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NANO EXPRESS Open Access

Near-infrared optical absorption enhanced in black
silicon via Ag nanoparticle-induced localized
surface plasmon
Peng Zhang1, Shibin Li1*, Chunhua Liu1, Xiongbang Wei1, Zhiming Wu1, Yadong Jiang1 and Zhi Chen1,2

Abstract

Due to the localized surface plasmon (LSP) effect induced by Ag nanoparticles inside black silicon, the optical
absorption of black silicon is enhanced dramatically in near-infrared range (1,100 to 2,500 nm). The black silicon with
Ag nanoparticles shows much higher absorption than black silicon fabricated by chemical etching or reactive ion
etching over ultraviolet to near-infrared (UV-VIS-NIR, 250 to 2,500 nm). The maximum absorption even increased up
to 93.6% in the NIR range (820 to 2,500 nm). The high absorption in NIR range makes LSP-enhanced black silicon a
potential material used for NIR-sensitive optoelectronic device.

Keywords: LSP; Ag nanoparticles; Black silicon; Chemical etching; Absorption

PACS: 78.67.Bf; 78.30.Fs; 78.40.-q; 42.70.Gi

Background
The efficiency of the photovoltaic devices and photoelec-
tronic detectors made from crystalline silicon (C-Si) de-
creases seriously due to its high reflectivity to the visible
and near infrared light. In order to overcome the intrinsic
disadvantage of silicon, many approaches have been ex-
plored. Most of these methods fall into two categories: 1)
anti-reflection coating [1,2] and 2) light-trapping structure,
like grating and period structures [3-6]. Among these
methods, a simple and feasible way to obtain high absorp-
tion is to blacken the surface of crystalline silicon. In es-
sence, black silicon is not a new material, but a surface
modification microstructure of the Si material. Without
any doping, the absorption of black silicon can be enhanced
to over 90% in ultraviolet and visible range. There are dif-
ferent ways to fabricate black silicon, including reactive ion
etching (RIE), electrochemical etching, acid etching, etc.
[7-11]. Although it is easy to obtain black silicon by the
methods mentioned above, the absorption in black silicon
decreases sharply over 1,100 nm owing to the bandgap of
silicon which is 1.12 eV. This high absorption is due to the

micro/nanostructure on silicon, which blackened the sur-
face, but not the change of bandgap. E. Mazur [12] pro-
posed a new approach that sulfur was doped into silicon
material by femtosecond laser pulses in SF6 environment,
resulting in the high absorption in black silicon over the
whole 250 to 2,500 nm wavelength. This high absorption in
black silicon is ascribed to the impurity of bandgap levels
induced by the doped chalcogenide [13,14]. However, the
preparation of black silicon using a femtosecond laser is a
high-cost and time-consuming process.
Recently, localized surface plasmon (LSP) also has

gained wide attention ascribed to its enhancement in op-
tical properties. The metallic nanostructures confine the
charge density oscillations to produce the LSP effect. As
the frequency of incident light matches the frequency of
LSP, the light will be absorbed by the metal significantly.
This phenomenon is called localized surface plasmon res-
onance (LSPR). LSPR improves the absorption capability
through the enhancement of electromagnetic field near the
nanoparticle or inside the nanoparticle. Meanwhile, the fre-
quency of LSP is sensitive to the shape and size of metallic
nanostructures as well as the dielectric constant of the sur-
rounding material. LSP has been widely investigated due to
the unique properties. The biosensors and solar cells based
on metallic nanoparticles were reported since LSPR en-
hances the performance of such devices [15-20].
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In this paper, we report a unique, efficient, and easy
method to use LSP to enhance the absorption of black
silicon in NIR. Due to the LSP effect, the black silicon with
Ag nanoparticles indicates high absorption and low re-
flectivity in UV-Vis-NIR (250 to 2,500 nm) wavelength.

Methods
The Ag thin film (10 nm) used in this work was deposited
on silicon by thermal evaporation after the silicon substrate
was cleaned by the RCA procedure. The post annealing
was performed by rapid thermal processing at different
temperatures (300°C, 400°C, 500°C, 700°C) for 3 min in ni-
trogen. All samples were etched in etchant acid solution
(H2O2/H2O/HF/C2H5OH= 20:8:4:8 volume ratio; concen-
trations of H2O2 and HF are 30% and 40%, respectively) for
8 min at 35°C. A silicon sample without Ag nanoparticle
on its surface was etched by an etchant containing HAuCl4
for 8 min at 35°C, and all samples were kept in ethanol.
The surface morphology was characterized by field emis-
sion scanning electronic microscopy (SEM); the optical
properties were measured using a UV-Vis-NIR spectropho-
tometer equipped with an integrating sphere detector.

Results and discussion
Figure 1 shows the Ag spherical nanoparticles on silicon
surface produced by rapid thermal processing-induced
stress. The Ag nanoparticles are much of a size under

the same annealing temperature. The size of nanoparticles
increases from 10.88 nm to 42.03 nm with the increase of
annealing temperature, indicating higher annealing
temperature produced larger particles. The space between
two particles also depends on the annealing temperature.
The result from the SEM images shows wider space be-
tween two nanoparticles as the annealing temperature
increases.
The samples were etched by an etchant and contained

HF and H2O2 after the annealing treatment. Lots of bub-
bles escaped from the surface once the samples were
immersed in the etchant. During the etching process,
the surface of the sample changed from a flat, light gray
mirror finish, to a visibly matte black or dark gray sur-
face. Meanwhile, the color of the etching solution chan-
ged from transparent to light purple.
As shown in Figure 2, the nanopores formed on silicon

film causes the black surface of silicon. The size of nano-
pores depends on the size of Ag nanoparticles. In the same
annealing time, the size of nanoparticles produced from
RTP process increases with the annealing temperature.
The Ag nanoparticle forms the primary cell with Si in con-
tact area when the substrates are immersed in the etchant,
where the Ag nanoparticle acts as cathode to reduce
H2O2. Si under the noble metal is oxidized by some charge
transfer between Ag nanoparticles. The silicon oxides are
dissolved by HF and nanopores are produced; more details

Figure 1 SEM images for samples annealed at different temperatures: (a) 300°C, (b) 400°C, (c) 500°C, (d) 700°C.
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can be found elsewhere [21,22]. Si covered by metal nano-
particles dissolves faster than the regions without nano-
particles according to the primary cell principle, resulting
in nanopores on the surface [23]. The Ag nanoparticles
sink into the bottom of the nanopores in black silicon.
The optical properties of the samples are evaluated by

measuring the infrared absorptance through a UV-Vis-
NIR spectrophotometer equipped with an integrating
sphere detector. The diffuse and specular reflectance (R)
and transmittance (T) are measured with a 2 nm step
length in the wavelength range of 200 to 2,500 nm to
determine the absorptance (A = 1 − R − T). Figure 3 dis-
plays the reflectivity and absorption curves of samples
annealed at different temperatures.
As shown in Figure 3a, the reflection is obviously sup-

pressed owing to the rough surface produced by Ag
nanoparticle-induced chemical etching. The reflection of
C-Si is much higher than that of black silicon. For the Ag
nanoparticle-embedded black silicon, the size of nanopar-
ticles differ with varying annealing temperature. The dif-
ference in reflectivity and absorption is ascribed to the
different sizes of Ag nanoparticles and nanostructures.
The sample annealed at 700°C indicates the highest re-
flectivity ascribed to the large-sized nanoparticles pro-
duced by the highest annealing temperature used in this
work [24]. The average absorption of all Ag nanoparticle-
induced black silicon is high, up to 91.8% in the range of
250 to 2,500 nm.

Figure 4 shows the absorption curve of black silicon,
Ag-embedded black silicon as well as crystalline silicon.
The absorption range of Ag-embedded black silicon is
obviously extended from UV to NIR wavelength. The
additional absorption to wavelength over 1,100 nm can
be attributed to the LSP in Ag nanoparticles.
After chemical etching, Ag particles are distributed in

black silicon unevenly, and the particles can be approxi-
mately regarded as surrounded by silicon material. Ac-
cording to the MIE theory and modified Drude model,
the frequency of surface plasmon resonance of a single
isolate particle is described as follows:

ω2
sp ¼

ω2
p

1þ εb1 þ 2εm
−

1
τ0

þ V f

d
A

� �2

≅
ω2
p

1þ εb1 þ 2εm
−

V f

L
þ V f

d
A

� �2 ð1Þ

where ωp ¼ nee2=ε0mð Þ12 is the free electron plasma
frequency (for Ag, ωp = 1.37036 × 1016 rad/s). εm is the
dielectric function of Si. ε1 is the real part of the dielec-
tric function of the Ag nanoparticles. εb represents the
impact of electron interband transition on the dielectric
function. Vf is the Fermi velocity (1.4 × 106 m/s for Ag),
L is the mean free path of the electron in bulk material,
d is the radius of nanoparticles [25-27]. For most metals
at room temperature, the plasma frequency is usually in
the visible and UV regions, approximately from 3 to
20 eV. For Ag particles (5 nm < d <50 nm) in vacuum,
the frequency of plasmon resonance approximately

Figure 2 The SEM images of samples (a) 500°C and (b) silicon without Ag nanoparticles covered after chemical etching.

Figure 3 Reflectivity (a) and absorption curve (b) of samples annealed at different temperatures.
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corresponds to 350 nm [28,29]. When εm or refract
index εm ¼ n2m

� �
increases, the frequency of plasmon

resonance could be shifted to NIR [30,31].
Furthermore, as shown in Figure 1, particles are close

to each other, the interparticle distance is less than a ra-
dius of particles, and this situation remains roughly the
same after etching [21], which means interaction be-
tween particles cannot be ignored [32]. Considering the
interaction between particles, the resonance frequency
of particle i can be explained as follows:

ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
sp;i−

ωp

4πεm

X
i≠j

V j 3 cosθi;j−1
� �

d3
i;j

vuut ð2Þ

where ωsp,i is the resonance frequency of particle i without
considering interparticle interaction, θ is the angle between
the incident polarization and the axis connecting two parti-
cles. V represents the volume of the particle. The second
part of the equation describes the interaction between parti-
cles. This clearly shows that interaction between particles
could reduce the resonance frequency and result in the add-
itional red shift of the plasmon resonance frequency [33].
As a result, frequency of plasmon resonance in Ag

nanoparticles shifts to NIR, mainly because of the inter-
action between particle size, high refractive index sur-
rounding the material, and interparticle coupling. Besides,
the refractive index of black silicon is the gradient [8] and
the Ag nanoparticles are unevenly distributed, which
means the plasmon-enhanced absorption peak in NIR can
be the superposition of many different peaks. As the inci-
dent wavelength increases, the decay rate of the free elec-
trons of the dielectric constant of the silver increases,
shortening the life of the plasma and broadening the
plasma resonance band [34]. These peaks would overlap

with each other. Therefore, the high absorption (over
90%) in NIR range presented in this work is ascribed to
the enhancement of LSP induced by nanoparticles embed-
ded into the surface of black silicon. It is different from
the high absorption induced by the impurity of the band-
gap level in black silicon attributed to chalcogenide doping
by the femtosecond laser process [12,13,35-37].

Conclusion
In this paper, instead of chalcogenide-doped black silicon
prepared using a femtosecond laser, we report a black sili-
con with Ag nanoparticles embedded showing high ab-
sorption from UV to NIR (250 to 2,500 nm) owing to the
enhancement induced by LSP. The LSP-enhanced absorp-
tion is high, up to 93.6%, and the average is 91.8% over the
250 to 2,500 nm. The LSP-enhanced black silicon provides
an alternative approach to producing high absorption in
NIR range through a simple and cheap method.
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