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ABSTRACT

Near-infrared (NIR) light has stronger penetration capability

than visible light due to its long wavelength, thus being less

scattered by particles in the air. This makes it desirable

for image dehazing to unveil details of distant objects in

landscape photographs. In this paper, we propose an improved

image dehazing scheme using a pair of color and NIR

images, which effectively estimates the airlight color and

transfers details from the NIR. A two-stage dehazing method

is proposed by exploiting the dissimilarity between RGB and

NIR for airlight color estimation, followed by a dehazing

procedure through an optimization framework. Experiments

on captured haze images show that our method can achieve

substantial improvements on the detail recovery and the color

distribution over the existing image dehazing algorithms.
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1. INTRODUCTION

Haze and mist significantly reduce the visibility in landscape

photographs, which impact visual quality and bring difficulties

for many computer vision applications [1]. Accurately

estimating the airlight color and recovering the lost details

in the color image is a fundamental and challenging problem

in image processing.

Optically, the haze effect is due to the presence of particles

in the atmosphere, with comparable size to the wavelength in

the visible band (haze ∼ 0.1um, mist ∼ 1um), that absorb

and scatter light. Reflected light from distant objects is

attenuated and diffused by the particles. As the particle

density increases, both color and details of distant scene

will fade away. The advantage of deep penetration of the

near-infrared (NIR) due to its long wavelength (∼ 1um)

makes it possible to unveil the details, which could be

completely lost in the visible band.

Image dehazing in general involves two tasks, removing

the airlight color effect and recovering the lost details.

State-of-the-art image dehazing algorithms [2][3][4], remove

the haze based on a single RGB image. The core idea in these

studies is to estimate the airlight color and the transmission

map under certain assumption, such as dark channel prior,

and then reconstruct the haze-free image based on the haze

model. However, these algorithms suffer from an inherent

problem of the single image input, which may not contain

any scene details. Once the information is lost in the input

image, it is very difficult for these algorithms to unveil the

ground truth. In general, the recovered images at dense haze

regions tend to be noisy and lack texture details.

Removing the airlight color is fundamental to image

dehazing. Inaccurate estimation of the airlight color could

result in unwanted color shift issues. Most current literatures

[2][4] simply approximate the airlight color from the brightest

region in the scene by assuming such regions are usually at

infinity and have the most haze. However, this approach often

fails by mistakenly selecting white objects (e.g., clouds) to

estimate the airlight color. Essentially, it is hard to use single

RGB image to differentiate the object with haze-like color

(i.e., cloud) from the object under actual haze.

There are some other approaches removing the haze

by exploiting the difference of two or more images of the

same scene that have different properties. Nayar et al. use

two images with the same scene captured with significant

different mediums [1], which is impractical in reality and

hard to deliver immediate results. Shwartz et al. use two

images captured with different degrees of polarization by

rotating a polarizing filter attached to the camera [5], which

cannot handle dynamic scenes for most outdoor landscape

pictures where objects like trees and clouds moving quickly.

The near-infrared spectrum can be easily acquired by

using off-the-shelf digital cameras with minor modifications

[6], or potentially through a single RGBN camera, in which

multiple images with different properties can be captured

simultaneously [7]. In [8], L. Schaul et al. first proposed

to fuse the NIR detail information in the color image under

the Weighted Least Squares (WLS) framework [9] without

airlight color detection. The fundamental issue of this

approach is that the texture details in the non-haze regions

will also be boosted in luminance channel, thus resulting in

color shifting artifacts.

Most previous works suffer from either detail lost or

color shifting. Enlightened by the general haze model [3],

however, we try to recover the color and transfer the details in

one shot, aiming to provide a practical and complete solution.

By exploiting dissimilarity of NIR and other color bands, we

refined airlight color esitmation in a much meaningful way.

By formulating image de-hazing as an optimization problem



and introducing NIR gradient constraint, we succesfully

removed haze effect by revealing accurate details and color,

while leaving non-haze regions with minimum impact.

In this paper, we propose a novel image dehazing approach,

using the images captured in both visible (400− 700nm) and

near-infrared (700 − 1100nm) bands. Our main contribution

are in two folds:

• Propose an optimization framework to resolve image

de-hazing problem guided with NIR gradient constraints.

• Refine airlight color estimation by exploiting the differences

between NIR and RGB channels.

2. PROBLEM FORMULATION

Consider a general haze model [3],

I(x) = t(x)J(x) + (1− t(x))A, (1)

where for each pixel x, I(x) stands for the observed image;

J(x) is the haze-free image; A represents for the global

airlight color, which is a 3 × 1 vector in typical outdoor

landscape photographs; t(x) is the medium transmission

describing the portion of the light that is not scattered and

reaches the camera. Therefore, by removing the haze, it is

required to recover J given the color image I
RGB and the

near-infrared image I
NIR. For the brevity of discussion in

this paper, we assume the pair of RGB and NIR images are

well registered.
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Fig. 1. The overview of the proposed image dehazing scheme.

We propose a two-stage dehazing scheme: an airlight

color estimation stage by exploiting the dissimilarity between

RGB and NIR; and an image dehazing stage by enforcing the

NIR gradient constraint through an optimization framework.

Fig. 1 shows the overall workflow of the proposed scheme.

3. AIRLIGHT ESTIMATION

In order to recover J as formulated in (1), the first step

of our approach is to estimate the global airlight color A.

A commonly used idea in literatures is to approximate the

airlight color from the most hazed region in the scene, where

the transmission tends to be zero. However, this approach

has limitation on scenarios with light haze. Inspired by

[3], we consider that the transmission t depends on the

scene depth and the density of the haze, while the intrinsic

color J depends on the illumination of the scene and the

surface reflectance. Therefore, it is reasonable to assume

that t and J are uncorrelated within a local patch. The idea

we proposed here to estimate the airlight color consists of

finding a local patch Ω with pixels having large similarities,

followed by searching an airlight color that leads to the

smallest correlation between t and J.

One of our key innovations is to use NIR to help finding

such a good local patch for the airlight color estimation. A

good local patch should meet two major criteria: i) pixels

within the patch should have intermediate level of haze so

that both J and A contribute to the observed intensity value

I in equation (1); ii) pixels within the patch should have

similar properties (i.e., surface reflectance). Therefore, we

first generate a haze map to find pixels that satisfy i), and then

adopt RGB-NIR relationship to meet the criteria ii).

Consider particle scattering, we can make two observations.

Firstly, haze increases the intensity value over all R, G and B

channels and thus reduces the image contrast. In other words,

the smallest intensity value over the three color channels

infers the density of the haze. We refer to this observation

as the haze prior. Secondly, since blue light has the shortest

wavelength in the visible band compared with NIR, it is

scattered more and thus changes quickly as depth increases.

Therefore, the difference between the blue channel and the

NIR channel can be used to refine the density of the haze. By

considering the two observations, we define a haze map H,

as shown in (2), to indicate the density of the haze.

H = min{ min
k∈{R,G,B}

(Ik),D},D = N{|IB − I
NIR|}, (2)

where N{·} represents the max-min normalization. Therefore,

large value in H infers small transmission.

Criterion i) requires the patch contains an intermediate

level of haze. Therefore, we calculate the histogram of H,

and use the first valley h as a reference to select a coarse patch

region Ωc. Pixels within Ωc should have similar haze density,

and the similarity is defined by δ,

Ωc = {x : |H(x)− h| ≤ δ}. (3)

Within the coarse patch region, a refined local patch Ω
is obtained by searching those connected pixels with similar

color properties. Particulary, pixels that have similar NIR

value and blue to NIR ratios are retained.

By using the pair of RGB and NIR images, we are able

to infer the density of haze and thus, pixels that have large

similarities are selected to generate a local patch, within

which we search for an airlight color A that leads to the

smallest correlation, measured by Pearson’s correlation

coefficient C, between t and J. Please refer to [3] for

the detailed definition of C. Specifically, we update A’s

components using the steepest decent method by minimizing

the Equation (4). Fig. 2 illustrates the haze map H, its



Fig. 2. Airlight color estimation. Top-left shows the original RGB

image and the pixels selected to esitmate airlight color (makred with

red cross). The pixels are selected based on first valley in histogram

(bottom-right) of haze map H (bottom-left).

histogram and the selected patches for airlight color estimation.

A = arg min
∀(x)∈Ω

C(J, t)2 (4)

4. IMAGE DEHAZING

The core to the algorithm is to formulate the whole image

dehazing process as an optimization problem. This process

includes estimating the haze-free color image and transferring

details from the NIR to the color image.

4.1. Initialization

Divided by the estimated airlight color A at both sides in

equation (1) together with the haze prior, it is easy to derive

t0 = 1− min
k∈{R,G,B}

(Ik/A). (5)

Since the haze prior may not lead mink∈{R,G,B}(J
k/A)

to be exactly equal to zero for each pixel, the transmission

map t0 calculated from (5) may tend to be smaller than the

actual value. In addition, if we remove the haze thoroughly,

the image may look unnatural. To compensate for this, we

optionally keep a small amount of haze by introducing a

weight ω, which is large for distant objects and small for

close objects, namely,

ω =
1

1 + e−10(N{H}−0.5)
∗ (a− b) + a, (6)

where a and b are pre-determined parameters (a = 0.6,b =
0.4 in our experiments).

In order to get a good initialization, we use the RGB

input image as a guide to refine the transmission map t0 for

better edge alignment through guided filter [10]. Finally, the

initialized J0 is calculated by,

J0 =
I−A

max(t, ε)
+A, (7)

where ε equals to 0.1 in our experiments.

4.2. Optimization Framework

Recall our problem formulation in (1), removing the haze

basically requires the recovery of J given I
RGB and I

NIR.

Statistically, this can be reformulated by finding the largest

joint probability of (J, t) given I
RGB and I

NIR. Based on

Bayes’ theorem, we further derive

P (J, t|IRGB
, I

NIR) =
P (IRGB , INIR|J, t)P (J, t)

P (IRGB , INIR)

∝ P (IRGB |J, t)P (INIR|J, t)P (J)P (t). (8)

Equation (8) contains four terms, in which P (IRGB |J, t)
corresponds to the haze model as defined in (1); P (INIR|J, t)
represents the relationship between the color and the NIR

images, which we refer to as the NIR constraint; P (J) and

P (t) represent the color image prior and the transmission

prior, respectively.

Based on the statistical analysis in (8), we find the optimal

solution for J and t by solving the following optimization

problem,

(Ĵ, t̂) = argmin
(J,t)

‖ tJ+ (1− t)A− I
RGB ‖2

+ λ1w|∇J−∇I
NIR|α + λ2|∇J|β + λ3 ‖ ∇t ‖2,

(9)

where α, β ∈ (0, 1). The first term in (9) comes from our haze

model, which would produce the least noise in the haze-free

image. The fact that NIR penetrates further than the visible

band due to its long wavelength allows us to transfer the

details from the NIR image to the color image. Therefore,

we add a weighted gradient constraint in our second term.

The last two terms are the smoothness priors for the natural

image and the transmission map. In the weighted gradient

constraint, we add large weights on distant objects and small

weights on close objects. Thus, weight w is defined as

w =
1

1 + e−10(0.5−t)
. (10)

In equation (9), λ2 and λ3 are pre-determined parameters with

small values (0.01 in our experiments), and λ1 controls the

level of detail transfer that comes from the NIR image.

By solving the optimization problem stated in (9) using

Iteratively Reweighted Least Squares (IRLS) with initialized

J0 and t0 derived from (7) and (5), we can recover the

haze-free image J and the transmission map t simultaneously.



Fig. 3. The comparison with state-of-the-art image dehazing algorithms. Columns-wise from left to right: input RGB-NIR image pairs,

single image dehazing results by [2], multiple image dehazing results by [8], our results and the zoomed-in comparison. The estimated

airlight color of each method is indicated with values. Red rectangle areas are further zoomed-in and compared in the last column.

Different from traditional single image dehazing algorithms,

our approach transfers detail information from the NIR

image by enforcing the gradient constraint. By using the

optimization framework, it handles well on the noise issue

that comes from the division term in (7) when the transmission

value t is small. In addition, the transmission map t can be

different for each color channel, providing more accurate

recovered results.

After the airlight veil is removed in Ĵ, the overall tone of

the haze-free image could become darker than the input RGB

image. In our final results, a local tone mapping is applied

as a post-processing procedure to enhance the perceptual

experience.

5. EXPERIMENTAL RESULTS

This section provides results of the proposed dehazing method

applied on real captured image pairs using a modified commercial

camera. Specifically, the visible band ranges from 400
to 700nm, and the NIR filter allows IR ranging from 700
to 1100nm to pass. NIR and visible images of the same

scene are obtained by placing alternatively a NIR or visible

blocking filter on the lens. Potentially the pair of images can

be captured simultaneously through a single RGBN camera

in the future design [7].

Fig. 3 compares our dehazing result with the most recent

state-of-the-art single/multiple image dehazing algorithms

[2][8], where the first column shows the input image pairs. It

is clear to see that NIR retains more details on distant objects

than the corresponding color image. Compared with He’s

single image dehazing method [2], our result produces more

details on distant objects. This is simply due to the fact that

NIR can penetrate further than the visible band in the haze.

Meanwhile, our result produces a haze free image with much

less noise on distant objects. This benefit comes from the

first term in our optimization framework (9). Furthermore,

our result preserves the original illumination of the scene.

Comparing to Schaul et al.’s work [8], since our approach

adopts the haze model, we can not only selectively enhance

the details based on the transmission map, but also well

recover the original color of the scene.

From the experiments, it takes around 60 seconds to

process a 1 megapixel color image using matlab on a laptop

with 2.6GHz processor and 4G RAM.

6. CONCLUSION

In this paper, we have proposed an image dehazing method

using a pair of RGB and NIR images. The intuition behind

this technique is that NIR has deep penetration due to its long

wavelength and thus according to the Rayleigh’s scattering

law, the details of distant objects can be well preserved in

the NIR image. We have estimated the airlight color by

exploiting the dissimilarity between the RGB and the NIR,

and developed an image dehazing procedure to enforce the

NIR gradient constraint through an optimization framework.

Experimental results on real captured images demonstrate

that the proposed image dehazing method unveils the details

of the scene with less noise and better color distribution.
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