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Abstract

We show that the notion of polynomial mesh (norming set), used to
provide discretizations of a compact set nearly optimal for certain approx-
imation theoretic purposes, can also be used to obtain finitely supported
near G-optimal designs for polynomial regression. We approximate such
designs by a standard multiplicative algorithm, followed by measure con-
centration via Caratheodory-Tchakaloff compression.

2010 AMS subject classification: 62K05, 65C60, 65D32.

Keywords: near G-optimal designs, polynomial regression, norming sets, polynomial

meshes, Dubiner distance, D-optimal designs, multiplicative algorithms, Caratheodory-

Tchakaloff measure compression.

1 Introduction

In this paper we explore a connection of the approximation theoretic notion of
polynomial mesh (norming set) of a compact set K with the statistical theory of
optimal polynomial regression designs on K. We begin by recalling some basic
definitions and properties.

Let P
d
n(K) denote the space of polynomials of degree not exceeding n re-

stricted to a compact setK ⊂ R
d, and ‖f‖Y the sup-norm of a bounded function

on the compact set Y . We recall that a polynomial mesh on K (with constant
c > 0) is a sequence of norming subsets Xn ⊂ K such that

‖p‖K ≤ c ‖p‖Xn
, ∀p ∈ P

d
n(K) , (1)

where card(Xn) grows algebraically in

N = Nn(K) = dim(Pd
n(K)) . (2)

Notice that necessarily card(Xn) ≥ N , since Xn is determining for Pd
n(K) (i.e.,

polynomials vanishing there vanish everywhere on K). With a little abuse of
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notation, below we shall call “polynomial mesh” both the entire sequence {Xn}
and (more frequently) the single norming set Xn.

Observe also that N = O(nβ) with β ≤ d, in particular N =
(

n+d
d

)

∼
nd/d! on polynomial determining compact sets (i.e., polynomials vanishing there
vanish everywhere in R

d), but we can have β < d for example on compact
algebraic varieties, like the sphere in R

d where N =
(

n+d
d

)

−
(

n−2+d
d

)

.
The notion of polynomial mesh, though present in the literature for specific

instances, was introduced in a systematic way in the seminal paper [8], and since
then has seen an increasing interest, also in the computational framework. We
recall among their properties that polynomial meshes are invariant under affine
transformations, can be extended by algebraic transformations, finite union and
product, are stable under small perturbations. Concerning finite union, for

example, which is a powerful constructive tool, it is easily checked that if X
(i)
n

are polynomial meshes for Ki, 1 ≤ i ≤ s, then

‖p‖∪Ki
≤ max{ci} ‖p‖∪X

(i)
n

, ∀p ∈ P
d
n(∪Ki) . (3)

Polynomial meshes give good discrete models of a compact set for polyno-
mial approximation, for example it is easily seen that the uniform norm of the
unweighted Least Squares operator on a polynomial mesh, say Ln : C(K) →
P
d
n(K), is bounded as

‖Ln‖ = sup
f 6=0

‖Lnf‖K
‖f‖K

≤ c
√

card(Xn) . (4)

Moreover, polynomial meshes contain extremal subsets of Fekete and Leja type
for polynomial interpolation, and have been applied in polynomial optimization
and in pluripotential numerics; cf., e.g., [5, 19, 23].

The class of compact sets which admit (constructively) a polynomial mesh is
very wide. For example, it has been proved in [8] that a polynomial mesh with
cardinality O(N r) = O(nrd) can always be constructed simply by intersection
with a sufficiently dense uniform covering grid, on compact sets satisfying a
Markov polynomial inequality with exponent r (in particular, on compact bodies
with Lipschitz boundary, in which case r = 2).

From the computational point of view, it is however important to deal with
low cardinality polynomial meshes. Indeed, polynomial meshes with card(Xn) =
O(N), that are said to be optimal (in the sense of cardinality growth), have
been constructed on compact sets with different geometric structure, such as
polygons and polyhedra, convex, starlike and even more general bodies with
smooth boundary, sections of a sphere, ball and torus; cf., e.g., [15, 18, 27]. By
(4), on optimal meshes we have ‖Ln‖ = O(

√

card(Xn)) = O(
√
N); we stress,

however, that even with an optimal mesh typically card(Xn) ≫ N .
The problem of reducing the sampling cardinality while maintaining es-

timate (4) (Least Squares compression) has been considered for example in
[20, 21], where a strategy is proposed, based on weighted Least Squares on N2n

Caratheodory-Tchakaloff points extracted from the mesh by Linear or Quadratic
Programming. Nevertheless, also reducing the Least Squares uniform operator
norm though much more costly is quite relevant, and this will be addressed in
the next Section via the theory of optimal designs.
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2 Near optimal designs by polynomial meshes

Let µ be a probability measure supported on a compact set K ⊂ R
d. In statis-

tics, µ is usually called a design and K the design space. The literature on
optimal designs dates back at least one century, and is so vast and ramificated
that we can not even attempt any kind of survey. We may for example quote,
among many others, a classical and a quite recent textbook [1, 10], and the new
paper [11] that bear witness to the vitality of the field. Below we simply recall
some relevant notions and results, trying to follow an apparently unexplored
connection to the theory of polynomial meshes in the framework of polynomial
regression.

Assume that supp(µ) is determining for P
d(K) (the space of d-variate real

polynomials restricted to K); for a fixed degree n, we could even assume that
supp(µ) is determining for Pd

n(K). We recall a function that plays a key role in
the theory of optimal designs, the diagonal of the reproducing kernel for µ in
P
d
n(K) (often called Christoffel polynomial), namely

Kµ
n(x, x) =

N
∑

j=1

p2j(x) , (5)

where {pj} is any µ-orthonormal basis of Pd
n(K), for example that obtained from

the standard monomial basis by applying the Gram-Schmidt orthonormalization
process (it can be shown that Kµ

n(x, x) does not depend on the choice of the
orthonormal basis, cf. (7) below). It has the important property that

‖p‖K ≤
√

max
x∈K

Kµ
n(x, x) ‖p‖L2

µ(K) , ∀p ∈ P
d
n(K) , (6)

and also the following relevant characterization

Kµ
n(x, x) = max

p∈Pd
n(K), p(x)=1

1
∫

K p2(x) dµ
. (7)

Now, by (5)
∫

K Kµ
n(x, x) dµ = N , which entails that maxx∈K Kµ

n(x, x) ≥ N . A
probability measure µ∗ = µ∗(K) is then called a G-optimal design for polyno-
mial regression of degree n on K if

min
µ

max
x∈K

Kµ
n(x, x) = max

x∈K
Kµ∗

n (x, x) = N . (8)

Observe that, since
∫

K
Kµ

n(x, x) dµ = N for every µ, an optimal design has the
following property

Kµ∗

n (x, x) = N µ∗ − a.e. in K . (9)

As is well-known, by the celebrated Kiefer-Wolfowitz General Equivalence
Theorem [14] the difficult min-max problem (8) is equivalent to the much simpler
maximization

max
µ

det(Gµ
n) , Gµ

n =

(
∫

K

qi(x)qj(x) dµ

)

1≤i,j≤N

, (10)

where Gµ
n is the Gram matrix of µ in a fixed polynomial basis {qi} (also called

information matrix in statistics). Such an optimality is called D-optimality,
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and entails that an optimal measure exists, since the set of Gram matrices of
probability measures is compact (and convex); see e.g. [1, 2, 4] for a quite
general proof of these results, valid for both continuous and discrete compact
sets. An optimal measure is not unique and not necessarily discrete (unless K
is discrete itself), but an equivalent discrete optimal measure always exists by
the Tchakaloff Theorem on positive quadratures of degree 2n for K; cf. [24]
for a general proof of the Tchakaloff Theorem. Moreover, the asymptotics of
optimal designs as the degree n goes to ∞ can be described using multivariate
pluripotential theory, see [2, 3].

G-optimality has two important interpretations in terms of probabilistic and
deterministic polynomial regression. From a statistical point of view, it is the
probability measure that minimizes the maximum prediction variance by n-th
degree polynomial regression, cf. [1].

From the approximation theory point of view, calling Lµ∗

n the corresponding
weighted Least Squares operator, by (6) we can write for every f ∈ C(K)

‖Lµ∗

n f‖K ≤
√

max
x∈K

Kµ∗

n (x, x) ‖Lµ∗

n f‖L2
µ∗

(K) ≤
√
N ‖Lµ∗

n f‖L2
µ∗

(K)

≤
√
N ‖f‖L2

µ∗
(K) ≤

√
N ‖f‖K , i.e. ‖Lµ∗

n ‖ ≤
√
N , (11)

which shows that a G-optimal measure minimizes (the estimate of) the weighted
Least Squares uniform operator norm.

The computational literature on D-optimal designs is huge, with a variety of
approaches and methods. A classical approach is given by the discretization ofK
and then the D-optimization over the discrete set; see e.g. the references in [11]
(where however a different approach is proposed, based on a moment-sum-of-
squares hierarchy of semidefinite programming problems). In the discretization
framework, the possible role of polynomial meshes seems apparently overlooked.
We summarize the corresponding simple but meaningful near G-optimality re-
sult by the following Proposition.

Proposition 1 Let K ⊂ R
d be a compact set, admitting a polynomial mesh

{Xn} with constant c.
Then for every n ∈ N and m ∈ N, m ≥ 1, the probability measure

ν = ν(n,m) = µ∗(X2mn) (12)

is a near G-optimal design on K, in the sense that

max
x∈K

Kν
n(x, x) ≤ cm N , cm = c1/m . (13)

Proof. First, observe that for every p ∈ P
d
2n(K)

‖pm‖K = ‖p‖mK ≤ c ‖pm‖X2mn
= c ‖p‖mX2mn

,

and thus
‖p‖K ≤ c1/m ‖p‖X2mn

.

Now, X2mn is clearly P
d
n(K)-determining and hence denoting by ν = µ∗(X2mn)

an optimal measure for degree n on X2mn, which exists by the General Equiv-
alence Theorem with supp(ν) ⊆ X2mn, we get

max
x∈X2mn

Kν
n(x, x) = Nn(X2mn) = Nn(K) = N .
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Since Kν
n(x, x) is a polynomial of degree 2n, we finally obtain

max
x∈K

Kν
n(x, x) ≤ c1/m max

x∈X2mn

Kν
n(x, x) ≤ c1/m N . �

Proposition 1 shows that polynomial meshes are good discretizations of a
compact set for the purpose of computing a near G-optimal measure, and that
G-optimality maximum condition (8) is approached at a rate proportional to
1/m, since cm ∼ 1 + log(c)/m. In terms of the statistical notion of G-efficiency
on K we have

Geff(ν) =
N

maxx∈K Kν
n(x, x)

≥ c−1/m ∼ 1− log(c)/m . (14)

It is worth showing that a better rate proportional to 1/m2 can be obtained on
certain compact sets, where an (optimal) polynomial mesh can be constructed
via the approximation theoretic notion of Dubiner distance.

We recall that the Dubiner distance on a compact set K, introduced in the
seminal paper [13]), is defined as

dubK(x, y) = sup
deg(p)≥1, ‖p‖K≤1

{

1

deg(p)
|arccos(p(x)) − arccos(p(y))|

}

. (15)

Among its basic properties, we recall that it is invariant under invertible affine
transformations, i.e., if σ(x) = Ax+ b, det(A) 6= 0, then

dubK(x, y) = dubσ(K)(σ(x), σ(y)) . (16)

The notion of Dubiner distance plays a deep role in multivariate polynomial
approximation, cf. e.g. [6, 13]. Unfortunately, such a distance is explicitly
known only in the univariate case on intervals (where it is the arccos distance
by the Van der Corput-Schaake inequality), and on the cube, simplex, sphere
and ball (in any dimension), cf. [6, 13]. On the other hand, it can be estimated
on some classes of compact sets, for example on smooth convex bodies via a
tangential Markov inequality on the boundary, cf. [23]. Its connection with the
theory of polynomial meshes is given by the following elementary but powerful
Lemma [23]; for the reader’s convenience, we recall also the simple proof.

Lemma 1 Let Yn = Yn(α), n ≥ 1, be a sequence of finite sets of a compact set
K ⊂ R

d, whose covering radius with respect to the Dubiner distance does not
exceed α/n, where α ∈ (0, π/2), i.e.

r(Yn) = max
x∈K

dubK(x, Yn) = max
x∈K

min
y∈Yn

dubK(x, y) ≤ α

n
. (17)

Then, {Yn} is a polynomial mesh on K with constant c = 1/ cos(α).

Proof. First, possibly normalizing and/or multiplying p by −1, we can assume
that ‖p‖K = p(x̂) = 1 for a suitable x̂ ∈ K. Since (17) holds for Yn, there exists
ŷ ∈ Yn such that

| arccos (p(x̂))− arccos (p(ŷ))| = | arccos (p(ŷ))| ≤ αdeg(p)

n
≤ α <

π

2
.
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Now the arccos function is monotonically decreasing and nonnegative, thus we
have that p(ŷ) ≥ cos(α) > 0, and finally

‖p‖K = 1 ≤ p(ŷ)

cosα
≤ 1

cosα
‖p‖Yn

. �

By Lemma 1 we can now prove the following proposition on near G-optimality
by polynomial meshes constructed via the Dubiner distance.

Proposition 2 Let K ⊂ R
d be a compact set and {Yn(α)} be the polynomial

mesh of Lemma 1.
Then for every n ∈ N and m > 1, the probability measure

ν = ν(n,m) = µ∗(Y2n(π/(2m))) (18)

is a near G-optimal design on K, in the sense that

max
x∈K

Kν
n(x, x) ≤ cm N , cm =

1

cos(π/(2m))
. (19)

The proof follows essentially the lines of that of Proposition 1, with Y2n(π/(2m))
replacing X2mn, observing that by Lemma 1 for every p ∈ P

d
2n(K) we have

‖p‖K ≤ cm ‖p‖Y2n(π/(2m)). We stress that in this case cm ∼ 1 + π2/(8m2),
i.e. G-optimality is approached at a rate proportional to 1/m2. In terms of
G-efficiency we have in this case

Geff(ν) ≥ cos(π/(2m)) ∼ 1− π2/(8m2) . (20)

We recall that optimal polynomial meshes like those in Proposition 2 have
been recently constructed in the framework of polynomial optimization on some
compact sets where the Dubiner distance is known or can be estimated, such as
the cube, the sphere, convex bodies with smooth boundary; cf. [22, 23, 30].

Similar results can be obtained for compact sets of the general form

K = σ(I ×Θ) , σ = (σℓ(t, θ))1≤ℓ≤d ,

t ∈ I = I1 × · · · × Id1 , θ ∈ Θ = Θ1 × · · · ×Θd2+d3 , (21)

σℓ ∈
d1
⊗

i=1

P1(Ii)⊗
d2+d3
⊗

j=1

T1(Θj) , 1 ≤ ℓ ≤ d , (22)

where d1, d2, d3 ≥ 0, and Ii = [ai, bi], 1 ≤ i ≤ d1 (algebraic variables), Θj =
[uj , vj ] with vj − uj = 2π, 1 ≤ j ≤ d2 (periodic trigonometric variables) and
vj − uj < 2π, d2 + 1 ≤ j ≤ d2 + d3 (subperiodic trigonometric variables). Here
and below Tn = span(1, cos(θ), sin(θ) . . . , cos(nθ), sin(nθ)) denotes the space of
univariate trigonometric polynomials of degree not exceeding n. Notice that the
mapping σ can be non-injective.

The class (21)-(22) contains many common domains in applications, which
have in some sense a tensorial structure. For example in the 2-dimensional case
convex quadrangles (with triangles as special degenerate cases) fall into this
class, because they are bilinear transformations of a square (by the so-called
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Duffy transform), with d1 = 2, d2 = d3 = 0. Similarly the disk described in
polar coordinates (d1 = d2 = 1, d3 = 0), the 2-sphere in spherical coordinates
(d1 = 0, d2 = d3 = 1), the torus in toroidal-poloidal coordinates (d1 = 0, d2 = 2,
d3 = 0), cf. [7, 27].

Moreover, many examples of sections of disk, sphere, ball, surface and solid
torus can be written as (21)-(22). For example, a circular sector of the unit disk
with angle 2ω, ω < π, can be described by such a σ with d1 = d3 = 1, d2 = 0,
e.g.,

σ(t, θ) = (t cos(θ), t sin(θ)) , (t, θ) ∈ [0, 1]× [−ω, ω] , (23)

(polar coordinates). Similarly, a circular segment with angle 2ω (one of the
two portions of the disk cut out by a line) can be described by such a σ with
d1 = d3 = 1, d2 = 0, e.g.,

σ(t, θ) = (cos(θ), t sin(θ)) , (t, θ) ∈ [−1, 1]× [−ω, ω] . (24)

On the other hand, a toroidal rectangle is described with d3 = 2, d1 = d2 = 0,
by the trasformation

σ(θ) = ((R + r cos(θ1)) cos(θ2), (R + r cos(θ1)) sin(θ2), r sin(θ1)) , (25)

θ = (θ1, θ2) ∈ [ω1, ω2]× [ω3, ω4], where R and r are the major and minor radii of
the torus. In the degenerate case R = 0 we get a so-called geographic rectangle of
a sphere of radius r, i.e. the region between two given latitudes and longitudes.
For other planar, surface and solid examples we refer the reader to [26, 27].

By the geometric structure (21)-(22), we have that if p ∈ P
d
n(K) then

p ◦ σ ∈
d1
⊗

i=1

Pn(Ii)⊗
d2+d3
⊗

j=1

Tn(Θj) , (26)

and this allows us to construct product-like polynomial meshes on such domains.
Indeed, in the univariate case Chebyshev-like optimal polynomial meshes are
known for algebraic polynomials and for trigonometric polynomials (even on
subintervals of the period). This result is stated in the following

Lemma 2 Let K ⊂ R
d be a compact set of the form (21)-(22). Then, for

every fixed m > 1, K possesses a polynomial mesh {Zn(m)} with constant
c = (1/ cos(π/(2m)))d1+d2+d3 and cardinality not exceeding (mn)d1+d2 (2mn)d3 .

The proof is essentially that given in [27] by resorting to algebraic-trigonometric
Chebyshev-like grids mapped by σ, with minor modifications to take into ac-
count the later results on subperiodic trigonometric Dubiner distance given in
[31]. If Chebyshev-Lobatto-like grids are used, mn and 2mn have to be substi-
tuted by mn + 1 and 2mn + 1, respectively. If m is not an integer, all these
quantities should be substituted by their ceiling (the least integer not smaller
than).

By Lemma 2 we get immediately the following proposition.

Proposition 3 Let K ⊂ R
d be a compact set of the form (21)-(22) and {Zn(m)}

the polynomial mesh of Lemma 2.
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Then for every n ∈ N and m > 1, the probability measure

ν = ν(n,m) = µ∗(Z2n(m)) (27)

is a near G-optimal design on K, in the sense that

max
x∈K

Kν
n(x, x) ≤ cmN , cm =

(

1

cos(π/(2m))

)d1+d2+d3

. (28)

Concerning G-efficiency we have now

Geff(ν) ≥ (cos(π/(2m)))d1+d2+d3 ∼ 1− (d1 + d2 + d3)π
2/(8m2) . (29)

Remark 1 Observe that by Propositions 1-3, reasoning as in (11) we get

‖Lν
n‖ ≤

√

cm N , (30)

i.e. the discrete probability measure ν nearly minimizes (the estimate of) the
weighted Least Squares uniform operator norm.

3 Caratheodory-Tchakaloff design concentration

Propositions 1-3 and the General Equivalence Theorem suggest a standard way
to compute near G-optimal designs. First, one constructs a polynomial mesh
such as X2mn or Y2n(π/(2m)) or Z2n(m), then computes a D-optimal design
for degree n on the mesh by one of the available algorithms. Observe that such
designs will be in general approximate, that is we compute a discrete probability
measure ν̃ ≈ ν such that on the polynomial mesh

max
x∈mesh

K ν̃
n(x, x) ≤ Ñ ≈ N (31)

(with Ñ not necessarily an integer), nevertheless estimates (13), (19) and (30)
still hold with ν̃ and Ñ replacing ν and N , respectively.

Again, we can not even attempt to survey the vast literature on computa-
tional methods for D-optimal designs; we may quote among others the class
of exchange algorithms and the class of multiplicative algorithms, cf. e.g.
[10, 17, 29] and the references therein.

Our computational strategy is in brief the following. We first approximate
a D-optimal design for degree n on the polynomial mesh by a standard mul-
tiplicative algorithm, and then we concentrate the measure via Caratheodory-
Tchakaloff compression of degree 2n, keeping the Christoffel polynomial, and
thus G-efficiency, invariant. Such a compression is based on a suitable imple-
mentation of a discrete version of the well-known Tchakaloff Theorem, which in
general asserts that any (probability) measure has a representing atomic mea-
sure with the same polynomial moments up to a given degree, with cardinality
not exceeding the dimension of the corresponding polynomial space; cf. e.g. [24]
and [20, 25] and the references therein. In such a way we get near optimality
with respect to both, G-efficiency and support cardinality, since the latter will
not exceed N2n = dim(Pd

2n(K)).
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To simplify the notation, in what follows we shall denote by X = {xi} either
the polynomial mesh X = X2mn or X = Y2n(π/(2m)) or X = Z2n(m) (cf.
Propositions 1-3), by M its cardinality, by w = {wi} the weights of a proba-
bility measure on X (wi ≥ 0,

∑

wi = 1), and by Kw
n (x, x) the corresponding

Christoffel polynomial.
The first step is the application of the standard Titterington’s multiplicative

algorithm [28] to compute a sequence w(ℓ) of weight arrays

wi(ℓ + 1) = wi(ℓ)
K

w(ℓ)
n (xi, xi)

N
, 1 ≤ i ≤ M , ℓ ≥ 0 , (32)

where we take w(0) = (1/M, . . . , 1/M). Observe that the weights wi(ℓ + 1)
determine a probability measure on X , since they are clearly nonnegative and
∑

iwi(ℓ)K
w(ℓ)
n (xi, xi) = N . The sequence w(ℓ) is known to converge for any

initial choice of probability weights to the weights of a D-optimal design (with a
nondecreasing sequence of Gram determinants), cf. e.g. [12] and the references
therein.

In order to implement (32), we need an efficient way to compute the right-
hand side. Denote by Vn = (φj(xi)) ∈ R

M×N the rectangular Vandermonde
matrix at X in a fixed polynomial basis (φ1, . . . , φN ), and by D(w) the diagonal
matrix of a weight array w. In order to avoid severe ill-conditioning that may
already occur for low degrees, we have discarded the monomial basis and used
the product Chebyshev basis of the smallest box containing X , a choice that
turns out to work effectively in multivariate instances; cf. e.g. [5, 19, 21].

By the QR factorization

D1/2(w)Vn = QR ,

with Q = (qij) orthogonal (rectangular) and R square upper triangular, we have
that (p1, . . . , pN) = (φ1, . . . , φN )R−1 is a w-orthonormal basis and

wi K
w
n (xi, xi) = wi

N
∑

j=1

p2j(xi) =

N
∑

j=1

q2ij , 1 ≤ i ≤ M . (33)

Thus we can update the weights at each step of (32) by a singleQR factorization,
using directly the squared 2-norms of the rows of the orthogonal matrix Q.

The convergence of (32) can be slow, but a few iterations usually suffice to
obtain an already quite good design onX . Indeed, in all our numerical tests with
bivariate polynomial meshes, after 10 or 20 iterations we already get 90% G-
efficiency on X , and 95% after 20 or 30 iterations; cf. Figure 1-left and 2-left for
typical convergence profiles. On the other hand, 99% G-efficiency would require
hundreds, and 99, 9% thousands of iterations. When a G-efficiency very close
to 1 is needed, one should choose one of the more sophisticated approximation
algorithms available in the literature, cf. e.g. [11, 12, 17] and the references
therein.

Though the designs given by (32) will concentrate in the limit on the sup-
port of an optimal design, which typically is of relatively low cardinality (with
respect to M), this will be not numerically evident after only a small num-
ber of iterations. Hence, in practice, the support of the optimal measure is
not readily identified, and a practioner may be presented with a measure with
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full support (albeit with many small weights). However, using Tchakaloff com-
pression (described below) the cardinality of the support can be immediately
reduced providing the practioner with a typically much smaller, and hence more
pratical, design set.

Let V2n ∈ R
M×N2n be the rectangular Vandermonde matrix at X with re-

spect to a fixed polynomial basis for Pd
2n(X) = P

d
2n(K) (recall that the chosen

polynomial mesh is determining on K for polynomials of degree up to 2n), and
w the weight array of a probability measure supported on X (in our instance,
the weights produced by (32) after a suitable number of iterations, to get a
prescribed G-efficiency on X). In this fully discrete framework the Tchakaloff
Theorem is equivalent to the existence of a sparse nonnegative solution u to the
underdetermined moment system

V t
2nu = b = V t

2nw , u ≥ 0 , (34)

where b is the vector of discrete w-moments of the polynomial basis up to degree
2n. The celebrated Caratheodory Theorem on conical finite-dimensional linear
combinations [9], ensures that such a solution exists and has no more than N2n

nonzero components.
In order to compute a sparse solution, we can resort to Linear or Quadratic

Programming. We recall here the second approach, that turned out to be the
most efficient in all the tests on bivariate discrete measure compression for
degrees in the order of tens that we carried out, cf. [21]. It consists of seeking
a sparse solution û to the NonNegative Least Squares problem

‖V t
2nû− b‖22 = min

u≥0
‖V t

2nu− b‖22 (35)

using the Lawson-Hanson active set algorithm [16], that is implemented for
example in the Matlab native function lsqnonneg. The nonzero components of
û determine the resulting design, whose support, say T = {xi : ûi > 0}, has at
most N2n points.

Observe that by construction K û
n(x, x) = Kw

n (x, x) on K, since the under-
lying probability measures have the same moments up to degree 2n and hence
generate the same orthogonal polynomials. Now, since

max
x∈K

Kw
n (x, x) ≤ cm max

x∈X
Kw

n (x, x) =
cmN

θ
,

where θ is the G-efficiency of w on X , in terms of G-efficiency on K we have
the estimate

Geff(û) = Geff(w) ≥
θ

cm
, (36)

cf. Propositions 1-3, while in terms of the uniform norm of the weighted Least
Squares operator we get the estimate

‖Lû
n‖ ≤

√

cmN

θ
. (37)

We present now several numerical tests. All the computations have been
made in Matlab R2017b on a 2.7 GHz Intel Core i5 CPU with 16GB RAM. As
a first example we consider polynomial regression on the square K = [−1, 1]2.
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Figure 1: Left: G-efficiency of the approximate optimal designs computed by
(32) on a 101 × 101 Chebyshev-Lobatto grid of the square (upper curve, n =
10, m = 5), and estimate (36) (lower curve); Right: Caratheodory-Tchakaloff
compressed support (231 points) after ℓ = 22 iterations (Geff ≈ 0.95).
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Figure 2: Caratheodory-Tchakaloff compressed support (165 points) on a 41×
41 × 41 Chebyshev-Lobatto grid of the cube for regression degree n = 4 (with
m = 5), after ℓ = 35 iterations (Geff ≈ 0.95).

Since dub[−1,1]2(x, y) = max{arccos |x2 −x1|, arccos |y2− y1|}, cf. [6], by Propo-
sition 2 we can take as initial support Y2n(π/(2m)) a (2mn + 1) × (2mn + 1)
Chebyshev-Lobatto grid (here cm = 1/ cos(π/(2m)), cf. [22]), apply the itera-
tion (32) up to a given G-efficiency and then Caratheodory-Tchakaloff measure
compression via (35).

The results corresponding to n = 10 and m = 5 are reported in Figure 1.
Notice that (36) turns out to be an underestimate of the actual G-efficiency
on K (the maximum has been computed at a much finer Chebyshev-Lobatto
grid, say Y2n(π/(8m)). All the information required for polynomial regression
up to 95% G-efficiency is compressed into 231 = dim(P2

20) sampling nodes and
weights, in about 1.7 seconds.

In Figure 2 we present a trivariate example, where K = [−1, 1]3 and we
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consider regression degree n = 4 and m = 5, with a corresponding 41 × 41 ×
41 Chebyshev-Lobatto grid. This polynomial mesh of about 68900 points is
compressed into 165 = dim(P3

8) sampling nodes and weights still ensuring 95%
G-efficiency, in about 9 seconds.

In order to check the algorithm behavior on a more complicated domain, we
take a 14-sided nonconvex polygon. An application of polygonal compact sets is
the approximation of geographical regions; for example, the polygon of Figure
3 resembles a rough approximation of the shape of Belgium. The problem
could be that of locating a near minimal number of sensors for near optimal
polynomial regression, to sample continuous scalar or vector fields that have to
be reconstructed or modelled on the whole region.

With polygons we can resort to triangulation and finite union as in (3),
constructing on each triangle a polynomial mesh like Z2n(m) in Proposition 3
by the Duffy transform of a Chebyshev-grid of the square with approximately
(2mn)2 points; here cm = 1/ cos2(π/(2m)) for any triangle and hence for the
whole polygon. The results corresponding to n = 8 and m = 5 are reported
in Figure 3. The G-efficiency convergence profile is similar to that of Figure
1, and the whole polynomial mesh of about 84200 points is compressed into
153 = dim(P2

16) sampling nodes and weights still ensuring 95% G-efficiency, in
about 8 seconds.
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Figure 3: Left: G-efficiency of the approximate optimal designs computed by
(32) on a polynomial mesh with about 84200 points of a 14-sided nonconvex
polygon (upper curve, n = 8, m = 5), and estimate (36) (lower curve); Right:
Caratheodory-Tchakaloff compressed support (153 points) after ℓ = 26 itera-
tions (Geff ≈ 0.95).

Remark 2 The practical implementation of any design requires an interpre-
tation of the weights. As before, let X := {xi}Mi=1 ⊂ K be the support of a
discrete measure with wi > 0, 1 ≤ i ≤ M. We will denote this measure by µX .
Further, let Vn := (φj(xi)) ∈ R

M×N be the Vandermonde evaluation matrix for

12



the basis {φ1, · · · , φN}. The Gram (information) matrix is then given by

G =

(
∫

K

φi(x)φjdµX

)

1≤i,j≤N

=

(

M
∑

k=1

wkφi(xk)φj(xk)

)

1≤i,j≤N

= V t
nD(w)Vn

where D(w) ∈ R
M×M is the diagonal matrix of the weights w. Then the best

least squares approximation from Pd
n(K), with respect to the measure µX , to

observations yi, 1 ≤ i ≤ M, is given by

N
∑

j=1

cjφj(x), c = (V t
nD(w)Vn)

−1V t
nD(w)y. (38)

For an optimal design, the determinant of the Gram matrix V t
nD(w)Vn is as

large as possible and hence (38) could be used as a numerically stable (at least
as much as possible) algorithm for computing an approximation to the given
data. However, it is also useful to exploit the statistical meaning of the weights.
Indeed, in comparison, underlying the statistical interpretation of least squares
is the assumption that the observations are samples of a polynomial p ∈ Pd

n(K),
at the design points xi, each with an error ǫi assumed to be independent normal
random variables ǫi ∼ N(0, σ2

i ). One then minimizes the sum of the squares of
the normalized variables,

ǫi
σi

=
p(xi)− yi

σi
,

i.e., one minimizes
M
∑

i=1

(

p(xi)− yi
σi

)2

.

If we write p(x) =
∑N

j=1 cjφj(x), then this may be expressed in matrix-vector
form as

‖C−1/2(Vnc− y)‖22
where C = D(σ2

i ) ∈ R
M×M is the (diagonal) covariance matrix. This is mini-

mized by
c = (V t

nC
−1Vn)

−1VnC
−1y. (39)

Comparing (39) with (38) we see that the weights wi correspond the reciprocals

of the variances, wi ∼ 1/σ2
i , 1 ≤ i ≤ M, but normalized so that

∑M
i=1 wi = 1.

Now, if in principle any specific measurement has an error with a fixed vari-
ance σ2 then the variance for an observation may be reduced by repeating the
ith measurement mi (say) times and then using the average yi in place of yi,
with resulting error variance σ2/mi. Then wi ∼ 1/σ2

i = mi/σ
2 which, after

normalization, results in

wi =
mi

∑M
j=1 mj

, 1 ≤ i ≤ M.
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In other words, the weights indicate the percentage of the total measurement
budget to use at the ith observation point.

However, the computed weights are rarely rational and thus to obtain a
useable percentage some rounding must be done. It turns out that the effect of
this rounding on the determinant of the Gram matrix can be readily estimated.
Indeed we may calculate

∂

∂wi
log(det(Gµ

n)) =
∂

∂wi
tr(log(Gµ

n))

= tr

(

∂

∂wi
log(Gµ

n)

)

= tr

(

(Gµ
n)

−1 ∂G
µ
n

∂wi

)

.

But, as we may write

Gµ
n =

M
∑

k=1

wkp(xk)p
t(xk)

where p(x) is the vector p(x) = [φ1(x), φ2(x), · · · , φN (x)]t ∈ R
M , we have

∂Gµ
n

∂wi
= p(xi)p

t(xi)

and hence

∂

∂wi
log(det(Gµ

n)) = tr
(

(Gµ
n)

−1p(xi)p
t(xi)

)

= pt(xi)(G
µ
n)

−1p(xi)

= Kµ
n(xi, xi).

For an optimal design Kµ
n(xi, xi) = N, 1 ≤ i ≤ M and for our near optimal

designs this is nearly so. Hence a perturbation in a weight results in a relative
perturbation in the determinant amplified by around a factor of N. In adjusting
the weights, some roundings will be up and others down and so these perturba-
tions will tend to negate each other. In other words, the rounding strategy is
entirely practical.

4 Summary

In this paper we have shown that polynomial meshes (norming sets) can be used
as useful discretizations of compact sets K ⊂ R

d also for the purposes of (near)
optimal statistical designs. We have further shown how the idea of Tchakaloff
compression of a discrete measure can be efficiently used to concentrate the
design measure onto a relatively small subset of its support, thus making any
least squares calculation rather more pratical.
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