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ABSTRACT

We present here our observations and analysis of the dayside emission spectrum of the hot Jupiter WASP-103b.
We observed WASP-103b during secondary eclipse using two visits of the Hubble Space Telescope with the G141
grism on Wide Field Camera 3 in spatial scan mode. We generated secondary eclipse light curves of the planet in
both blended white-light and spectrally binned wavechannels from m1.1 to 1.7 m and corrected the light curves for
flux contamination from a nearby companion star. We modeled the detector systematics and secondary eclipse
spectrum using Gaussian process regression and found that the near-IR emission spectrum of WASP-103b is
featureless across the observed near-IR region to down to a sensitivity of 175 ppm, and shows a shallow slope
toward the red. The atmosphere has a single brightness temperature of =T 2890B K across this wavelength range.
This region of the spectrum is indistinguishable from isothermal, but may not manifest from a physically
isothermal system, i.e., pseudo-isothermal. A solar-metallicity profile with a thermal inversion layer at 10−2 bar fits
the spectrum of WASP-103b with high confidence, as do an isothermal profile with solar metallicity and a
monotonically decreasing atmosphere with C/O>1. The data rule out a monotonically decreasing atmospheric
profile with solar composition, and we rule out a low-metallicity decreasing profile as unphysical for this system.
The pseudo-isothermal profile could be explained by a thermal inversion layer just above the layer probed by our
observations, or by clouds or haze in the upper atmosphere. Transmission spectra at optical wavelengths would
allow us to better distinguish between potential atmospheric models.

Key words: eclipses – planetary systems – planets and satellites: atmospheres – techniques: photometric –

techniques: spectroscopic

1. INTRODUCTION

Spectroscopic measurements of exo-atmospheres are essen-
tial for a full characterization of exoplanet composition,
temperature, and, eventually, habitability. Given the state of
our current technology, transiting hot Jupiters, especially very
hot Jupiters and ultra-short period Jupiters, are the best
candidates for both transmission and emission spectroscopy
because of their large radii, extended atmospheres, and hot
equilibrium temperatures (Charbonneau et al. 2002; Knutson
et al. 2007; Snellen et al. 2008; Deming et al. 2013; Kataria
et al. 2016; Sing et al. 2016). Consequently, the study of exo-
atmospheres has been largely limited to hot Jupiters, with
super-Earths 55 Cancri e (Demory et al. 2016), HD 97658
(Knutson et al. 2014b), and GJ1214b (Bean et al. 2010; Désert
et al. 2011; Berta et al. 2012; Kreidberg et al. 2014a) as notable
exceptions with measured transmission spectra. Thermal
emission spectroscopy, however, which measures the ratio of
dayside planetary emission relative to the host star during
secondary eclipse, is easily applied only to the hottest planets.

By measuring the planet/star flux ratio as a function of
wavelength, we can probe the atmospheric temperature at a
range of pressures and heights to determine the vertical thermal
profile of the atmosphere, and potentially detect the presence of
molecular absorption.
A key feature of the Earth’s atmospheric profile, the

stratospheric temperature inversion, is caused by absorption
of UV insulation by ozone, which is an essential atmospheric
component for the protection of life. A similar temperature
inversion in an exo-atmosphere, detectable by thermal emission
spectroscopy, would be indicative of an analogous protective
compound, and is therefore a highly sought-after atmospheric
feature. While hot Jupiters are much too hot for life as we know
it regardless of a temperature inversion, exo-atmospheric
spectra have been consistently tested against atmospheric
models containing temperature inversions to seek proof of
concept for future application to cooler planets. As a result of
temperature constraints, titanium oxide (TiO) or vanadium
oxide (VO) are prime suspects for the additional heating of hot
Jupiter stratospheres, rather than ozone or hydrocarbons
(Fortney et al. 2008; Mollière et al. 2015).
However, evidence against a strong thermal inversion layer

has been found for most exoplanets (Charbonneau et al. 2008;
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Madhusudhan & Seager 2010; Madhusudhan et al. 2011a;
Brogi et al. 2012; Diamond-Lowe et al. 2014; Stevenson et al.
2014; Schwarz et al. 2015; Line et al. 2016), supporting the
hypothesis that inversions are only present in very highly
irradiated hot Jupiter atmospheres (2000 K; Charbonneau
et al. 2008; Fortney et al. 2008). Spiegel et al. (2009) suggests
this may be due to titanium and vanadium being constrained to
solids and raining out in all but the hottest atmospheres, which
would require an unusually large amount of macroscopic
mixing to overcome this and produce inversions. Knutson et al.
(2010) postulate that the existence of temperature inversions
might be limited by the incoming stellar UV flux that likely
destroys TiO and VO in the exo-atmosphere. Haynes et al.
(2015) and von Essen et al. (2015) presented compelling
evidence for the presence of a thermal inversion layer in the
atmosphere of the highly irradiated hot Jupiter WASP-33b
( =T 3000 Keq ). However, WASP-33b orbits a 7430 K star,
receives a large amount of stellar UV flux, and therefore
challenges the theory put forth by Knutson et al. (2010).
Together, the hypotheses of Spiegel et al. (2009) and Knutson
et al. (2010) suggest that thermal inversions will only be
detectable in highly irradiated exo-atmospheres that receive
low-UV flux, or have some mechanism to overcome TiO
depletion.

The hot Jupiter WASP-103b (Gillon et al. 2014) is one of the
best candidates for emission spectroscopy known to date.
WASP-103b has an orbital period of only 0.92 day and orbits at
only 2.978 times the stellar radius. This makes WASP-103b
one of the hottest known exoplanets with a zero-albedo,
complete redistribution equilibrium temperature of 2890 K.
While being both highly irradiated and having an ultra-short
period make WASP-103b an ideal candidate for thermal
emission spectroscopy, it also orbits a relatively quiet F8V star
( =T 6110eff K) and receives low-UV flux compared to other
ultra-short period hot Jupiters. This would allow us to test the
theory of Knutson et al. (2010) regarding the connection
between incident UV flux and inversion strength by comparing
two very hot planets (WASP-103b and WASP-33b) that
receive different UV flux.

We have used Gaussian process (GP) regression to extract
the first thermal emission spectrum of WASP-103b from
Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3)
observations of WASP-103b at secondary eclipse. Gaussian
process regression has previously been used to construct the
transmission spectra of HD 189733b (Gibson et al. 2012b),
WASP-29b (Gibson et al. 2013a), HAT-P-32b (Gibson et al.
2013b), and most recently, CoRoT-1b (Schlawin et al. 2014),
and has been applied to eclipse observations of HD 209458b
(Evans et al. 2015) and LHS 6343 C (Montet et al. 2016) taken
with Spitzer/Infrared Array Camera. This paper presents the
first Gaussian process regression analysis of an exoplanet
thermal emission spectrum taken with HST/WFC3.

We describe our HST/WFC3 observations, data calibration,
and spectral extraction methods in Section 2. Section 3 details
the detection of a nearby stellar source in our field of view, a
probabilistic determination that the source is physically
associated with WASP-103, and the modeling of the spectral
energy distribution of this source. Section 4 outlines our
Gaussian process regression method as applied to the blended
white-light and the spectrally resolved eclipse light curves,
compares our GP regression to a more traditional parametric
regression technique, and presents the measured thermal

emission spectrum of WASP-103b. We present atmospheric
modeling of that spectrum in Section 5 and compare the
spectrum of WASP-103b to those of other exoplanets to
supplement our interpretation of the atmospheric profile of
WASP-103b and motivate future studies.

2. SECONDARY ECLIPSE OBSERVATIONS

We observed WASP-103 during two visits of HST on UT
2015 June 15 and 17, and used the WFC3-IR camera and the
G141 grism in spatial scan mode to provide slitless spectrosc-
opy at wavelengths from m1.1 m to m1.7 m. Details of our
observations are found in Table 1. We obtained 10 orbits in
total over the two visits, with scan durations of 81.089 s using
SPARS10 and NSAMP=12. This multivisit approach has
been used in many recent WFC3-IR G141 observations of
transiting planets, which have generated reliable high-precision
results (e.g., 15 visits in Kreidberg et al. 2014a; 4 visits in
Knutson et al. 2014a; 2 visits in Huitson et al. 2013). The
second visit of the eclipse, which proved to be consistent with
the first, demonstrates repeatability and allows us to achieve
higher precision at similar spectral resolution (see Section 4.6).
As shown in previous observations (Berta et al. 2012;

Deming et al. 2013; Knutson et al. 2014a; Kreidberg et al.
2014a), the first orbit of a new WFC3-IR observing sequence
always displays larger-than-usual instrumental effects as the
charge traps fill from an empty state before reaching steady
state in subsequent orbits (Long et al. 2013). We used the first
orbit of each visit to capture these instrument systematics and
used orbits 2 through 5 to observe the eclipse and pre- and
post-eclipse baselines. Use of spatial scan mode increased the
observing efficiency, minimized detector systematics caused by
imperfect flat fielding, and allowed for longer observing times
without saturation. We alternated between forward and reverse
scan directions in order to further reduce overheads, as
previously demonstrated in Kreidberg et al. (2014a) and
Knutson et al. (2014b).
We used the 256×256 pixel subarray mode to reduce both

readout time and data volume, which minimized overhead and
time loss due to serial buffer dumps. The signal-to-noise ratio
(S/N) per spectral column of each visit spanned an order of
magnitude across the dispersion direction, peaking near the
middle of the wavelength range, and falling off toward the
edges. For Visit 1, the S/N ranged from S/N= 32.14–7376.23,
with a median value of 5946.43 (see Table 1), and the Visit

Table 1

Summary of Spatial Scan Observations

Visit 1 Visit 2

Date of observations (UT) 2015 Jun 15 2015 Jun 17

Time of first scan (JD) 2457189.2036 2457191.0608

Time of last scan (JD) 2457189.4979 2457191.3540

Number of HST orbits 5 5

Observations per orbita (11)12 (11)12

Total number of observations 118 118

Scan rate (″/s) 0.025 0.025

Scan duration (s) 81.089 81.089

Detector subarray size (pixels) 256×256 256×256

Median S/N per spectral column 5946.43 5871.51

Note.
a
The first orbit in each visit had only 11 observations, while orbits 2, 3, 4, and

5 in each contained 12 observations.
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2 S/N ranged from S/N=26.37–7371.68, with a median value
of 5871.51 (see Table 1). When measured across several (6–8)
binned columns, this yielded an average regression scatter of
515 ppm for Visit 1 and 543 ppm for Visit 2, which are 3.7 and
3.9 times the photon noise levels of 139 ppm and 138 ppm,
respectively. Read noise for the WFC3/IR detector is between
10 and 20 electrons according to Dressel (2016). This
corresponds to a read noise of 0.4 ppm for a white-light curve
and 7.4 ppm for a spectrally resolved light curve near the middle
of the detector.

2.1. Background Subtraction, Flat Fielding, Subframe
Alignment, and Cosmic Ray Correction

To better subtract background and account for a tiny
dispersion drift during spatial scan, we subtracted sequential
pairs of up-the-ramp readouts within each exposure (81.089 s)
to generate a set of subframe images. Each subframe image
represents a shorter exposure of 7.347 s along the spatial scan
direction.

Because our scan speed is very slow (  -0. 025 s 1), the point-
spread function (PSF) of each subframe image is substantially
undersampled. This resulted in varying subframe PSFs that
could not be combined as an average for outlier rejection
because of undersampling and changing centroid while
scanning. Therefore, we used the subframe only for trimming
nearby contaminations, removing background (due to the
trimming), and realignment in wavelength.

After examining the subframes, we found that the starlight
from WASP-103 is strictly constrained in a relatively small
area, outside of which there is only background flux. We
defined a conservative mask for subframe images and used the
remainder of the readout outside the mask to determine and
subtract the background from each subframe image. The
background is spatially flat and uniform due to the short
exposure time. That background was subtracted so that all
pixels in the background area of each subframe image would be
zero plus noise. We then defined a smaller mask following
Deming et al. (2013) and Knutson et al. (2014a), and zeroed all
pixels outside of the mask. This helps to reduce noise and
exclude cosmic rays (CRs) in the background area when later
combining all subframes to determine the flux for each
exposure. We found the optimal trim height (from the center
of the image “band”) to be 25 pixels, which excludes 1.12% of
total flux from the extended halo of the PSF per image.

As discussed in Mandell et al. (2013), the .flt images
provided by the WFC3 calwf3

11 calibration pipeline often
yield time series with higher rms than those with flats produced
by .ima files. We therefore chose to create our own flat fields
for data reduction. We determined the centroid in both the
dispersion direction (X) and scan direction (Y) of each subframe
and checked if there was any significant drift in the X-position
of the scan on the detector. We found that the X-position drifts
from different up-the-ramp subframes were well within ∼0.05
pixels. To examine if this tiny drift can affect final extracted
flux, we convolved each column-summed subframe spectrum
with a 5-pixel Gaussian kernel and then cross-correlated and
aligned each subframe using a cubic spline interpolation. The
resulting summed fluxes for each exposure agree well with
each other before and after the alignment. Any added

uncertainty from these shifts were negated by wavechannel
binning (see Section 2.2).
We used the centroid information and the initial image

position to generate flat fields, assuming each column had the
same wavelength, since the column direction is perpendicular
to the dispersion direction. We applied these flat fields to each
subframe. The dispersion drift along each column was small
and was accounted for during subframe alignment, and
produced negligible effects during wavelength calibration.
We identified and corrected for additional CRs and bad

pixels on the PSF that were not trimmed by the mask by first
taking the average of multiple exposures (not subframes) from
each orbit and same scan direction for normalization. We then
applied a moving median filter to reject additional bad pixels
and CR hits for the normalized image. Two applications of the
filter with slightly different median rejection windows removed
all visible spurious effects. Because of the slight drift between
two different scan directions, each direction needed to be
treated separately.

2.2. Spectral Extraction

We used the background-subtracted CR-corrected scans to
extract the “white-light” flux time series in both the forward-
and backward-scan directions. We summed along each column
of the subframe-aligned exposures to construct a single
spectrum for each exposure (Figure 1), which we then used
to convolve, interpolate, and calibrate each exposure to the
same wavelength scale. The spectrum for each exposure was
then integrated across wavelength to generate a single white-
light flux for each exposure, and it was used to create the white-
light time series shown in Figure 2. We used the photon noise

of each exposure, calculated as1 raw flux , as the uncertainty
for each flux point in the time series. We found that any sources
of noise unaccounted for in this uncertainty were later
accounted for in the GP regression (see Section 4). We found
the average uncertainty of the white-light time series to be
s = 138 ppmflux in normalized flux units, well above the read
noise of ~few ppm.
In spatial scan mode, light from the target is dispersed by the

grism onto the detector, which means that the wavelength
solution of each exposure is sensitive to the X–Y position of the
image on the detector. To create the spectrally resolved time
series for each visit and scan direction, we determined the X-
and Y-centroids of each exposure, aligned each extraction
aperture based on the centroids, and extracted the flux using
partial pixels. This alignment accounted for any centroid shifts
between exposures. We then summed the aligned spectra for
incremental aperture sizes in Y and X directions. This method

Figure 1. Representative spectrum for a single exposure after summing along
each pixel column, with both scan directions combined.

11
Version 3.3; http://www.stsci.edu/hst/wfc3/pipeline/wfc3_pipeline.
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allowed for later optimization of the apertures for spectro-
photometric extraction. The aperture optimization is discussed
in more detail in Section 2.3.

The spectrum of each exposure was binned into 22
wavechannels spanning the first-order wavelength range of
the grism, at a constant l mD = 0.02788 m for all but the edge
bins, which were slightly wider in wavelength. The spectrally
resolved time series show similar systematics to those seen in
Figure 2. We found that the common centroid of the aligned
spectra in the dispersion direction differed from Visit 1 to Visit
2 byD = --X 0.105V V1 2 px, which produced slightly different
wavelength solutions for each visit. We found that the shortest
wavelength from Visit 1 was m´ -1.3 10 m6 shorter than for
Visit 2, and that the Visit 1 spectrum covered a wavelength
range m´ -4 10 m7 wider than Visit 2. When binned into the
spectral wavechannels, this caused a shift in central bin
wavelength of l mD = -- 0.00465 mV V1 2 for all wavechan-
nels. This slight shift in central wavelength was accounted for
in the flux decontamination of a nearby star (Section 3) and
construction of the visit-averaged thermal emission spectrum of
WASP-103b (Section 4.6).

2.3. Aperture Optimization

We found the optimum aperture for spectrophotometric
extraction of each scan to determine how much the extraction
aperture affected our results. We first tested for the optimum
aperture in the dispersion (X) direction by extracting white-light
spectra at 60DX apertures starting at X 60centroid pixels and
increasing in 0.5-pixel increments, keeping the aperture in the
scan direction fixed. We chose the aperture that produced the
lowest BIC at a fixedDY , and found that a dispersion aperture
of D =X 68 pixels from the X-centroid is preferred.

We then tested for the optimum aperture in the scan (Y)

direction by extracting white-light spectra at 50 DY aperture

heights starting at Y 8centroid pixels and increasing in 0.5-pixel
increments, keeping the DX aperture fixed at its optimum
value. We then applied the initial maximization procedure
described in Section 4.2 to the white-light eclipse curves
extracted at these apertures, keeping fixed all parameters
describing the physical and orbital condition of WASP-103b
(i.e., system parameters as detailed in Section 4) and only
fitting for parameters associated with detector systematics,
eclipse depth, and eclipse time (i.e., hyper- and eclipse
parameters as defined in Section 4). This was done for both
visits using only the initial amoeba maximization (downhill
simplex method; Nelder & Mead 1965). We did not correct for
contamination from the companion star described in Section 3.
We chose the aperture with the maximum log-likelihood
(Equation (3)), lowest residual scatter, and a stable eclipse
depth as the optimum DY aperture for spectrophotometry.
Figure 3 shows the results of the aperture optimization for

Visit 1 (top) and Visit 2 (bottom). We find that D =Y 12.5
pixels is optimum for Visit 1 andD =Y 16.0 pixels is optimum
for Visit 2. The scatter in eclipse depth across apertures after
the eclipse depth has stabilized is 5.8 ppm and 16.5 ppm for
Visit 1 and Visit 2, respectively, which are much smaller than
our final eclipse depth uncertainties of 63 ppm and 49 ppm. We
are confident that a slight deviation in the height of our chosen
aperture would not significantly impact our results.

3. DETECTION OF THE COMPANION STAR

Wöllert & Brandner (2015) reported the detection of a
previously unknown stellar source   0. 242 0. 016 away from
WASP-103 in ¢i and ¢z . We imaged the WASP-103 system
again in 2016 January and confirmed the nearby source using
Keck NIRC2 AO observations in JHKS. Figure 3 shows a
 ´ 2. 5 2. 5 snapshot of the full  ´ 10 10 image in KS. There
were no additional stars observed in the full NIRC2 image.
We reduced the NIRC2 images and calculated the photo-

metry of the companion following an approach similar to that
used in Zhao et al. (2014) and Bechter et al. (2014). We
measured the flux ratios of WASP-103 and the companion star
in J, H, and KS bands by simultaneously fitting PSF models for
both stars. We used a Gaussian function to characterize the core
of the PSF and a Moffat function to trace the extended PSF
halo. Because of high Strehl ratios in the H and KS bands, the
images are diffraction limited and Airy rings were clearly seen
in these two bands. We therefore added an Airy function to the
PSF model to account for the diffraction pattern. To examine
the effects of different PSF components and avoid overfitting,
we fit each image with three sets of models: 1. sum of Moffat
and Gaussian; 2. sum of Airy and Gaussian; 3. sum of Airy,
Gaussian, and Moffat.12 We selected the best model using the
Bayesian information criterion (BIC). We assumed the same
PSF shape for the two stars and only allowed their flux ratio to
vary. Because of the high Strehl ratios in H and KS, the Airy,
Gaussian, and Moffat is preferred in these two bands, while the
Gaussian and Moffat model is preferred in the J band where the
Airy rings are overwhelmed by the PSF halo.
To better model the extended PSF halo while avoid fitting on

the noisy sky background, we limited the fitting range to two
circular apertures of the same size (see below), centered on the

Figure 2. Normalized white-light flux time series for Visit 1 and Visit 2,
measured in time from mid-eclipse. Solid black points represent the time series
in the forward-scan direction, and open red points represent the backward-scan
direction. A vertical offset has been added for clarity. The vertical dashed gray
line indicates mid-eclipse. A representative error bar of normalized uncertainty
in flux values is included for reference.

12
Ideally, an obscured Airy function should be used. However, the low S/N

ratio of the Airy rings in the images means that a normal Airy function with a
Gaussian component in the center can still properly model the bulk of the ring
patterns.
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centroids of the two stars. Because of their proximity, the flux

of the companion star depends on the halo of WASP-103,

which in turn depends on the size of the aperture. To avoid bias

in choosing the best size for the field of view, which is hard to

determine because of the noisy background and the faintness of

the PSF halo, we fit the PSFs with a set of aperture sizes

ranging from 10 to 30 pixels with a step size of 1 pixel. The

flux ratio stabilizes beyond 20 pixels once the halo S/N is low

and becomes dominated by background noise. The final value

and uncertainty of the flux ratios are determined by taking the

median and standard deviation resulting from all aperture sizes

and all images in each band.13

Relative to WASP-103, we find that the companion star has

a photometry D = J 2.45 0.07, D = H 2.21 0.05, and

D = K 2.06 0.03S (Table 2). The NIRC2 AO observations

are also published in Ngo et al. (2016). Their reduction and

PSF-fitting method of the candidate companion yielded

photometry consistent with a K or M spectral type, and is

Figure 3. Aperture optimization for Visit 1 (top row) and Visit 2 (bottom row), showing changing Pln (left), standard deviation of the residuals (center), and eclipse
depth (right) as a function of aperture height from the Y-centroid. The vertical dashed line indicates the optimal aperture. In the rightmost panel, the horizontal dashed
line and shaded region indicates the white-light eclipse depth and s1 uncertainties at the optimum aperture fitted with the MCMC sampling.

Figure 4. Keck NIRC2 AO image of the WASP-103 system in the KS band,
with 1. 0 marked for scale. In this image, the upper right star is the primary (A),
and the bottom left star is the companion star (B). North is oriented upwards
and east is oriented to the left. Intensity is on a logarithmic scale.

13
Traditional model selection techniques such as BIC are not suitable here

because changing the aperture size also changes the data in the fit since many
more background pixels will be included (proportional to radius2). Thus,
comparing BICs means comparing different data sets. As a result, the
minimization of the least-squares residual will be biased toward fitting the
background rather than the PSF cores in the center. To avoid this bias and bias
caused by using a small aperture, we take the median (instead of the mean for
robustness) and scatter of all aperture fits to conservatively account for the
variation in flux ratio caused by imperfect modeling of the overall PSF.
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described in detail in Ngo et al. (2015, 2016). Our reduction
and PSF methods yielded photometry values consistent with
those provided in Ngo et al. (2016). From the analysis of Ngo
et al. (2016), the separation between WASP-103 and the
companion star is 240.0±1.5 milliarcseconds when averaged
between bandpasses, and the companion star is located at an
average position angle of   131 .37 0 .35.

The companion star (source B) contributes a significant
amount of flux in the near-infrared (NIR), and has a small
enough separation from the WASP-103 (source A) that it
contaminates our observed secondary eclipse light curves. In
order to estimate the flux contamination from the companion
star as a function of wavelength, we determined the spectral
energy distribution (SED) of the companion star. The flux
contamination ratio, F FB A, is primarily only dependent on the
effective temperature of the two stars. The SEDs of a dwarf star
and a giant star at the same effective temperatures do not vary
significantly at the wavelengths of interest, and so it does not
have significant bearing on our SED fit whether WASP-103
and the companion star are physically associated. However, we
first determined probabilistically whether the companion star is
likely located at the same distance as WASP-103, then modeled
the SED of the companion.

Based on highly uncertain astrometric measurements of
common proper motion and companion separation, Ngo et al.
(2016) were unable to conclusively determine the physical
association between WASP-103 and the companion star, but
retained it as a “candidate companion.” The high galactic latitude
of the WASP-103 system ( = = +l b23.4099, 33.0215)
implies a low background stellar density and low probability
of the random superposition of a background or foreground star.
However, we quantitatively validated this assumption by
simulating the stellar population along the line of sight for
various fields of view (FoV) using the Besançon stellar
population synthesis of the Milky Way (Robin et al. 2003).14

The Besançon online utility generates a list of stars that could
theoretically be observed in a given FoV, with the option of
restricting the generated list of stars based on luminosity class,
galactic structure component, and a variety of stellar and
observational parameters.

We wish to determine the probability of a star at least as
bright as the companion star being observed in the NIRC2
images, and we wish to know the likelihood of any of those
observed stars to be physically bound to WASP-103. Raghavan
et al. (2010) find that physically bound companion stars follow
a Gaussian distribution with respect to Plog measured in days,
with m = 5.03Plog and s = 2.28Plog . Statistically, the majority

of companion stars with  m s+Plog C P Plog log( ) will be

physically bound to the primary star. Assuming a total stellar
mass of M1.5 , this upper limit on Plog is equal to a physical

separation of ~10 au3 . When observed at the distance of the
WASP-103 system ( = d 470 35 pc), this physical separa-
tion corresponds to a projected angular separation of 2. 13.
Therefore, we choose to simulate a circular FoV with a radius
= r 2. 13 centered on WASP-103, and can then state that any

stars that fall within this FoV are likely to be bound to
WASP-103.
Our “bound star” FoV with a radius = r 2. 13 has an area
´ -1.1 10 deg6 2, which is smaller than the resolution of the

Besançon simulation (minimum resolution of 0.01 deg2). In
order to calculate the probability that a single star with the
observed photometry could randomly fall into the bound star
FoV, we simulated 28 fields of view logarithmically spaced
between 0.01 deg to 10 deg2 2 and applied the Poisson prob-
ability distribution to extrapolate the probability of a single star
in our field of view. For each tested FoV, we simulated a full
stellar population (i.e., no assumptions on luminosity class or
galactic population). To determine the probability of detecting
a star at least as bright as the companion star, we filtered out
stars more than s3 fainter than the companion star in J, H, and
KS (Table 2).
We fit a linear model to the resulting star counts as a function

of FoV area (c =dof 1.767
lin
2 ) and found that an average of

n=1677.733 stars at least as bright as the companion star are
expected for a 1 deg2 FoV. We used the linear model to scale
this value to find the average number of stars expected in our
bound star FoV. Finally, using the Poisson probability
distribution, we calculate P(1 star in the bound star
FoV)= ´ -1.842 10 3. From this we conclude that the
source B is likely not a random fore- or background star
superimposed on the NIRC2 image, but instead is likely
physically associated with the WASP-103 system.
Presuming the two stars are physically associated, we fit a

theoretical SED to the blended flux from WASP-103 and the
companion star using two dwarf star spectra with model
atmospheres from Castelli & Kurucz (2004). The Castelli &
Kurucz (2004) models with =T 4000 7000eff – K,

=glog 2.0 4.5– cgs, and = -Fe H 1.5 0.5[ ] – dex were
selected for fitting. All available photometry was used in the
SED fitting, including GALEX near-UV, APASS BVgri,
2MASS JHKS, and W1 to W3 from WISE. We required that
the two SED components obey the J, H, and KS band Δ-
magnitudes from the NIRC2 image listed in Table 2, and
applied prior stellar parameters about the primary star (Gillon
et al. 2014; Southworth et al. 2015) to separate out the
contributions to the combined flux from each star. The SED
fitting also allowed Av to be a fitted parameter, limited by the
maximum line of sight Av from the Schlegel et al. (1998) dust
maps. The theoretical SED solutions were verified by
reblending them and determining the goodness-of-fit to the
observed blended photometry.
The final reblended SED solution reproduced the observed

blended photometry with a reduced c = 1.022 , and is shown in
Figure 5. The SED fit indicates = T 4400 200Keff for the
companion star, which is consistent with a K5 V spectral type
(Boyajian et al. 2012). Using the bolometric flux ratio from the
SED fits and the Teff ratio, we obtain a radius ratio of

= R R 0.52 0.05B A . This SED solution is consistent with
the values reported by Ngo et al. (2016) and Southworth &
Evans (2016), who also report the mass of the companion star

Table 2

Photometry of the Companion Star

J band H band KS band

Blended Photo-

metry (mag)

11.100±0.023 10.857±0.030 10.767±0.018

Δ(B–A) (mag) 2.45±0.07 2.21±0.05 2.06±0.03

Separation (mas) 240.5±1.5 239.8±1.4 239.7±1.5

Position Angle 131°. 36±0°. 35 131°. 38±0°. 35 131°. 41±0°. 35

Note. Blended photometry is from 2MASS. Separation and position angle are

from Ngo et al. (2016), and D -B A( ) is from our own PSF-fitting method.

14
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as  M0.72 0.08 . We used the SED fit here to later correct
the secondary eclipse spectrum of WASP-103b for contamina-

tion from the companion star. The flux decontamination is

detailed in Section 4.4.

4. GAUSSIAN PROCESS REGRESSION
OF LIGHT CURVES

Previous studies have successfully applied parametric

models to capture detector systematics in spatial scan mode,

and have been applied to emission and transmission spectrosc-

opy for a multitude of exoplanets (Crouzet et al. 2014; Knutson
et al. 2014b, for example). Enforcing a prespecified choice of

parametric model of the systematics works well when the form

of the systematics is known a priori or can be easily

determined. Although we have functional forms for the

WFC3 systematics in the form of a linear trend over a visit

and an exponential ramp within an orbit (Deming et al. 2013;

Knutson et al. 2014b; Wilkins et al. 2014), and we have some

indication that the ramp may be due to charge trapping in the

detector (Agol et al. 2010), we lack a clear understanding why
it would take that specific shape. Therefore, we choose a more

flexible method for modeling the instrumental effects in our

HST/WFC3 light curves.
GP regression eliminates the need for prespecifying a

parametric model of the unknown systematics in favor of a

more elastic representation of systematics and long-term trends

(for a more in-depth discussion, see Rasmussen & Williams

2006; Gibson et al. 2012b; Grunblatt et al. 2015). Gibson et al.

(2011) was the first to demonstrate the necessity of GP

regression for modeling HST/NICMOS systematics. Subse-

quently, the successful application of GP regression was

demonstrated on the HST/NICMOS (Gibson et al. 2012b) and

later HST/WFC3 (Gibson et al. 2012a) transmission spectra of
HD 189733b. While the uncertainties reported by a GP

regression will often be larger than those reported by regression

using a parametric model, these uncertainties and parameter

values will likely be more accurate.
To find the best-fit secondary eclipse model of our data via

GP regression, we calculated the likelihood function, Lmodel,

given by

⎜ ⎟
⎛

⎝

⎞

⎠S
S

p
F = - -r X r rL ,

1

2
exp

1

2
, 1T

model
1

n
2

1
2

( ∣ )
( ) ∣ ∣

( )

where r is the vector of residuals between the data values and

the eclipse model, X is the vector of data locations (i.e.,

observation times), Φ is the set of hyperparameters that

characterize the behavior of the covariance matrix S, and n

is the number of data points. This likelihood function is a

multivariate normal distribution. The secondary eclipse light-

curve model (Mandel & Agol 2002) is explicitly calculated as

part of the residual vector and is the mean of the multivariate

normal distribution.
The covariance matrix,S, captures the behavior of the data

that cannot be attributed to the eclipse model and depicts how
each value depends on each other value in the set. The matrix is
populated by a covariance kernel, and by choosing an
appropriate kernel to populate the covariance matrix, we can
account for the effects of detector systematics without
prespecifying a parametric model for these systematics. The
residuals to the model should not exhibit any non-normal
behavior if an appropriate kernel is chosen.
We observed in our data that not only are sequential points

correlated with each other, but there is also periodicity in the
correlation that corresponds to each HST orbit. This is easily
seen in Figure 2 as a linear trend across the separate orbits and
an exponential ramp creating a hook shape within each orbit.
Therefore, we chose a quasi-periodic kernel to populate the
individual elements of the covariance matrix (Grunblatt et al.
2015). Each matrix element Sij is given by

⎛

⎝
⎜
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⎠
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where A is the amplitude of the covariance kernel, θ is the

characteristic timescale of the periodicity, Ω is the coherence

scale of the periodicity, L is the characteristic time lag, dij is the

Figure 5. SED fits for primary and companion stars. The cyan dashed line is the primary star (A), the red dashed line is the companion star (B), and the solid black line
is the reblended A+B SED. Red crosshairs show the observed blended photometry, with horizontal error bars representing the width of the passbands.
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Kronecker delta, and si is the white-noise uncertainty

associated with data point xi. A, L q, , and Ω are the four

hyperparameters that characterize the covariance kernel (Φ in

Equation (1)) and capture the behavior of the instrument

systematics. The periodic component of Equation (2) contain-

ing θ and Ω accounts for the exponential ramp, and the

squared-exponential component containing L accounts for the

linear trend in the light curve.
We also included RP/RS, a RP S, icos ,

*
we sin ,

*
we cos ,

RS, and the orbital period P as free parameters in the GP
regression. This set of parameters comprises the system
parameters and was included in the calculation of the eclipse
model.

It should be noted that we used the nearest preceding transit
center time (TC), period,

*
we sin , and

*
we cos to predict

the eclipse center time, TS. TC was used as a free parameter in
the regression to account for inaccuracies in the linear
ephemeris. The eclipse depth and transit center time are the
eclipse parameters.15

In addition to the likelihood due to specific hyperparameters
and model parameters, we included additional likelihoods
based on prior previous measurements of the system and
logical constraints on hyperparameters. In our GP regression,
we therefore maximized the combined prior and model log-
likelihood function

= +P L Lln ln ln , 3model prior( ) ( ) ( ) ( )

where P is the complete set of parameters used in the GP

regression, Lmodel is the likelihood from the systematic and

light curve model, and Lprior is the likelihood of the prior

information. The prior probability distributions were chosen to

be uniform, normal, or have no restrictions.

4.1. Comparing GP to Parametric Regression

GP regression is a relatively new technique as applied to
exoplanet spectra, and thermal emission spectra in particular
(Evans et al. 2015; Montet et al. 2016). Exo-atmosphere
spectrophotometry is typically plagued with instrumental
systematics and noise that can only partially be attributed to
known physical sources, such as the hook seen in HST/WFC3
scans being attributed to charge trapping in the detectors (Long
et al. 2013; Wilkins et al. 2014). The physical origins of other
observed systematics are unknown. Even in cases where some
observed systematic effect can be attributed to a physical
source, we lack understanding as to why the systematic can be
modeled by a particular parametric form.

Additionally, when modeling transit or eclipse light curves
with a parametric approach, great care needs to be taken when
attempting to combine data from multiple visits or multiple
scan directions. The instrumental noise is likely different
between visits and directions, and additional parameters like a
multiplicative flux offset need to be included. When using the
parametric approach, most studies tend to treat multiple visits
and different scan directions separately, which can reduce the
S/N of the light curves. The effects of common-mode (white-
light) noise need to be removed from the spectrally resolved
light curves before fitting to ensure that uncertainties due to

common-mode noise are not being counted twice, and
overestimating the uncertainties on eclipse depth. This is
sometimes done by first calculating differential light curves for
each wavechannel by dividing the spectrally resolved light
curve by its corresponding white-light curve (preserving visit
and scan direction). Each new source of noise accounted for in
a parameterized regression will add a handful of new free
parameters, which can quickly become computationally
challenging with many visits, orbits, and scan directions.
Most of these details become much less crucial, or altogether

irrelevant, when GP regression is applied to the problem. The
individual sources of noise or systematic effects (e.g., common-
mode, read noise, photon noise, background subtraction,
charge trapping, etc.) do not need to be explicitly considered
in a GP regression. Rather, GP regression deals with the
cumulative effect of all potential sources of noise on the
measured light curve, and simply requires that the chosen
covariance kernel is flexible enough to account for any
behavior not determined by the eclipse model (Gibson
et al. 2012a, 2012b). This prevents double-counting of
common-mode noise, over- or underparameterization of noise,
and unknown sources of noise.
Combining different scan directions becomes trivial with GP

regression, as any flux offset between the directions (which
would require an additional free parameter in a parametric fit) is
implicitly accounted for in the predictive mean (noise+eclipse
model) of the GP regression. We verified this by first fitting the
forward- and backward-scanned white-light curves separately,
then combined, and compared the solutions. We found that the
forward- and backward-scan solutions produced nearly iden-
tical hyperparameter solutions, but that the uncertainties on the
individual fits were larger than the combined fit. When
combined, any minor differences in the noise solutions of the
two directions were accounted for by the covariance kernel,
and the resulting uncertainties were smaller. We still chose to
fit the two visits separately to demonstrate the repeatability of
our measurements; if that had not been a concern, we might
have combined data from two visits with similarly improved
results.
We likewise tested whether fitting differential light curves

instead of the spectrally resolved light curves improved the
precision of the GP regression. We found that when using the
same covariance kernel for the differential and non-differential
fits, the resulting spectra differed by an average of only 6 ppm
and had identical shapes and slopes. However, the eclipse
depth uncertainties were 3% larger for the differential fits. The
residuals to the differential fits also still exhibited more non-
normal behavior than the non-differential fits. As the differ-
ential light curves lack the periodicity observed in the white-
light curves by design, it is logical that the quasi-periodic
kernel may no longer be appropriate. It is possible that
regression of differential light curves using different covariance
kernels might yield a precision that surpasses the non-
differential fits, but they may run the risk of overfitting the
data and attributing all variation to noise and none to the actual
eclipse. While differential light curves present a distinct
advantage when using parametric regression techniques, that
advantage is not needed with GP regression provided an
appropriate kernel is used, and so we fit the non-differential
spectrally resolved light curves.
Ingalls et al. (2016) tested the repeatability and accuracy of

various exoplanet eclipse fitting techniques, including GP

15
Technically, the system and eclipse parameters are also hyperparameters of

the GP as defined by Gibson et al. (2012b). However, we refer to the system
and eclipse parameters separately for clarity.

8

The Astronomical Journal, 153:34 (18pp), 2017 January Cartier et al.



regression, using real and simulated Spitzer light curves of XO-
3b. When compared to other fitting techniques, such as nearest
neighbor kernel regression, pixel level decorrelation, and
independent component analysis, GP regression produced
eclipse depths that were consistent with other techniques but
had larger uncertainties on those depths (see Figure 8 and
Tables 3 and 4 of Ingalls et al. 2016). However, other
techniques that produced inconsistent eclipse depths had very
small uncertainties. This highlights a key benefit of GP
regression: a good fit produces realistic solutions and
uncertainties, while a poor fit produces unrealistic parameters
and unrealistic uncertainties. In short, GP produces either
obviously correct answers or obviously incorrect answers. With
other, less flexible methods, an incorrect answer can still have
small uncertainties, which could lead to false confidence in a
poor result.

We note that GP can become computationally expensive for
larger data sets, as each attempt at solving Equation (1) requires
inversion of an n×n matrix to obtain the likelihood value.
Calculating the predictive mean requires inverting a ´n ntest
matrix, with ntest as the number of times a measurement is to be
predicted, typically ~ ´ n10 . For data sets with hundreds or
thousands of measurements, parallel computing is necessary, or
application of sparse GP methods (e.g., Quiñonero-Candela &
Rasmussen 2005; Walder et al. 2008).

While the GP regression should accurately account for all
undesired detector behavior, we also fit our observations using
a traditional parametric approach to verify that our results were
not dependent on methodology. We parameterized the data
with an exponential+linear trend model similar to Knutson
et al. (2014b), given by

⎛

⎝
⎜

⎞

⎠
⎟å= + * + * *

=

-F t c c t c e F t1 , 4
i

i
p c

1 2

2

5

3, LCi i4,( ) ( ) ( )

where t is the time from the start of observations, pi is the time

from the start of orbit i, c1 and c2 characterize the behavior

across the duration of the observation, c i3, and c i4, characterize

the behavior of each orbit i, and FLC(t) is the eclipse light curve

given by Mandel & Agol (2002). Each scan direction and visit

was considered separately. We used bootstrap resampling to

obtain uncertainties in the parametric fit in Equation (4), and a

Markov chain Monte Carlo (MCMC) method to obtain the

uncertainties in the GP regression in Equation (3).
Figure 6 compares the thermal emission spectrum resulting

from each fitting technique for the scan-direction-combined
visit-averaged light curves. We first combined the scan
directions in each visit, then combined each visit to generate
a visit-averaged spectrum via parametric regression. These
spectra were also corrected for flux from the companion star.
We found that our parametric regression and our GP regression
produced spectrum behavior and eclipse depths consistent
within s1 , but that the parametric fit produced larger eclipse
depths than the GP regression at an average offset of
+125.72 ppm. The rms of the residuals to the GP regression
were only slightly larger than the parametric regression (GP:
526 ppm; parametric: 521 ppm), so we know that the offset
cannot be attributed to the quality of each regression.

Examination of the normality of the residuals to the (scan
and visit-separated) parametric fits reveals five wavechannels
that fail the Anderson–Darling normality test at the highest
significance level; residuals to only one wavechannel fail the

normality test in the case of GP regression. We therefore
interpret the eclipse depth offset between techniques to mean
that the data contain non-Gaussian noise that remains
unaccounted for by the parametric model, so that additional
variation was insted attributed to the eclipse. The GP regression
produced slightly larger uncertainties in the eclipse parameters
(GP: 175 ppm; parametric: 139 ppm), which was in line with
our expectations for GP regression.
We verified that the GP did not overestimate the uncertain-

ties by comparing the uncertainties on the eclipse depth
generated with GP for each spectral wavechannel to what
would be expected if the data had perfectly white noise. For
perfectly white noise, we would expect uncertainties equal to

s = nrms residuals 2 , 5white ( ) ( )

where rms(residuals) is the root-mean-square of the residuals to

the GP regression and n is the number of data points for each

light curve (n=88 for each wavechannel). If we had

observations with perfectly white noise added, we would

expect to obtain eclipse depth uncertainties of ∼70 ppm. We

find that, on average, the eclipse depth uncertainties are ´2.5

greater than the expected white-noise uncertainty (without

accounting for contamination from the companion star). It is

clear, however, that the data show time-correlated noise, and

accounting for the presence of this correlated noise is what

inflates the GP depth uncertainties by a factor of 2.5.
While the uncertainties produced by GP regression are

typically larger than those produced by parametric regression,
these uncertainties will account for both white and time-
correlated noise in the data, and will therefore be more
accurate. We report the results of our GP regression for the
remainder of this manuscript.

4.2. Regression Procedure

Here we describe the machinery of our GP regression
procedure, the application of which is described in Section 4.3.
We extracted the aperture-optimized eclipse light curves

from the forward and backward scans of each visit to use in our
regression. We found that modeling the forward-scan direction
and the backward-scan direction separately yielded worse fits,
therefore we combined the forward and backward scans for the
entirety of the regression. We did not combine light curves
from the two visits because potentially different detector
systematics visit-to-visit might not have been corrected by the
GP, and also to investigate the repeatability of our results.
Before combining scan directions, we trimmed the light curves
to remove the first orbit of each visit, which captured the
greatest detector systematics, and trimmed the first point in
each remaining orbit for the same reason. Each light curve
contained 88 flux measurements after trimming and combining
scan directions.
We defined priors on all hyperparameters and system

parameters, the values and widths of which were the same
for each visit for the white-light eclipses (except for TC). For
the spectral data we used priors based on the results of each
visit’s white-light results. We set the prior value of the
characteristic timescale of the periodicity, θ, to match the
timescale of an HST orbit (q = 0.06628 0.00003 day) for all
light curves, knowing a priori that this is the timescale on
which the systematic trend repeats. We determined the θ prior
from observations of the HST orbital elements, provided by
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archival two-line element sets for HST for the dates of our two
visits obtained by emailing the United States Joint Functional
Component Command for Space.

While this prior is very restrictive, in initial tests where we
allowed θ more freedom to vary, the posterior on θ still
converged on the orbital periodicity. However, when coupled
with similarly unrestricted priors for A L, , and Ω, the GP
sometimes attempted to fit the noise rather than the eclipse,
reported erroneously small eclipse depths, and yielded very
poor fits on other parameters. Since a prior value and
uncertainty on θ is physically motivated by our system (but
not so for other hyperparameters), we adopted the listed value
to gain higher confidence in the GP regression and allow freer
exploration of the other hyperparameters. We are confident that
restricting θ to the HST orbital timescale does not aversely
affect the regression.

Given these prior values, we used an amoeba maximization
to find an initial best fit to the eclipse light curve, the results of
which were then fed as starting values into an MCMC sampling
of Equation (3). We used the differential evolution Monte
Carlo algorithm from the EXOFAST package (Eastman
et al. 2013) to explore the parameter space around the amoeba
solution. The median and s1 values from the MCMC chains
were used to calculate the predictive mean (eclipse model and
systematics) of the likelihood function defined in Equation (1).

4.3. White-light and Spectral Regression

We first fit secondary eclipse light curve models to the
blended white-light data for each visit as described in
Section 4.2. In the initial fits, we used as priors the Southworth
et al. (2015) values for R RP S, icos , orbital period, and a RP S

and assumed a near-circular orbit with small argument of
periastron. The prior values, widths, and shapes for all
hyperparameters, system parameters, and eclipse parameters

are listed in Table 3. RS together with a RP S was used to
calculate and correct for the Roemer delay (i.e., the light travel
time) across the orbit to accurately determine the secondary
eclipse time. The lower limits on L and Ω were chosen to be
half of the transit duration ( =T 2 0.054s14, day) and the
ingress/egress duration (t = 0.01s day), respectively. This
ensured that the GP regression modeled the systematics across
the orbit instead of fitting the scatter between the points. The
upper limits on L and Ω ensured that these hyperparameters did
not become so large that changes to these hyperparameters
dominated the calculation of ln(P).
Southworth et al. (2015) found that WASP-103b is slightly

aspherical as a result of its close-in orbit. It has a Roche-lobe
filling factor of 0.58 and an equatorial radius 2.2% larger than
the polar radius. We tested whether assuming a spherical or
aspherical prior value for RP affected the measured eclipse
depth while using a spherical eclipse model, i.e., how robust
the GP regression is to small changes in RP prior without
changing the eclipse model. We fit the light curve model to the
white-light data of each visit via GP regression and MCMC
sampling using both the best-fit spherical and aspherical radius
values from Southworth et al. (2015) as priors for the
regression. In comparing the two solutions, we found that the
residuals within each fit are 374.1 times greater than the
residuals between the the two solutions. From this we conclude
that any impact on our regression caused by the planetary
asphericity is accounted for in the MCMC sampling. We set the
prior value of the planetary radius to the spherical value,
= R 1.554 0.044P , for simplicity.
We fit the blended white-light data for each visit at the

optimum aperture via GP regression with MCMC sampling
using the priors listed in Table 3. The eclipse, system, and
hyperparameter solutions from GP regression of the white-light
eclipses are listed in Table 4. We used the white-light solutions
to calculate the corrected transit center time,

*
+T tC , eclipse

duration, T S14, , and the eclipse ingress/egress duration, tS, for
completeness.

Figure 6. Visit-averaged spectra generated using parametric fitting (blue
triangles and line) and GP regression (red points and line). Both spectra have
been decontaminated for flux from the companion star. The spectra produced
by each technique are both featureless and have the same slope, and the
parametric regression indicates an overall hotter planet.

Table 3

Prior Values, Widths, and Shapes for White-light Regression

Parameter Value±Width Distribution Type

A 0.1±0.1 Unrestricted

L (day)  t L2 20s14, Uniform

θ (day) 0.06628±0.00003 Normal

Ω (day)  t W 20s Uniform

R RP S 0.1158±0.0006 Normal

a RP S 2.9398±0.03 Normal

icos 0.032±0.017 Normal

*
we cos 0±0.01 Normal

*
we sin 0±0.01 Normal

RS (e̊) 1.419±0.055 Normal

Period (day) 0.9255±0.00002 Normal

Eclipse Depth (ppm) 0.001±0.001 Unrestricted

TC V, 1 (JD) 2457188.923±0.001 Normal

TC V, 2 (JD) 2457190.774±0.001 Normal

Note. All priors are the same for Visit 1 and Visit 2 except where explicitly

indicated with “V1” and “V2.” For Distribution Type “Unrestricted,” no prior

limits were placed on this parameter, and the listed values were used as starting

points and scale lengths for the amoeba maximization.
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We find that the white-light solutions for Visit 1 and Visit
2 are consistent with each other within s1 , with similar
uncertainties on parameters for each visit. We find that except
for the characteristic timescale of the periodicity in the
covariance kernel (θ), which was known very precisely
a priori, each of the hyperparameters has relatively large
uncertainties. This is because once the timescale for L or Ω

greatly exceed the duration of our observations, the covariance
matrices generated using these large hyperparameter values are
degenerate within the timescale of our data. For example, the
covariance between our first and last observations, which are
separated by ∼0.29 day, is effectively the same for covariance
timescales of L=5 and L=15. However, as long as L and Ω

remain above their lower limit values, we find that the
uncertainties on these hyperparameters to not significantly
impact the precision of the eclipse depth.16 As expected, the
posterior widths for nearly all fitted parameters, including θ, are
slightly wider than the prior widths, as the GP and MCMC
compound the parameter uncertainties regardless of the prior
distribution shape (within allowed boundaries).

We used the white-light solution at the optimum aperture as
starting values and prior probabilities for fitting the binned
spectral data via GP regression. We used the same priors on L

and ω as used in the white-light fit. As the binned spectral data
do not have much leverage on the system parameters, we held
all system parameters (R RP S, a RP S, icos ,

*
we cos ,

*
we sin , and RS) fixed at their white-light values for the

regression (Table 4), and only fit the four hyperparameters
( qA L, , , and Ω) and the two eclipse parameters (eclipse depth
and eclipse center time) for each of the 22 spectral
wavechannels as described in Section 4.2. We also combined
forward- and backward-scan directions in each wavechannel to
improve the S/N of the data.

Figure 7 shows the eclipse light curves in each wavechannel
with the detector systematics removed and the best-fit eclipse
models overplotted. As seen in Figure 7, the GP regression was
able to capture the correlated noise in the eclipse light curves,
which allowed for more precise light-curve regression.

4.4. Flux Decontamination

Before constructing the final thermal emission spectrum, we
corrected each wavechannel for contamination from the
companion star as described in Section 3. The eclipse depths
obtained through the GP regression do not represent the true
planet/star flux ratio until after flux decontamination. We
extracted flux contamination ratios at the central wavelengths
of each wavechannel on each visit from the SED models for the
primary and companion components, accounting for slight
differences in wavelength solutions for each visit. The
contamination ranged between ~9% for the shortest wave-
lengths and ~17% for the longest wavelengths. The deconta-
minated eclipse depth yields the true planet/star flux ratio,
F FP S, which is given by

⎡
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where ld is the eclipse depth before flux decontamination and

lF FB A ( ) is the fractional contribution of flux from the

companion star at wavelength λ. The flux contamination ratios

for each visit in each wavechannel are listed in Table 5. The

contamination ratios we calculate are consistent with the values

reported by Southworth & Evans (2016), who calculate the

contamination from the companion star for Bessel RI and griz

passbands. We note that with this method were are simply

scaling the eclipse depths and uncertainties by the contamina-

tion ratio, and do not incorporate the added (minor) uncertainty

of the flux contamination ratio itself.

4.5. Normality of Residuals

For a GP regression to be deemed successful, the residuals to
the model should not contain any non-Gaussian behavior. We
therefore tested the residuals of the spectral GP regression for
normality using the Anderson–Darling test (A–D test; D’Agos-
tino & Stephens 1986; Feigelson & Babu 2012; Gross &
Ligges 2015). The A–D test states that if the A–D statistic, A2,
is above a critical value, then the hypothesis that the data are
drawn from a normal distribution is rejected at a specified
significance level. A significance level of a = 0.01 (1%
significance) corresponds to the probability of observing the
tested phenomenon by chance. The critical values depend on
the number of points in the sample and the desired significance
level of the result.
We adjusted the A–D statistic for the unknown mean and

variance of the prior distribution (i.e., a Case 3 A–D test) using

⎜ ⎟
⎛

⎝

⎞

⎠
* = + -A A

n n
1

0.75 2.25
, 72 2

2
( )

where A2 is the unadjusted A–D statistic and n is the number of

points in the sample. For our spectral GP regression, n=88 for
each light curve after clipping the first orbit, trimming the first

point in each remaining orbit, and combining the forward and

backward scans.

Table 4

White-light Solutions from GP Regression

Parameter Visit 1 Visit 2

A 0.141±0.19 0.049±0.045

L (day) 9.8±3.4 10.3±3.4

θ (day) 0.06628±0.00004 0.06628±0.00004

Ω (day) 9.7±3.4 9.6±3.4

R RP S 0.1158±0.0008 0.1158±0.0009

a RP S 2.86±0.048 3.006±0.058

icos 0.025±0.021 0.035±0.026

*
we cos −0.003±0.014 −0.039±0.025

*
we sin 0.000±0.014 −0.001±0.018

RS (Re) 1.436±0.056 1.436±0.057

Period (day) 0.92555±0.00003 0.92555±0.00003

Eclipse Depth (ppm) 1246±63 1196±49

TS (JD) 2457189.38±0.0008 2457191.23±0.0012

*
+T tC (JD) 2457188.92±0.0008 2457190.99±0.0008

T S14, (day) 0.1177±0.0021 0.1113±0.0012

tS (day) 0.0128±0.00027 0.0121±0.00033

Note. The eclipse depth and uncertainties have not been decontaminated for

flux from the companion star.
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For regression attempts where L or Ω was allowed to reach values below the

lower limit listed in Table 3, the GP model effectively attributed all inter-orbit
variations to noise and not to the eclipse itself, resulting in anomalously small
eclipse depths.
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We computed the adjusted A–D statistic for the white-light
and each wavechannel in Visit 1 and Visit 2 for 10% ( =Acrit

0.6287), 5% ( =A 0.7468crit ), and 1% ( =A 1.0379crit )

significance levels. The A–D test indicates that we cannot
reject normality for white-light residuals for either visit at the
1% significance level. The A–D test further indicates that we
cannot reject normality at the 1% significance level for any

wavechannel except l m= 1.5058 m in Visit 2 ( * =A 1.0692 ),
and the normality of only a few wavechannels is rejected at the
5% or 10% level in either visit. When comparing the empirical
distribution function (EDF) of the residuals for Visit 2
l m= 1.5058 m to the EDF of a normal distribution (Figure 8,
right), we clearly see the deviation from normality when
compared to the EDF of a wavechannel that passes the A–D
test at high significance level (Figure 8, left). As Visit 2
l m= 1.5058 m is only 0.4401 higher than the 10% critical
value, we are confident that the effects of non-normality on the
residuals of that wavechannel are minimal, and are accounted
for in the uncertainties generated from MCMC.

4.6. Thermal Emission Spectrum of WASP-103b

The methods described in Section 4 were applied to the
secondary eclipse light curves in each spectral wavechannel
observed during each of the two visits with HST to produce the
thermal emission spectrum shown in Figure 9 and listed in
Table 6. The longest wavechannel, centered around m1.7 m
showed an anomalously low eclipse depth with a very poor fit
for both visits. This was likely due to edge effects resulting
from the wavechannel binning, and so the final wavechannel
was dropped from both Figure 9 and further analysis. We
averaged spectra between the two visits of HST to calculate the
average wavelength, l, and average planet/star flux ratio,
F FP S , which were used to retrieve atmospheric models and
compare to other exo-atmospheres.
The thermal emission spectrum of WASP-103b is featureless

across the observed near-IR region down to a sensitivity of
175 ppm, and it exhibits a shallow positive slope toward the
red. No significant water absorption is apparent in the m1.4 m
water band, nor are any other molecular features present.

Figure 7. Secondary eclipse light curves for spectral wavechannel data detrended for detector systematics via GP regression, before correction for flux contamination.
Open circles and solid line indicate Visit 1 data and model, respectively, and open squares and dashed lines indicate Visit 2 data and model, respectively. A vertical

offset is added for clarity. Wavechannels are color coded and labeled by the visit-averaged wavelength, l.

Table 5

Flux Contamination Ratio Due to the Companion Star for Visit 1 and Visit 2

Visit 1 Visit 2

l mm1( ) lF FB A 1( ) l mm2 ( ) lF FB A 2( )

1.0783 0.0922 1.0829 0.0923

1.1108 0.0952 1.1155 0.0955

1.1387 0.0965 1.1433 0.0968

1.1666 0.0997 1.1712 0.1004

1.1945 0.1016 1.1991 0.1015

1.2223 0.1050 1.2270 0.1055

1.2502 0.1074 1.2549 0.1080

1.2781 0.1118 1.2828 0.1163

1.3060 0.1132 1.3107 0.1126

1.3339 0.1158 1.3385 0.1167

1.3618 0.1186 1.3664 0.1199

1.3897 0.1228 1.3943 0.1242

1.4175 0.1273 1.4222 0.1279

1.4454 0.1315 1.4501 0.1321

1.4733 0.1352 1.4779 0.1364

1.5012 0.1360 1.5058 0.1376

1.5291 0.1454 1.5337 0.1463

1.5570 0.1508 1.5616 0.1512

1.5848 0.1547 1.5895 0.1559

1.6127 0.1600 1.6174 0.1602

1.6406 0.1639 1.6453 0.1647

1.6824 0.1660 1.6871 0.1662

12

The Astronomical Journal, 153:34 (18pp), 2017 January Cartier et al.



5. THE ATMOSPHERE OF WASP-103B

Here we discuss using the emission spectrum of WASP-
103b to model the planetary atmosphere, and compare the
spectrum WASP-103b to the emission spectra of other
exoplanets measured with HST/WFC3. We also discuss
directions for future research that would further help our
understanding of the WASP-103b atmosphere.

5.1. Atmospheric Modeling

We used the thermal emission forward model outlined in
Line et al. (2013a) to retrieve the thermal profile of the WASP-
103b atmosphere, which uses the Parmentier & Guillot (2014)
analytic parameterization of an irradiated non-gray atmosphere.
This method uses four parameters to control the “shape” of the
thermal profile (a visible opacity, two infrared opacities, and

Figure 8. Left: empirical distribution function of residuals to Gaussian process regression of Visit 1,l m= 1.0783 m light curve in ppm (black connected dots), which
passes the A–D test for normality at 10% significance, compared to that of a normal distribution (red solid line). Right: same as left for Visit 2,l m= 1.1155 m, which
does not pass the A–D test at 1% significance.

Figure 9. Thermal emission spectrum of WASP-103b generated via Gaussian process regression, corrected for flux from the companion star. The blue circles and line
indicate spectrum from Visit 1 data, red triangles and line indicate spectrum from Visit 2 data. The black squares are the averaged spectrum over both visits, calculated
at the average wavelength of each wavechannel. The gray shaded region is the s1 uncertainty of the averaged spectrum found via MCMC.
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the fractional energy split between the two infrared opacities),
and one parameter that controls the temperature shift. The

relatively featureless nature of the WASP-103b spectrum made
finding a unique atmospheric model fit to the data difficult.

Because of this, we selected a few fiducial atmosphere types
that appear frequently in the literature to provide representative
solutions. For each atmosphere type, the shape of the
temperature profile was held fixed to some standard profile

shape, and the fit was reduced to the best temperature shift for
that shape. It is possible that better-fitting atmospheric models
could be found by iterating shape and shift adjustments (e.g.,
Line et al. 2016), but significant improvement on the model
atmosphere fits would require additional data with better
leverage on the models.

We tested our visit-averaged spectrum against five fiducial
models: monotonically decreasing atmospheres at solar metal-
licity, ´0.01 solar metallicity ( = -Fe H 2[ ] ), and a C/O ratio
>1, an isothermal atmosphere at solar metallicity, and a solar-
metallicity atmosphere with a stratospheric thermal inversion
(Figure 10). The monotonically decreasing atmosphere at solar
metallicity is rejected via a c2 rejection test with 20 degrees of

freedom at c c= =dof 2.166
r
2 2 .17

The other four scenarios all provide similar, acceptable fits to
the spectrum, and therefore we cannot determine which is
likely to be correct. Planets are more likely to be enhanced in
refractory metals relative to their host star, rather than depleted
(Ramírez et al. 2014; Thorngren et al. 2015). Given the

reported near-solar metallicity of WASP-103 of
= Fe H 0.06 0.13[ ] , it is unlikely that WASP-103b is

significantly depleted in metals, therefore we disfavor the
´0.01 solar decreasing model case based on physical, rather

than statistical, grounds (c =dof 0.4392 ). The enhanced
C/O atmosphere provides an acceptable fit to the spectrum at
c =dof 0.6702 . As no causal link has been established
between enhanced C/O and other observable properties of the
planetary system, we cannot rule out the enhanced C/O
atmospheric model. However, as no other compelling evidence
yet exists to suggest that WASP-103b has an enhanced C/O
ratio, we do not find this model very plausible.
Solar metallicity profiles with an isothermal structure at

T=2890 K (c =dof 0.5172 ) and a thermal inversion layer
near the 10−2 bar pressure level (c =dof 0.3982 ) provide
equally acceptable fits to our spectrum. Across the region of
interest, the isothermal and inversion model both show little to
no variation in temperature (Figure 10, right). Given the narrow
wavelength range probed and uncertainties of our eclipse
depths, we have little power to distinguish between any model
that is approximately isothermal in this region. However, the
isothermal and thermally inverted models both have a hotter
temperature at high altitudes than expected in an monotonically
decreasing atmosphere in radiative equilibrium. Since a
monotonically decreasing atmosphere should be a good
zeroth-order model for an exo-atmosphere, the isothermal and
inverted atmospheric models would both require high-altitude
absorbers.
Figure 10 (right) highlights that our observations probe an

atmospheric pressure at which most models deviate only
slightly from the isothermal case, making it extremely difficult
to differentiate between models. While the spectrum may be
indistinguishable from isothermal across this wavelength range,
it may therefore not manifest from a physically isothermal
system, i.e., pseudo-isothermal. The pseudo-isothermal spec-
trum indicated by these data could be due to any number of
atmospheric phenomena that we cannot detect with our
spectrum, including a cloud deck at P∼10−2 bar, high-
altitude haze, or a large radiative zone. Alternatively, as the
right-hand side of Figure 10 suggests, the region probed by our
observations may capture the inflection point just below a
thermal inversion layer. Our HST observations have restricted
the range of possible thermal profiles, including the altitude of
a potential absorber, and indicate a single brightness temper-
ature of =T 2890B K across this wavelength range.
If the isothermal or inverted models are correct, then some

additional heating is required in the upper atmosphere, which is
indicative of some species of higher-altitude molecule that
absorbs radiation in the visible and radiates that energy
isotropically in the infrared, thus heating the lower layers in
the atmosphere. For WASP-103b, this high-altitude absorber
probably is TiO (Fortney et al. 2008), which could be detected
through observations probing higher altitudes in the atmos-
phere (i.e., shorter wavelengths). Additional eclipse or transit
observations at wavelengths shorter than those considered in
this study would likely be able to distinguish more clearly
between the enhanced C/O, isothermal, and inverted models
and reveal the presence of a high-altitude absorber or other
atmospheric phenomena.

5.2. Comparisons to Other Planets

We compare the planetary spectrum of WASP-103b to other
exoplanets for which a m1.1 1.7 m– emission spectrum has been
measured with HST/WFC3 G141 in Figure 11. We calculated

Table 6

Thermal Emission Spectrum of WASP-103b for Separate and Averaged Visits

Visit 1 Visit 2 Averaged

l1 F FP S 1( ) l2 F FP S 2( ) l F FP S

μm ppm μm ppm μm ppm

1.0783 -
+1230.3 351
341 1.0829 -

+1353.6 316
312 1.0806 -

+1303.4 236
231

1.1108 -
+1326.8 251
259 1.1155 1321.3 238 1.1131 -

+1322.5 173
176

1.1387 1256.7 237 1.1433 -
+1255.2 219
223 1.1410 -

+1261.8 162
163

1.1666 -
+1327.4 231
227 1.1712 -

+1210.0 218
220 1.1689 -

+1262.3 159
158

1.1945 -
+1120.1 227
220 1.1991 -

+1290.3 215
212 1.1968 -

+1202.2 157
153

1.2223 -
+1216.1 222
221 1.2270 -

+1260.7 213
217 1.2247 -

+1238.5 154
155

1.2502 -
+1167.6 221
224 1.2549 -

+1341.3 216
211 1.2526 -

+1256.5 155
154

1.2781 -
+1314.9 223
217 1.2828 -

+1209.7 213
218 1.2804 1272.6 154

1.3060 1379.0 217 1.3107 -
+1259.9 221
216 1.3083 -

+1313.6 155
153

1.3339 -
+1427.7 217
225 1.3385 -

+1439.5 211
216 1.3362 -

+1433.4 151
156

1.3618 -
+1462.0 234
224 1.3664 1298.3 223 1.3641 -

+1389.1 162
158

1.3897 -
+1623.4 229
232 1.3943 -

+1352.7 224
223 1.3920 -

+1490.8 160
161

1.4175 -
+1644.6 241
227 1.4222 -

+1300.7 228
229 1.4199 -

+1472.6 166
161

1.4454 -
+1660.5 254
242 1.4501 -

+1409.3 233
236 1.4477 -

+1531.1 172
169

1.4733 -
+1531.1 249
239 1.4779 -

+1336.0 239
237 1.4756 -

+1426.6 173
168

1.5012 -
+1477.8 256
248 1.5058 -

+1524.2 240
242 1.5035 -

+1498.6 175
173

1.5291 -
+1541.5 252
245 1.5337 -

+1354.7 237
240 1.5314 -

+1461.3 173
171

1.5570 -
+1780.8 258
260 1.5616 -

+1554.4 250
246 1.5593 -

+1656.7 180
179

1.5848 1655.7 264 1.5895 -
+1722.1 263
275 1.5872 -

+1684.1 186
191

1.6127 -
+1683.4 273
270 1.6174 -

+1610.6 261
268 1.6151 -

+1656.8 189
190

1.6406 -
+1610.8 295
291 1.6453 -

+1382.8 278
274 1.6429 -

+1497.0 203
200

1.6824 -
+622.5 321
365 1.6871 -

+962.6 382
392 1.6848 -

+752.6 249
268

Note. These flux ratios have been corrected for flux from the companion star.

17
The longest wavechannel was left out of the c2 tests.
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the absolute planetary emission spectra by retrieving stellar
spectra from the NASA Infrared Telescope Facility Spectral
Library (IRTF; Rayner et al. 2009) matched to the nearest
spectral subtype, and using the planet/star flux ratio to rescale
the stellar spectrum to planetary values. For solar- and earlier-
type stars, use of an IRTF spectrum had minimal effect
compared to stellar spectra approximated as a blackbody. For
K-type stars (WASP-43 and TrES-3) the IRTF spectra
accounted for molecular absorption and were measurably
different from a blackbody, therefore we used IRTF spectra for
all spectral types to facilitate comparison. All planetary spectra
were normalized to their continuum flux levels between

m1.2 and 1.3 m for ease of comparison.
Observations of WASP-33b (Haynes et al. 2015; von Essen

et al. 2015) have provided strong evidence for the presence of a
thermally inverted atmosphere. When we compare the
planetary spectrum of WASP-103b to that of WASP-33b
binned to similar wavechannels (Figure 11; top left), we note
that the two spectra appear to be very similar in this wavelength
range. When combined with their additional ground-based,
HST, and Spitzer data, Haynes et al. (2015) were able to make a
stronger case for a thermally inverted atmosphere than we are
able to make with our single measurement of the WASP-103b
spectrum.

When compared to the spectrum of WASP-43b (Kreidberg
et al. 2014b) and HD 209458b (Line et al. 2016), which have
significant water absorption at m1.4 m, it becomes clear that the
WASP-103b spectrum does not display any significant
absorption that would be due to H O2 (Figure 11; top center
and right, respectively). The decreasing atmospheric profiles of
TrES-3b (subsolar H O;2 Ranjan et al. 2014) and HD 189733b

(solar H O;2 Crouzet et al. 2014) adequately match the WASP-

103b spectrum because of the large scatter and uncertainties in

their data (Figure 11; middle center and right, respectively).

However, at the higher S/N of the WASP-4b spectrum (Ranjan

et al. 2014), the WASP-103b spectrum is inconsistent with an

H O2 -depleted decreasing profile (Figure 11; middle left).
The isothermal profile of TrES-3b (Ranjan et al. 2014) and

the pseudo-isothermal profile of CoRoT-2b (Wilkins

et al. 2014) also closely agree with WASP-103b (Figure 11;

bottom left), as does the monotonically decreasing profile of

Kepler-13b reported by Beatty et al. (2016) (Figure 11; bottom

center) and the enhanced C/O-decreasing profile of WASP-12b

of Stevenson et al. (2014) (Figure 11; bottom right), each to

within s2 . These are consistent with our atmospheric matches

shown in Figure 10. That the WASP-103b spectrum appears to

be similar to those of planets with varying profile shapes

indicates that WFC3 observations are not very discriminatory

in this wavelength range given the lack of absorption features,

and at best indicate a pseudo-isothermal profile.
The fact that we only see evidence of inversions and

(perhaps) TiO absorption in the transmission spectra of the

most highly irradiated planets, such as WASP-33b and WASP-

103b, is consistent with the hypothesis that cold traps in the

interior and on the night side are removing TiO from the

atmospheres of more moderate hot Jupiters such as HD

209458b and WASP-43b (Spiegel et al. 2009). WASP-103b

will be a key planet for understanding the behavior of TiO in a

hot Jupiter atmosphere, and for validating hypothesis about the

origin of thermal inversions. Further measurements of WASP-

103b are necessary toward this effort.

Figure 10. Left: atmospheric models (binned to low resolution) tested against the visit-averaged thermal emission spectrum of WASP-103b in the near-IR (black
points). Blue corresponds to a solar metallicity atmosphere with a thermal inversion, yellow corresponds to a decreasing atmosphere with C/O>1, red corresponds to
an isothermal atmosphere at solar metallicity, and green and gray correspond to a decreasing atmosphere at low-metallicity and solar metallicity, respectively. Reduced

c
r
2 values are listed for each model. Right: the vertical pressure–temperature profiles associated with the tested atmospheric models. Model colors are the same as in

the left panel, and the gray shaded region indicates the atmospheric pressures probed by our observations. The low-metallicity solar and high C/O profiles are
identical, and overplotted with alternating dashed colors.
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5.3. Future Work

Future work on WASP-103b should focus on verifying the
presence of a thermal inversion in its atmosphere by probing
the atmospheric layers in different wavelength regions.
Transmission spectra in optical bandpasses would probe
atmospheric heights where the isothermal, non-inverted, and
thermal inversion models are measurably divergent.

Optical transmission spectra would also be able to detect
potential absorption features from TiO or VO, the most likely
causes of a thermal inversion in the WASP-103b atmosphere. If
TiO or VO are present in observable quantities, we could rule
out an enhanced C/O atmospheric composition and give more
consideration to an inverted atmospheric profile, as an
enhanced C/O ratio suppresses formation of TiO and VO
(Madhusudhan et al. 2011b; Madhusudhan 2012). Detection of
IR CH4 features would support the existence of an enhanced
C/O atmosphere, low TiO and VO levels, and non-inverted
atmospheric profile. The Spitzer m3.6 m band covers a large
CH4 absorption feature, and differencing against a m4.5 m
eclipse could measure the relative CH CO4 levels.

High-altitude clouds could be identified through optical
transmission spectroscopy, which would show a flat transmis-
sion spectrum if clouds exist. However, the presence of clouds
would likely prevent TiO, VO, or C/O measurements which
might allow us to better distinguish between possible atmo-
spheric profiles.

Southworth et al. (2015) observed the transit of WASP-103b
in Bessell RI and SDSS griz and reported an abnormally steep
downward slope in the transmission spectrum from blue to red
(see Figure 7 of that paper). The reported slope in the
transmission spectrum is too steep to be caused by Rayleigh
scattering from haze in the upper atmosphere or by stellar

activity (Czesla et al. 2009; Ballerini et al. 2012; Oshagh et al.
2013), but could possibly be attributed to TiO absorption
between m~0.45 m and m0.8 m. Southworth & Evans (2016)
also report that the spectral slope measured from their
transmission spectroscopy of WASP-103b is too strong for
Rayleigh scattering and cannot be attributed to effects from the
companion star. Additional transit observations in the optical
could verify the results of Southworth et al. (2015) and
Southworth & Evans (2016), could lend support to the idea that
TiO is present in the WASP-103b atmosphere, and help
distinguish between the atmospheric models discussed here.

6. SUMMARY

We observed two secondary eclipses of WASP-103b from
m1.1 to 1.7 m using the G141 grism on HST/WFC3 in spatial

scan mode. We used Gaussian process regression with MCMC
sampling to model both the white-light and spectrally resolved
eclipse light curves to extract the planet-to-star flux ratio of the
system as a function of wavelength. We corrected this thermal
emission spectrum for flux contamination from a nearby star
that we probabilistically showed was physically associated with
the WASP-103 system.
We combined the decontaminated thermal emission spectra

from each visit of HST into a visit-averaged spectrum, which
was used to retrieve atmospheric models for WASP-103b.
After rejecting monotonically decreasing atmosphere models
for solar composition and ´0.01 solar composition, we found
that an isothermal or a thermally inverted atmospheric profile
could explain our thermal emission spectrum, as could a
monotonically decreasing atmosphere with a C/O ratio >1. We
conclude that the WASP-103b atmosphere is approximately
isothermal across the region probed by our observations, with a

Figure 11. Comparisons of normalized planetary spectra taken with HST/WFC3 G141 across the m1.1 1.7 m– range. In all panels, the visit-averaged spectrum of
WASP-103b is shown as open black squares and the comparison planet spectrum is shown as solid red points. Spectra have been normalized to the average flux value
between m1.2 and 1.3 m. Published values of planetary temperature and atmospheric features are included for each comparison planet. References for spectra are
found in the text.
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brightness temperature of =T 2890B K, giving us little power
to discern between the fiducial models we tested.

Additional transit observations in the optical and NIR would
test the existence of the steep slope reported by Southworth
et al. (2015) and Southworth & Evans (2016), which would tell
us if the atmosphere is truly isothermal or merely pseudo-
isothermal as a result of the presence of clouds or haze. A
transit spectrum at optical wavelengths would also be able to
measure absorption from TiO, which, if detected, would favor
an inverted atmospheric profile over an enhanced C/O ratio.
Alternatively, the detection of IR CH4 absorption during
secondary eclipse would support an enhanced C/O ratio and
disfavor an inverted profile.

WASP-103b, along with other highly irradiated hot Jupiters,
will be a key planet for understanding the behavior of TiO in a
hot Jupiter atmosphere, and validating hypotheses about the
existence and origin of thermal inversions.
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