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Community detection and analysis is an important methodology for understanding the organization of

various real-world networks and has applications in problems as diverse as consensus formation in social

communities or the identification of functional modules in biochemical networks. Currently used algorithms

that identify the community structures in large-scale real-world networks require a priori information such as

the number and sizes of communities or are computationally expensive. In this paper we investigate a simple

label propagation algorithm that uses the network structure alone as its guide and requires neither optimization

of a predefined objective function nor prior information about the communities. In our algorithm every node is

initialized with a unique label and at every step each node adopts the label that most of its neighbors currently

have. In this iterative process densely connected groups of nodes form a consensus on a unique label to form

communities. We validate the algorithm by applying it to networks whose community structures are known.

We also demonstrate that the algorithm takes an almost linear time and hence it is computationally less

expensive than what was possible so far.
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I. INTRODUCTION

A wide variety of complex systems can be represented as

networks. For example, the World Wide Web �WWW� is a

network of web pages interconnected by hyperlinks; social

networks are represented by people as nodes and their rela-

tionships by edges; and biological networks are usually rep-

resented by biochemical molecules as nodes and the reac-

tions between them by edges. Most of the research in the

recent past focused on understanding the evolution and orga-

nization of such networks and the effect of network topology

on the dynamics and behaviors of the system �1–4�. Finding

community structures in networks is another step toward un-

derstanding the complex systems they represent.

A community in a network is a group of nodes that are

similar to each other and dissimilar from the rest of the net-

work. It is usually thought of as a group where nodes are

densely interconnected and sparsely connected to other parts

of the network �4–6�. There is no universally accepted defi-

nition for a community, but it is well known that most real-

world networks display community structures. There has

been a lot of effort recently in defining, detecting, and iden-

tifying communities in real-world networks �5,7–15�. The

goal of a community detection algorithm is to find groups of

nodes of interest in a given network. For example, a commu-

nity in the WWW network indicates a similarity among

nodes in the group. Hence if we know the information pro-

vided by a small number of web pages, then it can be ex-

trapolated to other web pages in the same community. Com-

munities in social networks can provide insights about

common characteristics or beliefs among people that makes

them different from other communities. In biomolecular in-

teraction networks, segregating nodes into functional mod-

ules can help identify the roles or functions of individual

molecules �10�. Further, in many large-scale real-world net-

works, communities can have distinct properties which are

lost in their combined analysis �1�.

Community detection is similar to the well studied net-
work partitioning problems �16–18�. The network partition-
ing problem is in general defined as the partitioning of a
network into c �a fixed constant� groups of approximately
equal sizes, minimizing the number of edges between
groups. This problem is NP-hard and efficient heuristic
methods have been developed over years to solve the prob-
lem �16–20�. Much of this work is motivated by engineering
applications including very large scale integrated �VLSI� cir-
cuit layout designs and mapping of parallel computations.
Thompson �21� showed that one of the important factors
affecting the minimum layout area of a given circuit in a chip
is its bisection width. Also, to enhance the performance of a
computational algorithm, where nodes represent computa-
tions and edges represent communications, the nodes are di-
vided equally among the processors so that the communica-
tions between them are minimized.

The goal of a network partitioning algorithm is to divide
any given network into approximately equal size groups ir-
respective of node similarities. Community detection, on the
other hand, finds groups that either have an inherent or an
externally specified notion of similarity among nodes within
groups. Furthermore, the number of communities in a net-

work and their sizes are not known beforehand and they are

established by the community detection algorithm.

Many algorithms have been proposed to find community

structures in networks. Hierarchical methods divide networks

into communities, successively, based on a dissimilarity

measure, leading to a series of partitions from the entire net-

work to singleton communities �5,15�. Similarly one can also

successively group together smaller communities based on a

similarity measure leading again to a series of partitions

�22,23�. Due to the wide range of partitions, structural indi-

ces that measure the strength of community structures are

used in determining the most relevant ones. Simulation based

methods are also often used to find partitions with a strong

community structure �10,24�. Spectral �17,25� and flow

maximization �cut minimization� methods �9,26� have been
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successfully used in dividing networks into two or more

communities.

In this paper, we propose a localized community detection

algorithm based on label propagation. Each node is initial-

ized with a unique label and at every iteration of the algo-

rithm, each node adopts a label that a maximum number of

its neighbors have, with ties broken uniformly randomly. As

the labels propagate through the network in this manner,

densely connected groups of nodes form a consensus on their

labels. At the end of the algorithm, nodes having the same

labels are grouped together as communities. As we will

show, the advantage of this algorithm over the other methods

is its simplicity and time efficiency. The algorithm uses the

network structure to guide its progress and does not optimize

any specific chosen measure of community strengths. Fur-

thermore, the number of communities and their sizes are not

known a priori and are determined at the end of the algo-

rithm. We will show that the community structures obtained

by applying the algorithm on previously considered net-

works, such as Zachary’s karate club friendship network and

the U.S. college football network, are in agreement with the

actual communities present in these networks.

II. DEFINITIONS AND PREVIOUS WORK

As mentioned earlier, there is no unique definition of a

community. One of the simplest definitions of a community

is a clique, that is, a group of nodes where there is an edge

between every pair of nodes. Cliques capture the intuitive

notion of a community �6� where every node is related to

every other node and hence have strong similarities with

each other. An extension of this definition was used by Palla

et al. in �14�, who define a community as a chain of adjacent

cliques. They define two k cliques �cliques on k nodes� to be

adjacent if they share k−1 nodes. These definitions are strict

in the sense that the absence of even one edge implies that a

clique �and hence the community� no longer exists. k clans

and k clubs are more relaxed definitions while still maintain-

ing a high density of edges within communities �14�. A group

of nodes is said to form a k clan if the shortest path length

between any pair of nodes, or the diameter of the group, is at

most k. Here the shortest path only uses the nodes within the

group. A k club is defined similarly, except that the subnet-

work induced by the group of nodes is a maximal subgraph

of diameter k in the network.

Definitions based on degrees �number of edges� of nodes

within the group relative to their degrees outside the group

were given by Radicchi et al. �15�. If di
in and di

out are the

degrees of node i within and outside of its group U, then U is

said to form a strong community if di
in

�di
out , ∀ i�U. If

�i�Udi
in

��i�Udi
out, then U is a community in the weak

sense. Other definitions based on degrees of nodes can be

found in �6�.
There can exist many different partitions of nodes in the

network that satisfy a given definition of community. In most

cases �4,22,26–28�, the groups of nodes found by a commu-

nity detection algorithm are assumed to be communities ir-

respective of whether they satisfy a specific definition or not.

To find the best community structures among them we need

a measure that can quantify the strength of a community

obtained. One of the ways to measure the strength of a com-

munity is by comparing the density of edges observed within

the community with the density of edges in the network as a

whole �6�. If the number of edges observed within a commu-

nity U is eU, then under the assumption that the edges in the

network are uniformly distributed among pairs of nodes, we

can calculate the probability P that the expected number of

edges within U is larger than eU. If P is small, then the

observed density in the community is greater than the ex-

pected value. A similar definition was recently adopted by

Newman �13�, where the comparison is between the ob-

served density of edges within communities and the expected

density of edges within the same communities in randomized

networks that nevertheless maintain every node’s degree.

This was termed the modularity measure Q, where Q

=�i�eii−ai
2� , ∀ i. eii is the observed fraction of edges

within group i and ai
2 is the expected fraction of edges within

the same group i. Note that if eij is the fraction of edges in

the network that run between group i and group j, then ai

=� jeij. Q=0 implies that the density of edges within groups

in a given partition is no more than what would be expected

by a random chance. Q closer to 1 indicates stronger com-

munity structures.

Given a network with n nodes and m edges N�n ,m�, any

community detection algorithm finds subgroups of nodes.

Let C1 ,C2 , . . . ,Cp be the communities found. In most algo-

rithms, the communities found satisfy the following con-

straints: �i� Ci�C j =� for i� j and �ii� �iCi spans the node

set in N.

A notable exception is Palla et al. �14� who define com-

munities as a chain of adjacent k cliques and allow commu-

nity overlaps. It takes exponential time to find all such com-

munities in the network. They use these sets to study the

overlapping structure of communities in social and biological

networks. By forming another network where a community

is represented by a node and edges between nodes indicates

the presence of overlap, they show that such networks are

also heterogeneous �fat-tailed� in their node degree distribu-

tions. Furthermore, if a community has overlapping regions

with two other communities, then the neighboring communi-

ties are also highly likely to overlap.

The number of different partitions of a network N�n ,m�

into just two disjoint subsets is 2n and increases exponen-

tially with n. Hence we need a quick way to find only rel-

evant partitions. Girvan and Newman �5� proposed a divisive

algorithm based on the concept of edge betweenness central-

ity, that is, the number of shortest paths among all pairs of

nodes in the network passing through that edge. The main

idea here is that edges that run between communities have

higher betweenness values than those that lie within commu-

nities. By successively recalculating and removing edges

with highest betweenness values, the network breaks down

into disjoint connected components. The algorithm continues

until all edges are removed from the network. Each step of

the algorithm takes O�mn� time and since there are m edges

to be removed, the worst case running time is O�m2n�. As the

algorithm proceeds one can construct a dendrogram �see

Fig. 1� depicting the breaking down of the network into dis-
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joint connected components. Hence for any given h such that
1�h�n, at most one partition of the network into h disjoint
subgroups is found. All such partitions in the dendrogram are
depicted, irrespective of whether or not the subgroups in
each partition represent a community. Radicchi et al. �15�
propose another divisive algorithm where the dendrograms
are modified to reflect only those groups that satisfy a spe-
cific definition of a community. Further, instead of edge be-
tweenness centrality, they use a local measure called edge
clustering coefficient as a criterion for removing edges. The
edge clustering coefficient is defined as the fraction of num-
ber of triangles a given edge participates in, to the total num-
ber of possible such triangles. The clustering coefficient of
an edge is expected to be the least for those running between
communities and hence the algorithm proceeds by removing
edges with low clustering coefficients. The total running time

of this divisive algorithm is O� m4

n2
�.

Similarly one can also define a topological similarity be-
tween nodes and perform an agglomerative hierarchical clus-
tering �23,29�. In this case, we begin with nodes in n differ-
ent communities and group together communities that are the
most similar. Newman �22� proposed an amalgamation
method �similar to agglomerative methods� using the modu-
larity measure Q, where at each step those two communities
are grouped together that give rise to the maximum increase
or smallest decrease in Q. This process can also be repre-
sented as a dendrogram and one can cut across the dendro-
gram to find the partition corresponding to the maximum
value of Q �see Fig. 1�. At each step of the algorithm one
compares at most m pairs of groups and requires at most
O�n� time to update the Q value. The algorithm continues

until all the n nodes are in one group and hence the worst

case running time of the algorithm is O�n�m+n��. The algo-

rithm of Clauset et al. �30� is an adaptation of this agglom-

erative hierarchical method, but uses a clever data structure

to store and retrieve information required to update Q. In

effect, they reduce the time complexity of the algorithm to

O�md log n�, where d is the depth of the dendrogram ob-

tained. In networks that have a hierarchical structure with

communities at many scales, d� log n. There have also been

other heuristic and simulation based methods that find parti-

tions of a given network maximizing the modularity measure

Q �10,24�.

Label flooding algorithms have also been used in detect-
ing communities in networks �27,28�. In �27�, the authors
propose a local community detection method where a node is
initialized with a label which then propagates step by step
via the neighbors until it reaches the end of the community,
where the number of edges proceeding outward from the
community drops below a threshold value. After finding the
local communities at all nodes in the network, an n�n ma-

trix is formed, where the ijth entry is 1 if node j belongs to

the community started from i and 0 otherwise. The rows of

the matrix are then rearranged such that the similar ones are

closer to each other. Then, starting from the first row they

successively include all the rows into a community until the

distance between two successive rows is large and above a

threshold value. After this a new community is formed and

the process is continued. Forming the rows of the matrix and

rearranging them requires O�n3� time and hence the algo-

rithm is time-consuming.

Wu and Huberman �26� propose a linear time �O�m+n��

algorithm that can divide a given network into two commu-

nities. Suppose that one can find two nodes �x and y� that

belong to two different communities, then they are initialized

with values 1 and 0, respectively. All other nodes are initial-

ized with value 0. Then at each step of the algorithm, all

nodes �except x and y� update their values as follows. If

z1 ,z2 , . . . ,zk are neighbors of a node z, then the value Vz is

updated as
Vz1

+Vz2
+¯+Vzk

k
. This process continues until conver-

gence. The authors show that the iterative procedure con-

verges to a unique value, and the convergence of the algo-

rithm does not depend on the size n of the network. Once the

required convergence is obtained, the values are sorted be-

tween 0 and 1. Going through the spectrum of values in

descending order, there will be a sudden drop at the border of

two communities. This gap is used in identifying the two

communities in the network. A similar approach was used by

Flake et al. �9� to find the communities in the WWW net-

work. Here, given a small set of nodes �source nodes�, they

form a network of web pages that are within a bounded dis-

tance from the sources. Then by designating �or artificially

introducing� sink nodes, they solve for the maximum flow

from the sources to the sinks. In doing so one can then find

the minimum cut corresponding to the maximum flow. The

connected component of the network containing the source

nodes after the removal of the cut set is then the required

community.

Spectral bisection methods �25� have been used exten-

sively to divide a network into two groups so that the number

of edges between groups is minimized. Eigenvectors of the

Laplacian matrix �L� of a given network are used in the

bisection process. It can be shown that L has only real non-

negative eigenvalues �0��1��2� ¯ ��n� and minimizing

the number of edges between groups is the same as minimiz-

ing the positive linear combination M =�isi
2
�i, where si

=ui
Tz and ui is the eigenvector of L corresponding to �i. z is

the decision vector whose ith entry can be either 1 or −1

denoting to which of the two groups node i belongs. To

minimize M, z is chosen as parallel as possible to the eigen-

vector corresponding to the second smallest eigenvalue. �The

smallest eigenvalue is 0 and choosing z parallel to the corre-

FIG. 1. An illustration of a dendrogram which is a tree repre-

sentation of the order in which nodes are segregated into different

groups or communities.
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sponding eigenvector gives a trivial solution.� This bisection

method has been extended to finding communities in net-

works that maximize the modularity measure Q �25�. Q can

be written as a positive linear combination of eigenvalues of

the matrix B, where B is defined as the difference of the two

matrices A and P. Aij is the observed number of edges be-

tween nodes i and j and Pij is the expected number of edges

between i and j if the edges fall randomly between nodes,

while maintaining the degree of each node. Since Q has to be

maximized, z is chosen as parallel as possible to the eigen-

vector corresponding to the largest eigenvalue.

Since many real-world complex networks are large in

size, time efficiency of the community detection algorithm is

an important consideration. When no a priori information is

available about the likely communities in a given network,

finding partitions that optimize a chosen measure of commu-

nity strength is normally used. Our goal in this paper is to

develop a simple time-efficient algorithm that requires no

prior information �such as number, sizes, or central nodes of

the communities� and uses only the network structure to

guide the community detection. The proposed mechanism for

such an algorithm which does not optimize any specific mea-

sure or function is detailed in the following section.

III. COMMUNITY DETECTION USING LABEL

PROPAGATION

The main idea behind our label propagation algorithm is

the following. Suppose that a node x has neighbors

x1 ,x2 , . . . ,xk and that each neighbor carries a label denoting

the community to which they belong. Then x determines its

community based on the labels of its neighbors. We assume

that each node in the network chooses to join the community

to which the maximum number of its neighbors belong, with

ties broken uniformly randomly. We initialize every node

with unique labels and let the labels propagate through the

network. As the labels propagate, densely connected groups

of nodes quickly reach a consensus on a unique label �see

Fig. 2�. When many such dense �consensus� groups are cre-

ated throughout the network, they continue to expand out-

wards until it is possible to do so. At the end of the propa-

gation process, nodes having the same labels are grouped

together as one community.

We perform this process iteratively, where at every step,

each node updates its label based on the labels of its neigh-

bors. The updating process can either be synchronous or

asynchronous. In synchronous updating, node x at the tth

iteration updates its label based on the labels of its neighbors

at iteration t−1. Hence Cx�t�= f(Cx1
�t−1� , . . . ,Cxk

�t−1�),

where cx�t� is the label of node x at time t. The problem,

however, is that subgraphs in the network that are bipartite or

nearly bipartite in structure lead to oscillations of labels �see

Fig. 3�. This is especially true in cases where communities

take the form of a star graph. Hence we use asynchronous

updating where Cx�t�= f(Cxi1
�t� , . . . ,Cxim

�t� ,Cxi�m+1�
�t

−1� , . . . ,Cxik
�t−1�) and xi1 , . . . ,xim are neighbors of x that

have already been updated in the current iteration while

xi�m+1� , . . . ,xik are neighbors that are not yet updated in the

current iteration. The order in which all the n nodes in the

network are updated at each iteration is chosen randomly.

Note that while we have n different labels at the beginning of

the algorithm, the number of labels reduces over iterations,

resulting in only as many unique labels as there are commu-

nities.

Ideally the iterative process should continue until no node

in the network changes its label. However, there could be

nodes in the network that have an equal maximum number of

neighbors in two or more communities. Since we break ties

randomly among the possible candidates, the labels on such

nodes could change over iterations even if the labels of their

neighbors remain constant. Hence we perform the iterative

process until every node in the network has a label to which

the maximum number of its neighbors belongs. By doing so

we obtain a partition of the network into disjoint communi-

ties, where every node has at least as many neighbors within

its community as it has with any other community. If

C1 , . . . ,Cp are the labels that are currently active in the net-

work and di
Cj is the number of neighbors node i has with

nodes of label C j, then the algorithm is stopped when for

every node i,

If i has label Cm then di
Cm � di

Cj ∀ j .

At the end of the iterative process nodes with the same

label are grouped together as communities. Our stop criterion

characterizing the obtained communities is similar �but not

identical� to the definition of strong communities proposed

by Radicchi et al. �15�. While strong communities require

each node to have strictly more neighbors within its commu-

nity than outside, the communities obtained by the label

propagation process require each node to have at least as

many neighbors within its community as it has with each of

the other communities. We can describe our proposed label

propagation algorithm in the following steps.

�i� Initialize the labels at all nodes in the network. For a

given node x, Cx�0�=x.

FIG. 2. Nodes are updated one by one as we move from left to

right. Due to a high density of edges �highest possible in this case�,

all nodes acquire the same label.

FIG. 3. An example of a bi-partite network in which the label

sets of the two parts are disjoint. In this case, due to the choices

made by the nodes at step t, the labels on the nodes oscillate be-

tween a and b.
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�ii� Set t=1.
�iii� Arrange the nodes in the network in a random order

and set it to X.

�iv� For each x�X chosen in that specific order, let

Cx�t�= f(Cxi1
�t� , . . . ,Cxim

�t� ,Cxi�m+1�
�t−1� , . . . ,Cxik

�t−1�). f

here returns the label occurring with the highest frequency

among neighbors and ties are broken uniformly randomly.

�v� If every node has a label that the maximum number of

their neighbors have, then stop the algorithm. Else, set t= t

+1 and go to �iii�.
Since we begin the algorithm with each node carrying a

unique label, the first few iterations result in various small

pockets �dense regions� of nodes forming a consensus �ac-

quiring the same label�. These consensus groups then gain

momentum and try to acquire more nodes to strengthen the

group. However, when a consensus group reaches the border

of another consensus group, they start to compete for mem-

bers. The within-group interactions of the nodes can counter-

act the pressures from outside if there are less between-group

edges than within-group edges. The algorithm converges,

and the final communities are identified, when a global con-

sensus among groups is reached. Note that even though the

network as one single community satisfies the stop criterion,

this process of group formation and competition discourages

all nodes from acquiring the same label in the case of het-

erogeneous networks with an underlying community struc-

ture. In the case of homogeneous networks such as Erdős-

Rényi random graphs �31� that do not have community

structures, the label propagation algorithm identifies the gi-

ant connected component of these graphs as a single com-

munity.

Our stop criterion is only a condition and not a measure

that is being maximized or minimized. Consequently there is

no unique solution and more than one distinct partition of a

network into groups satisfies the stop criterion �see Figs. 4

and 5�. Since the algorithm breaks ties uniformly randomly,

early on in the iterative process when possibilities of ties are

high, a node may vote in favor of a randomly chosen com-

munity. As a result, multiple community structures are reach-

able from the same initial condition.

If we know the set of nodes in the network that are likely

to act as centers of attraction for their respective communi-

ties, then it would be sufficient to initialize such nodes with

unique labels, leaving the remaining nodes unlabeled. In this

case when we apply the proposed algorithm the unlabeled

nodes will have a tendency to acquire labels from their clos-

est attractor and join that community. Also, restricting the set

of nodes initialized with labels will reduce the range of pos-

sible solutions that the algorithm can produce. Since it is

generally difficult to identify nodes that are central to a com-

munity before identifying the community itself, here we give

all nodes equal importance at the beginning of the algorithm

and provide them each with unique labels.

We apply our algorithm to the following networks. The

first one is Zachary’s karate club network which is a network

of friendship among 34 members of a karate club �32�. Over

a period of time the club split into two factions due to lead-

ership issues and each member joined one of the two fac-

tions. The second network that we consider is the U.S. col-

lege football network that consists of 115 college teams

represented as nodes and has edges between teams that

played each other during the regular season in the year 2000

�5�. The teams are divided into conferences �communities�
and each team plays more games within its own conference

than interconference games. Next is the coauthorship net-

work of 16 726 scientists who have posted preprints on the

condensed matter archive at www.arxiv.org; the edges con-

nect scientists who coauthored a paper �33�. It has been

FIG. 4. �a�–�c� are three different community structures identi-

fied by the algorithm on Zachary’s karate club network. The com-

munities can be identified by their shades of gray colors.
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shown that communities in coauthorship networks are made

up by researchers working in the same field or are research

groups �22�. Along similar lines one can expect an actor

collaboration network to have communities containing actors

of a similar genre. Here we consider an actor collaboration

network of 374 511 nodes and edges running between actors

who have acted in at least one movie together �3�. We also

consider a protein-protein interaction network �34� consist-

ing of 2115 nodes. The communities are likely to reflect

functional groupings of this network. And finally we con-

sider a subset of the WWW� consisting of 325 729 web

pages within the nd.edu domain and hyperlinks interconnect-

ing them �2�. Communities here are expected to be groups of

pages on similar topics.

A. Multiple community structures

Figure 4 shows three different solutions obtained for the

Zachary’s karate club network and Fig. 5 shows two different

solutions obtained for the U.S. college football network. We

will show that even though we obtain different solutions

�community structure�, they are similar to each other. To find

the percentage of nodes classified in the same group in two

different solutions, we form a matrix M, where Mij is the

number of nodes common to community i in one solution
and community j in the other solution. Then we calculate

fsame=
1

2
��imaxj�Mij�+� jmaxi�Mij��

100

n
. Given a network

whose communities are already known, a community detec-
tion algorithm is commonly evaluated based on the percent-
age �or number� of nodes that are grouped into the correct
communities �22,26�. fsame is similar, whereby fixing one so-
lution we evaluate how close the other solution is to the fixed
one and vice versa. While fsame can identify how close one
solution is to another, it is, however, not sensitive to the
seriousness of errors. For example, when few nodes from
several different communities in one solution are fused to-
gether as a single community in another solution, the value
of fsame does not change much. Hence we also use Jaccard’s
index which has been shown to be more sensitive to such
differences between solutions �35�. If a stands for the pairs
of nodes that are classified in the same community in both
solutions, b for pairs of nodes that are in the same commu-

nity in the first solution and different in the second, and c

vice versa, then Jaccard’s index is defined as
a

a+b+c
. It takes

values between 0 and 1, with higher values indicating stron-

ger similarity between the two solutions. Figure 6 shows the

similarities between solutions obtained from applying the al-

gorithm five different times on the same network. For a

FIG. 5. The grouping of U.S. college football teams into conferences are shown in �a� and �b�. Each solution ��a� and �b�� is an aggregate

of five different solutions obtained by applying the algorithm on the college football network.
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given network, the ijth entry in the lower triangle of the table

is the Jaccard index for solutions i and j, while the ijth entry

in the upper triangle is the measure fsame for solutions i and j.

We can see that the solutions obtained from the five different

runs are similar, implying that the proposed label propaga-

tion algorithm can effectively identify the community struc-

ture of any given network. Moreover, the tight range and

high values of the modularity measure Q obtained for the

five solutions �Fig. 6� suggest that the partitions denote sig-

nificant community structures.

B. Aggregate

It is difficult to pick one solution as the best among sev-

eral different ones. Furthermore, one solution may be able to

identify a community that was not discovered in the other

and vice versa. Hence an aggregate of all the different solu-

tions can provide a community structure containing the most

useful information. In our case a solution is a set of labels on

the nodes in the network and all nodes having the same label

form a community. Given two different solutions, we com-

bine them as follows; let C1 denote the labels on the nodes in
solution 1 and C2 denote the labels on the nodes in solution
2. Then, for a given node x, we define a new label as Cx

= �Cx
1 ,Cx

2� �see Fig. 7�. Starting with a network initialized

with labels C we perform the iterative process of label propa-
gation until every node in the network is in a community to
which the maximum number of its neighbors belongs. As
and when new solutions are available they are combined one
by one with the aggregate solution to form a new aggregate
solution. Note that when we aggregate two solutions, if a
community T in one solution is broken into two �or more�
different communities S1 and S2 in the other, then by defining

the new labels as described above we are showing prefer-

ences to the smaller communities S1 and S2 over T. This is

only one of the many ways in which different solutions can

be aggregated. For other methods of aggregation used in

community detection refer to �26,36,37�.
Figure 8 shows the similarities between aggregate solu-

tions. The algorithm was applied on each network 30 times

and the solutions were recorded. An ijth entry is the Jaccard

index for the aggregate of the first 5i solutions with the ag-

FIG. 6. Similarities between five different solutions obtained for each network is tabulated. An entry in the ith row and jth column in the

lower triangle of each of the tables is the Jaccard’s similarity index for solutions i and j of the corresponding network. Entries in the ith row

and jth column in the upper triangle of the tables are the values of the measure fsame for solutions i and j in the respective networks. The

range of modularity values Q obtained for the five different solutions is also given for each network.
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gregate of the first 5j solutions. We observe that the aggre-

gate solutions are very similar in nature and hence a small set

of solutions �5 in this case� can offer as much insight about

the community structure of a network as can a larger solution

set. In particular, the WWW network which had low simi-

larities between individual solutions �Jaccard index range

0.4883–0.5931�, shows considerably improved similarities

�Jaccard index range 0.6604–0.7196� between aggregate so-

lutions.

IV. VALIDATION OF THE COMMUNITY DETECTION

ALGORITHM

Since we know the communities present in Zachary’s ka-

rate club and the U.S. football network, we explicitly verify

the accuracy of the algorithm by applying it on these net-

works. We find that the algorithm can effectively unearth the

underlying community structures in the respective networks.

The community structures obtained by using our algorithm

on Zachary’s karate club network is shown in Fig. 4. While

all three solutions are outcomes of the algorithm applied to

the network, Fig. 4�b� reflects the true solution �32�.
Figure 5 gives two solutions for the U.S. college football

network. The algorithm was applied to this network ten dif-

ferent times and the two solutions are the aggregate of the

first five and remaining five solutions. In both Figs. 5�a� and

5�b�, we can see that the algorithm can effectively identify

all the conferences with the exception of Sunbelt. The reason

for the discrepancy is the following: among the seven teams

FIG. 7. An example of aggregating two community structure solutions. t1, t2, t3, and t4 are labels on the nodes in a network obtained from

solution 1 and denoted as C1. The network is partitioned into groups of nodes having the same labels. s1, s2, and s3 are labels on the nodes

in the same network obtained from solution 2 and denoted as C2. All nodes that had label t1 in solution 1 are split into two groups with each

group having labels s1 and s2, respectively, while all nodes with labels t3, t4, or t5 in solution 1 have labels s3 in solution 2. C represents the

new labels defined from C1 and C2.

FIG. 8. Similarities between aggregate solutions obtained for each network. An entry in the ith row and jth column in the tables is

Jaccard’s similarity index between the aggregate of the first 5i and the first 5j solutions. While similarities between solutions for the karate

club friendship network and the protein-protein interaction network are represented in the lower triangles of the first two tables, the entries

in the upper triangle of these two tables are for the U.S. college football network and the coauthorship network, respectively. The similarities

between aggregate solutions for the WWW is given in the lower triangle of the third table.
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in the Sunbelt conference, four teams �Sunbelt4 � �North-

Texas, Arkansas State, Idaho, New Mexico State� have all

played each other and three teams �Sunbelt3 ��Louisiana-

Monroe, Middle-Tennessee State, Louisiana-Lafayette�� have

again played one another. There is only one game connecting

Sunbelt4 and Sunbelt3, namely, the game between North-

Texas and Louisiana-Lafayette. However, four teams from

the Sunbelt conference �two each from Sunbelt4 and

Sunbelt3� have together played with seven different teams in

the Southeastern conference. Hence we have the Sunbelt

conference grouped together with the Southeastern confer-

ence in Fig. 5�a�. In Fig. 5�b�, the Sunbelt conference breaks

into two, with Sunbelt3 grouped together with Southeastern

and Sunbelt4 grouped with an independent team �Utah State�,
a team from Western Atlantic �Boise State�, and the Moun-

tain West conference. The latter grouping is due to the fact

that every member of Sunbelt4 has played with Utah State

and with Boise State, who have together played five games

with four different teams in Mountain West. There are also

five independent teams which do not belong to any specific

conference and are hence assigned by the algorithm to a

conference where they have played the maximum number of

their games.

V. TIME COMPLEXITY

It takes a near-linear time for the algorithm to run to its

completion. Initializing every node with unique labels re-

quires O�n� time. Each iteration of the label propagation al-

gorithm takes linear time in the number of edges �O�m��. At

each node x, we first group the neighbors according to their

labels �O�dx��. We then pick the group of maximum size and

assign its label to x, requiring a worst-case time of O�dx�.

This process is repeated at all nodes and hence an overall

time is O�m� for each iteration.

As the number of iterations increases, the number of

nodes that are classified correctly increases. Here we assume

that a node is classified correctly if it has a label that the

maximum number of its neighbors have. From our experi-

ments, we found that irrespective of n, 95% of the nodes or

more are classified correctly by the end of iteration 5. Even

in the case of Erdős-Rényi random graphs �31� with n be-

tween 100 and 10 000 and average degree 4, which do not

have community structures, by iteration 5, 95% of the nodes

or more are classified correctly. In this case, the algorithm

identified all nodes in the giant connected component as be-

longing to one community.

When the algorithm terminates it is possible that two or

more disconnected groups of nodes have the same label �the

groups are connected in the network via other nodes of dif-

ferent labels�. This happens when two or more neighbors of

a node receive its label and pass the labels in different direc-

tions, which ultimately leads to different communities adopt-

ing the same label. In such cases, after the algorithm termi-

nates one can run a simple breadth-first search on the

subnetworks of each individual group to separate the discon-

nected communities. This requires an overall time of O�m

+n�. When aggregating solutions, however, we rarely find

disconnected groups within communities.

VI. DISCUSSION AND CONCLUSIONS

The proposed label propagation process uses only the net-

work structure to guide its progress and requires no external

parameter settings. Each node makes its own decision re-

garding the community to which it belongs based on the

communities of its immediate neighbors. These localized de-

cisions lead to the emergence of community structures in a

given network. We verified the accuracy of community struc-

tures found by the algorithm using Zachary’s karate club and

the U.S. college football networks. Furthermore, the modu-

larity measure Q was significant for all the solutions ob-

tained, indicating the effectiveness of the algorithm. Each

iteration takes a linear time O�m�, and although one can ob-

serve the algorithm beginning to converge significantly after

about five iterations, the mathematical convergence is hard to

prove. Other algorithms that run in a similar time scale in-

clude the algorithm of Wu and Huberman �26� �with time

complexity O�m+n�� and that of Clauset et al. �30� which

has a running time of O�n log2 n�.

The algorithm of Wu and Huberman is used to break a

given network into only two communities. In this iterative

process two chosen nodes are initialized with scalar values 1

and 0 and every node updates its value as the average of the

values of its neighbors. At convergence, if a maximum num-

ber of a node’s neighbors have values above a given thresh-

old then so will the node. Hence a node tends to be classified

to a community to which the maximum number of its neigh-

bors belong. Similarly if in our algorithm we choose the

same two nodes and provide them with two distinct labels

�leaving the others unlabeled�, the label propagation process

will yield similar communities as the Wu and Huberman al-

gorithm. However, to find more than two communities in the

network, the Wu and Huberman algorithm needs to know a

priori how many communities there are in the network. Fur-

thermore, if one knows that there are c communities in the

network, the algorithm proposed by Wu and Huberman can

only find communities that are approximately of the same

size, that is,
n

c
, and it is not possible to find communities with

heterogeneous sizes. The main advantage of our proposed

label propagation algorithm over the Wu and Huberman al-

gorithm is that we do not need a priori information on the

number and sizes of the communities in a given network;

indeed such information usually is not available for real-

world networks. Also, our algorithm does not make restric-

tions on the community sizes. It determines such information

about the communities by using the network structure alone.

In our test networks, the label propagation algorithm

found communities whose sizes follow approximately a

power-law distribution P�S�s��s−� with the exponent �

ranging between 0.5 and 2 �Fig. 9�. This implies that there is

no characteristic community size in the networks and it is

consistent with previous observations �22,30,38�. While the

community size distributions for the WWW and coauthor-

ship networks approximately follow power laws with a cut-

off, with exponents 1.15 and 1.98, respectively, there is a

clear crossover from one scaling relation to another for the
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actor collaboration network. The community size distribution

for the actor collaboration network has a power-law expo-

nent of 2 for sizes up to 164 nodes and 0.5 between 164 and

7425 nodes �see Fig. 9�.
In the hierarchical agglomerative algorithm of Clauset et

al. �30�, the partition that corresponds to the maximum Q is

taken to be the most indicative of the community structure in

the network. Other partitions with high Q values will have a

structure similar to that of the maximum Q partition, as these

solutions are obtained by progressively aggregating two

groups at a time. Our proposed label propagation algorithm,

on the other hand, finds multiple significantly modular solu-

tions that have some amount of dissimilarity. For the WWW

network in particular, the similarity between five different

solutions is low, with the Jaccard index ranging between

0.4883 and 0.5921, yet all five are significantly modular with

Q between 0.857 and 0.864. This implies that the proposed

algorithm can find not just one but multiple significant com-

munity structures, supporting the existence of overlapping

communities in many real-world networks �14�.
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