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Abstract

Molecular imaging plays a key role in personalized medicine, which is the goal and future of

patient management. Among the various molecular imaging modalities, optical imaging may be

the fastest growing area for bioanalysis, and the major reason is the research on fluorescence

semiconductor quantum dots (QDs) and dyes have evolved over the past two decades. The great

efforts on the synthesis of QDs with fluorescence emission from UV to near-infrared (NIR)

regions speed up the studies of QDs as optical probes for in vitro and in vivo molecular imaging.

For in vivo applications, the fluorescent emission wavelength ideally should be in a region of the

spectrum where blood and tissue absorb minimally and tissue penetration reach maximally, which

is NIR region (typically 700–1000 nm). The goal of this review is to provide readers the basics of

NIR-emitting QDs, the bioconjugate chemistry of QDs, and their applications for diagnostic tumor

imaging. We will also discuss the benefits, challenges, limitations, perspective, and the future

scope of NIR-emitting QDs for tumor imaging applications.
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1. INTRODUCTION

This review describes the application of quantum dots (QDs) with near-infrared (NIR)

emission for in vivo tumor imaging. Over the past decades, the research of nanotechnology

has grown explosively covering the fields of materials, energy, electronics, biology, and

medicine. The integration of nanotechnology with molecular biology and medicine has

resulted in active developments of a new emerging research area—nanobiotechnology [1, 2].

Nanobiotechnology is defined as a field that applies the nanoscale principles, materials, and

techniques to understand and transform biosystems, and which uses biological principles

and materials to create new devices and systems integrated from the nanoscale [1]. This

technological innovation, referred to nanomedicine by the National Institutes of Health

(NIH), has great potential to offer exciting and abundant opportunities for discovering new

materials and tools in biomedicine. One of the most advanced and exciting forefronts of

nanobiotechnology is the various applications of QDs in biology and medicine [3].

Compared with the organic dyes and fluorescent proteins, QDs show many unique optical
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properties, such as symmetrical, narrow, and tunable emission spectra, superior

photostability, high quantum yields, and the capacity of simultaneous excitation of multiple

fluorescence colors. Moreover, there are much more alternatives in QDs with NIR emission

for in vivo imaging than organic dyes [4]. The QDs emitting at above 700 nm in the NIR

region minimize the problems of endogenous fluorescence of tissues and meet the

requirements of in vivo biological imaging applications.

Cancer is a serious burden for the public health in the world because cancer cells are very

aggressive and invasive. In 2007, the NIH estimated an overall cost of $206.3 billion as a

result of cancer. There are many traditional medical imaging techniques to detect cancer and

monitor the therapeutic effects of cancer intervention, such as computed tomography (CT),

magnetic resonance imaging (MRI), and ultrasound. The field of molecular imaging,

recently defined by the Society of Nuclear Medicine (SNM) as “the visualization,

characterization, and measurement of biological processes at the molecular and cellular

levels in humans and other living systems” [5], has flourished over the last decades. Among

the various molecular imaging modalities, optical imaging may be the fastest growing area

for in vivo analysis, [6, 7] mainly because the research on biomedical applications of QDs

and other fluorescent materials has evolved over the past two decades. The development of

high-sensitivity and high-specificity molecular probes is of considerable interest in many

areas of cancer research, ranging from basic tumor biology to in vivo imaging and early

detection. Non-invasive fluorescent imaging of preclinical animal models in vivo is a rapidly

developing field with new emerging techniques. QD fluorescent probes with longer

emission wavelengths in NIR emission ranges are more amenable to deep-tissue imaging,

because both scattering and autofluorescence are reduced as wavelengths are increased [8].

After the surface functionalization using peptides, proteins, and antibodies, QDs have indeed

shown great ability to target and detect specific tissues in living subjects by the rapid readout

of fluorescence imaging [9–16]. In this review article, we focus on the NIR-fluorescence

emitting QDs, from synthesis to modification, from bioconjugation to targeted imaging,

from fluorescence imaging to multimodality imaging, and from critical comments to

perspective. We hope to arouse readers more interests and attentions on the future scope of

NIR-emitting QDs for fluorescence imaging applications.

2. NEAR-INFRARED QUANTUM DOTS

In order to meet the requirements of in vivo biological imaging applications, the fluorescent

emission wavelengths of the QDs ideally should be in a region of the spectrum where blood

and tissue absorb minimally but still detectable by the instruments. Thus, the QDs should

emit at approximately 700–1000 nm in the NIR region to minimize the problems of

endogenous fluorescence of tissues. As shown in Fig (1), the emission wavelength of the

colloidal QDs made of ZnS, CdSe, CdTe, PbS, PbSe, and InAs has covered from the UV to

the infrared range. Because of their wide absorption spectra, QDs with different emission

wavelengths excited by a single light source can emit various color fluorescence, therefore,

QDs have a great potential for multicolor molecular imaging. Considering the toxicity and

instability of CdTe and InAs QDs surface, it is extremely important to passivate or cap the

CdTe and InAs QDs with a layer of ZnS or ZnSe. This layer protects the QDs against photo-

oxidation as well as improves the fluorescence quantum yield of the QDs. The ZnS shell has

larger bandgap energy than CdTe, eliminating the core’s surface defect states. The strategy

of using ZnS or ZnSe shell to cap QDs has become a popular approach. Because of high

interest and demand of NIR QDs, the development on the synthesis of NIR QDs based on

this approach has progressed rapidly, such as CdTe/ZnS [17], CdTe/CdSe [18], InAsxP1-x/

InP/ZnSe [19], CuInSe [20], and Cu-doped InP/ZnSe [21] QDs. However, it is reported that

the Cd-containing QDs indeed shows cytotoxicity under extreme conditions [22, 23]. For in
vivo applications, metabolic clearance of the nanoparticles remains an issue, that is, it is
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hard to know about how these nanoparticles would be completely cleared out of the body.

To avoid such a dilemma, one strategy is to replace the Cd metal by other more benign

elements. For example, CuInS2/ZnS core/shell QDs do not contain any Class A elements

(Cd, Pb, and Hg) [24], which may show great potential as biocompatible materials for

biomedical applications. Recently, carbon dots (C-dots) as new emerging optical probes

have aroused research interests because of their non-toxicity comparing with semiconductor

QDs [25].

3. SURFACE MODIFICATION AND BIOCONJUGATION

Most of QDs synthesized in high temperature organic phases are nonpolar coated with

organic ligands (e.g., trioctyl phosphine oxide (TOPO) and octadecylamine (ODA)) and

insoluble in aqueous solvents. In order to render the QDs water-soluble and prevent the

aggregation or precipitation of QDs in aqueous solution, surface modification of the

nanoparticles is necessary. As shown in Fig. (2), there are two major strategies for the

preparation of the water-soluble QDs [26]. One is chemical exchange of native organic

ligands on the QDs with thiolated water-soluble ligands in a water-organic two-phase

system (Fig. 2A). The most common thiolated molecules used to stabilize semiconductor

QDs in aqueous media are thiolated aliphatic carboxylic acids, such as mercaptoacetic acid

(MAA) [27], mercaptopropionic acid (MPA) [28–30], or mercaptoundecanoic acid (MUA).

The dihydrolipoic acid (DHLA) ligands provide stable interactions with the QD surfaces

owing to the bidentate chelate effect of the dithiol groups [31, 32]. Also, lipoic acid units

tethered to polyethylene glycol (PEG) spacers are excellent candidates to modify QDs and

further conjugate QDs with biomolecules [32–34]. These modifiers eliminate nonspecific

adsorption processes and also provide anchoring sites for the covalent immobilization of the

biomolecules. Other thiol-containing materials, such as peptides containing cysteine unit can

also replace the organic ligands and produce water-soluble QDs [35, 36]. Recently, using

water-soluble dendrons to exchange ODA can stabilize QDs and yield water-soluble QDs

with high quantum yields [37]. Another strategy is hydrophobic-hydrophobic interaction

between native organic ligands and amphiphilic molecules, such as amphiphilic polymers

and phospholipids (Fig. 2B) [38–41]. However, the mean diameter of the resulting QDs is

much larger than that of the MPA or cystamine conjugated QDs. Such excessive size may

hinder the widespread implementation of QDs for in vivo molecular imaging. Moreover,

amphiphilic polymers often lead to highly increase the surface charge resulting in

nonspecific binding to cell membranes. PEGylation of the polymer coated QDs could reduce

the nonspecific binding and adsorption. Nonspecific binding events are minimized in the

hydroxy-PEG coated QDs and the carboxy-PEG coated QDs. On the contrary, the amine-

PEG coated QDs show the significant enhancement of nonspecific binding, because they

exhibit the high positive charges which lead to increase the electrostatic interaction with the

cell membrane [42].

After the water solubilization of QDs, the further attachments of biomolecules (e.g., avidin,

peptides, proteins, and antibodies) on their surface endow QDs with the biological activity

[43], as shown in Fig. (3). The most common methods involve the coupling of primary

amines in the biomolecules to the carboxylic acid residues on the encapsulating layer

associated with the QDs using 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), for

example, DOTA conjugated QDs [44, 45]. Peptides, proteins, and antibodies that containing

free exposed thiol groups have the potential to conjugate with QDs that have free amine

functionalities in their capping layer using heterobifunctional crosslinkers, such as 4-

maleimidobutyric acid N-succinimidyl ester and succinimidyl 4-(N-maleimidomethyl)

cyclohexane-1-carboxylate (SMCC) [46–48]. Because a polyhistidine tag consisting of six

histidine residues binds carboxy-functionalized QDs, the assembly of desired biomolecules
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on surfaces of QDs can be achieved by adding polyhistidine tagged proteins [42], antibodies

[49], short peptides [50], or DNA [51].

4. TUMOR-TARGETED NIR FLUORESCENCE IMAGING

In vivo tumor-targeted imaging with biocompatible QDs has recently become possible in

mouse models. Because of the limited tissue penetration and intense scattering of light,

optical imaging will be possible in humans only at limited sites, such as tissues and lesions

close to the skin surface and tissues accessible by endoscopy and during intraoperative

visualization [52, 53]. The NIR fluorescence imaging approach, in which the absorbance

spectra for all biomolecules reach minima, thus provides a clear window for in vivo optical

imaging [54, 55], may have better opportunities for visualizing tumor in both small-animal

models and even clinical settings. So NIR QDs after functionalization show great potential

as optical probes for in vivo molecular imaging. Herein, we will give several examples that

using NIR QDs as optical probes for in vivo fluorescence imaging and discuss the

limitations, challenges, and perspective in their future developments.

4.1. Passive Targeting

Under in vivo conditions, there are two modes for the tumor-targeting of entities: passive

targeting and active targeting. In the passive mode, macromolecules and nanometer-sized

particles accumulate preferentially at tumor sites through an enhanced permeability and

retention (EPR) effect because (i) angiogenic tumors produce vascular endothelial growth

factors (VEGF) that hyperpermeabilize the tumor-associated neovasculatures and cause

leakage of circulating macromolecules and small nanoparticles; and (ii) tumors lack an

effective lymphatic drainage system, which leads to accumulation of macromolecules or

nanoparticles in tumors [56, 57]. In fact, almost all of the approved targeting systems for

anticancer drugs are of passive targeting [58]. For the passive delivery of QDs, the

efficiency of targeting highly relies on the inherent physicochemical properties of the QDs

(e.g., particles size, charge, and surface properties). Recently, Chen et al. reported the high

tumor-uptake of ultrasmall NIR non-cadmium QDs due to the EPR effect [29]. One critical

issue for the in vivo applications of QDs is the hydrodynamic diameter (HD) of

nanoparticles. QDs with large size (>20 nm in diameter) suffer from extremely high

reticuloendothelial system (RES) uptake, which reduce their efficiency and sensitivity. The

ultrasmall water-soluble QDs (<10 nm) have attracted more and more attentions because of

their unique properties and the advantages for in vivo applications, that is, the rapid renal

clearance [59, 60], low RES uptake, and high possibility of EPR effect [60–62]. MPA

coated InAS/InP/ZnSe QDs (QD800-MPA) with emission maximum at about 800 nm

showed very small size in HD (<10 nm). As shown in Fig. (4A), ultrasmall QD800-MPA

nanoparticles pass through the normal blood vessels, and then extravasate from the vessels

when they reach the angiogenic tumor vessels because of the leaky tumor vasculatures,

finally, they accumulate preferentially at the tumor sites through the EPR effect because

tumors lack an effective lymphatic drainage system. Using 22B and LS174T tumors as the

models, in vivo fluorescence imaging showed that QD800-MPA was highly accumulated in

the tumor area after 4 h postinjection (p.i.) with good fluorescence contrast from

surrounding tissues (Fig. 4B). For the passive targeting of QDs, the circulation half-life

should be long enough for the accumulation of QDs in tumors, while too long periods of

time in blood circulation may result in the enhancement of toxicity to body.

Sentinel lymph node (SLN) imaging is clinically important since these are the sites where

metastatic cancer cells are often found. Frangioni and Bawendi first reported the SLN

mapping with NIR QDs in living subjects [18, 19, 63]. After the intradermal injection of

NIR CdTe/CdSe QDs (~850 nm emission) into live mice and pigs, these QDs rapidly

migrated to local SLNs and imaged virtually background-free (Fig. 5), which allows image-
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guided resection of a one centimeter deep lymph node in a pig. After that, they also

developed these type-II NIR QDs as noninvasive optical probes to do intraoperative SLN

mapping in various locations of the body in adult pigs [64]. SLN mapping using QDs

overcomes the limitations of currently available methods and provides highly sensitive, real-

time visual feedback for image-guided localization and resection, which may be useful for

fluorescence-guided surgery and might eventually permit potential mapping of SLNs and

lymphatic flow in patients.

4.2. Peptide Conjugated QDs

Peptides are short polymers formed from the linkage of α-amino acids in a designed order.

Because blood vessels express molecular markers that distinguish the vasculature of

individual organs, tissues, and tumors, it is a general strategy to search for peptides that

recognize tumor-specific vessels other than blood vessels by combining ex vivo and in vivo
phase display. Ruoslahti et al. first reported selective targeting of peptides conjugated QDs

in vitro and in vivo [65]. They described three kinds of peptides: CGFECVRQCPERC

(denoted as GFE) which binds to membrane dipeptidase on the endothelial cells,

KDEPQRRSARLSAKPAPPKPEPKP KKAPAKK (denoted as F3) which preferentially

binds to blood vessels and tumor cells in various tumors, and CGNKRTRGC (denoted as

LyP-1) which recognizes lymphatic vessels and tumor cells in certain tumors [66, 67]. These

pioneering reports demonstrated the feasibility of specific targeting of QDs in vivo and

opened up a new avenue to the biomedical applications of QDs, although the visible QDs is

not optimal for in vivo imaging.

Recently, Chen et al. reported in vivo targeted imaging of tumor vasculature using peptide-

conjugated NIR QDs [46, 47]. Cell adhesion molecule integrin αvβ3 is highly expressed on

activated endothelial cells and tumor cells but is not readily detectable in resting endothelial

cells and most normal organ systems. Integrin αvβ3 is a key player in tumor angiogenesis,

progression, and spread. Moreover, integrin αvβ3 is expressed on both tumor vasculature

and tumor cells. The arginine-glycine-aspartic acid (RGD)-containing components

specifically bind to integrin αvβ3 in interstitial matrix [68]. After the conjugation of QD705

from Invitrogen (emission maximum at 705 nm) with RGD peptide, QD705-RGD exhibited

high affinity of integrin αvβ3 in cell culture and in vivo, as shown in Fig. (6). After the tail

vein injection of QD705-RGD into mice bearing subcutaneous integrin αvβ3-positive

U87MG human glioblastoma tumors, in vivo NIR fluorescence imaging indicated tumor

intensity reached a maximum at 6 h p.i. with good contrast (tumor-to-background ratio was

4.42 ± 1.88).

Furthermore, Chen et al. chose non-cadmium NIR QDs (InAs/InP/ZnSe core/shell/shell

nanoparticles with emission maximum at about 800 nm) as the low-toxic and efficient

fluorescence probe to demonstrate the high specific targeting in the integrin αvβ3-positive

tumor vasculature after the surface modification of the RGD peptide [69]. After the PEG

coating with the amine terminal functional group, it is facile to conjugate QD800-PEG with

thiolated peptides (e.g., RGD and RAD). As shown in Fig. (7), the fluorescence imaging

(IVIS Imaging System) indicated the tumor uptake of QD800-RGD was much higher than

those of QD800-PEG and QD800-RAD. The semi-quantitative analysis of region of interest

(ROI) showed high tumor uptake of 10.7 ± 1.5 %ID/g in the mice injected with QD800-

RGD, while the tumor uptakes of QD800-PEG and QD800-RAD were 2.9 ± 0.3 %ID/g and

4.0 ± 0.5 %ID/g, respectively, indicating the specific tumor targeting of QD800-RGD.

The size of these QD-RGD (~20 nm in HD) prevented efficient extravasation, thus QD-

RGD mainly targeted tumor vasculature instead of tumor cells. Immunofluorescence

staining of the tumor vessels indicated that the majority of the QD fluorescence signal in the

tumor colocalized with the tumor vessels, which was further confirmed by intravital imaging
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of QD800-RGD in real-time [70]. As shown in Fig. (8), QD800-RGD did not extravasate in

an SKOV-3 mouse ear tumor model, and they specifically bind their target in tumor

neovasculature as aggregates, but no binding happened in control conditions. The high

reproducibility of bioconjuction between QDs and RGD peptide and the feasibility of QD-

RGD bioconjugates as tumor-targeted fluorescence probes warrant the successful

applications of QDs for in vivo molecular imaging and diagnosis, which may aid in cancer

detection and management including image-guided surgery.

4.3. Antibody Conjugated QDs

Antibodies are gamma globulin proteins that are found in blood or other bodily fluids of

vertebrates, and they can identify and neutralize foreign objects (e.g., bacteria and viruses)

by the immune system. The most common application of antibodies is to identify and locate

intracellular and extracellular proteins that different cell types express. In 2004, Nie et al.
first reported the prostate cancer targeting and fluorescence imaging in vivo using QDs

conjugated prostate specific membrane antigen (PSMA)-specific monoclonal antibodies

[57]. The fluorescence imaging indicated the high tumor targeting after the injection of QD-

PSMA Ab conjugates, although the imaging contrast was moderate in visible window

because of low tissue penetration and high autofluorescence. Using NIR QDs as

fluorescence probes, Chung et al. demonstrated the highly sensitive detection of haman C4-2

and C4-2B prostate tumors in mice after the surface functionalization of the anti-PSMA

antibody [71].

Recently, Tada et al. reported the tracking of a single particle QD conjugated with the

tumor-targeting antibody in tumors of living mice using a dorsal skinfold chamber and a

high-speed confocal microscope with a high-sensitivity camera [72]. After the conjugation

of QDs and monoclonal anti-HER2 antibody, they injected the QD-antibody into mice with

HER2-overexpressing breast cancer to analyze the molecular processes of its

mechanisticdelivery to the tumor. They claimed there were six processes of delivery:

initially in the circulation within a blood vessel, during extravasation, in the extracelullar

region, binding to HER2 on the cell membrane, moving from the cell membrane to the

perinuclear region, and in the perinuclear region. The movement of the QD-antibody at each

stage was “stop-and-go”. Although it is still unclear whether the “stop and go” pattern is

typical for majority of injected QD conjugates or just a small subset of QDs, the image

analysis of the delivery processes of single QD in vivo will be extremely important on

molecular imaging and become a cutting-edge research field. Meanwhile, the research on

the conjugation of QDs and antibody is attracting more and more attentions in the

application of molecular imaging [9, 48, 49, 73, 74].

5. MULTIMODULITY IMAGING BASED ON NIR QUANTUM DOTS

Combination of multiple modalities can yield complementary information and offer

synergistic advantages over any modality alone. Nanoparticles have the advantages in

multifunctionality and enormous flexibility, which allow for the integration of therapeutic

components, targeting ligands, and multimodality imaging probes into one entity.

Quantitative and synergistic imaging of tumor angiogenesis will lead to more robust,

reliable, and effective monitoring of personalized molecular cancer therapy. The future of

tumor angiogenesis imaging lies in multimodality, and nanoflat-form-based imaging will be

one of most important approach in multimodality imaging. Based on the QDs as optical

probes, one can integrate MRI contrast agents [75–79], radio-nuclides [44, 80], or

therapeutic drugs that combining diagnostics and therapy [81].

Recently, Chen et al. described the quantitative tumor targeting efficacy of dual-functional

QD-based probes using both PET and NIR fluorescence imaging [44, 45]. Dual-modality
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PET/NIR fluorescence imaging probes offer synergistic advantages over the single modality

imaging probes by overcoming the low quantitative analysis of fluorescence intensity in
vivo and ex vivo. Non-invasive PET imaging using radiolabeled QD conjugates can provide

a robust and reliable measure of the in vivo biodistribution of QDs [80]. As shown in Fig.

(9), they conjugated NIR QDs with VEGF protein and DOTA chelator for VEGFR-targeted

PET/NIR fluorescence imaging after 64Cu-labeling and evaluated the targeting efficacy in
vitro and in vivo through cell-binding assay, cell staining, in vivo optical/PET imaging, ex
vivo optical/PET imaging, and immunostaining histology analysis [45]. Although the

stability and physicochemical properties of QDs after the radionuclides labeling should be

concerned, with the further improvement in QD technology, it is expected that the accurate

evaluation of in vivo tumor targeting efficacy using these dual-modality probes may

significantly facilitate applications of QDs in biomedical science as well as clinical benefits.

6. CONCLUSION AND PERSPECTIVE

In this review, we have summarized the recent development of tumor imaging in vivo using

NIR QDs as fluorescence probes. Nanotechnology indeed has the potential to significantly

impact cancer diagnosis and cancer patient management. QDs have already fulfilled some of

their promises as a new class of molecular probes for cancer research. However, there are

still many considerable challenges and issues remained for the in vivo applications of NIR

QDs. Besides the purity, dispersity, and stability of QDs in physicological environments, the

variable physicochemical properties of each type of QDs may result in the unexpected

behavior of QDs in vivo. The fundamental investigation of QD physicochemical properties

is very important for the systematical analysis in the biodistribution of QDs. Several studies

have shown QDs may be systemically distributed in organs and tissues. The absorption,

distribution, metabolism, and excretion characteristics are highly variable for QDs because

of the wide variation in QD physicochemical properties [82–84]. Moreover, QDs usually

suffer from higher RES uptake and poorer extravasation comparing with small molecules or

proteins. The majority research of QD is so far limited to vasculature-related disease,

although the QDs with smaller size (normally <10 nm in HD) may extravasate from tumor

angiogenic vessels because of EPR effect. Until now, it is still far away from QD-based

imaging in small animals to scale up to in vivo imaging in patients due to the limited optical

signal penetration depth. In clinical settings, optical imaging is relevant for tissues close to

the surface of skin, tissues accessible by endoscopy, and intraoperative visualization. The

major roadblocks for clinical translation of QDs are inefficient delivery, potential toxicity,

and lack of quantification.

According to the potential toxicity in vivo, QD-based ex vivo protein nanosensors (e.g.,

FRET and BRET) [85–89] may be better choices for the future applications of QDs in

cancer management. As shown in Fig. (10), patients can have their tumors biopsied and

blood samples drawn for protein profiling by ex vivo nanosensors to detect and predict the

response before and after the treatment without any potential side effects. Ex vivo

diagnostics combining with in vivo imaging can markedly impact future cancer patient

management by providing the synergistic information that neither strategy can provide

alone. After further efforts, development, and validation, the major issues for clinical

translation of QDs will became clearer and clearer, QD-based approaches (e.g., ex vivo

nanosensor, in vivo imaging, and multimodality imaging) will eventually have the ability to

predict and detect cancer in patients and monitor their response to personalized therapy.
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Fig. 1.
Representative QDs with different materials scaled as a function of their emission

wavelengths superimposed over the spectrum. There are several kinds of QDs with the

emission wavelength in the NIR region.
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Fig. 2.
Overview of strategies to prepare water-dispersible QDs. (A) Exchange of the organic

surfactant layer with a water-soluble layer: (a) – (d) thiolated or dithiolated functional

monolayers, (e) glutathione (GSH) layer, (f) cysteine-terminated peptides, (g) thiolated

siloxane, and (h) carboxylic acid-functionalized dendrone. (B) Encapsulation of QDs

stabilized with an organic encapsulating layer in functional bilayer films composed of (i) a
phospholipid encapsulating layer, and (j) a diblock copolymer layer. Reprinted with

permission from ref. [26]. Copyright 2008, Wiley-VCH.
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Fig. 3.
The Overview of bioconjugation and functionalization on NIR QDs. S, solubilization

sequence; PEG, polyethene glycol; B, biotin; P, peptides; R, protein sequence; A, antibody;

D, DOTA; X, any unspecified peptide-encoded function. QDs can be targeted with B, P, R,

A, or other chemical moieties. For simultaneous PET and fluorescence imaging, QDs can be

rendered radioactive by D chelation of radionuclides; for simultaneous MRI and

fluorescence imaging, QDs can be rendered radioactive by D chelation of nuclear spin

labels. Reprinted with permission from ref. [43]. Copyright 2005, AAAS.
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Fig. 4.
Ultrasmall QD800-MPA for in vivo tumor imaging. (A) The structure of QD800-MPA and

the illustration of the passive tumor targeting of QD800-MPA in tumor models. (B) In vivo
NIR fluorescence imaging of 22B or LS174T (arrows) tumor-bearing mice at 1 h and 4 h

after the tail vein injection of QD800-MPA. Reprinted with permission from ref. [29].

Copyright 2010, Wiley-VCH.
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Fig. 5.
Sentinel lymph node mapping in the mouse and pig using NIR QDs. (A) Images of mouse

injected intradermally with 10 pmol of NIR QDs in the left paw. Left, pre-injection NIR

autofluorescence image; middle, 5 min post-injection white light color video image; right, 5

min post-injection NIR fluorescence image. An arrow indicates the putative axillary sentinel

lymph node. (B) Images of the surgical field in a pig injected intradermally with 400 pmol

of NIR QDs in the right groin: before injection (autofluorescence), 30 s after injection, and 4

min after injection. The position of a nipple (N) is indicated. Reprinted with permission

from ref. [18]. Copyright 2004, Nature Publishing Group.
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Fig. 6.
RGD peptide-conjugated QD705 for NIR fluorescence imaging of tumor vasculature. (A)

the schematic illustration of QD705-RGD. (B) In vivo fluorescence imaging of tumor

vasculature in U87MG tumor-bearing mice at 1 h, 4 h, and 6 h after the tail vein injection of

QD705-RGD (left) and QD705 (right). (C) Tumor-to-background ratios of mice injected

with QD705 or QD705-RGD. Reprinted with permission from ref. [46]. Copyright 2006,

American Chemical Society.
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Fig. 7.
Non-cadmium NIR QDs as the low-toxic and efficient fluorescence probe to image the

integrin αvβ3–positive tumor vasculature after the surface modification with the RGD

peptide. In vivo fluorescence imaging of U87MG tumor-bearing mice (arrows) injected with

(A) QD800-RGD, (B) QD800-PEG, and (C) QD800-RAD, respectively. Reprinted with

permission from ref. [69]. Copyright 2010, American Chemical Society.
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Fig. 8.
Direct visualization of binding of QD800-RGD to tumor vessel endothelium and controls.

(A) Panel displays different output channels of the identical imaging plane along the row. In

the green channel, individual EGFP-expressing cancer cells are visible, while the red

channel outlines the tumor’s vasculature via injection of Angiosense dye. The NIR channel

shows intravascularly administered QDs which remain in the vessels. Binding events are

visible by reference to bright white signal. These are demarcated by arrows in the rightmost

merged image, in which all three channels have been overlaid. (B) Merged image in a

different mouse using QD800-RGD. Individual cells are not generally visible. (C–E)

Typical images of no binding in each control condition: (C) Tumor neovasculature

containing unconjugated QDs, (D) normal vasculature containing QD800-RGD, and (E)

tumor neovasculature containing QD800-RAD. Reprinted with permission from ref. [70].

Copyright 2008, American Chemical Society.
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Fig. 9.
Dual-modality optical and PET imaging of tumor VEGFR expression using radiolabeled

NIR QDs. (A) The structure of 64Cu-DOTA-QD705-VEGF conjugate. (B) In vivo
fluorescence imaging and coronal PET imaging of U87MG tumor-bearing mice (arrows) at

1 h and 4 h after the tail vein injection of DOTA–QD705 and DOTA-QD705–VEGF,

respectively.
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Fig. 10.
The ex vivo diagnostics of patients using NIR-emitting QDs as nanosensors. (A) Before

treatment, patients can have their tumors biopsied and blood samples drawn for protein

profiling by ex vivo nanosensors to predict their response to a given therapy. (B) During the

treatment, patient response will be evaluated by blood analysis and molecular imaging to

ensure the accurate differentiation of responders from non-responders.
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