ν, −m|nm) =
ν+n∑

�=|ν−n|

√
π (2� + 1)f� (kr) c (�0|ν, −m, nm)

(19.119)

where we have used Eqs. (19.48), and (19.50) and the fact that

Ynm (ẑ) =
√

2n + 1

4π
δm0 (19.120)
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The coefficients in Eq. (19.118) are [24, see Chap. 7]

b (�0|ν, −m, nm) =
√

(2� + 1) (2ν + 1) (2n + 1)

16πν (ν + 1) n (n + 1)
[� (� + 1) −ν (ν + 1)−n (n + 1)]

×
(

� ν n

0 0 0

)(
� ν n

0 −m m

)
(19.121)

c (�0|ν, −m, nm) = −
√

(2� + 1) (2ν + 1) (2n + 1)

16πν (ν + 1) n (n + 1)

√[
�2− (ν − n)2] [

(ν + n + 1)2 −�2
]

×
(

� − 1 ν n

0 0 0

)(
� ν n

0 −m m

)
(19.122)

The 3-j symbols (which are scalars, not matrices) in these formulas may be computed
recursively.

For a µ = ±1 probe, we require the special cases

b (�0|ν, ±1, n, ∓1) =
√

(2� + 1) (2ν + 1) (2n + 1)

4π

× [� (� + 1) − ν (ν + 1) − n (n + 1)]2

4ν (ν + 1) n (n + 1)

(
� ν n

0 0 0

)2

(19.123)

c (�0|ν, ±1, n, ∓1) = ±
√

(2� + 1) (2ν + 1) (2n + 1)

4π

×
[
�2 − (ν − n)2] [

(ν + n + 1)2 − �2
]

4ν (ν + 1) n (n + 1)

(
� − 1 ν n

0 0 0

)2

(19.124)
The 3-j symbols in Eqs. (19.123) and (19.124) may be evaluated from the formulas

(
� ν n

0 0 0

)
= 0 (19.125)

when � + ν + n is odd, � < |ν − n|, or � > ν + n,

∑
�

(2� + 1)

(
� ν n

0 0 0

)2

= 1 (19.126)

ξ�

(
� − 1 ν n

0 0 0

)2

= ξ�+1

(
� + 1 ν n

0 0 0

)2

(19.127)

ξ� = [
�2 − (ν − n)2] [

(ν + n + 1)2 − �2] (19.128)
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Asymptotic formulas are available for σ 1′
nm and σ 2′

nm. Beginning with Eq. (19.114), a
stationary-phase evaluation yields

σ 1′
nm(r) ∼

r→∞ s′
π(ẑ) ·

∫ ∞

−∞

∫ ∞

−∞
X1

nm(k̂) exp(iγ r)
dα dβ

γ k

∼
r→∞ 2πfn(kr)s′

π(ẑ) · X1
nm(ẑ) (19.129)

σ 2′
nm(r) ∼

r→∞ s′
π(ẑ) ·

∫ ∞

−∞

∫ ∞

−∞
X2

nm(k̂) exp(iγ r)
dα dβ

γ k

∼
r→∞ 2πgn (kr) s′

π (ẑ) · X2
nm(ẑ) (19.130)

where

X1
nm(ẑ) = iẑ × X2

nm(ẑ) =
√

2n + 1

16π
(x̂ ± iŷ) δm,±1 (19.131)

Formulas (19.129) and (19.130) provide a convenient numerical check in the evaluation
of the translated probe coefficients. They also suggest, even for intermediate separa-
tions when the test antenna is in the “far field” of the probe, that practical probes are
approximately µ = ±1 and that on-axis properties of s′

π are most important.

C.3 Cylindrical Geometry

The translated probe coefficients are defined in Eq. (19.93). Using the Kerns transmission
formula (19.42) and plane wave representations for the cylindrical waves (19.84),

σ 1′
nβ (ρ) = [

P · mnβ

]
(ρ, 0, 0) =

∫ ∞

−∞
s′
π (k̂) · �1

n(k̂) exp(iγρ)
dα

γ

σ 2′
nβ (ρ) = [

P · nnβ

]
(ρ, 0, 0) =

∫ ∞

−∞
s′
π (k̂) · �2

n(k̂) exp(iγρ)
dα

γ

(19.132)

With the Fourier series representation

s′
π (r̂) =

∞∑
ν=−∞

[
s1′
ν,ky/r�

1
ν(r̂) + s2′

ν,ky/r�
2
ν(r̂)

]
(19.133)

it follows that

σ 1′
nβ (ρ) =

∞∑
ν=−∞

∫ ∞

−∞
s1′
νβ�1

ν(k̂) · �1
n(k̂) exp(iγρ)

dα

γ

=
√

2π

∞∑
ν=−∞

s1′
νβ

1

2π

∫ ∞

−∞
�ν+n(κ̂) exp(iγρ)

dα

γ

=
√

2π

∞∑
ν=−∞

s1′
νβuν+n,β (ρẑ)
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= 1√
2π

∞∑
ν=−∞

s1′
νβFν+n (κρ) (19.134)

where we have used Eqs. (19.76) and (19.79). Similarly,

σ 2′
nβ (ρ) = − 1√

2π

∞∑
ν=−∞

s2′
νβFν+n (κρ) (19.135)

Asymptotic formulas are available for σ 1′
nβ and σ 2′

nβ [12, 61]: Beginning with Eq.
(19.134), a stationary-phase evaluation yields

σ 1′
nβ (ρ) =

∞∑
ν=−∞

∫ ∞

−∞
s1′
νβ�ν(κ̂)�n(κ̂) exp (iγρ)

dα

γ

∼
ρ→∞

√
2π

∞∑
ν=−∞

s1′
νβ

1

2π

∫ ∞

−∞
�n(κ̂) exp (iγρ)

dα

γ

∼
ρ→∞

√
2π

∞∑
ν=−∞

s1′
νβunβ (ρẑ)

∼
ρ→∞

1√
2π

Fn(κρ)

∞∑
ν=−∞

s1′
νβ (19.136)

and similarly,

σ 2′
nβ (ρ) ∼

ρ→∞ − 1√
2π

Fn(κρ)

∞∑
ν=−∞

s2′
νβ (19.137)

But

s′
π

(
κ

k
ẑ + β

k
ŷ
)

= 1√
2π

∞∑
ν=−∞

(
s1′
νβ�̂ − is2′

νβ�̂
)

(19.138)

so that

σ 1′
nβ (ρ) ∼

ρ→∞ Fn(κρ)�̂ · s′
π

(
κ

k
ẑ + β

k
ŷ
)

(19.139)

σ 2′
nβ (ρ) ∼

ρ→∞ −iFn(κρ)�̂ · s′
π

(
κ

k
ẑ + β

k
ŷ
)

Formulas (19.139) provide a convenient numerical check in the evaluation of the trans-
lated probe coefficients. They also suggest, even for intermediate separations when the
test antenna is in the “far field” of the probe, that the � = 0 cut of s′

π is most important.
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