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Abstract. Predictive and multiresolution techniques for near-
lossless image compression based on the criterion of maximum al-
lowable deviation of pixel values are investigated. A procedure for
near-lossless compression using a modification of lossless predic-
tive coding techniques to satisfy the specified tolerance is de-
scribed. Simulation results with modified versions of two of the best
lossless predictive coding techniques known, CALIC and JPEG-LS,
are provided. Application of lossless coding based on reversible
transforms in conjunction with prequantization is shown to be infe-
rior to predictive techniques for near-lossless compression. A partial
embedding two-layer scheme is proposed in which an embedded
multiresolution coder generates a lossy base layer, and a simple but
effective context-based lossless coder codes the difference be-
tween the original image and the lossy reconstruction. Results show
that this lossy plus near-lossless technique yields compression ra-
tios close to those obtained with predictive techniques, while provid-
ing the feature of a partially embedded bit-stream. © 1998 SPIE and
IS&T. [S1017-9909(98)00203-7]

1 Introduction

Images in uncompressed digitized form place excessive de-
mands on bandwidth and storage requirements in multime-
dia applications. In order to make many of these applica-
tions practicable, substantial compression often by a factor
of 10 or higher is necessary. High compression factors in-
evitably force a loss of some of the original visual informa-
tion. Since high compression factors are often needed in
practice, a large body of the work in image compression
has focused on lossy techniques where a variety of strate-
gies for efficiently retaining the visually relevant informa-

tion have been developed. For an excellent review of lossy
image compression techniques, the reader is referred to
Refs. 3, 9, 10, 2, 15, 20.

While retaining visual quality is important, in many ap-
plications, the end user is not a human viewer. Instead, the
reconstructed image is subjected to some processing based
on which ‘‘meaningful’’ information is extracted. This is
especially true for remotely sensed images which are often
subject to processing in order to extract ground parameters
of interest. For example, remotely sensed microwave emis-
sion images of the Arctic are used to obtain a number of
different parameters including ice concentration and ice
type. In such a case, a scientist is concerned about the ef-
fects of the distortions introduced by the compression algo-
rithm on the ice concentration estimates. Hence, in remote
sensing applications, scientists typically prefer not to use
lossy compression and use lossless compression instead.
Another example is provided by medical images, where
loss of diagnostic information cannot be tolerated. Lossy
compression of medical images may remove or obscure
very significant and life-saving information, while possibly
introducing misleading artifacts into the image. The toler-
ance to loss may require the trained eye and intervention of
an expert, which is not readily available. Other applications
with low tolerance to loss of information are those in which
the information of interest may be a weak component in the
image. In certain satellite and astronomical images, weak
signals are often a scientifically important part of the image
and can be easily obscured by high compression. Such situ-
ations usually call for for lossless compression.

Unfortunately, compression ratios obtained with lossless
techniques are significantly lower than those possible with
lossy compression of common test images at a peak signal-
to-noise ratio of about 35 dB. Typically, depending on the
image, lossless compression ratios range from about 3-to-1
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to 1.5-to-1. This leads to the notion of anear-losslesscom-
pression technique that gives quantitative guarantees about
the type and amount of distortion introduced. Based on
these guarantees, a scientist can be assured that the ex-
tracted parameters of interest, e.g., those related to ice con-
centration or microcalcification, will either not be affected
or be affected only within a bounded range of error. Near-
lossless compression could potentially lead to significant
increase in compression, thereby giving more efficient uti-
lization of precious bandwidth while preserving the integ-
rity of the images with respect to the post-processing op-
erations that are carried out. In addition to remote sensing
applications, near-lossless compression techniques would
also be of interest in the medical image community.

However, despite a need for near-lossless compression,
there has been very little work done towards the develop-
ment of such algorithms. In this paper we investigate a
variety of near-lossless compression techniques. The near-
lossless criterion we employ is defined in terms of the
maximum allowable deviation of pixel values, which may
be specified as61, 62, etc. The maximum allowable de-
viation would depend on the strength of the information of
interest that is intended for retention, relative to the noise
introduced by the pixel value deviation. It is shown how
predictive and multiresolution coding methods and their
combinations can be adapted to meet the specifications of
maximum allowable deviation.

The paper is organized as follows: In Sec. 2 we investi-
gate near-lossless compression obtained by modifying loss-
less predictive coding techniques using prediction error
quantization as determined by the specified tolerance.
Simulation results with modified versions of two of the best
predictive coding techniques known today, CALIC and
JPEG-LS are provided. In Sec. 3, the use of lossless coding
techniques based on reversible transforms in performing
near-lossless compression is examined. Here, near-lossless
compression is provided by a simple quantization of the
image prior to lossless coding. Simulation results are
reported with the recently proposed S1P technique,19 an
efficient reversible multiresolution technique based on the
S-Transform. These results indicate that near-lossless com-
pression based on predictive techniques provide superior
compression performance as compared with those based on
reversible transforms used in conjunction with prequantiza-
tion. However, techniques based on reversible multiresolu-
tion transforms do provide a natural way to integrate lossy
and lossless compression and can be designed to possess
other attractive and useful features like progressive trans-
mission. Hence, in Sec. 4, we examine a partially embed-
ded two-layer scheme of lossy plus near lossless coding. In
this approach an embedded multiresolution coder is used to
generate a lossy base layer, and a simple but effective
context-based lossless coder is designed to code the differ-
ence between the original image and the lossy reconstruc-
tion. Simulation results show that lossy plus near-lossless
techniques provide compression ratios very close to those
provided by predictive techniques, but at the same time
retain the attractive features provided by a transform based
approach. We conclude in Sec. 5 with a discussion on the
results and avenues for further research.

2 Near-lossless Compression Based on
Predictive Coding Techniques

Among various methods which have been devised for loss-
less compression,predictive techniquesare perhaps the
most simple and efficient. Here, the encoder~and decoder!
process the image in some fixed order~say, raster order
going row by row, left to right within a row! and predict the
value of the current pixel on the basis of the pixels which
have already been encoded~decoded!. If we denote the
current pixel byP@ i , j # and its predicted value byP̂@ i , j #,

then only theprediction error, e5 P̂@ i , j #2P@ i , j #, is en-
coded. If the prediction is reasonably accurate then the dis-
tribution of prediction errors is concentrated near zero and
has a significantly lower zero-order entropy than the origi-
nal image.

If the residual imageconsisting of prediction errors is
treated as a source with independent identically distributed
~i.i.d.! output, then it can be efficiently coded using any of
the standard variable length entropy coding techniques, like
Huffman coding or arithmetic coding. Unfortunately, even
after applying the most sophisticated prediction techniques,
the residual image generally has ample structure which vio-
lates the i.i.d. assumption. Hence, in order to encode pre-
diction errors efficiently we need a model that captures the
structure that remains after prediction. This step is often
referred to aserror modeling.7 The error modeling tech-
niques employed by most lossless compression schemes
proposed in the literature, can be captured within acontext
modeling framework described in Ref. 16 and applied in
Refs. 22, 7. In this approach, the prediction error at each
pixel is encoded with respect to a conditioning state or
context, which is arrived at from the values of previously
encoded neighboring pixels. Viewed in this framework, the
role of the error model is essentially to provide estimates of
the conditional probability of the prediction error, given the
context in which it occurs. This can be done by estimating
the probability density function by maintaining counts of
symbol occurrences within each context22 or by estimating
the parameters~variance for example! of an assumed prob-
ability density function~Laplacian, for example! as in Ref.
7.

Extension of a lossless predictive coding technique to
the case of near-lossless compression requires prediction
error quantization according to the specified pixel value
tolerance. In order for the predictor at the receiver to track
the predictor at the encoder, the reconstructed values of the
image are used to generate the prediction at both the en-
coder and the receiver. This is the classical DPCM struc-
ture. Uniform quantization leads to lower entropy of the
output compared with minimum-mean-squared error quan-
tization, provided the step size is small enough for the con-
stant pdf assumption over each interval to hold.26 For small
values ofk, as one would expect to be used in near-lossless
compression, this assumption is reasonable. Hence, we con-
sider a procedure where the prediction error is quantized
according to the following rule:

Q@x#5 b x1k

2k11 c~2k11!, ~1!

wherex is the prediction error,k is the maximum recon-
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struction error allowed in any given pixel andb.c denotes the
integer part of the argument. At the encoder, a labell is
generated according to

l 5 b x1k

2k11 c. ~2!

This label is encoded, and at the decoder the prediction
error is reconstructed according to

x̂5 l 3~2k11!. ~3!

We now consider the application of the above quantiza-
tion procedure in the predictive coding of test images. In
Tables 1 and 2 we show bit rates and PSNR achieved for
different error tolerance valuesk, by two of the best cur-
rently known predictive techniques. The first, CALIC,29 is a
context-based predictive technique of moderate complexity,
that to the best of out knowledge, gives superior compres-
sion performance on the average over currently known
practical and general purpose lossless compression tech-
niques. The second technique, JPEG-LS, is the recently fi-
nalized international standard for lossless and near-lossless
image compression.8 JPEG-LS is a low complexity lossless

image coding technique that, given its simplicity, provides
compression performance within a few percent of the best
known techniques while yielding a comparable PSNR. Re-
sults are shown for two standard 5123512 test images,
Lena and Barb, in Tables 1 and 2, respectively.

Finally, we would like to note that the quantization tech-
nique we have employed is simple. In actuality, there is a
complex dependency between the quantization error that is
introduced and subsequent prediction errors. The quantiza-
tion technique employed affects the prediction errors ob-
tained. Furthermore, uniform quantization as in Eqs.~2!
and ~3! has an unpredictable effect on the elaborate error
modeling and conditional coding techniques of an algo-
rithm like CALIC, potentially leading to suboptimal com-
pression. Recently, Ke and Marcellin12 and Moayeri14 have
used a time varying trellis to minimize the entropy of the
prediction error constrained to a6k distortion criteria.
However, optimizing the quantization in the context of so-
phisticated prediction and error modeling as employed by
CALIC and JPEG-LS makes the trellis structure computa-
tionally intractable. Hence, simple prediction and context
modeling is resorted to, a consequence of which is the in-
ability to match the performance of near-lossless compres-
sion with CALIC and JPEG-LS. For a more thorough in-
vestigation of this phenomenon, the reader is referred to
Ref. 28.

Table 1 Performance of CALIC and JPEG-LS for different near-lossless criterion k—Lena image.

CALIC JPEG-LS

k Bpp MSE PSNR Bpp MSE PSNR

61 2.55 0.67 49.89 2.72 0.67 49.90

62 1.90 1.99 45.15 2.09 1.99 45.15

63 1.51 3.87 42.26 1.77 3.90 42.21

64 1.23 6.17 40.23 1.54 6.35 40.11

65 1.02 8.74 38.72 1.37 9.18 38.50

66 0.86 11.60 37.49 1.24 12.48 37.17

67 0.74 14.72 36.45 1.14 16.35 35.99

Table 2 Performance of CALIC and JPEG-LS for different near-lossless criterion k—Barb image.

CALIC JPEG-LS

k Bpp MSE PSNR Bpp MSE PSNR

61 3.03 0.67 49.90 3.30 0.67 49.89

62 2.38 1.99 45.14 2.65 1.99 45.14

63 1.97 3.91 42.21 2.27 3.92 42.20

64 1.70 6.33 40.12 2.02 6.44 40.04

65 1.48 9.20 38.49 1.82 9.46 38.37

66 1.32 12.45 37.18 1.67 13.00 36.99

67 1.20 16.16 36.05 1.54 17.00 35.82
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3 Near-lossless Compression with Reversible
Transform-based Techniques

Lossless image compression techniques based on a predic-
tive approach process image pixels in some fixed and pre-
determined order, modeling the intensity of each pixel as
dependent on the intensity values at a fixed and predeter-
mined neighborhood set of previously visited pixels.
Hence, such techniques do not adapt well to the nonstation-
ary nature of image data. Furthermore, such techniques
form predictions and model the prediction error based
solely on local information. Hence they usually do not cap-
ture ‘‘global patterns’’ that influence the intensity value of
the current pixel being processed. The performance limita-
tions encountered in the predictive approach stem from this
inability to handle the essential nonstationary nature of im-
ages and the highly local nature of the prediction.

Multiresolution techniques offer a convenient way to
overcome highly localized processing by separating the in-
formation into several scales, and exploiting the predict-
ability of insignificance of pixels from a coarse scale to a
larger area at a finer scale. Another advantage of multireso-
lution techniques is the amenability to fully embedded cod-
ing. Some details of multiresolution techniques are dis-
cussed in the next section.

There has already been some work done towards apply-
ing multiresolution image coding techniques for lossless
image compression. Among these, CREW~Compression
with Reversible Embedded Wavelets!32 and S1P ~S-

Transform with Prediction!19 are perhaps the best known.
They are based on the use of transforms akin to subband/
wavelet transforms, but employing only simple addition
and shift operations. Despite the attractive features pro-
vided by CREW AND S1P, their utility for near-lossless
compression seems limited. This is due to the lack of a
currently known suitable way of translating the near-
lossless criterion of pixel value error tolerance into a suit-
able criterion in the transform domain. One way of provid-
ing near-lossless compression with such techniques is to
quantize the imageprior to encoding. After performing the
quantization and mapping as defined in Eq.~2!, the result-
ant image has a significantly lower dynamic range and can
be compressed at a lower rate as compared to the original.
The reconstructed image meeting the near-lossless criteria
can be obtained after decompression and remapping inten-
sity values as given in Eq.~3!.

In Table 3 bit rates, MSE and PSNRs obtained with the
two test images Lena and Barb for near-lossless criteria
ranging from61 to 67 are shown. In Figs. 1 and 2 we
show a comparison of near-lossless compression with
CALIC and S1P. It is seen that CALIC significantly out-
performs S1P with prequantization, with the difference in

Fig. 1 Comparison of CALIC and SPP—Lena image.

Table 3 Performance of S1P for different near-lossless criterion k—Lena and Barb.

Lena Barb

k Bpp MSE PSNR Bpp MSE PSNR

61 2.78 0.67 49.90 3.27 0.67 49.89

62 2.24 2.00 45.11 2.72 2.00 45.12

63 1.95 4.00 42.16 2.39 4.01 42.10

64 1.75 6.67 39.89 2.17 6.67 39.89

65 1.60 9.96 38.15 2.01 10.04 38.12

66 1.50 14.24 36.60 1.86 13.97 36.68

67 1.40 19.01 35.34 1.76 18.61 35.43

Fig. 2 Comparison of CALIC and SPP—Barb image.

Near-lossless image compression techniques

Journal of Electronic Imaging / July 1998 / Vol. 7(3) / 489

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 10/26/2017 Terms of Use: https://spiedigitallibrary.spie.org/ss/TermsOfUse.aspx



performance being larger at higher values ofk in the shown
range of 1–7. Alternatives to simple prequantization may
perhaps lead to better performance.

4 Lossy Plus Near-lossless Compression

Another way to provide near-lossless compression is in
conjunction with a lossy technique. This can be done in a
manner similar to a two-layered lossy plus fully lossless
technique wherein a low-rate lossy representation contain-
ing apreviewimage orbrowseimage is first made available
to the user. If after a preview the user wishes to view the
original image, a losslessly compressed version of the dif-
ference between the original and its lossy approximation is
then made available. Lossy plus lossless/near-lossless com-
pression is useful, for example, when a user is browsing
through a database of images, looking for a specific image
of interest. Within this framework, near-lossless compres-
sion can be provided by transmitting a suitably quantized
version of the difference signal.

A partial embedding two-layer scheme of lossy plus
near-lossless coding is described in this section. A fully
embedded multiresolution coder is used to generate a lossy
base layer, and a simple but effective context-based lossless
coder is designed to code the difference between the origi-
nal image and the lossy reconstruction. Another motivation
for lossy plus near-lossless compression is the inferior per-
formance that was obtained for near-lossless coding using
S1P when used with simple prequantization.

In the two-layered lossy-plus-near-lossless scheme con-
sidered here, we propose to use a base layer of an embed-
ded lossy image and a refinement layer which, when added
to the base layer, produces an image that meets the speci-
fied near-lossless tolerance. Any efficient lossy coding
method can be used to generate the base layer. A desirable
feature in the lossy coding method is that it should generate
an embedded bit-stream so that the decoding can be per-
formed from the beginning of the bit-stream to any chosen
termination point. In fully embedded coding, two bit-
streams of any sizeN1 andN2 generated by the encoder to
represent the image will contain identical data for the first
min(N1,N2) bits. The quality of the reconstructed image
improves with the increase in the size of data utilized in
decoding, making it suitable for progressive transmission.
Embedded coding methods using wavelet transforms have
recently been shown to produce excellent compression
performance.21,18,31,11

The lossy layer in our method uses transform coding,
which is here meant to include block transform techniques,
such as those based on Discrete Cosine Transform~DCT!,
and subband/wavelet methods. LetP denote the image to
be coded, and letT denote the reversible transformation
which, when applied to the imageP produces the array
coefficient arrayC

C5T~P!.

To get a lossy compressed representation of an image, the
transform coefficients are quantized and suitably entropy
coded. The transform coefficient magnitudes exhibit a pat-
tern in their occurrence in the coefficient array. This feature
is exploited in developing efficient methods of quantiza-

tion, symbol definition and coding. This was recognized
early4 for DCT, where a zig-zag scan and run-length coding
was effectively utilized.

Recently, there has been tremendous interest in the ap-
plication of subband/wavelet transforms.1,6,17,23,25,27,24in
compressing visual information. A significant breakthrough
in coding efficiency accompanied with the feature of em-
bedded encoding occurred when the method of embedded
zero-tree wavelet~EZW! encoding21 was proposed. Spurred
by this development many new algorithms have recently
been proposed, including those described in Refs. 18, 31,
11 to name a few. A fast and efficient algorithm for
wavelet-based image compression method called Set Parti-
tioning in Hierarchical Trees~SPIHT!18 has been developed
for fully embedded coding. In this paper we use the SPIHT-
based methods for lossy and lossless compression as tools
in our near-lossless compression procedures. In Figs. 3 and
4 we show a comparison of S1P and SPIHT. From these
figures it appears that a suitable lossy transform technique
like SPIHT followed by near-lossless compression of the
difference with the original could potentially provide better
performance than a near-lossless compression technique
based on prequantization followed by a transform based
lossless compression technique like S1P.

The key to the improved performance of EZW, SPIHT
and related algorithms is the observation that if a coeffi-

Fig. 3 Comparison of SPIHT and S1P—Lena image.

Fig. 4 Comparison of SPIHT and S1P—Barb image.
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cient is insignificant at a coarse scale in a multiresolution
representation, then it is likely to be insignificant at the
finer scale. Use of this predictability of insignificance leads
to significant improvement in compression. This gain can
be carried over to DCT-based coding by a suitable recon-
figuration of the coefficients, leading to improved compres-
sion ~with embedding! compared with JPEG procedure.30,13

These algorithms are attractive for progressive transmission
of information.

Performance of the coders can vary with the transform
used and the image being coded. For example, we found
that if the embedded coding procedure in Ref. 18 is used in
conjunction with DCT performed on 32332 blocks, then
the results of coding on Barb show that coding in the range
0.1–1.0 bits/pixelswithoutarithmetic coding produces bet-
ter performance than the wavelet transform codingwith
arithmetic coding. This is shown in Fig. 5. Similar and
more extensive results are given in Ref. 30. It should be
mentioned that different types of transforms have been pro-
posed and continue to be investigated. The use of nonlinear
filters has also been examined.5 The S1P transform19 uses
nonlinearity in the form of truncation in arithmetic.

In a two-layer approach, the rate of the lossy scheme
could be determined by the fidelity and rate constraints of
the particular application. The rate of the lossy coding al-
gorithm could also be obtained as the lossy coding rate
which would minimize the total~lossy plus lossless! coding
rate. In practice, the former approach would probably be
more useful than the latter. However, we explore the latter
in order to compare the potential benefits provided by lossy
plus near-lossless compression over the other near-lossless
techniques that have been described so far.

If the difference image is encoded independent of the
lossy image then this can be done by any lossless predictive
coding technique like CALIC. In this case it is easy to see
that the lower the bit rate of the lossy representation, the
lower the number of bits required to send the lossy plus the
lossless residual. In fact the optimal point is when the origi-
nal is encoded losslessly with zero bits for the lossy image.
In Figs. 6 and 7 we show this happening with the two test

images using SPIHT at different bit rates to get the lossy
representation and CALIC to encode the difference image
losslessly.

Coding the difference image without regard to the lossy
reconstruction fails to take into account the significant in-
formation provided by the latter about the original image
and as a consequence about the difference image. In order
to exploit the lossy reconstruction while encoding the dif-
ference image we designed a simple context based lossless
coding technique similar to CALIC, except for a few dif-
ferences. First of all, we eliminated the prediction step.
This is because prediction captures the ‘‘smoothness’’ or
uniformity of neighboring pixel values typically found in
natural images. The difference image, however, is not
smooth. This is especially true when the difference image is
generated from a moderate to high quality lossy reconstruc-
tion.

Secondly, contexts were formed by using pixels in the
lossy image at and around the location of the current re-
sidual pixel being encoded. Specifically, the following dif-
ferences were computed;

Fig. 5 Comparison of SPIHT and Embedded DCT based on 32
332 blocks with Barb image.

Fig. 6 Comparison of bit rates obtained with and without utilizing
the lossy image while compressing the difference—Lena image.

Fig. 7 Comparison of bit rates obtained with and without utilizing
the lossy image while compressing the difference—Barb image.
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D15L@ i 21,j #2L@ i , j #,

D25L@ i 11,j #2L@ i , j #
~4!

D35L@ i , j 21#2L@ i , j #

D45L@ i , j 11#2L@ i , j #

whereL denotes the lossy reconstructed image. The differ-
ences D1, D2, D3 and D4 were then quantized into 7 re-
gions~labeled23 to 13! symmetric about the origin with
one of the quantization regions~region 0! consisting only
of the difference value 0.

Further, contexts of the type (q1 ,q2 ,q3 ,q4) and
(2q1 ,2q2 ,2q3 ,2q4) are merged based on the assump-
tion that

p~euq1 ,q2 ,q3 ,q4!5p~2eu2q1 ,2q2 ,2q3 ,2q4!.

The total number of contexts turns out to be (7421)/2
51200. Within each context the conditional mean of the

difference image valueê@ i , j # was estimated and subtracted
from the actual valueE@ i , j #5P@ i , j #2L@ i , j #. The result

Ê@ i , j # was then quantized to getÊ@ ı̂ , j # which was entropy
coded, conditioned to a local activity measureD computed
as defined below and then quantized to one of eight levels.

D5Dh1Dv12•~ u Ê̂@ i 21#@ j #u1u Ê̂@ i #@ j 21#u!, ~5!

where

Dh5uL@ i 21#@ j #2L@ i #@ j #u1uL@ i #@ j #2L@ i 11#@ j #u,
~6!

Dh5uL@ i #@ j 21#2L@ i #@ j #u1uL@ i #@ j #2L@ i #@ j 11#u.

The quantization bins forD are defined by the following
boundary pointsqi :

q157, q2517, q3528, q4546,
~7!

q5565, q6591, q75148.

In the above scheme, if the lossy image utilized when
compressing the residual is coded at a very low rate, then it
will provide misleading information about the residual and
lead to poor compression. A very high rate lossy image, on
the other hand, would also lead to poor overall perfor-
mance. This is because, as the bit rate for the lossy repre-
sentation increases, the residual image consists more and
more of random noise, and any approach which attempts to
exploit residual correlations loses its advantage. This is
confirmed again in Figs. 6 and 7 where it is seen that for
Lena, a lossy image at 0.30 bpp results in the minimum
overall rate and for Barb we need a lossy image at 1.10
bpp.

Table 4 shows bit rates, MSE and PSNR’s achieved with
a lossy plus near-lossless approach for different values ofk
for Lena and Barb.

5 Conclusions and Future Work

In this paper near-lossless compression techniques based on
the criterion of maximum allowable deviation of pixel val-
ues are investigated. It is shown how predictive and multi-
resolution coding methods and their combinations can be
adapted to meet the specifications of maximum allowable
deviation. We have examined near-lossless compression by

Fig. 8 Comparison of bit rates obtained by proposed lossy plus
near-lossless technique and near-lossless S1P and CALIC—Lena
image.

Table 4 Performance of lossy plus near-lossless technique using lossy image obtained by SPIHT bpp
for different near-lossless criterion k—using Lena image at 0.30 bpp and Barb at 1.10 bpp.

Lena Barb

k Bpp MSE PSNR Bpp MSE PSNR

61 2.69 0.67 49.89 3.31 0.67 49.89

62 2.02 1.98 45.16 2.65 1.98 45.17

63 1.59 3.76 42.38 2.23 3.77 42.36

64 1.28 5.68 40.59 1.91 5.74 40.54

65 1.03 7.50 39.38 1.67 7.54 39.36

66 0.86 9.10 38.54 1.48 9.00 38.59

67 0.73 10.43 37.95 1.35 10.06 38.10
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modifying lossless predictive coding techniques, near-
lossless coding based on reversible transforms in conjunc-
tion with prequantization, and a partially embedded two-
layer scheme of lossy plus near lossless coding. Figures 8
and 9 show an overall comparison of near-lossless com-
pression with a predictive approach~CALIC!, a reversible
transform (S1P) and a lossy transform~SPIHT!1near
lossless coding. The predictive approach clearly performs
the best. The partially embedded two-layer scheme of lossy
plus near-lossless coding offers a compromise in providing
a preview image while performing close to the purely pre-
dictive approach. The S1P coder is attractive due to its
simplicity and its feature of fully embedded coding, and
should be investigated for improved performance by ex-
ploring alternatives to the simple prequantization proce-
dure.
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