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Abstract: Background: TRIP (Transmission Reduction Intervention Project) was a network-based, 

contact tracing approach to locate and link to care, mostly people who inject drugs (PWID) with re-

cent HIV infection.  

Objective: We investigated whether sequences from HIV-infected participants with high viral load 

cluster together more frequently than what is expected by chance.  

Methods: Paired end reads were generated for 104 samples using Illumina MiSeq next-generation 

sequencing.  

Results: 63 sequences belonged to previously identified local transmission networks of PWID 

(LTNs) of an HIV outbreak in Athens, Greece. For two HIV-RNA cut-offs (10
5
 and 10

6
 IU/mL), 

HIV transmissions were more likely between PWID with similar levels of HIV-RNA (p<0.001). 10 

of the 14 sequences (71.4%) from PWID with HIV-RNA >10
6
 IU/mL were clustered in 5 pairs. For 

4 of these clusters (80%), there was in each one of them at least one sequence from a recently HIV-

infected PWID.  

Conclusion: We showed that transmissions are more likely among PWID with high viremia.  

Keywords: HIV, recent infection, HIV transmission, PWID, HIV-RNA, TRIP. 

1. INTRODUCTION 

Approximately 37 million people were living with HIV 
(PLHIV) by the end of 2017 (http://www.unaids.org/). A lot 
of different approaches, both behavioral and biomedical, 
have been used to reduce HIV transmission [1] but still 
around 2 million people are infected every year. The global  
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community is now committed to end the HIV epidemic as a 
public health threat by 2030. UNAIDS has set the 90-90-90 
target: 90% of all PLHIV to be aware of their HIV status 
(first 90); 90% of the HIV-diagnosed to receive antiretroviral 
treatment (ART) (second 90); and 90% of those on ART to 
achieve virological suppression (third 90). 

Social network-based interventions to prevent HIV 
transmission have shown promising results [2-9]. The 
Transmission Reduction Intervention Project (TRIP) was a 
recently implemented network-based intervention to detect 
people who had acquired HIV in the past 6 months [10]. 
Identifying people with recent HIV infection is very 
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Table 1.  Demographics, epidemiological and clinical characteristics of: i) HIV-infected participants (N=149) of the Transmission 

Reduction Intervention Project (TRIP) and ii) a subset of the HIV positives (N=63 of 149) who were in local transmission 

networks of PWID in Athens, Greece. 

Characteristics  HIV Positives in TRIP HIV Positives in PWID-LTNs 

Total [Ν (%)]  149 (100) 63 (100) 

Gender [Ν (%)] Males 113 (75.8) 49 (77.8) 

 Females 36 (24.2) 14 (22.2) 

Median age [years (IQR)]  34 (30-40) 34 (30-39) 

Education level [Ν (%)] Up to high school 131 (87.9) 59 (93.7) 

 Above high school 18 (12.1) 4 (6.3) 

Accommodation status in the past 6 months [Ν (%)] Non-homeless 97 (65.1) 42 (66.7) 

 Homeless 52 (34.9) 21 (33.3) 

Drug injection in last 6 months [Ν (%)]a, b Non- PWID 5 (3.4) 2 (3.2) 

 PWID 141 (96.6) 60 (96.8) 

Duration of injection [years (IQR)]c, d  13 (7-17) 12.5 (7-17) 

HIV-RNA [log IU/ml (IQR)]e  5.4 (4.5-6.1) 5.5 (5.0-6.1) 

IQR, interquartile range; PWID, people who inject drugs; aΝ=146 (of 149 HIV positives); bΝ=62 (of 63 HIV positives); cN= 140 (of 149 HIV positives); dΝ=60 (of 63 HIV positives); 
eN= 126 (of 149 HIV positives). 

 
important. Increased HIV-RNA levels have been associated 
with heightened risk of HIV transmission [11-17]. 
Substantial reductions in HIV transmission or incidence have 
been observed or expected in settings with declines in 
individual or community viral load, respectively [12, 18-27]. 
Given that infectivity has been positively correlated with 
viral load, HIV transmission during the period of early 
infection (when viral load becomes very high) is extremely 
likely [28-41]. Phylogenetic studies estimate that almost half 
of the transmissions attributable to an HIV-infected person 
occur during the recent phase of his/her HIV infection [42-
54]. 

Given the epidemiological associations described above, 
we aimed to investigate phylogenetically, using near full-
length HIV sequences, whether HIV transmissions occur 
more frequently among persons with high viral load, which 
is a salient characteristic of recent HIV infection. 

2. MATERIALS AND METHOD  

2.1. Project Description 

TRIP was a multi-site (Athens, Greece; Chicago, United 
States; and Odessa, Ukraine), network-based contact-
tracing intervention to detect individuals with recent and/or 
undiagnosed HIV infection and link them to care. Details 
regarding the design and implementation of TRIP in Athens 
have been described elsewhere [10]. TRIP, Athens re-
cruited 356 individuals (90.2% people who inject drugs - 
PWID). Of these, 149 participants (46.4%) tested HIV 
positive [10]. Demographics, epidemiological and clinical 
characteristics of the HIV positive participants in TRIP are 
presented in Table 1. 

2.2. HIV-1 Testing 

Blood samples were tested for HIV antibodies by Ax-
SYM HIV-1/2 gO (Abbott) and confirmed by Western Blot 
(MP Diagnostics). Recent HIV-1 infection was determined 
using the Limiting Antigen Avidity assay [55]. HIV-RNA in 
plasma was quantified using Artus HI Virus-1 RT-PCR 
(Qiagen), according to the manufacturer’s recommendations. 

2.3. HIV-1 Sequencing and Subtyping 

104 near full-length genomic sequences were generated 
using methods developed under the Infection Response 
through Virus Genomics (ICONIC) project [56, 57]. Nucleo-
tide sequences were aligned using the HIVAlign tool avail-
able on the Los Alamos HIV sequence database (http://hiv. 
lanl.gov/). 

HIV-1 subtypes were identified for 104 sequences using 
the online automated HIV-1 subtyping tool COMET v.0.2 
(COntext-based Modeling for Expeditious Typing) (http:// 
comet.retrovirology.lu/) and the REGA HIV-1 subtyping 
tool. Subtyping results were further confirmed by using ref-
erences to perform phylogenetic analysis. 

These references were representative of all known HIV-1 
subtypes and of most of the Circulating Recombinant Forms 
(CRFs), and were available on the Los Alamos HIV-1 se-
quence database. The presence of recombination was tested 
by bootscanning analysis as implemented in Simplot v3.5.1 
[58] using pure subtypes and CRFs as references. 
Bootscanning analysis was run for a sliding window of 400 
bps moving in steps of 50 bps. Putative recombinants were 
confirmed by phylogenetic analysis in separate genomic 
fragments with discordant phylogenetic clustering. Tree 
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visualization and annotation were done using the FigTree 
v1.4 program (http://tree.bio.ed.ac.uk/software/figtree/). 

2.4. Hypothesis Testing 

We performed phylogenetic analyses to examine whether 
transmissions occur more often among persons with high 
plasma HIV-RNA levels (10

6
 or 10

5
 IU/mL) [59], a marker 

of recent HIV infection. Phylogenetic analysis was per-
formed using the maximum likelihood method (ML) under 
the Generalized Time Reversible (GTR) model of nucleotide 
substitution including a Gamma-distributed rate of heteroge-
neity among sites as implemented in RAxMLv8.0 [60] and 
FastTree v2.1 [61]. HIV-1 sequences that were found outside 
the local transmission networks (LTNs) of PWID [62] or the 
Unique Recombinant Forms (URFs) were excluded from the 
analysis. Short length sequences were also excluded (< 4,000 
bps). Phylogenetic trees were derived from non-recombinant 
near full-length genome alignments that belonged to the 4 
PWID LTNs (CRF14_BG/B/CRF14_BG, CRF35_AD/A/ 
CRF35_AD, subtypes A and B). 

We performed additional analysis to test whether trans-
missions among PWID with high HIV-RNA are frequent. 
The hypothesis that transmissions occur frequently among 
persons with high plasma HIV-RNA values (10

6
 or 10

5
 

IU/mL) was investigated by reconstructing ancestral states 
assigned at the tips (high or low HIV-RNA values), and us-
ing the criterion of parsimony to estimate the total number of 
character changes across the phylogeny. In this case, charac-
ter changes correspond to transmissions between persons 
with different levels of HIV-RNA (“low” and “high”). The 
analysis was performed on 300 bootstrap-reconstructed trees 
as estimated in RAxML version 8.0, using Mesquite program 
version 3.5 [63]. The estimated number of events corre-
sponds to the “observed number of transmissions among 
persons with different HIV-RNA values”. The null hypothe-
sis that corresponds to a random distribution of the charac-
ters states at the tips was simulated after a random reshuf-
fling of the characters on the full set of bootstrap trees.  

We also tested if HIV sequences from persons with high 
viral loads (>10

6
 IU/mL) formed significant phylogenetic 

clusters receiving Shimodaira-Hasegawa (SH) value > 0.9 or 
bootstrap support > 75%. 

2.5. Statistical Analysis 

The non-parametric, one-sided Mann-Whitney test was 
used to compare the distribution of the total number of char-
acter changes (transmissions between different groups of 
HIV-RNA) between the original bootstrap trees and the trees 
that were randomly reshuffled at the tips (STATA 14 - Sta-
taCorp LP). 

3. RESULTS  

HIV-1 subtyping and recombination analysis showed that 
sequences from 63 individuals (60.6%) (Table 1) fell within 
the LTNs of PWID: CRF14_BG/B/CRF14_BG (n=35, 
33.7%); CRF35_AD/A/CRF35_AD (n=17, 16.3%); subtype 
B (n=8, 7.7%); subtype A (n=3, 2.9%). The rest of the se-
quences were classified as subtypes A (n=4, 3.8%) and B 
(n=1, 1%) that did not belong to PWID-LTN, and as URFs 

(n=36, 34.6%). HIV-1 sequences available in protease (PR) 
and partial reverse transcriptase (RT) that were classified 
initially as CRF35_AD and CRF14_BG [62,64], were later 
identified as unique recombinants with identical patterns 
(CRF35_AD/A/CRF35_AD and CRF14_BG/B/CRF14_BG, 
respectively, in their complete genome). 

Phylogenetic analysis using the 62 near-complete HIV-1 

sequences that belonged to the 4 PWID-LTNs (CRF14_ 

BG/B/CRF14_BG, CRF35_AD/A/CRF35_AD, subtypes A 

and B) was conducted to investigate whether transmissions 

occur more often among individuals with high HIV-RNA 

levels. One sequence was excluded due to its short length (< 

4,000 bps). Phylogenetic trees that were inferred using the 62 

sequences are shown in Fig. (1). The sequences from persons 

with high HIV-RNA (> 10
5
 IU/mL or > 10

6
 IU/mL) are high-

lighted in different colors (Figs. 1A and 1B). 

Additional analyses included the estimation of the total 

number of character changes between PWID with high and 

low HIV-RNA, which are indicative of transmissions be-

tween these two groups, and the examination of whether the 

number of transmissions is significantly lower than the num-

ber of changes expected by chance. For both HIV-RNA cut-

offs (10
5
 and 10

6
 IU/mL), the number of transmissions be-

tween the two groups was significantly lower (p<0.001), 

suggesting that HIV transmissions occur more frequently 

between PWID with similar levels of HIV-RNA (Figs. 2A 

and 2B). Notably, most sequences from PWID with HIV-

RNA > 10
6
 IU/mL formed highly supported clusters (i.e., 

they received SH-support > 0.9 or bootstrap support > 75%) 

(Fig. 1B). For 14 of 18 PWID with HIV-RNA > 10
6
 IU/mL, 

phylogenetic clustering with
 
at least one sequence was highly 

supported. 10 of the 14 sequences (71.4%) from PWID with 
HIV-RNA > 10

6
 IU/mL were clustered in 5 pairs (Fig. 1B). 

We also examined whether there were any PWID with 

documented recent infection (< 6 months) among the PWID 

with HIV-RNA > 10
6
 IU/mL. For 4 of the 5 clusters (80%) 

of sequences (n=10) from PWID with high HIV- RNA, there 

was in each cluster at least one sequence from a recently 

HIV-infected PWID (Fig. 1C). Specifically, 6 of 10 trans-

missions (60%) among PWID with HIV-RNA > 10
6
 IU/mL 

in transmission pairs originated from people with recent HIV 

infection. For one cluster, both sequences were from recently 
HIV-infected individuals (Fig. 1C). 

4. DISCUSSION 

This study examined, using molecular epidemiology 
methods, whether HIV transmissions occur more often 
among PWID with high HIV-RNA levels. Our analysis was 
based on near full-length genomic sequencing from HIV-
infected PWID who participated in a network-based inter-
vention (TRIP) in Athens, Greece. All analyses supported 
that transmissions among PWID with high HIV-RNA levels 
(> 10

5
 IU/mL or > 10

6
 IU/mL) occur at high rates. Given that 

very high HIV-RNA levels (> 10
6
 IU/mL) are a marker for 

recent HIV infection, our results suggest that transmissions 
among people who acquired HIV recently are more frequent. 
The important role of recently HIV-infected individuals was 
further supported by our findings that in 80% of the clusters 
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Fig. (1). Maximum likelihood phylogenetic trees of near full-length genomic sequencing found in local transmission networks (LTNs) of 

people who inject drugs (PWID) shown with branch lengths and without branch lengths. (A) PWID with HIV-RNA > 10
5
 IU/mL are high-

lighted in black. (B) PWID with HIV-RNA > 10
6
 IU/mL are highlighted in black. (C) PWID with HIV-RNA > 10

6
 IU/mL are highlighted in 

black and PWID with HIV-RNA > 10
6
 IU/mL and documented recent infection (< 6 months) are indicated by white circles with black out-

lines. Highly supported nodes (SH-support > 0.9 or bootstrap support > 75%) including viral sequences from PWID with HIV-RNA > 10
6 

IU/mL are indicated by an asterisk. 
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Fig. (2). Total number of character changes (transmissions between different levels of HIV-RNA) estimated between original bootstrap trees 

(black) and after a reshuffling at the tips (grey) (A) using a cut-off of 10
5
 IU/mL and (B) using a cut-off of 10

6
 IU/mL. 

 
of PWID with HIV-RNA > 10

6
 IU/mL, there was at least one 

PWID with documented recent infection. This suggests that 
those individuals who have recently been infected with HIV 
may be the source of HIV transmission within transmission 
pairs. 

These findings are in accordance with those from other 
analyses in TRIP and also with evidence from previous stud-
ies. It has been shown in TRIP that the proportion of recently 
HIV-infected persons among the HIV positives in the net-
works of recently HIV-infected seeds was approximately 3 
times the proportion of recently HIV-infected persons in the 
networks of seeds with long-term HIV infection [10]. Seeds 
refer to primary participants recruited by TRIP to start the 
network-based intervention. Brenner et al. have reported that 
almost 50% of viral sequences from primary infections in 
Quebec, Canada were clustered into groups of 2-17 se-
quences/cluster [43]. Pinkerton used mathematical modeling 
to show that the probability of HIV transmission during 
acute infection was approximately 42 times higher than that 
during chronic HIV infection [65]. The same analysis re-
vealed that the acute phase was responsible for 89% of all 
transmission events in the first 20 months of follow-up [65]. 
Miller et al. also highlighted the important role of acute and 
early HIV infection (due to high levels of HIV-RNA during 
these stages), as opposed to chronic infection, in sexual 
transmission [66]. Similarly, several studies reported that 
during HIV outbreaks among PWID, a high number of indi-
viduals have been infected with genetically similar viruses 
[62, 64, 67-80] - a finding that supports the hypothesis of the 
involvement of recently HIV-infected people in HIV trans-
missions. The crucial role of the natural history of HIV-1 
(high HIV-RNA) has also been investigated by simulation 
studies and was found to play a significant role (along with 
injection risk networks) during periods of high HIV preva-
lence among PWID [5]. 

CONCLUSION 

In the current study, using molecular epidemiology 
methods, we generated additional evidence that transmis-
sions were more likely to have occurred among PWID who 
had high HIV-RNA at the time the study was conducted. We 
also found that in 80% of the transmission pairs of PWID 
with very high viral load, there was at least one recent infec-
tion.  

Given these findings, early diagnosis soon after infection 
and immediate treatment initiation to reduce viral load 
should receive attention as a major HIV prevention strategy. 

LIST OF ABBREVIATIONS 

ART = Antiretroviral treatment 

CRFs = Circulating Recombinant Forms 

GTR = Generalized Time Reversible 

HIV = Human immunodeficiency virus 

ICONIC = Infection Response through Virus Genomics 

LTNs = Local transmission networks 

PLHIV = People living with HIV 

PR = Protease 

PWID = People who inject drugs 

RT = Reverse transcriptase 

SH = Shimodaira-Hasegawa 

TRIP = Transmission Reduction Intervention Project 

URFs = Unique Recombinant Forms. 
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