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[1] Propagation of linear near-inertial waves on the b plane is considered, taking into
account the horizontal component of the Earth’s rotation, ~f . (Terms, effects etc., due to this
component will be referred to as ‘‘nontraditional,’’ for brevity.) It is shown that the
combined effect of b and ~f changes the dynamics in a fundamental way. For a vertically
unbounded domain, an exact solution shows that near-inertial waves can pass through
the inertial latitude, unlike under the traditional approximation. For parameter values
typical of the ocean, the subinertial domain extends several hundreds of kilometers
poleward of the inertial latitude. The solution undergoes a profound change if a vertically
bounded, instead of unbounded, domain is considered. Part of the wave energy then
accumulates at the poleward end of the subinertial domain, which involves an evolution
toward infinitesimal horizontal and vertical scales. For vertically nonuniform stratification,
examined here using the Garrett-Munk exponential profile, one finds a wedge-like
waveguide, which becomes increasingly narrow in the poleward direction, and drives
subinertial waves into the region of the weakest stratification, i.e., the abyss. For typical
parameters, the relative amount of poleward traveling energy that gets trapped is
estimated to lie between 10 and 30%; its dependence on latitude and stratification is also
outlined. The observational evidence and possible implications for abyssal mixing are
discussed.

Citation: Gerkema, T., and V. I. Shrira (2005), Near-inertial waves on the ‘‘nontraditional’’ b plane, J. Geophys. Res., 110,

C01003, doi:10.1029/2004JC002519.

1. Introduction

[2] Near-inertial internal waves are a ubiquitous phenom-
enon in the ocean, and the inertial peak usually dominates
the internal-wave spectrum [Fu, 1981]. They are thought to
be mostly generated by atmospheric disturbances; a global
map of the input of near-inertial energy has recently been
constructed [Alford, 2003].
[3] The theoretical description of the propagation of near-

inertial waves involves two subtleties which set it apart
from the rest of the internal-wave spectrum: the b effect and
the ‘‘nontraditional’’ effect. Since the wave-frequency s lies
close to f, one finds that s/f � 1 varies noticeably, even over
short distances (i.e., distances over which f as such varies
relatively little); thus the b effect plays a crucial role [e.g.,
Munk, 1980; Garrett, 2001]. The ‘‘nontraditional’’ terms,
i.e., the terms due to the horizontal component of the Earth’s
rotation ( ~f ), modify the dynamics of near-inertial waves in
two ways. First, they create a class of subinertial internal
waves [e.g., LeBlond and Mysak, 1978; Brekhovskikh and

Goncharov, 1994] that does not exist under the so-called
‘‘traditional approximation,’’ i.e., if one assumes ~f = 0.
Second, they produce a nonvanishing horizontal group
velocity at the inertial frequency [Badulin et al., 1991]. In
a recent study [Gerkema and Shrira, 2004], transitions
between the superinertial and subinertial classes were
shown to be a generic phenomenon for near-inertial waves
propagating in a horizontally inhomogeneous fluid; here
we will consider the specific case of the inhomogeneity
due to b.
[4] The combined effect of b and ~f has been explored in

an implicit way in studies on internal-wave propagation in
spherical shells [Friedlander and Siegmann, 1982; Dintrans
et al., 1999]. These studies revealed the existence of
solutions that involve wave trapping poleward of the inertial
latitude. The oceanographic relevance and possible impli-
cations for abyssal mixing were noticed by Maas [2001].
However, owing to the complexity of the full spherical
geometry, it has remained impossible to disentangle the
mechanism involved in this trapping, and to pinpoint the
roles of b, ~f , and the geometry. Moreover, no estimates were
made of the portion of energy that gets trapped this way,
which is essential for judging the oceanographic signifi-
cance of this mechanism.
[5] In this paper we will derive a tractable equation that

combines the nontraditional effects with the b effect, in its
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most reduced form, and enables us to describe the
trapping, linking it firmly to the simultaneous effect of b
and ~f . The derivation of the equation is the subject of
section 2. (We should note at the outset that we exclude the
equatorial region, for which the dynamics of near-inertial
waves requires a separate treatment [see Maas, 2001, and
references therein].) In section 3, we summarize some
known results on the dynamics on the nontraditional f
plane, and show how the energy properties differ from
those obtained under the traditional approximation. In
addition to the ‘‘traditional’’ class of superinertial waves,
there is now a class of subinertial waves. The b effect
enables the transition from one class to another, as is shown
in sections 4.1 and 4.2. In a vertically bounded domain, one
finds an additional feature: wave-trapping in the subinertial
domain (remainder of section 4). Observational evidence of
nontraditional effects is discussed in section 5.

2. Derivation of the Governing Equation

[6] We start with the linearized momentum equations on
the nontraditional b plane, under the Boussinesq approxi-
mation, along with the continuity and (reduced) energy
equations,

ut � fvþ ~f w ¼ �px; ð1aÞ

vt þ fu ¼ �py; ð1bÞ

wt � ~f u ¼ �pz þ b; ð1cÞ

ux þ vy þ wz ¼ 0; ð1dÞ

bt þ N2w ¼ 0; ð1eÞ

where p is the perturbation pressure divided by a constant
reference density, and b denotes the buoyancy. A Cartesian
frame is used with the coordinates x (west-east), y (south-
north), and z (vertical, positive upward); u, v, and w are the
corresponding velocity components. We allow the buoy-
ancy frequency N to depend on z (unless stated otherwise).
In the traditional approximation, one would take ~f = 0
[Eckart, 1960].
[7] On the nontraditional b plane, the parameter f varies

linearly with the meridional coordinate ( f = f0 + by), while ~f
is kept constant to ensure that vorticity and angular mo-
mentum principles remain valid [Grimshaw, 1975]. The
constants ~f , f0, and b are defined in the usual way,

~f ; f0
� �

¼ 2W cosf; sinfð Þ ; b ¼ 2W cosf=R ;

where f denotes a fixed latitude, W is the Earth’s angular
velocity, and R is the Earth’s radius.
[8] The effects of a zonal dependence are discussed

separately, in Appendix A; in the remainder, we will con-
sider plane waves propagating in the meridional direction, so
that @/@x = 0. We will look for time periodic solutions, and
write u = U(y, z)exp ist (similarly for the other fields). Under
these assumptions, (1a)–(1e) can be reduced to an equation
for V, the meridional velocity component,

N2 � s2 þ ~f 2
� �

Vyy þ 2f ~f Vyz � s2 � f 2
� �

Vzz þ ~f bVz ¼ 0: ð2Þ

The y-dependent f occurs in the second and third term. The
horizontal scales we will consider are much smaller than
R, so we can in the second term approximate f by f0
(except in equatorial regions, which we exclude here). In
the third term, however, the b-effect matters even at small
scales, because s is very close to f0; here we retain the
leading-order term in b,

s2 � f 2 � s2 � f 20 � 2f0by: ð3Þ

With these approximations, (2) becomes

AVyy þ 2BVyz þ C þ 2f0byð ÞVzz þ ~f bVz ¼ 0; ð4Þ

where A = N2 � s2 + ~f 2, B = f0 ~f , and C = f 0
2 � s2; B and

C are constants, while A may depend on z, via N. The
traditional approximation would remove the second and
fourth term (B, ~f = 0). Equation (4), which unifies
nontraditional effects with the b effect, forms the starting
point of further study in this paper. (We note that (4) could
also have been obtained without initially assuming ~f to be
constant, since arguments similar to those used to
approximate (2) by (4) would have allowed us to neglect
variations in ~f .) First, we will briefly consider the case
b = 0, and discuss results that serve as a preparation for
later sections.

3. The f Plane

[9] Taking b = 0 in (4) leads us back to the nontraditional
f plane; the characteristics are then given by

dz

dy
¼ B� B2 � ACð Þ1=2

A
� m�: ð5Þ

For simplicity, we will assume N to be constant (Nc). The
condition of hyperbolicity, B2 � AC > 0, delineates the
range of allowable frequencies s; hence one obtains the
lower and upper bounds, smin and smax,

s2min; s2max ¼ s	 s2 � f0Ncð Þ2
h i1=2

; ð6Þ

with 2s = Nc
2 + f 0

2 + ~f 2. These expressions were earlier
derived by Brekhovskikh and Goncharov [1994]; an
alternative but equivalent form is given by LeBlond and
Mysak, [1978]. The horizontal component ~f enlarges the
frequency domain at both ends; in particular, if Nc > j f0j (as
is usually the case in the ocean), one finds a lower bound
smin < j f0j instead of the ‘‘traditional’’ lower bound j f0j;
there is now a class of subinertial internal waves: smin < s <
j f0j.
[10] A schematic view of the characteristics x± = m±y � z

in the three frequency regimes (superinertial, inertial, and
subinertial) is shown in Figure 1 (in each, we assume A > 0,
a condition normally satisfied in the ocean); they indicate
the direction of energy-propagation. As is discussed by
Badulin et al. [1991], the (horizontal) group velocity does
not vanish at the inertial frequency, unlike under the
traditional approximation. Further insight into the properties
of near-inertial waves can be obtained from the expressions
for kinetic and potential energy (Ek, Ep), derived in Appen-
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dix B. In Figure 2 we plot the ratios Ep/Ek and Ek,u/Ek,v , as
functions of wave-frequency s. With ~f included, we have to
distinguish the plus-branch (thick solid line) and the minus-
branch (dotted line), associated with m± in (5). Under the
traditional approximation, by contrast, the two coincide
(thin line), since then m+

2 = m�
2 . In the near-inertial range,

the nontraditional plus-branch has a much larger Ep/Ek ratio

than the traditional branch (Figure 2a). Importantly, at s =
j f0j the horizontal polarization is noncircular for the plus-
branch (Figure 2b). Other aspects of internal waves on the
nontraditional f plane (like modal solutions, reflection at
slopes, etc.) are discussed elsewhere [Gerkema and Shrira,
2004].

4. The B Plane

[11] For b 6¼ 0 and a fixed near-inertial frequency s, we
can place the inertial latitude at y = 0, so that j f0j = s and
C = 0; this involves no loss of generality. Equation (4), with
C = 0, will be our starting point for studying near-inertial
waves on the nontraditional b plane.

4.1. Inertial and Turning Latitudes

[12] We first reconsider the meaning of the inertial
latitude. Under the traditional approximation, it acts as a
turning latitude, in the sense of the classical turning point in
the WKB description [e.g., Munk, 1980; Garrett, 2001].
However, if one includes ~f , then near-inertial waves can
exist as subinertial waves poleward of the inertial latitude.
This can be seen by considering the characteristics
corresponding to (4), given by

dz

dy
¼ B� B2 � A C þ 2f0byð Þð Þ1=2

A
: ð7Þ

As noted above, we can assume C = 0. For constant N
the characteristics can be found in explicit form (see
section 4.3), but we first consider the general case N(z),

Figure 1. Schematic view of the characteristics x± =
m ± y � z on the ‘‘nontraditional’’ f plane, given by (5),
for the three regimes: superinertial, inertial, and sub-
inertial. The poleward direction is to the right.

Figure 2. Ratios of energies as a function of wave-frequency s: (a) the ratio of potential and kinetic
energies, and (b) the ratio of the two horizontal kinetic energies. In both panels, thick (solid and dotted)
lines represent expressions obtained without the traditional approximation; thin lines represent
expressions obtained with the traditional approximation. In nontraditional dynamics, the window of
allowable frequencies is bounded by smin and smax, which are the roots of B2 � AC = 0. Under the
traditional approximation, these bounds become j f0j and Nc. Parameter values are Nc = 2j f0j and f =
45�N.

C01003 GERKEMA AND SHRIRA: NEAR-INERTIAL WAVES

3 of 10

C01003



hence A(z). The curve separating the hyperbolic and
elliptic regimes is found by requiring the argument of the
square root in (7) to be zero,

y ¼ B2

2f0bA zð Þ ¼
f0 ~f R

2 N zð Þ2�f 20 þ ~f 2
� � : ð8Þ

Under the traditional approximation ( ~f , B = 0), this curve
forms a vertical straight line, y = 0, irrespective of the
profile of N(z); this means that the inertial latitude here
always acts as a turning latitude.
[13] If the traditional approximation is abandoned, two

cases have to be distinguished, since there is now a
dependence on N. For constant N = Nc, the curve (8) still
forms a vertical straight line,

y ¼ y
*
� f0 ~f R

2 N2
c � f 20 þ ~f 2

� � : ð9Þ

Hence we can still speak of a turning latitude, understood as
the boundary of wave propagation, but it now lies poleward
of the inertial latitude. (We assume here that A > 0, a
condition that is almost always satisfied in the ocean.) In the
region between the inertial and turning latitudes, the waves
are subinertial. Since the horizontal scales considered here
are small compared to R, expression (9) is practically
equivalent to the exact one derived by Hughes [1964] [see
also LeBlond and Mysak, 1978, equation (10.26)], which
was obtained without recourse to the b plane approximation.
In using the term ‘‘turning’’ latitude for y = y*, we should
add the caveat that the behavior at this latitude can be quite
unlike that under the traditional approximation; in fact, one
finds that in a vertically bounded domain, subinertial waves
accumulate (rather than turn) at the deepest point at y = y*
(see section 4.3).
[14] For nonconstant N, we can no longer speak of a

turning latitude, since the curve (8) no longer forms a
vertical line. The curve extends to a certain limiting latitude
ymax, whose value is found by calculating y in (8) for
min(N(z)). This case will be illustrated in section 4.4. If
N(z) has more than one local minimum, each of them will
have its own corresponding value of ymax.

4.2. Unbounded Domain, Constant N

[15] The ideas discussed in the previous section can be
illustrated by considering a simple solution of (4) for a
vertically unbounded domain, with constant N = Nc. Sub-
stituting V = Q(y)exp im(z � By/A) into (4), with C = 0,
gives

Q00 � m̂2 y� yc½ �Q ¼ 0; ð10Þ

where m̂2 = 2f0bm
2/A, and

yc ¼ y
*
þ i~f

2f0m
; ð11Þ

whose real part, y*, is given by (9). (The results obtained
below do not noticeably change if one ignores the
imaginary term in (11); it is indeed plausible that the term

is always negligible for realistic parameters, but we will
not pursue this point here.) Equation (10) can be solved in
terms of Airy functions (with complex argument): Q =
Ai(m̂2/3[y � yc]). Hence V becomes, if we take the
imaginary part,

V ¼ = Ai m̂2=3 y� yc½ �
� �

exp im z� By=Að Þ
n o

: ð12Þ

We can arbitrarily superpose solutions with different values
of m; an example is shown in Figure 3b; for comparison we
show in Figure 3a the same solution but under the
traditional approximation (i.e., taking ~f = 0 in (12)). These
figures illustrate the point, discussed above, that the inertial
latitude no longer acts as a turning latitude if the traditional
approximation is abandoned: While superinertial waves
reflect at the inertial latitude (y = 0) in Figure 3a, they pass it
unhindered in Figure 3b, become subinertial, and finally
reflect at y = y*(= 136 km), the real turning latitude. The
structure of the field in Figure 3b indicates that there are two
ways to pass the inertial latitude: horizontally via a
parabolically shaped curve, or diagonally via a steep
rectilinear curve. This will be confirmed below when we
consider the characteristics.
[16] The solution (12) represents a direct generalization of

known solutions, also in terms of Airy functions, obtained
earlier under the traditional approximation [Munk, 1980]. In
contrast to the latter case, there is now no straightforward way
to use (12), ormore general solutions in whichm is allowed to
be complex, as a starting point for obtaining solutions in a
vertically bounded domain. This difficulty is due to the
nonseparable character of the problem, and reflects the
profound change brought about in the solution if one changes
the configuration from vertically unbounded to bounded. As
we will suggest below on the basis of characteristics, part of
the energy of the near-inertial waves then accumulates at the
‘‘turning’’ latitude y*, at the bottom.

4.3. Bounded Domain, Constant N

[17] For constant N = Nc the explicit form of the charac-
teristics can be found from (7)

x� ¼ B

A
y 	 1

3f0bA2
B2 � 2f0bAy
� �3=2� z: ð13Þ

The characteristic coordinates allow us to reduce (4) to its
canonical form; if we ignore the last term in (4), the
resulting form is the Euler-Poisson-Darboux equation,

6 xþ � x�
� �

Vxþx� ¼ Vxþ � Vx� :

Although the general solution of this equation is known
[Darboux, 1915], the problem of finding a solution
satisfying the boundary conditions in a vertically bounded
domain has not yet been solved.
[18] Returning to the characteristics (13), and making the

Taylor expansion around y = 0, we find that in the vicinity
of the inertial latitude, x+ and x� take a linear and parabolic
form, respectively (leaving out the constants),

xþ ¼ �zþ 2B

A
yþ O y2

� �
; x� ¼ �zþ f0b

2B
y2 þ O y3

� �
:
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These shapes are already recognizable in Figure 3b; locally,
they are also consistent with the behavior on the nontradi-
tional f plane, shown schematically in Figure 1.
[19] We now consider a vertically confined domain, and

take a starting point at the left end (in the superinertial
domain); see Figure 4. The thick lines represent the non-
traditional characteristics (13). Given the separation of
scales (i.e., the waves are short compared to b�1), we will
adopt a WKB-approach: We will assume that the wave
energy propagates along the characteristics and that no
internal reflections occur. The parabolic-shaped x� then
shows how the wave energy enters the subinertial domain,
and how, after reflection at the turning latitude, the energy
will continue to propagate along the steep x+ characteristic.
Until here, the pattern is identical to that in Figure 3b. The
difference starts when the x+ characteristic encounters the
bottom, and reflects. The alternation between x+ and x�
characteristics then leads to an accumulation of energy in
the lower corner at the turning latitude. This is in stark
contrast with the pattern under the traditional approximation
(i.e., (13) with ~f = 0), where the waves reflect at the inertial
latitude (thin lines).
[20] The trapped solution shown in Figure 4 also indi-

cates that the horizontal and vertical scales become infi-
nitely short at the turning latitude. This is what one would
expect on the basis of the theory of the nontraditional f
plane; for a vertically bounded domain, Saint-Guily [1970]
showed that the waves become infinitely short at the
minimum frequency. (This subinertial short-wave limit is
discussed in more detail by Gerkema and Shrira [2004].)
The minimum frequency is indeed attained precisely at
latitude y*.

[21] We note that not all energy will get trapped into the
corner. Energy that passes the inertial latitude sufficiently
shallow via x� will return into the super-inertial domain (via
x+). Moreover, energy that passes via x+ will always return
into the super-inertial domain (via x�).

4.4. Bounded Domain, Exponential N

[22] For nonconstant stratification N(z), the subinertial
waves, which owe their existence to nontraditional effects,
are trapped in regions around minima of N [Brekhovskikh
and Goncharov, 1994, p.256; Gerkema and Shrira, 2004]:
The more subinertial they become, the closer they must stay
near the minimum. This is illustrated in Figure 5 for an
exponential profile: N = N0exp(z/b), with the standard
values N0 = 5.24 � 10�3rad s�1 and b = 1.3 km [e.g.,
Garrett, 2001]. The waveguide is delineated by the dotted
exponential curve, which represents (8).
[23] The characteristic equations (7) are now solved

numerically, because of the vertical dependence of A. As
before, we assume C = 0; that is, the inertial latitude lies at
y = 0. The results are shown in Figure 5. Again, one
observes the contrasting behavior in the traditional and
nontraditional cases (thin and thick lines, respectively). In
the former case, the inertial latitude acts as a turning
latitude; this is the case considered previously, also in terms
of characteristics, by Garrett [2001]. In the nontraditional
case, by contrast, the inertial latitude becomes transparent,
and part of the near-inertial wave energy is guided toward
the bottom in the subinertial domain, as shown in Figure 5a;
notice the large extent of this domain: nearly 600 km.
The end of the waveguide lies at the limiting latitude
ymax = 581 km (see section 4.1); here the ratio s/f equals

Figure 3. Meridional velocity component jVj of near-inertial waves in a vertically unbounded domain,
constructed by superposing solutions (12) for m = 1,� � �,5. The waves are superinertial for y < 0 and
subinertial for y > 0; the poleward direction is to the right. (a) Under the traditional approximation: ~f = 0;
here the inertial and turning latitudes coincide at y = 0. (b) Without the traditional approximation; now the
turning latitude lies at y* = 136 km, i.e., poleward of the inertial latitude y = 0. In both panels, parameter
values are Nc = 5 � 10�4rad s�1, f = 45�N, s = f0.
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Figure 4. Characteristic curves x± = const, given by (13), in a vertically bounded domain. Thin lines:
under the traditional approximation (~f = 0); thick lines: without the traditional approximation. In the latter
case, waves become trapped at the turning latitude, at the bottom. Parameter values are as in Figure 3.

Figure 5. Characteristic curves x± = const, solved numerically from (7) for an exponential profile of
N(z). Thin lines: under the traditional approximation ( ~f = 0); thick lines: without the traditional
approximation. In the latter case, waves can either (a) become abysally trapped at the limiting latitude
( ymax = 581 km) or (b) be reflected back into the superinertial domain. The exponential dotted curve
denotes the transition between the hyperbolic and elliptic regimes. As before, f = 45�N and s = f0.
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f0/( f0 + bymax) = 0.92. These subinertial waves would
normally still fall within the inertial peak (in observed
internal-wave spectra), which has a typical width of 0.1f.
[24] Whether or not this accumulation toward ymax takes

place depends on where and how the wave energy enters the
subinertial domain (see section 4.5); an example in which
wave energy returns equatorward is shown in Figure 5b.
The question of how to estimate the (relative) amount of
trapped energy, and its dependence on latitude and stratifi-
cation, is considered in the following section.

4.5. Trapped Subinertial Energy

[25] In terms of characteristics, there are two ways to pass
the inertial latitude: diagonally via x+, or horizontally via
x�. To proceed, we will assume that both are equally likely,
and that, for each, all heights of passage are also equally
likely. It follows from (7) that x� is less steep than x+.
Hence a poleward energy flux that passes the inertial
latitude via x+ will, after reflection in the subinertial domain,
return into the superinertial domain via x� (compare
Figure 5b, thick line, and Figure 6a, thin line). Only energy
passing via x� can become trapped, if the passage occurs
sufficiently deep. The threshold level z* can be determined
as indicated in Figure 6a (dashed line). Energy that enters
via x� at a higher level will return into the superinertial
domain (thin line in Figure 6a), while for a lower passage
the energy cannot escape (thick line in Figure 6a), and will
continue to propagate toward the limiting latitude (see
Figure 5a, thick line).
[26] As stated above, we assume the incident energy

fluxes to be uniformly distributed with depth; hence the

portion of trapped energy is given by (H � z*)/(2H), where
H is the water depth. (The amount can never be larger than
50% because the energy entering via x+ does not get
trapped.) To get an idea of how large the percentage is for
realistic parameters, we use again an exponential profile of
N, as in section 4.4. As before, we take b = 1.3 km, but we
now consider three different values for N0 to find the
dependence on the strength of the stratification. The other
key parameter is latitude, and the dependence on both is
shown in Figure 6b. The portion of trapped energy is largest
at midlatitudes, and becomes (as one would expect) larger
for weaker stratification. Overall, it lies roughly between 10
and 30%.
[27] The two key properties of these trapped subinertial

waves suggest their potential importance to deep-ocean
mixing, and, hence, to large-scale ocean dynamics: the
fact that their horizontal and vertical scales become
increasingly small as they approach the limiting latitude
and the fact that they are trapped in the region of weak
stratification, which singles out the abyssal ocean as their
habitat.

5. Discussion

[28] We summarize the principal differences between
nontraditional ( ~f 6¼ 0) and traditional ( ~f = 0) dynamics
of near-inertial waves on the b plane, and discuss how
nontraditional effects may be detected in observations. The
frequency domain is enlarged by including ~f ; in particular, a
class of subinertial waves exists (smin < s < j f0j) that
disappears under the traditional approximation (section 3,

Figure 6. (a) Threshold depth z* at the inertial latitude, determined by using the x+ characteristic
originating from the bottom at the inertial latitude, and the reflected x� (dashed lines). Only energy that
enters the subinertial domain via x� at a lower position will become trapped. The thin line shows an
example of a return into the superinertial domain; the thick line shows an example of subinertial trapping.
Parameters are as in Figure 5. (b) Percentage of trapped energy is shown, as a function of latitude and
stratification. Here it is assumed that all ways of passing the inertial latitude are equally likely.
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and references therein). Observationally, this class cannot be
expected to form a distinctive feature in internal-wave
temporal spectra, because it falls within the inertial peak,
which has a typical width of 10% of jf0j.
[29] Superinertial waves propagating toward the equator

will move downward via x+ and upward via x� (see
Figure 1). According to (B3) in Appendix B, the downward
vertical energy flux will then be larger than the upward
one. (This asymmetry disappears under the traditional
approximation, since the inequality in (B3) then becomes
an equality.) Such a vertical asymmetry has indeed been
observed by D’Asaro and Perkins [1984]. However, a
quantitative comparison is hindered by the assumption they
made on the conservation of vertical wave number;
in nontraditional dynamics the upward and downward
propagating beams have different vertical wave numbers.
(For example, for reflection at a flat bottom one finds m+/
m� = m�/m+, with m± given by (5).)
[30] For near-inertial waves, properties like energy ratios

and polarization are strongly modified by nontraditional
effects (Figure 2), especially in regions of weak stratifica-
tion. In particular, these properties are now different for the
two characteristics (as indicated by the plus and minus
branches in Figure 2). This makes it possible, in principle
at least, to infer the direction of propagation (compare
Figure 1) from, for example, the polarization of the hori-
zontal velocity field. Under the traditional approximation,
the distinction between the two branches disappears. It has
been reported that the polarization observed at near-inertial
frequencies is often not circular (Konyaev and Sabinin
[1992] write: ‘‘The ratio of the axes of the most intense
oscillations at near-inertial frequencies was measured in
the MegaPoligon-experiment. The histogram of these ratios
is spread between 0.4 to 1, with the maximum in the
interval 0.7–0.8, while the frequency histogram is com-
pressed near inertial frequencies (�15%). In other words,
the orbits of the most intense inertial oscillations deviate
significantly from circular ones.’’) This fact can be
explained by nontraditional theory, but not by traditional
theory (Figure 2b).
[31] If one abandons the traditional approximation, the

inertial latitude no longer acts as a turning latitude (and
for nonconstant stratification, one cannot even speak
anymore of a turning latitude): On the nontraditional b
plane, freely propagating subinertial waves can exist in a
region poleward of the inertial latitude. The extent of this
region depends on the stratification, but will typically be
on the order of a few hundreds of kilometers in the deep
ocean (section 4). As illustrated in Figure 3b, the region
is large enough to avoid confusion with the rapidly
decaying signal (present beyond the inertial latitude)
that one observes under the traditional approximation
(Figure 3a).
[32] Even though the subinertial range is large in terms

of distance, from the observational perspective one still
faces the problem that in terms of frequency, the sub-
inertial range falls under the cloak of the inertial peak. At
certain special latitudes, this may pose less of a problem.
For example, semidiurnal lunar (M2) internal tides can
create waves of half their frequency by parametric sub-
harmonic instability (PSI). This process is at work, in
principle, wherever the subharmonics can exist as freely

propagating waves. Under the traditional approximation,
with its lower bound j f0j for internal-wave frequencies,
one thus finds the latitude 28.8�N/S, equatorward of which
PSI can work. In nontraditional dynamics, however, PSI
can already work at some distance poleward of this
latitude, typically 1� to 5� (depending on the stratifica-
tion). Hibiya and Nagasawa [2004] recently estimated
diapycnal diffusivities at various latitudes, and found
markedly higher values at lower latitudes, presumably
due to PSI. Interestingly, the high values do not start at
28.8�N, but indeed already a few degrees northward of it.
If this is due to nontraditional effects, it should start even
farther northward at deeper locations (the measurements
by Hibiya and Nagasawa [2004] were made down to
about 1.5 km).
[33] The so-called ‘‘critical’’ (i.e., inertial) latitude for

internal tides also deserves special mention; for M2 tides,
it lies at 74.5�N/S. According to traditional linear theory,
internal tides can neither pass through the inertial latitude nor
be generated poleward of it. However, freely propagating
internal tides of M2 period have been observed well beyond
this latitude, as discussed by Vlasenko et al. [2003], who
propose an explanation in terms of nonlinear effects and
higher harmonics. An alternative explanation, which works
also for linear waves, lies in the inclusion of ~f ; internal
tides can then exist up to several degrees beyond their
‘‘critical’’ latitude.
[34] The more poleward subinertial waves come, the

weaker the stratification must be for them to exist
(Figure 5a), implying an accumulation of wave energy in
the region of weakest stratification, the abyssal ocean. This
creates a vertical asymmetry in the distribution of near-
inertial wave energy not present under the traditional
approximation. Recently, persistent abyssally intensified
near-inertial motions have indeed been found in year-long
observations [Van Haren et al., 2002], suggesting the
presence of an abyssal waveguide, as predicted by nontra-
ditional theory.
[35] This narrowing abyssal waveguide, in which hori-

zontal and vertical scales become increasingly small
(Figure 5a), can be expected to be a region of intensified
mixing (other mechanisms of abyssal mixing were dis-
cussed in a review by Garrett and St. Laurent [2002]).
Recently, strongly increased abyssal mixing has been
reported in the Greenland Sea, just beyond the ‘‘critical’’
latitude for M2 internal tides [Walter, 2003]. The depth
range in which this strong mixing occurs falls within the
scope of the subinertial waveguide, but is smaller; in the
absence of detailed measurements on internal waves (or
their spectra), the role of subinertial waves must here
remain a hypothesis.
[36] We finally note that the inclusion of nontraditional

terms in numerical studies should pose no problems. It
may often be appropriate to adopt a ‘‘quasi-hydrostatic’’
approach [White and Bromley, 1995; Marshall et al.,
1997]; that is, one neglects wt in (1c) but retains the term
with ~f .

Appendix A: Zonal Dependence

[37] Here we discuss the effects of a zonal dependence.
For simplicity, we assume N constant (Nc) and consider
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waves of the form u = û(y)exp i(kx + mz + st). After
substitution into (1a)–(1e), one can reduce the resulting
equations to one for the meridional velocity component v̂,

m2 s2 � f 2
� �

þ im~f b� N2
c � s2

� �
k2 � bk=s
� �	 


v̂þ 2imf ~f v̂0

þ N2
c � s2 þ ~f 2

� �
v̂00 ¼ 0: ðA1Þ

This is a very rich equation that deserves further scrutiny;
it includes Rossby waves as well as the whole spectrum
of internal inertio-gravity waves, and is nonhydrostatic as
well as nontraditional. Here we will only look into the
effect of the terms involving k on near-inertial waves.
Those terms do not involve ~f , and are, therefore, the same
as under the traditional approximation [cf. Munk, 1980,
equation (13)].
[38] Making the same approximations as in the transi-

tion from (2) to (4), and following the procedure of
section 4.2, we arrive at the same solution (12) but now
with

yc ¼ y
*
þ i~f

2f0m
� N2

c � s2

2f0bm2
k2 � bk=s
� �

; ðA2Þ

with y* again given by (9); by convention, the inertial
latitude lies at y = 0 (i.e., s = j f0j). Assuming kR � 1, we
can approximate k2 � bk/s by k2; it is then seen from (A2)
that the zonal wave number k produces an equatorward shift
of the turning latitude, as opposed to the poleward shift
produced by the nontraditional contribution y*. Whereas
nontraditional terms also modify the structure of the
solution (12), by producing the exponent �mBy/A, the
terms with k leave the structure unaffected. We may thus
conclude that the analysis of the case k = 0 in previous
sections would, in essence, remain valid if one includes a
zonal dependence.

Appendix B: Energetics

[39] We substitute V = v̂ exp i(ly + mz + st) with constant
v̂ (and likewise for the other fields) in (1a)–(1e), with b = 0,
@/@x = 0 and N = Nc. One then finds the dispersion relation
l/m = �m±, and

Ek;u � ûû* ¼ s�2 ~f m� � f0
� �2

v̂v̂* ; Ek;v � v̂v̂*

Ek;w � ŵŵ* ¼ m2�v̂v̂*; Ep � N�2
c b̂b̂* ¼ s�2N2

c m
2
�v̂v̂*:

Hence the total kinetic energy Ek = Ek,u + Ek,v + Ek,w .
[40] The components of the group velocity vector ~c± =

(sl,±, sm,±) follow by taking derivatives in the dispersion
relation, l/m = �m±,

m�1 ¼ � dm�
ds

sl;�; �lm�2 ¼ � dm�
ds

sm;�: ðB1Þ

The derivatives of m± can be obtained in explicit form, via
(5), but are not needed here. Dividing the two expressions
gives

sl;�
sm;�

¼ 1

m�
: ðB2Þ

We now have the tools to predict what happens when a
beam reflects at the bottom, where it changes characteristic
(x+ to x�, or vice versa). First of all, the energy flux must
remain conserved, i.e., E+j~c+j = E�j~c�j. Hence the vertical
energy flux must satisfy

Eþ sm;þ
�� ��

E� sm;�
�� �� ¼

~c�sm;þ
�� ��
~cþsm;�
�� �� ¼

m�2
� þ 1

� �1=2

m�2
þ þ 1ð Þ1=2

> 0; ðB3Þ

where we used (B2).
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