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Near infrared spectroscopy (NIRS) of the thenar
eminence in anesthesia and intensive care
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Abstract

Near infrared spectroscopy of the thenar eminence (NIRSth) is a noninvasive bedside method for assessing tissue
oxygenation. The NIRS probe emits light with several wavelengths in the 700- to 850-nm interval and measures the
reflected light mainly from a predefined depth. Complex physical models then allow the measurement of the
relative concentrations of oxy and deoxyhemoglobin, and thus tissue saturation (StO2), as well as an approximation
of the tissue hemoglobin, given as tissue hemoglobin index.
Here we review of current knowledge of the application of NIRSth in anesthesia and intensive care.
We performed an analytical and descriptive review of the literature using the terms “near-infrared spectroscopy”
combined with “anesthesia,” “anesthesiology,” “intensive care,” “critical care,” “sepsis,” “bleeding,” “hemorrhage,” “surgery,”
and “trauma” with particular focus on all NIRS studies involving measurement at the thenar eminence.
We found that NIRSth has been applied as clinical research tool to perform both static and dynamic assessment of StO2.
Specifically, a vascular occlusion test (VOT) with a pressure cuff can be used to provide a dynamic assessment of the
tissue oxygenation response to ischemia. StO2 changes during such induced ischemia-reperfusion yield information on
oxygen consumption and microvasculatory reactivity. Some evidence suggests that StO2 during VOT can detect fluid
responsiveness during surgery. In hypovolemic shock, StO2 can help to predict outcome, but not in septic shock. In
contrast, NIRS parameters during VOT increase the diagnostic and prognostic accuracy in both hypovolemic and septic
shock. Minimal data are available on static or dynamic StO2 used to guide therapy.
Although the available data are promising, further studies are necessary before NIRSth can become part of routine clinical
practice.
Introduction
Oxygen delivery (DO2) and consumption (VO2) often are
disturbed in critically ill patients [1]. Such disturbance may
lead to pathological changes in tissue oxygenation. Thus,
monitoring of tissue oxygenation appears desirable. Inva-
sive monitoring of systemic DO2 and VO2 has been used
in intensive care medicine for decades [2]. In contrast, no
method for assessing tissue oxygenation has yet gained
widespread clinical use. This is unfortunate, because tissue
oxygenation may reflect changes in the microcirculation, a
similarly important target for therapy during major surgery
and in the critically ill. Disturbances in microcirculation
are common and well documented in hemorrhage and
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critical illness [3,4], and they logically relate to tissue oxy-
genation. Thus, monitoring of tissue oxygenation may pro-
vide useful information not only about the state of tissue
oxygenation itself but probably about the state of the
microcirculation. A potentially useful method to monitor
tissue oxygenation may be offered by near infrared spec-
troscopy (NIRS)-based technology.
Although the concept of NIRS has already been avail-

able during the second half of the 20th century, its main
initial application was for chemical analysis [5,6]. Since
the end of the 1970s [7], numerous studies have been
published about this method [8,9]. NIRS offers real-time
noninvasive monitoring of oxy and deoxyhemoglobin in
tissues within a few centimeters from the skin (Figure 1).
Furthermore, so-called dynamic values, i.e., values regis-
tered during short occlusion of the vascular supply of
the area under assessment can be measured. These dy-
namic values might give additional data on local VO2

and probably the condition of the blood flow of the
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Figure 1 Portable near infrared spectroscopy (NIRS) monitor in
use. The probe is placed over the thenar eminence.
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microcirculation [10]. Some NIRS variables also correl-
ate with invasively monitored central circulatory vari-
ables [11]. More recently, due to device development,
availability, and marketing, clinical research dealing with
the utility of NIRS has focused on the specific method-
ology of NIRS of the thenar eminence (NIRSth).
Clinical application of NIRSth remains a relatively new

method in a field where no “gold standards” exist. Thus,
clinicians considering the use of NIRSth need to under-
stand the principles and evidence behind it and appreciate
the many areas of uncertainty that surround its applica-
tion. In this review, we assess several of these aspects and
suggest studies to address areas of controversy.
The principle of clinical NIRS is to noninvasively meas-

ure the attenuation of light by hemoglobin, where the emit-
ted light is in a wavelength range longer than visible light
[12,13]. NIRS utilizes a narrower spectrum of wavelengths
than pulse oximetry, which penetrate deeper into the tissue
[14]. Furthermore, whilst NIRS characterizes the total tis-
sue oxy and deoxyhemoglobin in a quantitative and qualita-
tive fashion [13], generating information on oxygen supply
and demand, pulse oximetry monitors only hemoglobin in
the arterial (pulsatile) part of the local circulation [15].
The near infrared (NIR) light spectrum ranges from

700 nm to 1000 nm. For clinical applications of NIRS,
wavelengths approximately 700 to 850 nm are used. The
interval stretches on either side of the isobestic point of
hemoglobin, i.e., a given wavelength where absorption of
light for oxy and deoxyhemoglobin is identical. This
wavelength interval maximizes the difference between
oxy and deoxyhemoglobin and minimizes the influence
of other chromophores, such as myoglobin, cytochrome
oxidase, melanin, and bilirubin, on the measurements
[16]. Fortunately, the impact of myoglobin on NIRS for
measuring tissue oxygenation is minimal [17,18] and
melanin, due to its superficial localization, is not a major
issue in this regard. Increased conjugated bilirubin levels
do influence measurements by dampening the signal.
However, trends can still be followed even with jaundice
[19].

Physical background
NIRS technology is based on sophisticated physical
models, which are greatly simplified in the description
below. The attenuation of light in a sample or tissue is
proportional to the pathlength of the light and the ab-
sorption coefficient of the chromophore according to
the physical principles referred to in the Lambert-Beer
law [20]. The absorption coefficient of a compound, in
the former equation, is a product of the concentration of
the compound and the specific extinction coefficient of
the compound. Thus, if attenuation of NIR spectrum
light is measured and if all other components of the
equation described above are known, the concentration
of the chromophore, e.g., oxyhemoglobin can be mea-
sured. Unfortunately, because the pathlength of light
varies due to reflection and interference in a complex
milieu of different tissues, absolute concentrations are
difficult to estimate. However, the pathlength of light is
more or less constant and the extinction coefficients of
the common chromophores are known physical quan-
tities. Thus, changes in attenuation of light will be dir-
ectly proportional to relative changes in concentration
of the chromophore. Absolute changes in concentration
can be approximated by creating mathematical algo-
rithms for light pathlength in a tissue.
Because the absorption coefficient is direct proportional

to concentrations of a chromophore in a tissue studied
and extinction coefficient of the compound is constant, es-
timating the absorption coefficient yields approximations
of the absolute chromophore concentration. This is pos-
sible through advanced modeling of the behavior of NIR
light in tissues and the technical possibility of measuring
at several NIR wavelengths [21]. Yet, given the large num-
ber of assumptions and approximations in the theoretical
basis of NIRS, one may consider trends in different NIRS
parameters as more robust than discrete values.

Technical considerations
The NIRS probes in current use measure reflected light.
Thus, the NIR light source is placed beside the light sen-
sor. The distance between the light source and sensor
determine the distance from where the main part of the
reflected light is measured. The technical limit of the
monitored depth is the energy of light that does not
damage tissues [21]. The main determinants of signal
are small vessels of the microcirculation [22].
The brain [23], kidney [24], lower extremity [25], bra-

chioradialis muscle [26], and thenar eminence [27] are
all possible sites for bedside NIRS monitoring. The



Figure 2 (a) Typical StO2 changes during arterial vascular
occlusion test (VOT) in three cases. (b) Schematic illustration of
the StO2 changes during VOT.
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advantage of the thenar eminence compared with other
sites, in terms of minimizing variability, is the relatively
thin fat tissue over the muscle. Additionally, fibrous
strands in its subcutaneous tissue limit the extent of
edema formation providing the best possible setting for
muscle tissue saturation (StO2) measurement even in
obese and critically ill patients [28]. Due to anatomical
conditions, both the brachioradial muscle and the mus-
cles of the thenar eminence can be easily subjected to
the vascular obstruction test (see below).

Derived parameters – the vascular occlusion test
Assessing the ratio of oxy and deoxyhemoglobin in the
monitored tissue gives continuous StO2. Because absolute
hemoglobin content also can be estimated, total tissue
hemoglobin and its absolute changes are expressed as tis-
sue hemoglobin index (THI), which can be obtained with
this method. THI is, however, not total tissue hemoglobin
but its approximation, based on the signal strength of
hemoglobin in the monitored area. Low StO2 and THI
are common findings in hypovolemic shock states.
By occluding the arterial [16] or the venous [29] blood

flow to the thenar eminence, NIRS can assess dynamic
changes that reflect VO2 and postischemic reperfusion
and hyperemia. This, vascular occlusion test (VOT), is
of special interest in septic shock [30,31] or during
anesthesia [32] where the static variables may not be
affected despite disturbed circulation.
Arterial and venous vascular occlusion is achieved by a

pneumatic cuff on the arm inflated to pressures well
above the systolic arterial pressure, aiming to induce is-
chemia in the thenar muscles and changes in StO2

(Figures 2a,b). Considerable duration of obstruction is
required to obtain a reperfusion response that differenti-
ates healthy volunteers from resuscitated septic shock
patients [33]. However, the optimal way of performing
VOT is a matter of debate. Both the intensity and/or
duration of the VOT are a matter of controversy; some
authors advocate a time-targeted VOT [34,35], and
others advocate occlusion to a StO2-targeted VOT
[33,36]. The argument for time-targeted VOT is that
maximal ischemic vascular response is reached within a
few minutes of VOT [37] and that long vascular occlu-
sion times could lead to inability to complete VOT pro-
cedure due to subject discomfort [38]. On the other
hand, argument for StO2-targeted VOT, i.e., aiming for
StO2 of 40%, is that a standardized level of ischemia is
achieved, thus interindividual variations in response to
VOT giving varying level of ischemia can be minimized.
The rate of desaturation in the thenar muscles (Rdes;

% × sec-1) after vascular obstruction can be used to esti-
mate VO2 in the thenar muscles. The product of the ab-
solute value of Rdes and mean THI value quantifies the
amount of desaturated hemoglobin [16]. The latter can
be converted to thenar VO2 using the hemoglobin-
oxygen binding constant [39].
In addition, after cuff deflation there is a swift restor-

ation of blood flow that can be described in terms of
the derivate of the StO2 upslope (Rres; % × sec-1). During
this reactive hyperemia, the StO2 increases over base-
line levels, indicating postischemic vasodilatation and
capillary recruitment. The integral of the post reoxy-
genation StO2 curve over baseline quantifies reactive
hyperemia.
The VOT derived variables add to the robustness of

NIRS measurements. In a small study, Rdes, Rres, and re-
active hyperemia were all lower in septic shock patients
than in healthy controls [31]. Moreover, Rres had an in-
verse relationship to sequential organ failure assessment
(SOFA) and predicted mortality. Finally, a coefficient of
variation of less than 10% has been reported for Rres

[33].



Lipcsey et al. Annals of Intensive Care 2012, 2:11 Page 4 of 9
http://www.annalsofintensivecare.com/content/2/1/11
Venous occlusion is performed by inflating a pneu-
matic cuff above venous pressure on the arm [29]. In
this setting, NIRS shows increased THI due to vascular
congestion and eventually decreasing StO2. The venous
occlusion method also can be used to estimate local
VO2. Some have reported varying reproducibility of VO2

measurements with venous occlusion [40].

NIRS during the perioperative period
Although there is an extensive literature on NIRS used
before [41], during [42-45] or after surgery [46,47], rela-
tively little has been published on NIRSth during the
perioperative period. However, in a recent publication
Rres, measured in patients undergoing major abdominal
surgery patients, was decreased in fluid responsive
patients [32]. In the same study, fluid responsiveness
was detected by invasive methods, such as pulse pres-
sure variation.
Data are conflicting on the ability of NIRSth to detect

blood loss, an area of central interest in anesthesia. In
awake volunteers, a 500-ml blood loss at blood donation
did not lead to changes in NIRS variables [27]. On the
other hand, hemodynamically significant hypovolemia,
in awake volunteers, did decrease StO2 and THI [48]. A
possible explanation could be that tissue hemoglobin
and oxygenation at the thenar eminence are not affected
by blood loss within the capacity of the compensatory
mechanisms of hypovolemia.
In patients after cardiac surgery, StO2 and THI did not

correlate with global circulatory parameters, but changes
in body-finger temperature correlated with changes in
StO2 [49]. However, StO2 during the perioperative
period in cardiac surgery is lower in patients who de-
velop certain postoperative complications [50] than
those who do not [51]. StO2 at the thenar eminence does
not predict mortality in cardiac surgery [51] or surgical-
site infections in colon surgery [52].

Intensive care applications
In a general intensive care population with most
patients in resuscitated shock, StO2 and Rres appear
related to capillary refill time and central to peripheral
temperature gradient, but not to the etiology of shock
[53]. In a mixed group of patients with increased blood
lactate levels observed during 8 hours of resuscitation
[54], half had low StO2 (<70%) on admission. There
was no difference in systemic circulatory variables be-
tween patients with low or normal StO2, but SOFA
scores and acute physiology and chronic health evalu-
ation II scores were higher in patients with decreased
StO2. However, blood transfusion substantially increas-
ing blood hemoglobin did not increase StO2 in a mixed
group of stable patients [55] and the correlation be-
tween blood hemoglobin and tissue hemoglobin index
may be limited [31,55]. In patients with hypovolemic or
septic patients, more homogenous observations have
been described.

NIRS in hypovolemic shock
The rationale for monitoring peripheral tissue as the
thenar eminence in hypovolemic shock is centralization
of circulation to vital organs leading to decreased blood
flow in muscles [56]. In acute hemorrhage, activation
of the sympathetic nervous system [57] should decrease
thenar muscles blood flow, with increased oxygen ex-
traction and decreased tissue hemoglobin content. In
this setting, NIRSth may thus act as a sensor of the
vascular response to hypovolemia. In trauma patients
with severe shock, StO2 is lower in than in milder
grades of shock or in normal individuals [58], although
patients with shock can present with StO2 values as in
controls [38].
In a study of severe postpartum hemorrhage, the

StO2 range overlapped during and after hemorrhage,
but StO2 increased after control of bleeding [59]. The
lowest StO2 in the trauma bay has been shown to be as
good as the lowest systolic blood pressure at identifying
severe shock as defined by experienced clinicians [58].
Furthermore, StO2 within 1 hour of admission is lower
in trauma patients who develop multiorgan dysfunction
(MODS) or die, and a strongest predictor of MODS or
death than other diagnostic modalities [60,61]. Low
StO2 within 1 hour of admission was as sensitive as a
high base deficit in identifying patients who developed
MODS or died, although specificity for both was low
[62]. Finally, low StO2 within 1 hour of admission iden-
tifies trauma patients who will require blood transfusion
within the next 24 hours [63].
The discriminatory power of dynamic NIRS para-

meters, however, is of greater interest. Rres was lower in
trauma patients compared with controls with little over-
lap [38]. Moreover, low Rres predicted increased troponin
I levels in postpartum bleeding [59]. Thus, in hypovolemia,
low static StO2 predict adverse outcome but dynamic
NIRS parameters seem to be more promising.

NIRS in sepsis
In septic shock, although hypovolemia can be a finding
[64], there is a substantial microcirculatory disturbance
with closed capillaries, arteriovenous shunting, and
decreased flow [65]. As a result of these phenomena,
oxygen content in the vessels of the microcirculation
could be normal, making clinical interpretation of NIRS
data complex. These pathophysiologic changes may be
not necessarily mirrored by low StO2, but rather by low
Rres and impaired postischemic hyperemic response.
Several studies report a difference in StO2 between

healthy subjects and patients with severe sepsis or septic
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shock [16,30,34,66,67], whereas others do not [31,68,69].
Although variation in population characteristics could
partly explain these results, in all studies StO2 values
overlap between septic shock patients and healthy volun-
teers. This is not surprising because, in sepsis, StO2 in
sepsis can be at the higher end of the normal spectrum
or markedly low [65]. Dynamic NIRS parameters, how-
ever, improve the power of the method to distinguish
pathologic tissue oxygenation from normal. The Rdes of
the thenar muscles is slower in septic shock patients, in-
dicating a lower rate of tissue VO2 [16,31,68,69]. Fur-
thermore, Rdes varies with the severity of systemic
infections [69]. Similarly, Rres appears lower in septic
patients compared with healthy controls [16,30,31,34,70]
and decreases with increasing disease severity [30,31].
Rres ranges overlap minimally [30,68,70] or not at all
[34] when comparing healthy controls and septic
patients, and Rres improves as septic shock resolves [34].
Finally postischemic hyperemia is decreased in septic
patients compared with healthy controls [30,31]. Thus,
NIRSth could be a method for bedside assessment of the
microcirculation [71].
Monitoring global hemodynamics with NIRSth also has

attracted interest. In sepsis, treatment based on venous
saturation in the superior vena cava (ScvO2) [64] or the
pulmonary artery (SvO2) [72] is used, because these are
markers of global DO2 and VO2 balance [73]. Noninva-
sively obtained surrogates of ScvO2 or SvO2 would be
valuable. In this regard, StO2 correlates to ScvO2 [74] and
SvO2 [67] in patients with severe sepsis or septic shock;
however, correlation coefficients are relatively low. The
accuracy of estimating SvO2 could be substantially
improved by calculating the “NIRS-derived SvO2” [67]. In
severe sepsis and severe heart failure, StO2, however, did
not estimate SvO2 [75]. Still, data suggest that patients
with severe sepsis or septic shock and low StO2 also have
low ScvO2, suggesting hypodynamic circulation [74].
Variables related to DO2 may correlate with NIRS

parameters. Rres correlates with cardiac output and to a
lesser extent with blood lactate levels in septic patients
[34], whereas StO2 does not correlate with lactate or
base deficit [67]. A low StO2 predicts a very low DO2 in
early sepsis with high sensitivity and specificity [76];
however, moderately low DO2 does not correlate with
StO2. Neither was change in Rres correlated to change in
cardiac output in septic patients. Finally, StO2 did not
correlate with the severity of illness [67], but a StO2

<78% in resuscitated patients predicted mortality [77].
Low Rres correlates with organ failure [31] and Rres is
lower in nonsurvivors than survivors [34].
Recently, it has been reported that increasing blood

pressure with noradrenalin infusion from 65 mmHg to
85 mmHg in resuscitated sepsis patients normalized Rres

[78]. These patients, although seemingly resuscitated
according to the Surviving Sepsis Campaign guidelines,
could improve the thenar perfusion by achieving higher
mean arterial pressure [79]. These data could suggest
that NIRS can identify patients who benefit from treat-
ment beyond the traditional goals, thus the usefulness of
NIRS as a bedside tool to optimize tissue oxygenation
[71]. Thus, in resuscitated, septic patients, dynamic NIRS
of the thenar eminence provides information on micro-
circulation and trends could be used to guide treatment.

NIRS in miscellaneous conditions
In patients with chronic heart failure, thenar StO2, Rdes,
and Rres are low [80]. NIRSth parameters in these patients
improved after 6 hours of dobutamine or levosimendan
infusion [80], or 3 months of regular exercise training
[81]. Patients with cirrhosis demonstrated a supranor-
mal hyperemic response after vascular occlusion test
[82], which increases with increasing severity of liver
disease [82].

NIRS-derived and central hemodynamic parameters
The performance of NIRSth in estimating global circula-
tory parameters is highly dependent on the coupling be-
tween the circulation of the hand and the central
circulation. Static NIRS parameters, such as StO2,
should, in theory, be related to centrally measured circu-
latory parameters. However, this relationship has not
been demonstrated in general in critically ill patients
[54] or after cardiac surgery [49]. Although, global ven-
ous saturations have been described to correlate to StO2

in sepsis, this relationship is weak [67,74,83]. In sepsis,
correlation between StO2 and SvO2 can be improved
with correction equations [67]. Only substantial devia-
tions from normal DO2 levels are detected reliably by
StO2 in sepsis [76]. In these patients, Rres correlates with
cardiac index and blood lactate levels [34].
Low StO2 also predicts MODS in a mixed population

of critically ill patients [54], in trauma patients [60-62],
and in postcardiac surgery patients [51]. In sepsis, dy-
namic NIRS variables, such as Rdes [69] and Rres [31,34],
have been associated with organ failure.

Limitations
NIRSth monitors peripheral muscle as a marker of perfu-
sion elsewhere. The theoretical concern is whether the
small volume of distal muscle can be a good indicator of
the state of the tissue oxygenation in the rest of the body
and the vital organs. For example, local factors, such as
obstruction to flow by atherosclerosis, an arterial cath-
eter, or thrombosis after previous arterial catheterization,
could affect measurement. Although a brief report sug-
gests that catheterization of the radial artery in adult,
elective, surgical patients does not affect StO2 [84], this
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may not be the case in critically ill patients with circula-
tory failure.
StO2 is not the same as tissue blood flow in the tissue

or even oxygen supply. StO2 is affected by local VO2,
which could be affected by states that alter muscle me-
tabolism, such as muscle relaxants. The balance between
the metabolic state of the muscle and other vital organs
may vary between individuals and intraindividually dur-
ing the course of disease, affecting the global relevance of
some of the NIRS variables. Also tissues overlaying the
thenar muscles can influence measurements [85]. Very
dark skin with high melanin content or thick, edematous,
or injured connective tissues and low hemoglobin levels
also could pose problems with NIRS measurements [86].
There are many studies on NIRS in the perioperative

period and critical illness where many different sites are
monitored. Moreover, the methodology of NIRS is not
standardized [87,88]. Several probes are available on the
market, different occlusion protocols are used, and differ-
ent parts of downslope and the upslope StO2 curves at
vascular occlusion are used in calculations. Furthermore,
studies are conducted on patients in different phases of
disease, which may represent different pathophysiologic
situations. Hence, comparing results can be difficult
(Table 1).
Table 1 Summary of tissue saturation (StO2), desaturation rat
states in the literature

Study Controls

StO2 (%) Skarda et al. [16] 75 ± 15

Creteur et al. [30] 80 ± 7

Doerschug et al. [31] 84 ± 10

Mayeur et al. [33] 82 ± 4

Nanas et al. [68] 82 ± 6

Pareznik et al. [69] 83 (79–93)

Georger et al. [70] 82 ± 4

Podbregar et al. [75] 84 ± 4

Crookes et al. [58] 87 ± 6.4

Gómez et al. [38] 88 ± 5

Rdes (%/s) Mayeur et al. [33] 0.18 ± 0.05

Nanas et al. [68] 0.6 ± 0.18

Pareznik et al. [69] 0.62 (0.46-0.94)

Georger et al. [70] 0.22 ± 0.05

Gómez et al. [38]

Rres (%/s) Skarda et al. [16] 3.3 ± 0.7

Creteur et al. [30] 4.8 ± 1.6

Doerschug et al. [31] 4.7 ± 1.1

Mayeur et al. [33] 5.4 ± 1.1

Nanas et al. [68] 12 ± 3.7

Georger et al. [70] 2.3 ± 0.5

Gómez et al. [38] 5.4 ± 1.3

Data are given as mean ± SD or median (range).
Static NIRS variables are influenced by the temperature
of the hands compared with core temperature [53] and
could be a reason for the overlap between patients
with normal and abnormal peripheral circulation. In
anesthesia with volatile anaesthetics, vasodilatation is a
common feature [89] and monitoring StO2 would be
expected to be less affected by peripheral vascular tone.
The question of whether organ failure in sepsis is

mostly dependent on disturbed mitochondrial oxygen
metabolism [90-92], or on limited DO2 [93,94], is a mat-
ter of debate. NIRS does not assess mitochondrial oxy-
gen metabolism in sepsis, although decreased tissue
VO2, Rdes, could imply mitochondrial dysfunction. How-
ever, decreased tissue VO2 also could depend on shunt-
ing of delivered oxygen [65]. This phenomenon is not
measured by NIRS either. However, with all of its limita-
tions, NIRSth is a noninvasive method that, given that
supporting data will be available, could become part of
anesthetic and intensive care monitoring in a manner
similar to pulse oximetry.
Conclusions NIRSth eminence estimates StO2 in per-

ipheral muscles. In hypovolemia, such StO2 is decreased
and relates to severity of disease and outcome. Hence,
StO2 measurements could aid with the clinical manage-
ment of these patients. In unresuscitated or inadequately
e (Rdes), and resaturation (Rres) values in different shock

Severe sepsis/septic shock Hemorrhagic shock

87 ± 6

72 ± 11

82 ± 13

80 ± 10

76 ± 17

89 (65–92)

75 ± 9

90 ± 7

45± 27

86 ± 9

0.16 ± 0.06

0.25 ± 0.1

0.12 (0.06-0.18)

0.16 ± 0.07

0.17 ± 0.06 0.15 ± 0.09

2.3 ± 1

2.3 ± 1.3

2.3 ± 1.5

2.3 ± 1.4

2.4 ± 1.7

1 ± 0.6

2.5 ± 1.3
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resuscitated septic shock, Rdes and Rres are decreased, indi-
cating disturbed tissue oxygen metabolism and micro-
vascular reserve. The pathologic findings in these
dynamic NIRS parameters could be of value in resusci-
tated sepsis where macrocirculatory failure has been
corrected and during anesthesia to monitor adequacy of
peripheral perfusion and fluid status. Despite its limita-
tions, NIRSth takes monitoring from global to local
level. The existing literature on NIRSth is mainly fo-
cused on validation of this technique. Future studies
that implement NIRSth into treatment algorithms in
anesthesia and intensive care would be valuable to de-
fine the place for this monitoring modality in daily man-
agement of critically ill patients.
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