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Universitá della Calabria
87036 Rende (CS), Italy

Abstract—A transformation procedure directly computing the
antenna far-field pattern from near-field samples acquired on a planar
spiral is proposed in this paper. The convolution property of the
radiation integral is exploited to efficiently perform the evaluation by
taking advantages of the Fast Fourier Transform, without the need of
any intermediate interpolation process. Validations on circular arrays
of elementary dipoles are presented to show the effectiveness of the
method.

1. INTRODUCTION

Measuring techniques in the radiating near-field are established as
compact and controlled environments to perform accurate antenna
test and diagnostics. They require a processing of the probed
near-field distribution to recover the corresponding far-field pattern,
with a variety of existing transformation techniques based on modal
expansions and equivalent source reconstruction, or employing trained
neural networks [1]. Standard near-field setup are based on
planar, cylindrical and spherical geometries, but improved scanning
configurations, in terms of complexity and cost, have been introduced.
In the framework of planar near-field measurements, a strong
improvement with respect to scanner compactness is given by the bi-
polar configuration [2], based on exclusive rotational motions of the
Antenna Under Test (AUT) and the measuring probe. Near-field
data are collected at the intersections between concentric rings and
radial arcs, by imposing a full revolution of the AUT, followed by
an incremental rotation of the probe arm. A further improvement of
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the bi-polar configuration has been recently achieved by imposing a
simultaneous and continuous motion of the AUT and the measuring
probe, so reducing the acquisition time as well as the overall
system complexity. This measurement strategy results in a sampling
arrangement on a planar spiral [3], which however strongly complicates
the near-field to far-field transformation process, as a conversion to a
rectangular format is needed to take advantage of the Fast Fourier
Transform (FFT) algorithm. An Optimal Sampling Interpolation
(OSI) technique [4] is then applied [3] to express the radiating field
in a cardinal series form by employing appropriate sampling functions.
An approximate interpolation formula is also adopted [3] to map the
non-uniform behavior of spiral samples in the radial coordinate into
a sequence of uniformly spaced data. In order to avoid the near-field
oversampling inherent to the spiral sampling arrangement, a fast and
accurate interpolation algorithm is proposed in [5, 6] to reconstruct
the radiated electromagnetic field on a rotational surface from the
knowledge of a non redundant number of its samples on a spiral
wrapping the scanning surface. In this paper, a fast data processing
algorithm is proposed to compute the AUT far-field directly from
near-field samples acquired on the planar spiral. The convolution
property of the radiation integral is exploited to develop an efficient
procedure computing the far-field pattern in terms of FFT algorithm.
This avoids the application of intermediate interpolations usually
adopted in literature to enable the use of planar near-field to far-field
transformation. Numerical simulations on circular arrays of Huyghens
sources are discussed to validate the proposed technique.

2. NEAR-FIELD SAMPLING ON PLANAR SPIRAL

The planar spiral geometry is obtained by imposing a simultaneous
rotation of the AUT and the probe arm in terms of angles α′ and
β′, respectively (Fig. 1). This gives a samples distribution on radial
arcs at points P (s′, α′) (Fig. 2), where s′ is a surrogate for the radial
coordinate ρ′, defined as [3]:

s′ =
ρ′

d
(1)

The parameter d in relation (1) gives the distance between the
AUT and the near-field measuring plane (fig.1), while α′ is the
angle describing the AUT rotation, which is related to the azimuthal
coordinate φ′ by the equation [2]:
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α′ = φ′ +
β′

2
(2)

β′ being the probe arm rotation angle.
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Figure 1. Planar spiral scanning geometry.

The archimedean spiral scanning is mathematically described by
the equation:

ρ′ = aα′ + 2πaγ, a > 0, γ = 0, 1, 2, ... (3)

which identifies all points lying on the radial arc associated to a specific
value of the azimuthal angle α′ (Fig. 2).

The radial spacing between two adjacent points on the same arc
is derived from (3) as:

∆ρ = 2πa (4)

It must be coherent with the sample spacing needed for the plane-
polar geometry, that is:

∆ρ =
λ

2
(5)

So, the correct value for the parameter a into expression (3) is derived
from sampling considerations, by equating relations (4) and (5) to
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Figure 2. Sampling arrangement on planar spiral.

obtain:
a =

λ

4π
(6)

3. FAR-FIELD COMPUTATION FROM NEAR-FIELD ON
PLANAR SPIRAL

Let us consider a near-field data set collected on a polar scan plane
having radius ρmax. A radiation-type integral for the equivalent
aperture current on the acquisition plane can be derived as [7]:

T (θ, φ) =
∫ ρmax

0

∫ 2π

0
q(ρ′, φ′) · ejkρ′sinθcos(φ−φ′)ρ′dρ′dφ′ (7)

where the scalar form is considered, for the sake of simplicity.
Under the assumption of a omnidirectional probe, the left hand

side of equation (7) gives the far-field at coordinates (θ,φ) (Fig. 1),
while the term q(ρ′, φ′) represents the near-field distribution on the
measurement plane x′-y′ (Fig. 1), k being the free-space propagation
constant.
In the presence of a near-field spiral trajectory with maximum radial
extension ρmax, the coordinate transformations (1), (2) from polar
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variables (ρ′, φ′) to spiral variables (s′,α′) modifies the radiation
integral (7) as follows:

T (θ, φ) =
∫ ρmax

d

0

∫ β′
2

+2π

β′
2

q(s′, α′) · ejkds′sinθcos(φ−α′+β′
2

)d2s′ds′dα′ (8)

A compact form of equation (8) can be easily derived as:

T (θ, φ) =
∫ ρmax

d

0

∫ β′
2

+2π

β′
2

q1(s′, α′) · r(θ, φ, s′, α′)ds′dα′ (9)

where the following definitions are adopted:

q1(s′, α′) = s′d2q(s′, α′) (10)

r(θ, φ, s′, α′) = ejkds′sinθcos(φ−α′+β′
2

) (11)

A convolution form in the variable α′ can be recognized for the inner
integral appearing in (8), so leading to apply the Fourier transform for
its computation, by invoking the convolution theorem as [8]:

T (θ, φ) =
∫ ρmax

d

0
F−1 {

q̃1(s′, w) · r̃(θ, φ, s′, w)
}

ds′ (12)

where:

q̃1(s′, w) = F
{
q1(s′, α)

}
(13)

r̃(θ, φ, s′, w) = F
{
r(θ, φ, s′, α′)

}
(14)

and the symbols F and ˜ are used to denote the Fourier transform
operator.

Let us consider a near-field spiral trajectory with samples locations
at coordinates:

αm = m∆α, m = 0, 1, 2, ..., M − 1 (15)

snm =
ρnm

d
, n = 0, 1, 2, ..., N − 1 (16)

where:
ρnm = a(αm + 2πn) (17)

N being the number of loops in the spiral arrangement and M the
number of samples for each loop.

After inserting relation (17) into equation (16) and making use of
expressions (5) and (6), a pair of discrete mathematical relationships
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are obtained which uniquely describe the near-field spiral trajectory in
terms of spacings coherent with the plane-polar sampling requirements,
namely:

∆α = ∆φ =
λ

2ro
(18)

∆s =
∆ρ

d
=

λ

2d
(19)

where ro is the radius of the smallest sphere completely enclosing the
AUT.

With the above assumptions on spiral samples distribution, the
numerical computation of the radiation integral (12) can be performed
as:

T (θ, φ) =
N−1∑
n=0

M−1∑
m′=0

[q̃1(snm, w) · r̃(θ, φ, snm, w)] · ej 2πm′w
M (20)

In this latter relation, the terms:

q̃1(snm, w) =
1
M

M−1∑
m=0

q1(snm, αm) · e−j 2πmw
M (21)

r̃(θ, φ, snm, w) =
1
M

M−1∑
m=0

r(θ, φ, snm, αm) · e−j 2πmw
M (22)

represents the Discrete Fourier Transform (DFT) of the sequences
q1(...) and r(...), respectively, which can be efficiently performed by
adopting the FFT algorithm [8].

An overview of the data processing method for far-field
computation from near-field samples on planar spiral is reported under
Fig. 3.

4. NUMERICAL RESULTS

Numerical tests on dipole arrays are performed to show the
effectiveness of the proposed far-field transformation process from near-
field samples on planar spiral. As a first case, a circular array of 18
y-oriented Huyghens sources λ/2 spaced is considered, with excitation
coefficients chosen to have a main lobe in the direction θ = 10◦ in the
H-plane. Near-field acquisition is simulated on a plane at a distance
d = 10λ from the array, with samples lying on a planar spiral having
N = 20 loops and M=136 points along each loop. Sampling spacings
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Figure 3. Data processing scheme for the planar spiral configuration.
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Figure 4. Normalized near-field amplitude on planar spiral for a
circular array of 18 elements.
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Figure 5. Co-polarized H-plane pattern for circular array of 18
elements.
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Figure 6. Normalized near-field amplitude on planar spiral for a
planar circular array.
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∆α and ∆s coherent with relations (18) and (19) are considered, by
assuming ro = 10.85λ. The contour plot of the normalized intensity
pattern on the near-field spiral trajectory is shown in Fig. 4. The
direct transformation algorithm is then applied to near-field spiral
samples for recovering the co-polarized H-plane pattern reported under
Fig. 5 and successfully compared with the exact array solution. As a
further validation, a planar circular array of diameter equal to 14λ
is considered, with elements given by y-oriented dipoles radially and
azimuthally spaced of λ/2. Simulations are performed on a near-field
plane at a distance d = 15λ from the array, with samples located
on a spiral arrangement with N = 30 loops and M = 133 points
along each loop. An azimuthal spacing ∆α = 2.72◦ is assumed, with
ro = 7.5λ, and a normalized radial step ∆s as given by equation (19)
is again considered. The normalized amplitude of the simulated near-
field on the planar spiral is shown in Fig. 6, while the co-polarized H
plane pattern as obtained from the direct transformation algorithm is
reported under Fig. 7. A high accuracy is proved again by comparison
with the exact analytical solution.
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Figure 7. Co-polarized H-plane pattern for planar circular array.
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5. CONCLUSIONS AND FUTURE DEVELOPMENTS

A far-field transformation procedure directly performed on near-field
samples coming from a planar spiral arrangement is developed in this
paper. The convolution property of the radiation integral is exploited
to efficiently perform its computation in terms of FFT. This avoids
the use of interpolation techniques usually adopted in literature to
obtain a rectangularly regularized format of the near-field data which
enables the application of the well known planar near-field to far-
field transformation. The proposed data processing is numerically
validated on circular arrays of elementary dipoles. Concerning future
developments, two open points will be considered. First of all, the
procedure will be extended to take into account the directive effect
of a non-ideal probe, by including a correct probe compensation.
Furthermore, the application of a two-probes based method [9] will
be considered for recovering the far-field pattern from the knowledge
of intensity-only data on a single near-field spiral surface.
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