
NEAR-LOSSLESS IMAGE COMPRESSION BASED ON MAXIMIZATION OF RUN LENGTH
SEQUENCES

E. Nasr-Esfahani1, S. Samavi1,2, N. Karimi1, S. Shirani2
Department of Electrical and Computer Engineering

1Isfahan University of Technology, Isfahan, Iran
2McMaster University, Ontario, Canada

ABSTRACT

In this paper an algorithm is proposed which performs near-
lossless image compression. For each pixel in a row of the
image a group of value-states are considered, which have
values close to that of the pixel. A trellis is constructed for
every row of the image where the nodes of the trellis are the
states of the pixels of that row. The goal of the algorithm is
to find a path on this trellis that creates a sequence which
can be efficiently coded using run length encoding (RLE).
For sections of the pixels of the row that suitable RLE
cannot be achieved then minimization of the entropy is
employed to complete a path on the trellis. The application
of the algorithm to a wide range of standard images shows
that the scheme, while having low computational
complexity, is competitive with other near-lossless image
compression methods.

Index Terms— Image compression, run length
encoding, entropy coding, near lossless.

1. INTRODUCTION

Image compression plays a very important role in
applications such as videoconferencing, mobile
communications, and medical imaging. Image compression
continues to be an important area of research though a lot of
works have been reported in the literature and several
coding techniques have emerged [1, 2].

Traditionally, image compression techniques have been
classified into two categories of lossy and lossless methods.
Lossy methods are required in situations where significant
compression ratios are needed but do not allow exact
recovery of the original images. This is the case, for
example, of digital photography, where losing some of the
image detail is tolerable. In lossless methods, on the other
hand, compression ratio is relatively low, but the exact
reconstruction of the original images is essential. This is
true where small image details can be very important, such
as in medical and space imaging or in remote sensing [3].

Exact lossless recovery is, however, not an essential
requirement in many situations because different
applications may tolerate different limits of deviation from
the original value.

In many applications, the issue is not so much as whether
lossy compression should be used, but rather, how to trade
off between compression ratios and distortion. If high
compression ratios can be achieved with small enough
distortion to ensure sufficient accuracy for specific purposes
then it is said that the method is near-lossless. For example
if dependable diagnoses for medical imaging could be
performed then the near-lossless method is acceptable. A
near-lossless criterion is defined such that no pixel is
changed in magnitude by more than d gray level where d
is a small non-negative integer [4, 5].

Near-lossless compression could potentially lead to a
significant increase in compression ratios while providing,
at the same time, quantitative guarantees about the type and
amount of distortion introduced.

Transform domain approach using the discrete cosine
transform (DCT) or the discrete wavelet transform (DWT)
along with an entropy coding is usually deployed for lossy
compression. For lossless and near lossless compression
using differential pulse code modulation (DPCM) based on
different predictors and error-modeling schemes are
popularly used due to their simplicity as well as its
efficiency [6].

In this paper we use a trellis-based algorithm to perform
a near-lossless image compression. For every pixel a
number of states are considered with values equal and close
to the intensity of that pixel. For each row a trellis is
constructed from these value-neighbors. A path is chosen
on the trellis through a greedy algorithm which maximizes
the sequence of similar prediction errors on this trellis. By
doing so better RLE coding is achieved.

The rest of the paper is organized in the following
manner: In section 2 we present our Greedy Path Selection
Algorithm (GPSA). In section 3 a modified version of the
algorithm with reduced complexity is outlined. Simulation
results are presented in Section 4. Section 5 is dedicated to
concluding remarks.

IV - 1771-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

2. GREEDY PATH SELECTION ALGORITHM

In this section we describe our greedy path selection
method. Suppose we label pixels of i th row of the image as

i
jp where j is the column number. If the pixels of the

reconstructed image after the compression process has
values close to the original values then we have near
lossless image compression. To perform near lossless
compression we can have for every pixel in the i th row of
the image 12d states. The values of these states are at
most d units from the original value. The states for pixel at
row i and column j are

],[},,...,,...,{, ddmdppdpp i
j

i
j

i
j

i
mj . Now a trellis can

be formed for i th row where the nodes are the states of the
pixels of that row. Each node of the trellis is labeled as

i
mjp , . Before the compression is performed the pixel values

are chosen from the mentioned trellis. When the selection of
a pixel value is finalized at the)1(i th row then it is

labeled as 1ˆ i
jp . We show that picking the pixel values

from the nodes of the trellis creates better compression
ratios. As an example for forming a trellis suppose the
previously constructed row is

,...)5,1,7,3(,...)ˆ,ˆ,ˆ,ˆ(ˆ 1
4

1
3

1
2

1
1

1 iiiii ppppP and the current row is
,...)8,5,9,1(,...),,,(4321

iiiii ppppP If d is chosen to be 1 then
Figure 1 is the trellis for the first 8 pixels of the current row.

Figure 1. Initial trellis for eight pixels.

We always add a zero-value node to the left of the trellis as
a starting point. The edges of the trellis of Figure 1 are
labeled with a prediction error value. The predictor uses
values from the previously constructed row as well as the
values from the trellis of the current row. The predictor that
we use is in our algorithm is]ˆˆ[11

1,,1
i
j

i
j

i
mj

i
mj

i
j ppppe . For

example the edge that is drawn thicker in Figure 1,
connecting node 01,1

ip to node 101,2
ip has label

6]370[10]ˆˆ[1
1

1
21,11,21

iiiii ppppe

From each column of the trellis a node is to replace the
original pixel value. Therefore, is seems that the trellis has
to be traversed, column by column, along a path, from left
to right. It is the edge values that are to be compressed and
not the value of the nodes. Suitability of the selected path
depends on the coding scheme that is to be used for
compression of the sequence of the errors.

In [8] a path selection method is offered with the aim of
minimizing entropy. The shortcoming there is that a
number of iterations are required. This number depends on
a set of initial values. Our proposed method (GPSA), tries
to find a path with maximum numbers of consecutive equal
errors and in case of a deadlock it tries to minimize the
entropy of the produced errors on the edges of the trellis.
Steps of the algorithm are shown in Figure 2.

Input image

No

Yes

Trellis Generation

Prediction

Find Next Max Sequence
 Sub-Path

Select Final Path:
Join RLE Sub-Paths With Min_ Entropy Patches

Modify Trellis to
Guarantee Inclusion of

Sub-path

Sequence_Length
>Threshold

Figure 2. Steps required to compress an image by GPSA

Initially all of the nodes are examined to find the longest
sub-path with consecutive equal edge values. This sub-path
could be anywhere in the trellis. The sequence of edge
errors of this sub-path is obviously suitable for run length
encoding. We have to ensure that any total path that is
finally selected includes this sub-path. Figure 3 illustrates a
sub-path selection example based on the trellis of Figure 1.
In this example an initial search finds 4 consecutive zeros.
This sub-path has to be included in the final selected path.
Suppose that the sub-path starts from column k and runs
all the way to column m . By eliminating all other edges
between columns k and m except the ones that are on the
sub-path inclusion of this sub-path in the final selected path
can be guaranteed.

Figure 3. An example of a sub-path.

Then the algorithm excludes the found sub-path and
finds the next best sub-path in the remaining columns. This
process is stopped when the length of the obtained sub-path
falls below a certain threshold. In our experiments we
choose 16 as the threshold. If we were to keep selecting

IV - 178

sub-paths below that threshold then RLE could result in
expansion rather than compression. Now we have a number
of sub-paths and a final path has to be selected. Since these
sub-paths are good candidates for RLE coding, we refer to
them as RLE sub-paths. The final overall path will include
all of the RLE sub-paths as well as some non-RLE patches.
The final path is selected to pass through some non RLE-
nodes in a way which tries to reduce the entropy. Hence,
these non-RLE parts of the final path can be coded by
entropy coding in an efficient manner.

To form the final path the edges of non-RLE nodes are
selected by the following criteria: out of all of the edges that
enter the node, the one with lowest error is selected. In
order to get a path with lowest entropy we need to know the
probability of errors. But these probabilities are not known
until the path is selected. Using the predictor explained in
Section 2, it is possible to increase the probability of
occurrence of errors that have small absolute values.
Higher number of occurrences ensures longer sequences of
equal edge values and better RLE coding. Also, for those
non-RLE segments of the path, smaller error values produce
smaller entropy.

GPSA has the advantage of not being iterative. The most
sluggish routine of the algorithm is its sub-path selection
part. These sub-paths are coded with RLE coding. These
RLE codes along with error values from non-RLE parts are
looked at as string of values. Then the overall string is
coded using Huffman method.
In order to evaluate the quality of the reconstructed image
PSNR criteria according to Equation 1 is used [7].

W

i

H

j

jiIjiI
WH

PSNR

1 1

2
21

2

10

)),(),((
*
1

255log10 (1)

Where),(1 jiI and),(2 jiI are respectively the original
and reconstructed pixels at coordinates),(ji The images
have the height of H and width of W. Each pixel has an
integer value between 0 and 255.

The maximum difference between the reconstructed and
original pixels is d , hence, djiIjiI |),(),(|max 21 .
Inserting this value into Equation 1 produces Equation 2.
This gives us the minimum possible value for the PSNR of a
reconstructed image that is compressed by a near lossless
method. Normally we get better PSNR values for these
types of images.

d
PSNR 255log20 10min (2)

Table (1) shows the minimum value of PSNR for different
values of d .

Table 1. Diminishing PSNR with increasing value of d .
54321d

34.15 36.0938.58 42.11 48.13 PSNR

3. LOW COMPLEXITY GPSA

The sub-path selection part of GPSA is time consuming. In
this section we propose a method which improves the speed
of the algorithm. We refer to this algorithm as low-
complexity GPSA or in short LCGPSA. The algorithm
starts at one end of the trellis and works its way toward the
other end. The evaluation of the situation for choosing a
path is done locally at each column of the trellis. Details of
the algorithm are shown in Figure 4.

Figure 4. Details of the algorithm.

In this algorithm k
mjL , is the k th edge that connects

node m of column j to the nodes in the next column.

Function EdgeError(k
mjL ,) finds the error assigned to the

edge and function LastEdgeError(mjPH ,) keeps the error

of the edge that connects node i
mjp , to its previous node.

Also, RunLength(mjPH , + k
mjL ,) calculates the number of

consecutive repeated errors of the investigated edge and the
path connected to it.

Therefore, in this algorithm local edge selection is
initially done by maximizing the run length of the
consecutive errors of the selected edge and its immediate
predecessors. If none of the current edges can form a run
length with the paths to this point then the edge with
minimum error is selected. This is shown to reduce the
entropy of the string of errors.

As the value of d increases the quality of the
reconstructed image diminishes, but since the length of the
paths with consecutive equal edge labels increases, better
RLE codes are obtained. Therefore, the quality of the

Algorithm Low_Complexity_GPS(j,m)
begin
 MaxIndex NULL;
 MinErrorIndex NULL;
 SameExist False;
 Max_RunLength -1;
 Mini_EdgeError ;
for k=1 to 2*d+1 do
 if EdgeError(Lk

j,m)==LastEdgeError(PHj,m)
 SameExist True;
 if RunLength(PHj,m+Lk

j,m)>Max_RunLength
 MaxIndex k;
 Max_RunLength RunLength(PHj,m+Lk

j,m);
 if |EdgeError(Lk

j,m)|<Min_EdgeError
 MinErrorIndex k;
 Min_EdgeError |EdgeError(Lk

j,m)|;
if SameExist
 return MaxIndex;
else
 return MinErrorIndex;
End.

IV - 179

reconstructed image and the compression ratio could be
controlled by d.

4. SIMULATION RESULTS

A wide range of standard images were compressed and
reconstructed by GPSA and its low complexity version,
LCGPSA. Local-search characteristic of LCGPSA has
made it much faster than the original GPSA. The amount of
the achieved speedup is illustrated in Table 2.

Table 2. Speedup of LCGPSA compared to GPSA.
PeppersAirplaneLakeLenaImage
25.1124.1123.0234.01Speed up

Compression results are measured by bit per pixel, bpp,
and the quality of the reconstructed images are calculated by
PSNR. The original GPSA produces an average PSNR that
is 0.04dB higher than that of its low complexity version.
Also bit per pixel results of the original GPSA is 0.02 bpp
lower than that of the low complexity version. Hence, in
our comparisons we only use the LCGPSA. Table 3 shows
the results from our LCGPSA algorithm with d=1 and d=2.
Also, in Table 3 results from algorithm of the reference [1],
reference [8] and the near-lossless JPEG-LS are presented
for comparison purpose. Reference [8] tries to minimize the
entropy. Our algorithm produces better compression results
and comparable PSNR as compared to reference [8]. As
compared to reference [1] in terms of PSNR our algorithm
is advantageous but we produce lower compression ratios.
As mentioned before, with increasing the value of d better
bpp values are achieved at the expense of lower PSNR. In
average lower bit per pixel is produced by LCGPSA as
compared to reference [1] and JPEG-LS.

5. CONCLUSION

In this paper we proposed an algorithm for near-lossless
compression of images aimed at obtaining good RLE
compression. We also offered a sub-optimal algorithm with
much lower computational complexity compared to the

original algorithm. The modified algorithm produces
images with comparable quality with those of the original
version. As compared to results of reference [1], reference
[8] and JPEG-LS our algorithm is either better in terms of
reconstructed image quality or is better in terms of the
compression ratio. The low-complexity version of the
algorithm could be a suitable candidate for hardware
implementation.

6. ACKNOWLEDGEMENT

We should express our gratitude to Dr. Pejman Khadivi and
Mr. Seyed Ahmad Razavi for their constructive discussion
on the subject.

7. REFERENCES
[1] Xiang Xie, et.al, “A New Near-Lossless Image Compression
Algorithm Suitable For Hardware Design in Wireless Endoscopy
System”, in Proc. ICIP 2005, Italy, Vol. 1, pp. 1125-1128, 2005.

 [2] C. S. Lee and H. W. Park, “Near-lossless/lossless compression
of er-ror-diffused images using a two-pass approach,” IEEE Trans.
Image Proc. Vol. 12, no. 2, pp. 170-175, Feb. 2003.

[3] Sayood, K., Introduction to Data Compression, Morgan
Kaufmann, Third Edition, 2005.

[4] N. Memon, N. Moayeri, “New Error Criterion For Near-
Lossless Image Compression”, in Proc. ICIP’97, USA, pp. 662-
665, 1997.

[5] R. Iordache, I. Tabus, J. Astola, “Fixed-Slope Near-Lossless
Context-Based Image Compression”, in Proc. ICIP’98, USA, pp.
512-515, 1998

[6] P.K. Meher, T. Srikanthan, J. Gupta, H. K. Agarwal, “Near
Lossless Image Compression Using Lossless Hartley Like
Transform”, in Proc. ICSP 2003, pp. 213- 217, 2003.

[7] Gonzalez R, Woods R., Digital image processing, Prentice Hall
Book Co., 2002.

[8] K. Ligang, M.W. Marcellin, “Near-Lossless Image
Compression: Minimum-Entropy, Constrained-Error DPCM”,
IEEE Tran. Image Proc., Vol. 7, no. 2, pp. 225 - 228, 1998.

Table 3. Comparison of our methods with reference [1] and JPEG-LS
Reference
[8] (d=1)

JPEG-LS
(Near-LossLess)Reference [1]LCGPSA

(d=2)
LCGPSA

(d=1)
Image

(512x512)
bppPSNR bppPSNR bppPSNR bppPSNR bppPSNR
3.9149.14 4.8945.123.5146.382.8143.9 3.1649.00Lena
5.36 49.52 4.1445.134.346.394.51 42.90 5.0748.40Lake
5.18 49.37 6.6952.384.846.384.9 42.68 5.248.37Baboon
3.84 49.30 3.0145.172.9846.373.23 43.58 3.7848.76Airplane
4.93 49.71 5.2345.243.5346.534.2 42.58 4.5648.27Peppers
1.74 49.44 3.945.153.4846.40243.64 2.1548.89House
4.16 49.41 4.6446.363.76 46.4 3.60 43.21 3.9848.61Average

IV - 180

