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Introduction

Although the near-infrared (NIR) was the first non-visible
region discovered in the absorption spectrum (by Herschel in
1800)1–3 analytical chemists made little use of it until the 1950s.
A review published in 19604 that reported a comprehensive
compilation of band assignments to different functional groups
included only about 40 references to analytical applications of
the NIR region; this prompted Wetzel’s comment5 that NIR
spectroscopy was ‘a sleeper among spectroscopic techniques’.
However, analytical applications of the NIR technique have
grown dramatically in number since the 1960s, so much so that
a review of the topic was published in 1994 under the suggestive
title ‘Near-Infrared Spectroscopy. The Giant is Running
Strong’.6 Over the last 25 years, NIR spectroscopy has been
increasingly used as an analytical tool, particularly by the food
and agricultural industries, but also, to some extent, by the
textile and polymer industries. Reported applications have been
the subject of a number of reviews and books.7–12 Applications
to process control have also been developed over this period.13

Although most of the ensuing analytical methods use some
chemometric technique to correlate spectral data with physical
or chemical properties of the samples, there are also recent uses
of NIR for identifying impurities and elucidating structures
from band assignments in addition to the earliest reported
applications.14–16

The growing interest aroused by NIR spectroscopy in the
industrial sector is probably a direct result of its two major
advantages as an analytical tool for quality control. Thus, the
low molar absorptivity of NIR bands permits operation in the
reflectance mode and hence recording of spectra of solid
samples with minimal or no pre-treatment, thereby substantially
increasing the throughput. Also, the dual dependence of the
analytical signal on the physical and chemical nature of the
sample facilitates both its identification and the determination
of physical and chemical parameters.

Notwithstanding these advantages, the pharmaceutical in-
dustry has been slow to adopt the NIR technique as it lacks the
ability of mid-infrared (MIR) spectroscopy to identify samples
by the mere inspection of spectra. In addition, quantitative NIR
analyses involve calibration by sophisticated mathematical
techniques that have reached extensive use only recently with
the advent of microcomputing and chemometrics.

Despite the initial reluctance, NIR spectroscopy has aroused
great interest in the last few years as a result of both
instrumental breakthroughs (e.g., improved detectors, the
development of fast-scan and Fourier transform instruments to
replace filter instruments, the widespread use of fibre-optic
probes and instruments for recording spectra of individual
tablets, which minimize or avoid sample pre-treatment) and the
incorporation into equipment-bundled software of mathemat-
ical procedures for processing NIR spectra—a review of
chemometric methods for NIR spectroscopy has been published
by Mark.17 In addition, the dependence of the NIR signal on
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both the chemical composition and some physical properties of
the sample, which was formerly considered a hindrance, permits
not only the identification of compounds but also the total
characterization of samples and the determination of non-
chemical parameters with precision comparable to that of
conventional methodologies, all due to powerful mathematical
treatments for complex signals.

This paper is intended to provide readers with an overview of
NIR uses by the pharmaceutical industry. To this end, the
authors have divided references published up to 1996 into six
different categories. The first lists specialized journals devoted
to the NIR technique, some Internet addresses that can be used
as literature sources and brief descriptions of other, previously
published reviews. The second part is a brief introduction to the
theoretical fundamentals of the technique and the third
discusses the mathematical treatments used to process recorded
signals prior to qualitative or quantitative analysis. The fourth
and fifth parts include references to qualitative (identification of
raw materials and end products, homogeneity studies, polymor-
phism and optical isomers) and quantitative applications
(determination of physical parameters, water contents, active
compounds and excipients); references are briefly commented
on and practical aspects to be considered in addressing each
type of analysis are discussed. The last part describes some
applications that are not strictly pharmaceutical but might be of
interest to the pharmaceutical industry.

Background and literature sources

Specialized journals

Although virtually every analytical chemistry journal has
published NIR applications, the growing interest they have
aroused and the widespread use they have reached in recent
years have promoted the appearance of two specialized
journals, viz., NIR News and the Journal of Near Infrared
Spectroscopy.

NIR News is the official newsletter of the International
Committee for Near Infrared Spectroscopy. It contains up-to-
date information about meetings, conferences, etc., on NIR
spectroscopy and various regular features that contain short
articles aimed at disseminating general aspects of the technique,
a list of published NIR papers and an advice page that answers
general and specific questions posed by users of the tech-
nique.

The Journal of Near Infrared Spectroscopy, which started
early in 1993, is a conventional-format publication consisting of
papers, short communications and reviews of theoretical aspects
of the technique and its uses in the industrial, agricultural,
nutritional, polymer, textile and pharmaceutical fields, among
others.

Internet addresses

The dramatic expansion of the World Wide Web (Internet) in
the last few years has made a vast amount of information

available in electronic format to the public. The acronym ‘NIR’
stands for ‘Networked Information Retrieval’ in Web jargon, so
using it as a search string in any of the popular Web searching
engines is bound to generate non-spectroscopic ‘hits’ (refer-
ences to addresses containing information relevant to the target
topic). Since late 1995, NIR News has included a special section
devoted to Internet resources for NIR and related topics.18 In a
popularizing spirit, its issues list newsgroup and mail-list
addresses [also called ‘uniform resource locators’ (URLs)] for
bodies and societies concerned with NIR spectroscopy, and
describe the procedure for joining them.

Tables 1 and 2 list newsgroups and mail-lists, respectively,
with an interest in the use of NIR spectroscopy in various
fields.19,20

Also worthy of mention here are electronic magazines (e-
zines in Web jargon), which are partly or fully published in
electronic format. Some are electronic versions of conventional
journals while others have no ‘paper parent.’. Thus, the
magazine e-JNIRS is the electronic version of the Journal of
Near Infrared Spectroscopy, in Adobe Acrobat format. Table 3
gives the URLs for some e-zines that publish papers on NIR
spectroscopy and its uses. Some e-zines are published and
managed by non-professional groups. Such is the case with
Wave of the Future, which includes articles on the pharmaceuti-
cal uses of NIR. Comments, criticisms and suggestions are
welcome, so readers act as true ‘on-line reviewers’; readers’
comments and authors’ replies are all recorded and accessible to
all. The e-zine can be reached at http://kerouac.pharm.uky.edu/
ARSG/wave/wavehp.html.

At http://kerouac.pharm.uky.edu/ARSG/wave/cnirs/Ir_spec-
htm, Kramer and Lodder have compiled URLs and resources
related to MIR and NIR spectroscopy that include laboratories,
departments, researchers’ personal pages, instrument manu-
facturers, courses, journals, societies, etc. The same authors
used Wave of the Future to publish a paper on MIR and NIR
resources on the Internet, the printed version of which can be
found in refs. 21 and 22.

Many NIR spectroscopic societies have their own addresses.
Table 4 gives some of these. Finally, of special interest in
relation to the pharmaceutical uses of NIR is Derksen’s home
page (http://leden.tref.nl/mderksen). This is an excellent reposi-
tory of news and pharmaceutical uses of NIR that contains many
links to papers about NIR and pharmaceuticals, as well as a list
of NIR instruments of service to the pharmaceutical industry.

Table 2 Mail lists concerned with NIR spectroscopy

List Administrator’s URL Instruction

(Analysis Group) analysis-l maiser@fs4.in.umist.ac.uk analysis-l name
(American Society for Testing and Materials) astmsrch listserv@uga.cc.uga.edu astmsrch
(International Chemometrics Society) ics-l listserv@umdd.umd.edu ics-l name
(Process Group) process-l maiser@fs4.in.umist.ac.uk process-l
(Society for Applied Spectroscopy) applspec listserv@uga.cc.uga.edu applspec
(Spectroscopy Group of the UK’s Institute of Physics) spectroscopy-group mailbase@mailbase.ac.uk spectroscopy-group
(Statistics and Statistical Discussion) stat-l listserv@vm1.mcgill.ca stat-l

Table 1 Internet newsgroups concerned with the uses of NIR spectroscopy
in various industrial fields

news://comp.ai.neural-nets news://sci.data.formats
news://comp.soft-sys.matlab news://sci.environment
news://comp.soft-sys.sas news://sci.optics.fiber
news://comp.sys.mac.scitech news://sci.polymers
news://misc.industry.quality news://sci.stat.math
news://sci.agriculture news://sci.techniques.misc
news://sci.bio.food-science news://sci.techniques.spectroscopy
news://sci.chem.analytical
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Previous reviews

There are a multitude of reviews on NIR spectroscopy; few,
however, deal exclusively with its pharmaceutical applica-
tions.

The Handbook of Near-Infrared Analysis23 and the book
Advances in Near-Infrared Measurements24 each include one
chapter devoted exclusively to NIR analyses of pharmaceuti-
cals.

Below are briefly described literature reviews published in
analytical chemistry or pharmaceutical journals containing
more or less extensive sections on the uses of NIR by the
pharmaceutical industry.

In 1986, Stark et al.25 published a comprehensive review of
the NIR technique as a tool for qualitative and quantitative
analysis. The four parts of the work provide readers with
information about the fundamentals of the technique, the
equipment it uses, chemometric treatments for processing NIR
signals and performing quantitative analyses, its advantages and
a list of applications in a variety of industrial fields (pharmaceu-
tical, textile, nutritional, biomedical, chemical).

Pharmaceutical applications of NIR spectroscopy were first
reviewed by Ciurczak in 1987.26 The review cited about 50
papers published up to 1987 but made no mention of the
technique’s fundamentals or associated equipment.

The 1991 review by Drennen et al.27 encompassed several
previous reviews published up to 1988 and included an
introduction to NIR equipment and its recent developments; it
also described the theoretical foundation of qualitative and
quantitative chemometric methods used in connection with NIR
applications.

In 1992, reviews by Martin28 and by Ciurczak and Drennen29

were published. Of special interest in Martin’s extensive work
is the section dealing with quantitative analysis, with sub-
sections devoted to sample selection, mathematical signal
treatments, calibration techniques and their selection, and
calibration transfer. Also worthy of note is the applications
section, with references to NIR uses in food, cosmetic, polymer,
textile and pharmaceutical analyses. In contrast, the review of
Ciurczak and Drennen only covers, and rather briefly, 31
references to qualitative and quantitative applications of NIR
spectroscopy in the pharmaceutical industry.

In 1993, Corti et al.30 reviewed NIR diffuse reflectance
spectroscopic uses in the pharmaceutical and biomedical fields
reported up to 1992. In addition to about 70 references to
specific applications, the review included a brief description of
the more widely used chemometric methods for qualitative and
quantitative analysis by NIR spectroscopy.

The reviews by Workman13 and by MacDonald and
Prebble31 were also published in 1993. The former included
about 145 applications of NIR spectroscopy in various in-
dustrial fields, described in a chronological sequence and
classified into different categories (in-line, in situ, on-line, non-
invasive, remote and rapid NIR analyses). The latter review was
defined by its authors as a ‘non-comprehensive overview of
near-infrared reflectance analysis in the pharmaceutical in-
dustry’ and illustrates the technical potential of this technique in
this industrial field.

Recent advances in NIR spectroscopic equipment were
compiled by McClure in 1994.6 He described commercially
available NIR spectrophotometers from various manufacturers.
Other reviews of NIR pharmaceutical uses were published by
Morisseau and Rhodes,32 and by Kirsch and Drennen,33 both in
1995. The former authors reviewed far fewer references than
did Corti et al.;30 however, they included a short, albeit
interesting, introduction to NIR equipment and its manu-
facturers. Kirsch and Drennen placed special emphasis on direct
analyses of solid pharmaceutical preparations (intact dosage
forms) and included a brief introduction to chemometric
methods used for qualitative NIR analysis and about 30
references to qualitative and quantitative studies in the pharma-
ceutical field.

Fundamentals of the technique

Properly using an instrumental technique for a specific
analytical purpose entails knowing what is to be measured and
in what way, since extracting the full informative potential from
an instrument requires a sound knowledge of the physico-
chemical theories on which its measurements rely and of the
instrumental principles involved. In order to introduce the
readers to the technique, this section is intended to provide a
basic knowledge of the theoretical foundation of NIR spectros-
copy and diffuse reflectance measurements in the NIR region.

Table 3 Uniform resource locators (URLs) for selected journals publishing articles about NIR spectroscopy

Journal URL

Analyst http://www.rsc.org/analyst
Analytica Chimica Acta http://www.elsevier.com:80/locate/issn/03654877
Analytical Chemistry http://pubs.acs.org/journals/ancham/index.html
Applied Spectroscopy http://esther.la.asu.edu/sas
Applied Spectroscopy Newsletter http://esther.la.asu.edu/sas/epstein
Chemometrics and Intelligent Laboratory Systems http://www.elsevier.com:80/locate/issn/01697439 
e-JNIRS http://www.nirpublications.com/electron.html
Food Testing and Analysis http://www.worldsys.com/labinfo/journal/fta/fta/htm
Journal of Chemometrics http://www.wiley.com/journals/cem
Journal of Near Infrared Spectroscopy http://www.nirpublications.com/jnirs.html
Spectroscopy http://www.techexpo.com/toc/spectros.html
Journal of Pharmaceutical Sciences http://pubs.acs.org/journals-sci/jsfa/index.html
NIR News http://www.nirpublications.com/nirn.html
Talanta http://www.elsevier.com:80/locate/issn/00399140
Trends in Analytical Chemistry http://www.elsevier.com:80/section/chemical/trac

Table 4 Uniform resource locators (URLs) for selected societies concerned with NIR spectroscopy

Society URL

American Association of Cereal Chemists http://www.scisoc.org/aacc/info.html
Council for Near Infrared Spectroscopy http://kerouac.pharm.uky.edu/ASRG/cnirs/cnirs.htm
Society for Applied Spectroscopy http://esther.la.asu.edu/sas

Analyst, August 1998, Vol. 123 137R



Interested readers can find much more extensive descriptions of
both NIR theory and equipment elsewhere.7,34,35

Principles of NIR spectroscopy

The NIR lies between the visible and MIR regions of the
electromagnetic spectrum and is defined by the American
Society for Testing and Materials (ASTM) as the spectral region
spanning the wavelength range 780–2526 nm (or the wave-
number range 12 820–3959 cm21). Light absorption in this
region is primarily due to overtones and combinations of
fundamental vibration bands occurring in the MIR region. For
infrared light to be absorbed, its energy must be high enough to
produce vibrational transitions in the molecules concerned, i.e.,
the light frequency should be exactly the same as a fundamental
vibration frequency for a specific molecule and the molecule
should undergo a change in its dipole moment by virtue of its
fundamental vibration.

The vibrational frequency f for a diatomic molecule can be
determined on the assumption of the harmonic oscillator model,
where an atom shifts from its equilibrium position with a
strength proportional to the shift (Hooke’s law):

  
f

c

k
=

1

2p m

where c is the speed of light, k the bonding force constant (a
measure of the strength or rigidity of a chemical bond in its
normal equilibrium position) and m the reduced mass.

In this case, the variation of the potential energy with bond
distance is a parabola centred about the equilibrium distance
with evenly spaced vibrational energy levels. The energy Ev of
each level will be given by

Ev = f(v + 1
2)

where f is the vibrational frequency and v the vibrational
quantum number.

Because the selection rule for harmonic oscillator transitions
is Dv = ±1 and energy levels are evenly spaced, the energy
difference between two consecutive levels will always be
E(v + 1) – Ev = f, which is called  the ‘fundamental frequency’ of
the band.

Vibrations in polyatomic molecules involve complex move-
ments of their constituent atoms. The movements can be
resolved into individual vibrations called ‘normal vibrations’.
The motion of each atom is the result of its movements in the
normal vibrations; the energy of each normal frequency is
independent of the others, so the vibrational energy of the
molecule is the sum of the individual energies:
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In practice, molecular vibrations tend to be non-harmonic, i.e.,
vibrations about the equilibrium position are non-symmetric.
The potential energy curve for real bonds is only roughly
parabolic, with slight deviations at the lower energy levels that
are more marked at the upper energy levels. Also, spacings
between energy levels are not identical but rather decrease with
increasing energy.

One correction to the harmonic oscillator model that
improves consistency between theoretical and experimental
data involves additional terms of higher order than those used
by Hooke’s law. Thus, the energy Ev for each level will be given
by

Ev = fe(v + 1
2) 2 fexe(v + 1

2) + higher-order terms

where v is the vibrational quantum number, xe the non-
harmonicity constant (which measures the deviation of the
potential function from the parabola) and fe the uniform spacing
between levels corresponding to a parabola with its centre at the
equilibrium distance and the same curvature as the real potential
energy function.

If higher-order terms are neglected, then the frequency of a
transition between adjacent energy levels (v ?n + 1) will
depend on the vibrational quantum number:

f = fe[1 2 2xe(v + 1)]

One further consequence of introducing the quadratic term into
Hooke’s law is that the selection rule becomes Dv = ±1, ±2,
etc.; hence, in addition to the fundamental band (+1), other,
higher frequencies called overtones or harmonics appear at
frequencies two, three, etc., times higher than the fundamental
frequency. The intensity of these bands decays abruptly since
transition probability decreases markedly with increase in the
vibrational quantum number and, in practice, each fundamental
band only exhibits its first two or three overtones.

Polyatomic molecules possess several fundamental fre-
quencies so they may exhibit simultaneous changes in the
energies of two or more vibrational modes; the frequency
observed will be the sum of (f1 + f2, 2f1 + f2, etc.) or the
difference between (f1 – f2, 2f1 – f2, etc.) the individual
fundamental frequencies. This results in very weak bands that
are called ‘combination’ and ‘subtraction’ bands—the latter are
possible but rarely observed in room temperature NIR spectra.
Non-harmonicity results in combination bands that are slightly
smaller than the combined fundamental frequencies involved.

Many NIR bands are overtones and combination bands for
hydrogen bonds (C–H, N–H, O–H and S–H). The small mass
and large force constants for hydrogen are the origin of the high
fundamental frequencies in this atom; as a result, its first few
overtones appear in the NIR region. CNO, C–C, C–F and C–Cl
groups usually exhibit very weak or no bands in the NIR region;
fundamental vibrations in these groups occur at low frequencies
in the MIR region, where their first few overtones also appear as
a result.

NIR diffuse reflectance spectroscopy

The low molar absorptivity of adsorption bands in the NIR
region (typically between 0.01 and 0.1 l mol–1 cm–1) severely
restricts sensitivity; however, it permits operation in the
reflectance mode and hence the recording of spectra for solid
samples.

Reflectance spectroscopy measures the light reflected by the
sample surface, which contains a specular component and a
diffuse component. Specular reflectance, described by Fresnel’s
law, contains little information about composition; conse-
quently, its contribution to measurements is minimized by
adjusting the detector’s position relative to the sample. On the
other hand, diffuse reflectance, which is described by the
Kubelka–Munk theory,36 is the basis for measurements by this
technique.

The Kubelka–Munk function, f(R∞ ), is given by

  
f R

R

R

k

s
( )

( )
•

•

•
= - =1

2

2

where R∞ is the absolute reflectance of the sample (viz., the
fraction of light impinging on it that is reflected), k its
absorption coefficient and s its dispersion coefficient. In
practice, relative reflectance (R), which is the ratio of the
intensity of the light reflected by the sample to that by a
standard, is preferred to absolute reflectance. The standard is
usually a stable material with a high and fairly constant absolute
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reflectance (e.g., Teflon, barium sulfate, magnesium oxide,
high-purity alumina ceramics).

The Kubelka–Munk equation can be rewritten in terms of the
relative reflectance and the concentration of the absorbing
analyte (c):

  
f R

R

R

k

s

c

s

c

a
( )

( )= - = = =1

2

2 e ln 10

where e is the molar absorptivity and a = s/2.303e. Thus, a plot
of f(R) against c for samples conforming to this relationship will
be a straight line of slope 1/a. However, if the matrix absorbs or
the analyte exhibits strong absorption bands, the diffuse
reflectance of the sample will not fit the Kubelka–Munk
equation and the f(r) versus concentration plot will be non-
linear. As with Beer’s law, the Kubelka–Munk equation is
acknowledged to be a boundary equation that is only applicable
to weak absorption bands, or when the product of absorptivity
times concentration is small. This is so in the NIR region;
however, because the matrix frequently absorbs strongly at the
same wavelength as the analyte, absorption by the latter cannot
be resolved and deviations from the previous equation result.

One widely used practical alternative is a relationship
between concentration and relative reflectance similar to Beer’s
law, namely:

  
A

R
a c= = ¢log 

1

where A is apparent absorbance, R relative reflectance, c
concentration and aA a proportionality constant. Although this
relationship has no theoretical basis on the Kubelka–Munk
equation, it provides highly satisfactory results under the typical
conditions used in many diffuse reflectance spectroscopic
applications.

Operational procedures in the NIR

The procedures used in the NIR region are much less labour-
intensive than those employed in the MIR and very similar to
those used for liquid samples in the UV and visible regions.

The absorbance of a liquid or solution can be readily
measured by using quartz or sapphire cuvettes of variable
pathlength or fibre-optic probes. No special precautions need be
exercised since the absorption of NIR radiation obeys Beer’s
law. The most suitable solvents in this context are those not
containing O–H, N–H and C–H groups, which exhibit little or
no absorption in this spectral region.

The NIR spectrum of a solid sample can be obtained by using
various types of device. The most frequent choices when the
sample is in powder or grain form are reflectance cuvettes with
a transparent window material (e.g., quartz) and fibre-optic
probes. The latter considerably facilitate recording of spectra;
however, light losses resulting from transport along the fibre
result in increased signal noise. The spectra of samples in tablet
form requiring no pre-treatment (e.g., powdering, sieving,
homogenization) can be recorded by using three different types
of equipment, namely: (a) specially designed reflectance
cuvettes for tablets, which, however, provide spectra subject to
marked scattering arising from dead spaces between tablets
placed in the cuvette; (b) a commercially available instrument
for recording reflectance spectra for individual tablets, inspired
by the double-reflecting sample holder developed by Lodder
and Hieftje in 1988;37 or (c) recently introduced instruments
that allow the transmission spectra for individual tablets to be
recorded.

At this point, it is worth noting that the type of standard to be
used for reflectance measurement remains a subject of strong
debate. According to ASTM, the perfect standard for this

purpose is a material that absorbs no light at any wavelength and
reflects light at an angle identical with the incidence angle.
Because no single material meets these requirements, the
standards used in this context are stable, homogeneous, non-
transparent, non-fluorescent materials of high, fairly constant
relative reflectance. Springsteen and Ricker38,39 discussed the
merits and pitfalls of materials such as barium sulfate,
magnesium oxide, Teflon and ceramic plates as standards for
reflectance measurements.

Mathematical processing of signals

The analytical signal obtained in NIR spectroscopy is a complex
function that depends on both the physical and chemical
properties of the sample; also, it is non-linear owing to scatter,
stray light and inconsistency in the instrument response. This
entails converting recorded data into apparent absorbance
values [A = log (1/R)] or Kubelka–Munk (KM) units when
measurements are made in the reflectance mode, and into
absorbance units [A = log (1/T)] when made in the transmission
mode.

Osborne40 compared the ability to obtain linear calibrations
from raw data, apparent absorbance values [log (1/R)] and KM
units, and found that the last two provided calibrations that were
not necessarily more linear than those obtained from raw data.
He also found that the transformation choice was dictated by the
particular data set.40

Griffiths41 claims that the choice of KM or log (1/R) depends
on both the type of sample and the spectral region. For any type
of diffuse reflectance measurement where the baseline is
irreproducible, band intensities change with it when KM units
are used but not when log (1/R) is employed.

Dahm and Dahm42 re-assessed the pitfalls of KM units noted
by Olinger and Griffiths.43 They explained why they did not
share Griffiths’ view that, as a rule, log (1/R) versus analyte
concentration plots are more linear in practice than KM graphs;
however, they also claimed that the use of log (1/R) with
powdered samples was effective.

Converted values obtained from recorded data are markedly
affected by scatter. This becomes apparent when NIR diffuse
reflectance spectroscopy is used to analyse solid samples; in
fact, the reflectance depends on the degree of scatter of incident
light: the more marked the scatter is, the less deep light will
penetrate into the sample and hence the smaller will be the
absorption.

Light scatter depends essentially on the physical properties of
the sample (particle size, crystalline environment) and has a
multiplicative effect on the amount of light that is absorbed by
the sample, which combines with other additive effects such as
baseline shifts or chemical absorption.

The dependence of the signal on the physical properties of the
sample, which is highly useful with a view to its character-
ization and makes the NIR technique a highly suitable tool for
determining physical parameters, is a severe hindrance to
qualitative analyses for identifying a product where physical
appearance is not important, for detecting chemical deviations
in the manufacturing process (e.g., heterogeneity, moisture,
omission of some component of a preparation), or for the
quantitative determination of chemical components—in fact,
scatter may be largely responsible for variability between
samples, which leads to high correlation among measurements
at different wavelengths. These situations call for the prior
mathematical processing of spectra in order to minimize the
effects of those physical properties of the sample that influence
an NIR spectrum and introduce variability that provides
irrelevant chemical information.44–47

Some of the more widely used mathematical treatments for
scatter in NIR spectra48 include normalization,49,50 deriva-
tion,51–53 multiplicative scatter correction (MSC),54–56 piece-
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wise multiplicative scatter correction (PMSC),57 extended
multiplicative signal correction (EMSC),58 optimized scaling
(OS),59,60 standard normal variate (SNV),61 de-trending (DT),61

SNV followed by DT (SDT)62 and DT followed by SNV
(DTS).62 Interested readers are referred to the cited references
for information about each specific choice, a detailed descrip-
tion of which is obviously beyond the scope of this review.

Papers concerned with available mathematical treatments for
scatter in NIR can be classified into two broad categories,
namely: (a) those that make empirical comparisons of various
treatments or establish relationships among them; (b) those that
examine the effects of different treatments on NIR spectral
quantification.

Prominent in the former group is the paper where Barnes
et al.61 demonstrate the efficiency of SNV and DT treatments by
application to sucrose samples of different particle sizes, and
those where Dhanoa and co-workers demonstrate a linear
relationship between SNV and MSC on the one hand,63 and
DTS and SDT on the other.62

The latter group includes a large number of references,
several of which are concerned with pharmaceuticals. Thus,
Jacobsson et al.64 determined sulfasalazine by using a fibre-
optic probe, partial least-squares regression and different
mathematical treatments (derivative, MSC, PMSC). They found
that MSC and PMSC provided the lowest errors of prediction;
however, implementation of the latter required a preliminary
study in order to optimize window size. Blanco et al.65 used the
V/M ratio of Aucott et al.44 to assess and compare the efficiency
of derivative, normalization, MSC, SNV, DT and DTS
treatments with a view to reducing the effects of scatter on
mixed-phase spectra for a pharmaceutical preparation. They
found that the derivative and SNV treatments provided the best
results, and normalization the worst, for the case considered.

Qualitative analysis

Identification and qualification of raw materials and
pharmaceutical preparations

Quality control involves implementing suitable procedures or
measurements in order to ensure the identity of the materials at
each stage of the manufacturing process, from the time the raw
materials are received to that when the end products are
released. NIR spectroscopy is an advantageous alternative to
wet chemical methods and other instrumental techniques such
as MIR spectrophotometry and NMR spectroscopy for this
purpose.

Similarly to MIR, the earliest NIR studies aimed at the
identification of substances were concerned with structural
elucidation. In 1954, Kaye66 assigned the bands in the spectra of
bromoform, chloroform, benzene, methanol and m-toluidine,
and studied the factors that influenced the position and intensity
of the bands (inter- and intramolecular interactions, tem-
perature, physical state of the sample). Several years later,
Sinsheimer and Keuhnelian67 stated that NIR spectra were
among the most effective means for distinguishing dissolved
primary, secondary and tertiary amines; thus, primary amines
differ from secondary and tertiary amines by the presence of a
band at 2180 nm and the absence of another at 2050 nm.

However, identifying a substance from the mere inspection of
its NIR spectrum is usually difficult since this consists of very
broad, usually overlapped bands that call for pattern recognition
procedures (statistical treatments used to characterize spec-
tra).68 Essentially, the identification process involves two steps,
viz., recording a series of analytical signals for the product and
generating a so-called ‘spectral library’, and recording the
sample signal and comparing it with those in the previously
compiled spectral library on the basis of mathematical criteria
for parametrizing spectral similarity. If the similarity level
exceeds a pre-set threshold, then the spectra are considered

identical and the sample is identified with the corresponding
product in the library.

Reliable identification of a product relies on correct choice of
spectra for inclusion in the library. The spectra compiled for
each product should contain every possible source of variability
associated with spectral recording and the product’s manu-
facturing process. Spectral variability is considered by includ-
ing spectra for the same sample recorded by different operators
on different days; manufacturing variability is considered by
including spectra for samples from different production batches.
It is difficult to anticipate the exact number of spectra to be
included in a ‘comprehensive’ library. For a product that is
manufactured in a highly reproducible manner, manufacturing
variability can be spanned by samples from 5 to 10 different
batches and a total of 20–40 spectra. If manufacturing
reproducibility is poor, the number of spectra required can
easily double.

One other important consideration in building a spectral
library is checking that all the spectra included are correct.
Uncontrolled factors (e.g., incompletely filled cuvettes, voltage
drops at the time of recording) may result in spectral differences
not ascribable to natural variability; any such spectra should be
discarded.

One widely used NIR mathematical treatment for expressing
similarity is the correlation coefficient,69,70 which is defined as
the cosine of the angle between the vectors for the sample
spectrum and the average spectrum for each product included in
the library:
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where p is the number of wavelengths; subscripts k and j denote
the sample and reference product, respectively; xi is the
measured value at wavelength i; x̄j is the average spectrum of
the reference product j; and x̄k is the average spectrum of the
sample.

If the similarity coefficient exceeds a pre-set threshold, then
the two spectra compared are considered identical and the
sample is identified with the reference product. Theoretically, if
the two spectra are coincident, the correlation coefficient should
be unity; however, random noise associated with any type of
spectral measurement precludes obtaining a coefficient of
exactly 1.

This parameter has the advantage that it is independent of
library size and concentration changes, which permits correct
identifications by use of libraries consisting of a small number
of spectra. On the other hand, it is calculated from second-
derivative spectra; hence, samples of the same product in
different grain sizes will have the same correlation coefficient
since particle size only affects band intensity in second-
derivative spectra.

Van der Vlies and co-workers used a correlation coefficient
which they called the spectral match value (SMV) as a simple,
expeditious and precise tool for identifying different types of
cellulose71 and ampicillin trihydrate.72

Blanco et al.70 demonstrated the discriminating ability of a
correlation coefficient that they called the match index (MI) in
the identification of a pharmaceutical preparation by use of a
library consisting of 163 substances including excipients, active
compounds, amino acids and vitamins.

One especially interesting application in this context is the
non-invasive NIR method of Galante et al.73 for assessing
microbiological contamination in injections. The method, based
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on correlation measurements, is fast, detects contamination by
various types of microbe (yeasts, mould and bacteria), avoids
contamination by the analytical method itself and can be
implemented on-line with the manufacturing process.

Replacing conventional identification techniques, while
important, is not the sole advantage of NIR spectroscopy for
qualitative analytical purposes. In fact, this technique also
affords qualification. The pharmaceutical industry must guaran-
tee the correct dosage, manufacture and stability of each
product, so it must carefully control raw materials and each step
of the manufacturing process for factors such as potency,
moisture, density, viscosity and particle size in order to detect
potential deviations and correct them in a timely manner.
Controls can rely on numerical determinations of the target
parameters by using qualitative methods of analysis or compar-
ing the NIR spectrum for the sample with the body of spectra for
samples complying with the specifications and encompassing
every possible source of natural and manufacturing variability.
This latter choice is known as ‘qualification’ and involves
expressing similarity in distance terms in order to determine
whether a sample falls within the normal variability range or is
subject to manufacturing deviations that call for comprehensive
analysis. Distance-based methods rely on a compromise
between the maximum number of wavelengths that can be
used—in fact, if the wavelengths are correlated, increasing their
number will increase the distance without providing additional
information—and the minimum number required to encompass
all possible sources of manufacturing variability in the prod-
uct.

One of the most widely used qualification methods is
probably the wavelength distance method,70 which assumes that
measurements at each wavelength are distributed according to
the normal law. It generally uses the second-derivative of
spectra from a library that defines the accepted variability for
the product to obtain an average spectrum and the standard
deviation at each wavelength. The distance between the
unknown sample and the average spectrum for the reference
product at each wavelength is calculated and the most
unfavourable situation (viz., the wavelength that results in the
maximum distance) is determined from the following equa-
tion:
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where subscripts k and j denote sample and reference product,
respectively; xkp is the measured sample value at wavelength p;
x̄jp is the average spectrum of reference product j at wavelength
p; and sjp is the standard deviation of the measured values for
reference product j at wavelength p.

If the sample belongs to the same population as the reference
product, then there will be a probability of 99.7% that the
distance will be less than three times the standard deviation. If
the maximum distance does not meet this criterion, then the
sample must belong to a different population (i.e., it will not
meet the qualification criterion). The qualification criterion
based on the expression Dmax @3s is usually too conservative;
it is often more practical to have users decide on the most
suitable limit for their own problems and working methods.

Correct usage of this method entails exhaustive control of the
instrument in order to ensure that noise remains roughly
constant, since measurements at individual wavelengths and
derivative spectra tend to introduce noise and wavelength
shifts.

One shortcoming of this method is the risk of false-negatives
at wavelengths coinciding with x-intercepts in second-deriva-
tive spectra (zero cross-over). If the standard deviation for the
average spectrum at a given wavelength is very small, then the

distance at that wavelength will be very large and a negative
qualification will result. This may be the case when second-
derivative values are very close to zero. This problem can be
circumvented by using the wavelength library stabilization
method,74 where the average spectrum and its standard
deviation behave as though each second-derivative spectrum
had been shifted by a fraction of a nanometre to the left and right
along the wavelength axis (stabilization constant) in such a way
that the standard deviation at zero cross-over points will be
increased and false-negative qualifications avoided.

Plugge and van der Vlies72,75 used the wavelength distance
method to determine what they called the conformity index
(CI), which is seemingly highly sensitive to sample impurities
and occasionally allows one to pinpoint the sources of the
inability to qualify a raw material or product by using a C-PLOT
(viz., a plot of the absolute distance at each wavelength as a
function of the wavelength itself). One constraint of the C-
PLOT is that it does not provide a sign of manufacturing
deviations. Based on the C-PLOT, González and Pous76

developed DISPLOT (a plot of the distance, sign included, as a
function of wavelength), which identifies the sign of small
chemical and/or physical deviations introduced during the
manufacture of the mixed phase of a product.

One alternative to the wavelength distance method is to use
the whole information contained in the spectrum by calculating
the Mahalanobis distance.77–79 This parameter is useful for
cluster analysis and can be calculated for multi-dimensional
spaces. The distance between the sample and the centre of the
cluster formed by the spectra of the reference product is defined
as

D2 = (Xj 2 X̄k)TC(Xj 2 X̄k)

where Xj is the vector describing the spectrum of sample j, Xk

is the vector for the average spectrum of reference k, C is the
matrix that describes distance measurements in the multi-
dimensional space studied and superscript T denotes transpose
matrix.

Usually, if the distance thus obtained is less than three times
the standard deviation, the sample meets the qualification
criterion (i.e., the manufacturer’s specifications).

In the early 1990s, Corti and co-workers published several
papers reporting on the use of the Mahalanobis distance for
quality control in various pharmaceutical preparations. They
qualified chloroform extracts of samples containing 0.05%
estrogen and 0.25% progesterone or only one of them80 and
discriminated among creams containing the same active
principle but different excipient proportions.81 They showed
that the Mahalanobis distance was a highly effective choice for
qualifying antibiotics82,83 as it allows one to discriminate
between their crystalline and amorphous forms, as well as
among mixtures containing variable concentrations of the same
antibiotic. Finally, they obtained a high reproducibility in the
classification of organic and inorganic raw materials for which
spectra had been recorded by different operators under different
conditions.84

Dreassi and co-workers used the Mahalanobis distance to
discriminate among samples of the same active principle
differing in some physical and/or chemical property,85 as well
as for quality control in the production of an antibiotic, where
their method allows samples to be characterized at different
stages of the process86 and distinguishes them from other
products manufactured in the same production area.86,87

Recently, van der Vlies et al.88 developed a procedure for the
qualification of pharmaceuticals based on the conversion of
NIR spectra to polar coordinates and the subsequent calculation
of the corresponding Mahalanobis distance (the polar qualifica-
tion system). The method uses spectra, which facilitates relating
the distribution of the products to their spectral features (e.g.,
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the presence of an impurity absorbing in a specific region); also,
graphs are two-dimensional and hence easy to interpret.
Notwithstanding these advantages, it remains to be proved
whether this method surpasses existing alternatives in practice
and is applicable to extensive spectral libraries—in fact, its use
is seemingly restricted to the discrimination of similar products
with known spectral features. Plugge and van der Vlies89

showed that the method allows one to discriminate chemically
identical substances from different suppliers and also to detect
differences in physical properties among samples from the same
supplier.

One alternative to direct spectral computations, where
correlations and distances are calculated in the wavelength
space, is the use of principal component analysis (PCA)90 to
reduce variables (in PCA, correlations and distances are
calculated from scores in the space bound by the principal
components). Because the number of data involved is smaller—
a large number of wavelengths is replaced with a few principal
components (PCs)—library searches are much faster; however,
all spectra in a library influence PC calculations, so every time
a new spectrum is included in or an existing one is excluded
from the library, PCs must be recalculated and the modified
library validated. In addition, equipment-bundled software
usually restricts the maximum number of PCs that can be used
in the calculations, which in turn limits the number of different
products that a spectral library can contain.

Lo and Brown91 used the correlation coefficient in the PC
space to identify components in mixtures of organic solvents.
The ensuing method is selective, requires no prior knowledge of
the mixture composition and avoids variability due to spectral
noise. Wu et al.46 identified tablet blisters containing different
amounts of an active principle by using PCA and different
mathematical treatments of the spectra. Second-derivative
calculations proved to be the most effective transformation as
regards discriminating power.

Shah and Gemperline92 qualified different batches of Avicel
PH101 microcrystalline cellulose by using the Mahalanobis
distance in the PC space. Their criterion was to assume that a
sample was qualified when the probability level for a c2

distribution fell in the range 1.0–0.05.
One other classification procedure used in some reported

applications is the soft independent modelling of class analogy
(SIMCA).93 Each of the products in the sample is subjected to
PCA and Fisher’s test is subsequently applied in order to
estimate the likelihood of a sample belonging to the class
defined by the spectra of the reference product. The residual
variance for a spectrum k to be identified (S2

k) that is assumed to
belong to class j (defined by the spectra of the reference product
j) is divided into the total variance for the samples belonging to
class j (S0

2) in order to obtain the following variance relation-
ship:
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where n is the number of spectra for the reference product and
a the number of PCs used to construct the class model.

Gemperline et al.94 used SIMCA to qualify 400 first-
derivative spectra for six raw materials and found it to be
sensitive to the presence of impurities such as production
intermediates and degradation products, as well as to particle
size. In subsequent work, Gemperline and Boyer95 identified
and qualified samples adulterated with small amounts of
impurities by using libraries of variable size and the Mahalano-
bis distance, maximum distance and SIMCA method. The
maximum distance proved to be the most suitable choice for
identifying samples with small spectral libraries, but performed
worse for qualification purposes as it was insensitive to
impurities at levels below 2%.

Shah and Gemperline96 used the Mahalanobis distance and
the SIMCA method to classify different types of cellulose and
detect impurities at levels of 0.1–2%. They found that temporal
changes in instrument response influenced the limit of detec-
tion; consequently, reliable detection of impurities required
considering such changes in the spectral libraries. Dempster
et al.97 used the maximum distance to confirm the identity of
tablet blisters containing different concentrations of the active
principle (5, 10 and 20% m/m). They compared three different
spectral recording procedures, namely: (a) extracting tablets
from their blisters prior to measurement; (b) making measure-
ments through blisters, using the horizontal set-up presentation
module; and (c) using a fibre-optic probe for measurements.
The first procedure proved to be the most sensitive as it
distinguished among the three concentration levels tested and
the placebo; on the other hand, the other two failed to
discriminate the 5% sample and the placebo but had the
advantage that they were non-invasive. Subsequently, they used
the fibre-optic probe in conjunction with the maximum
distance, Mahalanobis distance and SIMCA to confirm the
identity of coated and uncoated tablet blisters.98 They used only
those spectral zones where differences among products were
maximum and the results were optimum, provided that the
tablets and blisters to be qualified had been manufactured under
the same conditions as those included in the library.

Ciurczak and Maldacker99 compared the ability of cross-
correlation spectral reconstruction methods and that of dis-
criminant analysis based on the Mahalanobis distance to
classify tablets in terms of their active principle. The spectral
reconstruction method, developed by Honigs et al.,100 allows
one to obtain the individual spectrum for each mixture
component and determine the nature of interactions among
analytes; however, it is less suitable for classification pur-
poses.

One qualification alternative similar to that using the
Mahalanobis distance is the boostrap error-adjusted single-
sample technique (BEAST),101,102 which uses reflectance
values obtained at pre-set wavelengths to obtain a multi-
dimensional data distribution. The chief difference between the
Mahalanobis distance and BEAST is that, in the latter, the
confidence limits used to define the clustering limits consider
asymmetry in the sample distribution rather than the symmetric
distribution assumed in the Mahalanobis distance. The most
severe shortcoming of BEAST is that it requires extensive data
storage resources. Lodder and co-workers showed that the use
of NIR spectroscopy in combination with BEAST provides a
rapid method for detecting adulterants (Fe2O3, NaF, NaCN,
KCN and As2O3) in capsules103 and allows discrimination
among aspirin tablets from different manufacturers37 with no
need for sample pre-treatment—and hence with minimal
manipulation errors.

This overview of the qualitative applications of NIR
spectroscopy in the pharmaceutical industry would be in-
complete if no mention were made of the fact that this technique
has been endorsed by several agencies in their official methods
of analysis (Table 5).

Determination of homogeneity

One important operation in manufacturing solid pharmaceuti-
cals is monitoring of the homogenization process, which
determines the encapsulation or compression quality of the end
product. Almost every application of NIR spectroscopy in this
field has been reported recently and uses one of the qualification
methods described in the previous section. Ciurczak104 devel-
oped three different approaches to the monitoring of the
homogenization of aspirin–vitamin B12 mixtures by use of fibre
optics, namely: (a) visual comparison of second-derivative
spectra recorded at different homogenization times; (b) calcula-
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tion of the correlation coefficient; and (c) calculation of the
maximum distance. The last proved to be the most reliable
method for determining the end-point of the homogenization
process as it discriminated between the penultimate and last
mixtures.

The qualification concept was used by Wargo and
Drennen105 to verify the homogeneity of solid mixtures and
determine the optimum homogenization time for a preparation
containing hydrochlorothiazide as the active principle. Qual-
itative analytical algorithms based on BEAST proved to be
more sensitive to variations in sample homogeneity than did a
c

2 test as the former uses the entire NIR spectrum.
van der Vlies and co-workers converted NIR spectra into

polar coordinates and used these to calculate the Mahalanobis
distance88 in order to identify non-homogeneous samples.89

They found that analysis of variance (ANOVA) was an
effective choice for validating homogenization processes.

Hailey et al.47 and Sekulic et al.106 developed systems for
monitoring the homogenization of solid mixtures based on
measurements via a fibre-optic probe fitted to the mixer. The
most salient advantage of these systems is that they permit the
determination of the end-point of the homogenization process in
real time and in a non-invasive manner. In both cases, mixture
homogeneity is determined by plotting the standard deviation
for several replicates against the homogenization time.

Polymorphism and optical isomers

NIR spectroscopy was used by Gimet and Luong107 for the
qualitative control of a dimorphic analgesic. The pure forms
exhibit NIR spectra that are sufficiently different in their
maximum wavelengths and absorbances to allow quantifica-
tion. Mixed spectra confirm that quantitative analyses are
possible even in the absence of qualitative differences between
the spectra. The ensuing method is applicable to substantial
amounts of product, which avoids errors arising from sampling
and sample heterogeneity.

The ability of the Mahalanobis distance and SIMCA to
identify and assess the polymorphic quality of a drug was
compared by Aldridge et al.108 The former proved to be the
more effective choice since, in addition to discriminating
between the polymorph of interest and other substances with
highly similar spectra, it is more sensitive to the presence of low
levels of impurities in the polymorph.

Norris et al.109 used NIR spectroscopy to monitor poly-
morphic conversion. Their method subjects spectra recorded
over the course of the reaction to PCA and allows the end-point
of the process to be determined in real time.

Buchanan et al.110 determined the enantiomeric purity of the
optically active forms of valine. Mixtures containing d- and l-
valine in different proportions exhibited identical spectra except
for baseline shifts resulting from differences in particle size.
However, when the mixtures were dissolved and recrystallized,
the resulting spectra exhibited qualitative and quantitative
differences that permitted the determination of enantiomeric
purity in the starting product.
b-Cyclodextrin and silica gel were used as chiral selectors for

distinguishing the (1R)-(+) and (1S)-(–) enantiomers of a-

pinene by NIR transmission spectroscopy.111 The bond between
the (+) enantiomer and a reagent is different from that between
the (2) enantiomer and the same reagent, which facilitates
discrimination of the enantiomers by PCA.

Quantitative analysis

NIR spectra typically contain broad, overlapping bands that
cannot always be ascribed to an individual sample component.
As a result, whenever the NIR technique is used for quantitative
purposes—whatever the physical or chemical property of the
sample to be determined—a calibration must be performed by
using an existing multivariate procedure.69,90 Essentially, the
procedure for quantification using multivariate calibration
involves the following steps: (a) selecting a representative
sample set; (b) acquiring the analytical signals and obtaining the
reference values; (c) mathematical processing of the signals; (d)
selecting the model that relates the property to be determined
and the signals; and (e) validating the model. Each step is
described in detail below, with special emphasis on the
problems arising from NIR analyses of pharmaceuticals.

Halsey112 devised a protocol for developing quantitative NIR
methods for the pharmaceutical industry. Although the protocol
is based on the NSAS software package, bundled with
NIRSystems instruments, it can provide users of equipment
from other manufacturers with basic concepts to be considered
in developing an NIR analytical method.

Sample selection

The starting point for every calibration technique is a set of
samples which have previously been analysed by a reference
method, span the working concentration range and are repre-
sentative of the manufacturing variability sources that are bound
to influence the NIR spectra.

One of the problems encountered in using NIR spectroscopy
for the quantitative analysis of pharmaceuticals is the need to
obtain a sample set that can be used to establish a calibration
model. As a rule, all available production samples contain the
active principle and excipient in amounts very close to the
nominal values; this precludes spanning a wide enough
concentration range for calibration. One way of circumventing
this shortcoming is by using a set consisting of production and
laboratory-made samples; the former will introduce the varia-
bility sources typical of the production process while the latter
will expand the narrow range spanned by the former. Therefore,
the two essential questions that arise when developing an NIR
quantification method are as follows: what concentration range
is the sample set to span? and how can preparation of the
laboratory samples be approached? Regarding the former
question, Corti and co-workers83,84,113 claim that a sample set
spanning a concentration range about ±5% of the nominal value
affords precisely and reproducibly sufficient calibration for
quality control purposes. However, such a range may be too
narrow if the manufacturer’s tolerated limits are greater than ±
5% of the nominal value. In order to expand the concentration
range without altering any physical properties potentially
affecting NIR spectra, one can make the samples at a pilot
plant,114,115 prepare laboratory samples containing each compo-

Table 5 NIR methods endorsed by various official agencies

Agency Method

Food and Drug Administration (FDA) Identification, quantification and determination of moisture content in ampicillin trihydrate (Gist
Brocades)

Health Protection Branch (HPB) Identification of raw materials and packaging components (Merck Frosst Canada)
Norwegian Medicines Control Authority (SLK) Identification and quantification of paracetamol, and determination of moisture content, in Paracet

500 mg (Wieders Farmasoytiske)
Medicinal Controls Agency (MCA) in UK Identification of Zovirax 200 mg (Glaxo Wellcome)
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nent of the pharmaceutical at concentrations over the manu-
facturer’s specified ranges,116 or over- and underdose samples
from different production batches with small amounts of the
active principle or excipient, respectively, to obtain the desired
concentration range.70,86,87 The first approach is probably that
providing the samples that are closest in composition to
production samples; however, it is also the least feasible in
practice as it is rarely possible to manufacture production
batches suited to particular needs, nor is it possible to ensure
that a small-scale process will be comparable to the actual
production process. The principal advantage of the second
approach is the ease with which the different concentrations
needed to span the required range can be obtained; however, the
grinding, mixing and other miscellaneous processes used in the
laboratory may differ substantially from those used in the
manufacturing process and hence lead to samples differing
markedly—NIR spectra included—from production samples.
Over- and underdosing production sample make expanding the
concentration range a labour-intensive, care-demanding task;
provided that strict control is exercised, however, variability in
the physical features of the samples can be much smaller than in
the previous case.

Blanco et al.117 found that the use of over- and underdosed
samples did not alter the quality of the results for production
samples; they quantified production samples by using calibra-
tion sets consisting of an increasing number of laboratory-made
samples. The same authors118 compared two different ap-
proaches, viz., preparing samples by (a) weighing of all
components and (b) over- and underdosing samples from
different production batches, to quantify the active principle in
the mixed phase of a commercially available preparation.
Although the results obtained with both approaches were
similar, the over- and underdosing approach resulted in simpler
calibration models and in slightly smaller errors of prediction.

Once the calibration set has been established, it is split into
two sub-sets, viz., a calibration set consisting of a small number
of samples that are representative of the entire set and allows the
determinand to be related to the analytical measurement, and a
prediction set composed of the remainder of samples that is used
to assess the predictive ability of the model. In splitting the
original set, the questions arise as to what the optimum number
of samples to be included in the calibration set is and how such
samples should be chosen.

The use of a small number of samples in the calibration set
may result in some source of variability in the product being
excluded and hence in spurious results in analysing new
samples. Several workers claim that the optimum number of
samples depends on their complexity, on the concentration
range to be spanned and on the particular calibration method
used.113,119 Thus, when the aim is to quantify 1–4 components
and the samples exhibit no large differences in their physical
and chemical properties, a calibration set consisting of a
minimum of 15–20 samples will be more than adequate.

As regards the second question, there are two types of
approach, viz., those focusing on general aspects of sample
selection for NIR calibration69,120 and those based on compar-
isons among available choices. Although, in general, the latter
have been developed for and applied to food samples, they are
worth mentioning here because they are also applicable to
pharmaceuticals.

Honigs et al.121 used a sample selection method similar to
Gaussian elimination, They selected ‘unique’ samples in a
sequential manner in order to identify that exhibiting the highest
NIR absorbance. The selected sample was removed from the
remaining set and the process was repeated until the desired
number of samples was chosen or the absorbance values of the
remaining spectra were below a pre-set limit.

Næs122 and Isaksson and Næs123 developed a method for
selecting samples based on an unsupervised pattern recognition

algorithm that is applicable to highly collinear data. They
identified clusters of closely related samples by constructing a
dendrogram based on the PCA scores for the sample spectra.
From each cluster, the sample falling at the greatest distance
from the cluster centre was chosen. A similar sample selection
system was reported by Puchwein.124 The sample with the
greatest Mahalanobis distance from the cluster centre was
selected first and those samples with a Mahalanobis distance
similar to the selected sample were left out. Subsequent samples
were chosen similarly from among the remainder.

The normalized Mahalanobis distance was used by Mark125

to select samples on the basis of discrete wavelengths. One
disadvantage of this method is the difficulty involved in
selecting a suitable wavelength.

Ferré and Rius126 reported a procedure for selecting the best
calibration set for principal component regression (PCR) based
on a D-optimum design and on instrumental responses alone.
Calibration investment and effort are reduced if the reference
method is applied to the selected samples only. This approach
was criticized by Davies,127 who stated that the prediction set
provided by the method was strongly dependent on the
calibration set and thus a poor choice for assessing the
predictive ability of the model.

Blanco et al.70 compared flat calibration,128 which involves
spanning the working concentration range with a large number
of samples, and the sample selection subroutine included in the
NSAS software package,129 with a view to selecting calibration
samples for the quantification of the active principle in a
commercially available preparation. The flat calibration ap-
proach provided more robust calibration models. The same
authors proposed using PCA to select the production batches
best representing variability in the manufacturing process,
which must be included in the calibration set in addition to
laboratory-made samples.116,118

Multivariate calibration methods

The calibration methods most frequently used in NIR spectros-
copy in order to relate the property to be measured to the
analytical signals acquired are multiple linear regression
(MLR),130,131 PCR90 and partial least-squares regression
(PLSR).90 Most of the earliest quantitative applications of NIR
spectroscopy rely on MLR because spectra were then recorded
on filter instruments, which afforded measurements at a
relatively small number of wavelengths only. Applications
involving PCR and PLSR have proliferated after the introduc-
tion of commercially available instruments that allow the whole
NIR region to be scanned.

The choice of the calibration method is dictated by the nature
of the sample, the number of components to be simultaneously
determined, the a priori knowledge of the system studied and
available data on it. Below are briefly described the features of
the different calibration options.

The MLR technique is the usual choice with filter instru-
ments and is also occasionally used with instruments that record
whole spectra. It is an effective calibration approach when the
analytical signal is linearly related to the concentration, spectral
noise is low and the analyte does not interact with other sample
components. The MLR technique also affords modelling some
non-linear relationships as it assumes that modelling errors arise
from concentrations. However, it can only be used at a small
number of wavelengths, which, if incorrectly selected, may
result in overfitting (i.e., in modelling of noise or random
errors). Also, if spectral data are highly collinear, then the
precision of the results suffers appreciably. A detailed descrip-
tion of available procedures for determining how many and
which wavelengths should be used can be found else-
where.90,132,133
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Whole-spectrum methodologies (viz., PCR and PLSR) have
the advantage that they use every single wavelength in a
recorded spectrum with no prior selection. Also, they allow the
simultaneous determination of several components in the same
sample and avoid the problems associated with collinearity
among spectral data and with noise-related variability. As noted
earlier, non-linearity in NIR signals is ascribed to non-linear
detector responses that result in curved signal–concentration
plots, as well as to physical and/or chemical factors giving rise
to shifts and width changes in spectral bands.134,135 In some
cases, non-linearity is so marked that a non-linear calibration
methodology such as neural networks,136–140 locally weighted
regression,141,142 projection pursuit regression143,144 or quad-
ratic versions of the PCR or PLSR algorithms145,146 must be
used.

Determination of physical parameters

Particle size determinations are of paramount importance to the
pharmaceutical industry as incorrect grain size analyses can
lead to altered properties such as coating power and colour,
hinder subsequent mixing of powders (for tablet formulations)
or powders and liquids (suspensions), and result in defective
pressing of solid mixtures for making tablets. Because particle
size is one of the physical parameters most markedly influenc-
ing NIR spectra, the NIR technique is an effective alternative to
the traditional methods involving sieving, light scattering by
suspensions, gas adsorption on solid surfaces or direct inspec-
tion under a microscope.

Ciurczak et al.147 used the linear dependence of band
intensity at a constant concentration on the average particle size
at a pre-set wavelength to determine pure substances and
granules. Absorbance versus particle size plots at different
wavelengths exhibited two linear segments. These authors
postulated that the sample’s absorption coefficient in the
Kubelka–Munk function was large below 85 mm and ascribed
the abrupt decrease in absorbance from 250 to 85 mm to the
influence of such a coefficient. Consequently, the effect of
particle size on reflectance measurements was significantly
reduced below 80 mm. Blanco et al.148 determined the average
particle size of Piracetam over the wavelength range 175–325
mm with an error of 15 mm, based on the assumption that an
increase in particle size would produce an increase in ab-
sorbance that could be measured and used to quantify the former
by MLR and PLSR calibration. They found that spectral
reproducibility varied in an exponential manner with particle
size and that sample compactness was the most influential
factor on particle size.

Ilari et al.149 investigated the feasibility of improving the
determination of the average particle size of two highly
reflecting inorganic compounds (viz., crystalline and amor-
phous NaCl) and an NIR-absorbing species (amorphous
sorbitol), using the intercept and slope obtained by subjecting
spectra to MSC treatment as input parameters for PLSR. While
particle size continues to be the physical property of samples
most frequently determined by NIR spectroscopy, several other
parameters such as the dissolution rate and the thickness and
hardness of the ethylcellulose coating on theophylline tablets
have also been determined, all with good errors of predic-
tion.150

Determination of moisture content

The presence of crystallization or adsorbed water in pure
substances and pharmaceutical preparations, whether during
treatment of the sample or its storage, causes significant
changes in those properties that influence chemical decay rates,
crystal dimensions, solubility and compaction power, among
others. NIR spectroscopy is an effective alternative to tradi-
tional analytical methods such as thermogravimetry and Karl–
Fischer (KF) titration as water gives a characteristic absorption
spectrum the mere visual inspection of which allows one to
determine, for example, if different batches of a given substance
contain also different amounts of moisture.151

The NIR spectrum of water exhibits five absorption maxima
at 760, 970, 1190, 1450 and 1940 nm; the positions of these
bands can be slightly shifted by temperature changes152–154 or
hydrogen bonding between the analyte and the matrix.155,156

The bands at 760, 970 and 1450 nm correspond to the first three
overtones of O–H stretching bands, whereas the other two arise
from combinations of O–H oscillations and stretching. The
specific band to be used for determining water depends on the
desired sensitivity and selectivity levels.157 As a rule, the
overtone bands are appropriate for this purpose when using
solutions in solvents containing no O–H groups; on the other
hand, the band at 1940 nm provides increased sensitivity.

In Tables 6 and 7, available NIR methods for determining
moisture are classified according to whether they rely on
transmittance or reflectance measurements, respectively.

NIR transmittance methods are mainly used to determine
water in solvents. Their earliest applications to solid prepara-
tions entailed dissolving the sample in a solvent with little or no
absorption in this spectral region. All methods of this type use
least-squares calibration to construct a straight line from
absorbance values at the absorption maximum at about 1900 nm
for solutions containing variable concentrations of the target
species.

Table 6 Applications of NIR transmittance spectroscopy to the determination of moisture content

Sample type Remarks Ref.

Solid The most suitable solvents for determining water in solid samples are pyridine and methanol, which exhibit no
absorption band at 1900 nm; also, their mixtures with water obey Beer’s law over a wide composition range

155

Solid Determination of trace amounts of water (0.05%) in mono-, di- and triglycerides using chloroform as solvent. Free
from interferences from triglyceride OH groups

158

Solid Use of the NIR technique in conjunction with dimethyl sulfoxide as solvent provides an expeditious, accurate and
precise alternative to the traditional method for the determination of water in starch, which is time-consuming
and involves cumbersome manipulations of the viscous, sticky samples involved

159

Solid Methanol is used to determine water in organic compounds and pharmaceutical preparations. Results are consistent
with those provided by the conventional dehydration method and KF titration. The spectrophotometric method is
more reproducible, simple and expeditious

156

Liquid Determination of small amounts of water in solvents (acetonitrile, propionitrile, tetrahydrofuran and dimethylforma-
mide). The NIR method is less sensitive than KF titration and its LOD is about 20 ppm. The former is more
rapid and flexible, and involves less extensive sample manipulation

160

Liquid Flow injection analysis method for the determination of water in dichloromethane and isobutyl methyl ketone, the
LODs for which are 0.01 and 0.005% v/v, respectively. Free from sample contamination by environmental
moisture

161
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Determination of active compounds and excipients

The number of determinations of active compounds and
excipients has grown enormously in recent years. Table 8
summarizes reported uses of the NIR technique for this
purpose.

Calibration transfer

In previous sections, we discussed the most important con-
siderations in developing a quantitative NIR method. However,
this review would be incomplete if one of the major hindrances
to the application of developed methods, viz., transferability of
calibration models among instruments,177–179 were not men-
tioned. Because detector responses are not uniform, the signals
recorded by two different instruments may differ owing to
wavelength shifts and/or changes in measured intensities. This
precludes the use of one instrument’s calibration model by
another. The problem can be overcome in three different ways,
namely: (a) by recording spectra for calibration samples on each
instrument and constructing a calibration model for each, which
is not feasible when a large number of samples are to be
processed, the instruments are very distant from each other or
the samples are unstable; (b) by applying mathematical
corrections to the spectra recorded by one instrument so that
they can be used in the calibrations obtained with the another;
(c) by transferring the calibration model from one instrument to
another.

The principal calibration transfer methods.180 are briefly
commented on below. Some come from fields other than the
pharmaceutical field but are indeed applicable in many
sectors.

The method of Shenk and Westerhaus181,182 uses a large
number of stable samples for transfer and corrects the response
of an instrument at each wavelength with reference to that of a
primary instrument of identical resolution; after wavelengths
have been corrected, the spectral intensity is adjusted. The
applicability of this method has been assessed by several
workers. Dardenne et al.183 focused on the problems encoun-
tered in transferring calibrations among different types of
instrument and on the sample set required for this purpose.
Bouveresse and co-workers found that the method provided
satisfactory results as long as the transfer samples span the same
spectral intensity range and are of the same nature as those to be
subsequently analysed;184 they investigated whether altering
the spectral intensity correction algorithm improved the quality
of the results when some of the previous conditions were not
fulfilled.185

Mark and Workman186 developed a method suitable for MLR
calibration that uses no transfer sample set; rather, calibration
transfer relies on a model that is constructed from those
wavelengths that remain unchanged relative to spectral shift as
independent variables. The previous two methods are applicable
at a relatively small number of wavelengths and are usually
incompatible with multivariate calibration based on whole
spectra. Although the method of Shenk and Westerhaus181

affords whole-spectrum correction, its applicability to multi-
variate calibration approaches is restricted by the fact that
corrections rely on a univariate scheme.

Wang et al.187 developed four calibration transfer methods
based on a multivariate scheme; all four use whole spectra and
an unrestricted number of wavelengths in the calibration model.
Two of them correct the calibration model (one with respect to
a classical calibration model and the other relative to an inverse
calibration model); the other two, based on direct standardiza-
tion (DS) and piecewise direct standardization (PDS), correct
the response of an instrument so that its spectra can be used by
another. The DS method uses a PCA to obtain the transforma-
tion matrix that relates the responses of both instruments, but
has the disadvantage that it requires a large number of samples.
The PDS method188,189 relies on the fact that spectral variations
are usually restricted to a small region; hence it reconstructs
each point in the spectrum from one instrument by using several
measurements through a small window in the spectrum from
another. As a result, this method requires a fairly small number
of transfer samples that need not span the whole concentration
range spanned by the calibration samples.

Bouveresse et al.190 compared the PDS method with the
slope/bias correction method used by Jones et al.;191 when
differences between instrument responses are small, the latter
method provides good results, the quality of which can be
assessed by Fisher’s test if the number of transfer samples used
exceeds five.

The method of Forina and co-workers192,193 uses PLSR to
establish the relationship between the transfer samples pro-
cessed with both instruments and then the regression equation
for the first instrument.

Blank et al.194 used a calibration transfer method based on a
finite response filter to relate the response of a spec-
trophotometer to that from a second instrument without the need
to record spectra for transfer samples on the latter.

Miscellaneous applications

This section comments on some uses of NIR spectroscopy with
their roots outside the pharmaceutical field but of potential
interest to the pharmaceutical industry.

Table 7 Applications of NIR reflectance spectroscopy to the determination of moisture content

Sample type Calibration Remarks Ref.

Injection MLR
PLSR

Comparison of calibration methods by using products containing different amounts of active
compound (0.5 and 1.5 mg per vial). Spectra are recorded through vial bottoms, using the
horizontal set-up sample presentation module

162

Solid MLR Determination of moisture content (11.5–15%) in ceftazidime, with errors of 0–5%. The
calibration set encompasses ±10% of the nominal value and consists of samples from different
production batches and laboratory-made samples in 1:1 ratios

163

Solid MLR NIR method for determining moisture in the antibiotic ampicillin trihydrate; approved by FDA in
1992

72

Solid MLR
PLSR

Determination of moisture in the active compound ferrous lactate dihydrate (11.1–14.6%), using
a fibre-optic probe. The two calibration methods used provide similar results, with errors less
than 1.5%

164

Solid
Tablets

MLR Determination of moisture at different production stages (mixed phase, cores and tablets), using a
single calibration equation that provides prediction errors less than 4%. Moisture contents
below 1% can seemingly not be detected by reflectance measurements

87

Tablets MLR Determination of moisture in tablets with a maximum certified content of 2%. The results
obtained over a one year period reveal that the method is suitable for quality control analyses

165
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Reeve studied changes in NIR spectra due to various factors
(moisture, pH and state of aggregation of the sample, among
others).195,196 The presence of moisture in the samples was
found to shift absorption bands to an extent dependent on the
type of compound concerned–shifts are especially prominent
with alcohols and ketones, and less marked with acids; also, the
spectral features of solid samples vanish on dissolution, which
destroys the crystal structure.197 Reeve also investigated the
interactions between monomers and polymers of carbohydrates
(glucose and sucrose with amylose, and amylopectin and
cellulose with starch) that affect NIR spectra and assessed their
effects on calibration methods.198

In several papers, Lin and Brown152,199–201 showed that MLR
and PCR allow one to construct calibration models for
determining NaCl in aqueous solutions as they afford measure-
ments of the small intensity changes undergone by bands in the
presence of the electrolyte. PCR was found to provide the

smaller errors of prediction and models less markedly influ-
enced by the temperature at which spectra were recorded.

NIR spectroscopy with fibre-optic probes and PLSR or PCR
is an alternative to gas chromatography and mass spectrometry
for the in situ analysis of solvent mixtures on account of its high
responsiveness, low maintenance costs and the need for no
sample treatment. There are references to the analysis of
mixtures of ethanol, acetone, acetic acid and water in ethyl
acetate;202 methanol and water in hexane;202 methanol, ethanol
and propanol;203 and ethanol, propan-1-ol and propan-2-ol in
methanol.204 Martens and Stark58 demonstrated the significance
of the prior mathematical treatment of signals as a means of
suppressing multiplicative (pathlength variations) and additive
changes (baseline shifts, spectral overlap) encountered in the
determination of toluene in mixtures of benzene and xylene; use
of a mathematical treatment led to simpler models of increased
predictive capacity.

Table 8 Applications of NIR spectroscopy to the determination of active compounds and excipients

Analyte Sample type Calibration Remarks Ref.

Glycerol, ethanol,
phenazone, sodium
thiosulfate

Liquid MLR Errors less than 3% in major components (glycerol, ethanol and phenazone) and of
5–10% in minor components (lidocaine and sodium thiosulfate)

166

Glucose, fructose,
maltose

Syrup Comparison of NIR, FTIR and HPLC techniques. The accuracy of the spectrophotometric
techniques is lower

167

Acetaminophen,
codeine phosphate

Syrup MLR Comparison of NIR spectroscopy and HPLC in terms of accuracy and throughput. The
NIR technique is recommended for components at contents of at least 1%

168

Meprobamate
(200 and 400 mg)

Suspension
Injection

MLR Absorbance measurements at 1960 nm of the drug extract in chloroform 169

Cloxacillin
benzathine
(12.7%)

Cream MLR Quantification in creams containing variable proportions of the same excipients, using a
single calibration. Errors less than 3.5%

81

Nicotinamide Solid MLR Reproducible results (comparable to those of HPLC) obtained by using two different
wavelengths

170

Ceftazidime
(77%)

Solid MLR Determination of a major active compound with errors of 0–3%. Variability in the raw
materials used over a one year period has no effect on the quality of the results

163

Streptomycin sulfate;
Cloxacillin
benzathine

Solid MLR Errors less than 4% in both components that change little on expanding the concentration
range used for calibration

84

Ketoprofen
(33%)

Solid MLR Prior extraction of the drug into chloroform. Errors less than 3.5% 113

Ranitidine
hydrochloride

Solid MLR Errors less than ±2% and calibration transferability 87

Erythromycin
ethylsuccinate
(12.9, 19.9 and
34.3%)

Granules MLR Errors less than 2.5% with a single calibration for the three presentations 83

Cimetidine
(71.8%)

Granules MLR The reproducibility of the NIR method (RSD = 0.16%) is comparable to that of a UV
method (RSD = 0.15%) and is not influenced by particle size or grain colour

171

Vitamin C Granules MLR Errors of 1–2%. The PLSR method provides slightly smaller errors 117
(16.7, 22.9 and
40%)

Tablets PLSR

Ranitidine
hydrochloride
(53.5%)

Tablets MLR Errors less than 5%. The precision is not operator-dependent 165

Pirisudanol dimaleate
(88%)

Tablets PLSR Comparison of recording systems (spinning cuvette and fibre-optic probe). Errors less
than 1% and similar in both cases

70

Metoprolol succinate
(47.5%)

Tablets PLSR Comparison of NIR transmission and diffuse reflectance measurements. The former uses
more favourable sample volumes but suffers from spectral noise above 1350 nm

172

Acetylsalicylic acid Tablets PCR Correlation of NIR spectra with the amount of salicylic acid formed by hydrolysis of
acetylsalicylic acid. Prediction errors of ±0.04% of the tablet mass

173

Active principle
(0.6, 1.2 and 2.4%)

Tablets PLSR Automation of an NIR transmission spectroscopic method for determining content
uniformity. The reproducibility of the autosampler used was studied

174

Aminodarone
hydrochloride
ketone (52%)

Tablets MLR Errors less than 0.5%. The reproducibility was studied at different temperatures 175

SB 216469-S
(1.5, 3 and 6%)

Tablets PLSR Quantitative control of the active compound at the different production stages, with no
sample pre-treatment

176

Cefuroxime acetyl Tablets MLR Quantitative control of the active compound at the different production stages. The PLSR 86
(66.8%) PLSR method provided lower errors in all cases
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Conclusions

Recent breakthroughs in analytical instrumentation and availa-
ble techniques for processing complex signals have fostered the
development of new uses of NIR spectroscopy in various
industrial fields, prominent among which is the pharmaceutical
industry. The large number of references cited in this review
testifies to the potential of NIR spectroscopy for qualitative and
quantitative analysis of pharmaceutical preparations.
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