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ABSTRACT 
 
In this paper an algorithm is proposed which performs near-
lossless image compression.  For each pixel in a row of the 
image a group of value-states are considered, which have 
values close to that of the pixel. A trellis is constructed for 
every row of the image where the nodes of the trellis are the 
states of the pixels of that row.  The goal of the algorithm is 
to find a path on this trellis that creates a sequence which 
can be efficiently coded using run length encoding (RLE). 
For sections of the pixels of the row that suitable RLE 
cannot be achieved then minimization of the entropy is 
employed to complete a path on the trellis.  The application 
of the algorithm to a wide range of standard images shows 
that the scheme, while having low computational 
complexity, is competitive with other near-lossless image 
compression methods.  

Index Terms— Image compression, run length 
encoding, entropy coding, near lossless. 
 

1. INTRODUCTION 

Image compression plays a very important role in 
applications such as videoconferencing, mobile 
communications, and medical imaging. Image compression 
continues to be an important area of research though a lot of 
works have been reported in the literature and several 
coding techniques have emerged [1, 2]. 

Traditionally, image compression techniques have been 
classified into two categories of lossy and lossless methods. 
Lossy methods are required in situations where significant 
compression ratios are needed but do not allow exact 
recovery of the original images. This is the case, for 
example, of digital photography, where losing some of the 
image detail is tolerable. In lossless methods, on the other 
hand, compression ratio is relatively low, but the exact 
reconstruction of the original images is essential.  This is 
true where small image details can be very important, such 
as in medical and space imaging or in remote sensing [3]. 

Exact lossless recovery is, however, not an essential 
requirement in many situations because different 
applications may tolerate different limits of deviation from 
the original value.  

In many applications, the issue is not so much as whether 
lossy compression should be used, but rather, how to trade 
off between compression ratios and distortion.  If high 
compression ratios can be achieved with small enough 
distortion to ensure sufficient accuracy for specific purposes 
then it is said that the method is near-lossless.  For example 
if dependable diagnoses for medical imaging could be 
performed then the near-lossless method is acceptable. A 
near-lossless criterion is defined such that no pixel is 
changed in magnitude by more than d  gray level where d 
is a small non-negative integer [4, 5]. 

Near-lossless compression could potentially lead to a 
significant increase in compression ratios while providing, 
at the same time, quantitative guarantees about the type and 
amount of distortion introduced. 

Transform domain approach using the discrete cosine 
transform (DCT) or the discrete wavelet transform (DWT) 
along with an entropy coding is usually deployed for lossy 
compression. For lossless and near lossless compression 
using differential pulse code modulation (DPCM) based on 
different predictors and error-modeling schemes are 
popularly used due to their simplicity as well as its 
efficiency [6].  

In this paper we use a trellis-based algorithm to perform 
a near-lossless image compression. For every pixel a 
number of states are considered with values equal and close 
to the intensity of that pixel.  For each row a trellis is 
constructed from these value-neighbors.  A path is chosen 
on the trellis through a greedy algorithm which maximizes 
the sequence of similar prediction errors on this trellis.  By 
doing so better RLE coding is achieved.   

The rest of the paper is organized in the following 
manner: In section 2 we present our Greedy Path Selection 
Algorithm (GPSA).  In section 3 a modified version of the 
algorithm with reduced complexity is outlined.    Simulation 
results are presented in Section 4. Section 5 is dedicated to 
concluding remarks.  
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2. GREEDY PATH SELECTION ALGORITHM  

In this section we describe our greedy path selection 
method. Suppose we label pixels of i th row of the image as 

i
jp where j is the column number. If the pixels of the 

reconstructed image after the compression process has 
values close to the original values then we have near 
lossless image compression. To perform near lossless 
compression we can have for every pixel in the i th row of 
the image 12d  states. The values of these states are at 
most d  units from the original value. The states for pixel at 
row i  and column j  are 
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i
mj .  Now a trellis can 

be formed for i th row where the nodes are the states of the 
pixels of that row. Each node of the trellis is labeled as 

i
mjp , . Before the compression is performed the pixel values 

are chosen from the mentioned trellis. When the selection of 
a pixel value is finalized at the )1(i th row then it is 

labeled as 1ˆ i
jp . We show that picking the pixel values 

from the nodes of the trellis creates better compression 
ratios. As an example for forming a trellis suppose the 
previously constructed row is 

,...)5,1,7,3(,...)ˆ,ˆ,ˆ,ˆ(ˆ 1
4

1
3

1
2
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1 iiiii ppppP  and the current row is 
,...)8,5,9,1(,...),,,( 4321

iiiii ppppP If d is chosen to be 1 then 
Figure 1 is the trellis for the first 8 pixels of the current row. 

Figure 1. Initial trellis for eight pixels. 

We always add a zero-value node to the left of the trellis as 
a starting point. The edges of the trellis of Figure 1 are 
labeled with a prediction error value. The predictor uses 
values from the previously constructed row as well as the 
values from the trellis of the current row.  The predictor that 
we use is in our algorithm is ]ˆˆ[ 11
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example the edge that is drawn thicker in Figure 1, 
connecting node 01,1

ip  to node 101,2
ip  has label 

6]370[10]ˆˆ[ 1
1

1
21,11,21

iiiii ppppe

From each column of the trellis a node is to replace the 
original pixel value.  Therefore, is seems that the trellis has 
to be traversed, column by column, along a path, from left 
to right.  It is the edge values that are to be compressed and 
not the value of the nodes.  Suitability of the selected path 
depends on the coding scheme that is to be used for 
compression of the sequence of the errors.  

In [8] a path selection method is offered with the aim of 
minimizing entropy.  The shortcoming there is that a 
number of iterations are required.  This number depends on 
a set of initial values.  Our proposed method (GPSA), tries 
to find a path with maximum numbers of consecutive equal 
errors and in case of a deadlock it tries to minimize the 
entropy of the produced errors on the edges of the trellis.  
Steps of the algorithm are shown in Figure 2.  

Input image

No

Yes

Trellis Generation

Prediction

Find Next Max Sequence
 Sub-Path

Select Final Path:
Join RLE Sub-Paths With Min_ Entropy Patches

Modify Trellis to 
Guarantee Inclusion of 

Sub-path

Sequence_Length 
>Threshold

Figure 2. Steps required to compress an image by GPSA 

Initially all of the nodes are examined to find the longest 
sub-path with consecutive equal edge values.  This sub-path 
could be anywhere in the trellis.  The sequence of edge 
errors of this sub-path is obviously suitable for run length 
encoding.  We have to ensure that any total path that is 
finally selected includes this sub-path. Figure 3 illustrates a 
sub-path selection example based on the trellis of Figure 1.  
In this example an initial search finds 4 consecutive zeros.  
This sub-path has to be included in the final selected path.  
Suppose that the sub-path starts from column k  and runs 
all the way to column m . By eliminating all other edges 
between columns k  and m  except the ones that are on the 
sub-path inclusion of this sub-path in the final selected path 
can be guaranteed.  

Figure 3. An example of a sub-path. 

Then the algorithm excludes the found sub-path and 
finds the next best sub-path in the remaining columns.  This 
process is stopped when the length of the obtained sub-path 
falls below a certain threshold. In our experiments we 
choose 16 as the threshold.  If we were to keep selecting 
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sub-paths below that threshold then RLE could result in 
expansion rather than compression.  Now we have a number 
of sub-paths and a final path has to be selected. Since these 
sub-paths are good candidates for RLE coding, we refer to 
them as RLE sub-paths. The final overall path will include 
all of the RLE sub-paths as well as some non-RLE patches.  
The final path is selected to pass through some non RLE-
nodes in a way which tries to reduce the entropy.  Hence, 
these non-RLE parts of the final path can be coded by 
entropy coding in an efficient manner.  

To form the final path the edges of non-RLE nodes are 
selected by the following criteria: out of all of the edges that 
enter the node, the one with lowest error is selected.   In 
order to get a path with lowest entropy we need to know the 
probability of errors.  But these probabilities are not known 
until the path is selected.  Using the predictor explained in 
Section 2, it is possible to increase the probability of 
occurrence of errors that have small absolute values.  
Higher number of occurrences ensures longer sequences of 
equal edge values and better RLE coding.  Also, for those 
non-RLE segments of the path, smaller error values produce 
smaller entropy.  

GPSA has the advantage of not being iterative.  The most 
sluggish routine of the algorithm is its sub-path selection 
part.  These sub-paths are coded with RLE coding.  These 
RLE codes along with error values from non-RLE parts are 
looked at as string of values. Then the overall string is 
coded using Huffman method.  
In order to evaluate the quality of the reconstructed image 
PSNR criteria according to Equation 1 is used [7].  
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Where ),(1 jiI  and ),(2 jiI  are respectively the original 
and reconstructed pixels at coordinates ),( ji  The images 
have the height of H and width of W.  Each pixel has an 
integer value between 0 and 255. 

The maximum difference between the reconstructed and 
original pixels is d , hence, djiIjiI |),(),(|max 21 .
Inserting this value into Equation 1 produces Equation 2. 
This gives us the minimum possible value for the PSNR of a 
reconstructed image that is compressed by a near lossless 
method.  Normally we get better PSNR values for these 
types of images.  

d
PSNR 255log20 10min (2)

Table (1) shows the minimum value of PSNR for different 
values of d .

Table 1. Diminishing PSNR with increasing value of d .
54321d

34.15 36.0938.58 42.11 48.13 PSNR

3. LOW COMPLEXITY GPSA 

The sub-path selection part of GPSA is time consuming.  In 
this section we propose a method which improves the speed 
of the algorithm.  We refer to this algorithm as low-
complexity GPSA or in short LCGPSA.  The algorithm 
starts at one end of the trellis and works its way toward the 
other end.  The evaluation of the situation for choosing a 
path is done locally at each column of the trellis.  Details of 
the algorithm are shown in Figure 4.  

Figure 4. Details of the algorithm. 

In this algorithm k
mjL ,  is the k th edge that connects 

node m  of column j to the nodes in the next column. 

Function EdgeError( k
mjL , ) finds the error assigned to the 

edge and function LastEdgeError( mjPH , ) keeps the error 

of the edge that connects node i
mjp ,  to its previous node.  

Also, RunLength( mjPH , + k
mjL , ) calculates the number of 

consecutive repeated errors of the investigated edge and the 
path connected to it.  

Therefore, in this algorithm local edge selection is 
initially done by maximizing the run length of the 
consecutive errors of the selected edge and its immediate 
predecessors.  If none of the current edges can form a run 
length with the paths to this point then the edge with 
minimum error is selected.  This is shown to reduce the 
entropy of the string of errors.  

As the value of d increases the quality of the 
reconstructed image diminishes, but since the length of the 
paths with consecutive equal edge labels increases, better 
RLE codes are obtained.  Therefore, the quality of the 

Algorithm Low_Complexity_GPS(j,m) 
begin
 MaxIndex  NULL;
 MinErrorIndex  NULL; 
 SameExist  False; 
 Max_RunLength  -1; 
 Mini_EdgeError  ; 
for  k=1 to  2*d+1 do 
       if EdgeError(Lk

j,m)==LastEdgeError(PHj,m) 
             SameExist  True; 
             if RunLength(PHj,m+Lk

j,m)>Max_RunLength  
                     MaxIndex  k; 
                     Max_RunLength RunLength(PHj,m+Lk

j,m); 
             if |EdgeError(Lk

j,m)|<Min_EdgeError 
                     MinErrorIndex  k; 
                     Min_EdgeError  |EdgeError(Lk

j,m)|; 
if  SameExist 
       return MaxIndex; 
else 
       return MinErrorIndex; 
End. 

IV - 179



reconstructed image and the compression ratio could be 
controlled by d.   

4. SIMULATION RESULTS 

A wide range of standard images were compressed and 
reconstructed by GPSA and its low complexity version, 
LCGPSA.  Local-search characteristic of LCGPSA has 
made it much faster than the original GPSA.  The amount of 
the achieved speedup is illustrated in Table 2.  

Table 2. Speedup of LCGPSA compared to GPSA. 
PeppersAirplaneLakeLenaImage
25.1124.1123.0234.01Speed up

Compression results are measured by bit per pixel, bpp, 
and the quality of the reconstructed images are calculated by 
PSNR.  The original GPSA produces an average PSNR that 
is 0.04dB higher than that of its low complexity version.  
Also bit per pixel results of the original GPSA is 0.02 bpp 
lower than that of the low complexity version.  Hence, in 
our comparisons we only use the LCGPSA.  Table 3 shows 
the results from our LCGPSA algorithm with d=1 and d=2.  
Also, in Table 3 results from algorithm of the reference [1], 
reference [8] and the near-lossless JPEG-LS are presented 
for comparison purpose.  Reference [8] tries to minimize the 
entropy.  Our algorithm produces better compression results 
and comparable PSNR as compared to reference [8].  As 
compared to reference [1] in terms of PSNR our algorithm 
is advantageous but we produce lower compression ratios.  
As mentioned before, with increasing the value of d better 
bpp values are achieved at the expense of lower PSNR.  In 
average lower bit per pixel is produced by LCGPSA as 
compared to reference [1] and JPEG-LS.  

5. CONCLUSION 

In this paper we proposed an algorithm for near-lossless 
compression of images aimed at obtaining good RLE 
compression.  We also offered a sub-optimal algorithm with 
much lower computational complexity compared to the 

original algorithm.  The modified algorithm produces 
images with comparable quality with those of the original 
version.  As compared to results of reference [1], reference 
[8] and JPEG-LS our algorithm is either better in terms of 
reconstructed image quality or is better in terms of the 
compression ratio.  The low-complexity version of the 
algorithm could be a suitable candidate for hardware 
implementation.  
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