
16

Near-memory Computing on FPGAs with 3D-stacked

Memories: Applications, Architectures, and Optimizations

VERONIA ISKANDAR, Technische Universität Dresden, Chair of Adaptive Dynamic Systems, Germany

MOHAMED A. ABD EL GHANY, Electronics Department/IES Lab, German University in Cairo/TU

Darmstadt, Egypt/Germany

DIANA GÖHRINGER, Technische Universität Dresden, Chair of Adaptive Dynamic Systems, Germany

The near-memory computing (NMC) paradigm has transpired as a promising method for overcoming the
memory wall challenges of future computing architectures. Modern systems integrating 3D-stacked DRAM
memory can be leveraged to prevent unnecessary data movement between the main memory and the CPU.
FPGA vendors have started introducing 3D memories to their products in an effort to remain competitive on
bandwidth requirements of modern memory-intensive applications. Recent NMC proposals target various
types of data processing workloads such as graph processing, MapReduce, sorting, machine learning, and
database analytics.

In this article, we conduct a literature survey on previous proposals of NMC systems on FPGAs integrated
with 3D memories. By leveraging the high bandwidth offered from such memories together with specifically
designed hardware, FPGA architectures have become a competitor to GPU solutions in terms of speed and
energy efficiency. Various FPGA-based NMC designs have been proposed with software and hardware opti-
mization methods to achieve high performance and energy efficiency. Our review investigates various aspects
of NMC designs such as platforms, architectures, workloads, and tools. We identify the key challenges and
open issues with future research directions.

CCS Concepts: • Hardware→ Reconfigurable logic and FPGAs; • General and reference→ Surveys

and overviews; • Computer systems organization→ Parallel architectures;

Additional Key Words and Phrases: Near-memory computing, 3D stacking, FPGA architectures, high-
bandwidth memory

ACM Reference format:

Veronia Iskandar, Mohamed A. Abd El Ghany, and Diana Göhringer. 2022. Near-memory Computing on FP-
GAs with 3D-stacked Memories: Applications, Architectures, and Optimizations. ACM Trans. Reconfigurable

Technol. Syst. 16, 1, Article 16 (December 2022), 32 pages.
https://doi.org/10.1145/3547658

The research work presented in this article was funded by the German Research Foundation (“Deutsche Forschungsge-

meinschaft”) (DFG) under Project ID No. 287022738 TRR 196 for Project S05.

Authors’ addresses: V. Iskandar and D. GÖhringer, Technische Universität Dresden, Chair of Adaptive Dynamic Sys-

tems, Nöthnitzer Str. 46, 01062 Dresden, Germany; emails: veronia.iskandar@mailbox.tu-dresden.de, diana.goehringer@tu-

dresden.de; M. A. Abd El Ghany, Electronics Department, German University in Cairo, Cairo 11835, Egypt and Technische

Universität Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany; email: mohamed.abdel-ghany@guc.edu.eg.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1936-7406/2022/12-ART16 $15.00

https://doi.org/10.1145/3547658

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

https://orcid.org/0000-0001-9420-5450
https://orcid.org/0000-0002-6282-7738
https://orcid.org/0000-0003-2571-8441
https://doi.org/10.1145/3547658
mailto:permissions@acm.org
https://doi.org/10.1145/3547658
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3547658&domain=pdf&date_stamp=2022-12-22

16:2 V. Iskandar et al.

1 INTRODUCTION

Modern computing systems exhibit rapidly increasing computational capacity, mainly due to the
improvements of CMOS technology. Such improvements are often enabled by either integrating
more processing elements within the same area and/or by enhancing the processing cores with
extra features (e.g., SGX, AVX, GPGPU, etc.). However, DRAM memory bandwidth has seen only
small development over many decades. Therefore, the gap between memory and computation
speeds keeps increasing, especially in multicore designs that require concurrent memory access.
Additionally, memory technology has not been able to keep up with processor speeds in terms of la-
tency and energy consumption, which is known as the memory wall [101]. At the same time, huge
amounts of data are generated in modern workloads. Many applications have high data parallelism
and low computational intensity. On conventional systems, these applications require frequent
data movement between the memory and the processor. This has a severe impact on performance
and energy efficiency.

Many research works aim nowadays to find innovative manufacturing technologies and archi-
tectures to overcome the memory wall. The conventional memory hierarchy consists of several
levels of cache, the main memory, and disk storage. During computation, the data needed by the
processor is moved up to caches from the storage and then processed. However, near-memory

computing (NMC) changes this paradigm by moving the processing near to where the data re-
sides. This data-centric approach introduces processing units close to the data to reduce the expen-
sive data movements. Prior architectures were based on a processor-centric design, where data is
transferred to the CPU for processing, while with near-memory processing the cores are brought
to the place where data is.

Innovative memory technologies using three-dimensional stacking are true enablers of process-
ing close to the memory. Three-dimensional stacking allows the integration of logic and memory
together on one chip. Several layers are packed vertically using through-silicon vias (TSVs),
which helps in decreasing memory access latency, energy consumption and provides significantly
higher bandwidth [39]. Micron’s Hybrid Memory Cube (HMC) [74], High-bandwidth Mem-

ory (HBM) [55] from AMD and Hynix, and Samsung’s Wide I/O [51] are the most prominent 3D
memory products. An example for using such technologies in the GPU community is the Nvidia
GPU V100, which includes a 32 GB HBM2, allowing up to 900 GB/s memory bandwidth to its
processor cores.1

Nowadays, architects can realise complete systems that are based on the NMC paradigm in hard-
ware using FPGAs that feature 3D memory variants. In such FPGAs, the 3D memory is situated
close to the FPGA programmable logic, thus realising the NMC paradigm. Previously, FPGAs used
to have significantly lower memory bandwidth compared to GPUs of the same generation. Most
FPGAs featured at most two DRAM channels, each providing up to approximately 19 GB/s mem-
ory bandwidth [33]. Consequently, an FPGA-based architecture using DRAM memory could not
contend with a GPU for bandwidth-critical workloads. Due to this limitation, FPGA vendors like
Xilinx and Intel started to add HBM and HMC memories in their FPGA boards in an effort to re-
main competitive on bandwidth requirements. Integrating high-bandwidth memories promises to
be a game-changing feature by enabling FPGAs to perform significantly better for memory-bound
as well as compute-bound workloads such as database [98] and deep learning [62] applications.

The article analyzes and organizes the extensive body of literature related to the novel area of
near-memory computing on FPGAs. We make the following contributions:

• We analyze and organize recent literature on near-memory computing on FPGAs under
various dimensions.

1https://www.nvidia.com/en-us/data-center/v100/.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

https://www.nvidia.com/en-us/data-center/v100/

Near-Memory Computing on FPGAs with 3D-stacked Memories 16:3

• We highlight current challenges in FPGA-HBM designs.
• We outline the directions for future research.

2 BACKGROUND AND RELATED WORK

2.1 Near-memory Computing

The concept of processing near to the memory is as old as the 1960s [94]. However, the first NMC
systems can be traced back to the early 1990s [13, 15, 23, 45, 52, 73]. One such system was Vector

IRAM (VIRAM) [53], where a vector processor with an on-chip embedded DRAM was proposed
to make use of data parallelism in multimedia workloads. Although research showed promising re-
sults, NMC architectures saw limited adoption because of technological shortcomings at that time.
For instance, the difficulty of integrating memory with logic due to the difference in technology
processes.

Nevertheless, numerous studies demonstrated the potential of near-storage computing facilities
for FPGAs. IBEX [100] is an early prototype for offloading database tasks to near-storage process-
ing elements, where an FPGA resides between the host and a SATA SSD. Biscuit [25] presents
a general NMC platform. JAFAR [7] similarly demonstrates NMC for DBMS. Caribou [38] and
BlueDBM [44] propose RDMA-based KV-Stores exploiting node-local operations, but their frame-
works are not capable of dynamic task loading and possess limited OS-level support. Most previous
works on persistent KV-Stores and NMC aim for bandwidth optimization. An FPGA-based near-
storage computing system was proposed by Ruan et al. [83]. Virtual files map to the contents
of conventional files and integrate them with near-storage operations. All are similar in that the
near-storage accelerators are managed by applications or custom run-time systems.

Nowadays, research in NMC is resurging, mainly due to the following three reasons. First, man-
ufacturing technology advancements have enabled 3D and 2.5D stacking, which allows integration
of logic and memory in the same package. Second, bringing the computation nearer to the data
allows for mitigating the performance and energy bottlenecks caused by data movement by avoid-
ing memory-package pin-count limitations. Third, modern data-intensive applications in areas
like biology, astronomy, and materials studies call for newer data-centric architectures. Multiple
NMC designs [3, 16, 31, 35, 85] have been proposed and their potential to accelerate many applica-
tions has been demonstrated. NMC is also referred to as near-memory processing (NMP), and
near-data processing (NDP).

Loh et al. [35] presented an initial classification for processing near memory based on computing
interface with software, and separately investigated transparent software features. Siegl et al. [90]
study the historical evolution of NMC. However, their classification is not systematic and they do
not discuss design challenges and future research directions in this field. Ghose et al. [21] provide
an overview of the mechanisms and challenges in the domain of near-memory computing. How-
ever, they do not provide a systematic literature review. Singh et al. [91] classified NMC proposals
by the memory level where near-memory processing is applied and the type of processing units.
Although the work of Singh et al. [91] is fairly recent, NMC research on FPGAs is not detailed in it,
as such research has only increased in recent years, and is expected to continue to grow. Holzinger
et al. [30] investigate the reliability of measurements on a Xilinx HBM FPGA and propose several
architectural improvements to increase throughput. A roofline model is developed to accurately
predict accelerator performance.

2.2 Processing in Memory

Although our focus is NMC systems on FPGAs, we point out another promising direction of de-
signing architectures that bring data close to processing elements, which is in-memory processing.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

16:4 V. Iskandar et al.

Fig. 1. High-bandwidth memory (HBM). Figure from www.xilinx.com.

Processing-in-memory refers to computing inside memory arrays to reduce data movement. Con-
ventional DRAM and SRAM memories have been used for the frequently-occurring computations
in data-intensive applications [59]. However, conventional memory technologies do not supply
enough computing and storage required by data-intensive workloads. In addition, their large cell
size and high leakage power lead to large area and power consumption. Non-volatile memories

(eNVMs), which supply better scaling and near-zero leakage power, have emerged as promising
candidates for processing-in-memory. eNVM technologies include spin-transfer torque RAM

(STT-RAM), phase-change memory (PCM), and resistive RAM (ReRAM). Among such tech-
nologies, STT-RAM provides the fastest access and the lowest energy consumption while the cell
area is relatively larger [71]. Both PCMs [56] and ReRAMs [58] can hold several bits in a single
memory cell, demonstrating better density with technology scaling. These architectures support
inherently parallel workloads. Multiple studies have proposed building in-memory processing us-
ing eNVM. Li et al. [57] survey the recent proposals in in-memory processing utilizing eNVM
technologies (STT-RAM, PCM, and ReRAM).

2.3 3D-stacked Memories

This section focuses on the basic specifications as well as the chip realization of the two most
prominent 3D-stacked memory technologies, HBM and HMC. Both memories make use of 3D-
stacking and extended in-memory parallelism. The usage of 3D-stacking increases the density of
the memory and therefore reduces the number of memory packages needed. The dies incorporated
in a memory package are connected using Through-Silicon Vias (TSVs) [43, 74].

High-bandwidth Memory (HBM). Bandwidth is an important characteristic of memory. A
high memory bandwidth is required for memory-intensive workloads to utilize the computational
power of modern compute elements. HBM increases the memory bandwidth compared to tradi-
tional DDR memory, while using much lower clock frequencies. An increase in bandwidth and
simultaneously a decrease in clock speed are achieved by connecting four to eight memory chan-
nels to the same memory module. Due to the large number of channels connected to each module,
a single module can serve multiple requests simultaneously. At the same time, each memory chan-
nel has an increased width of 128 bit, compared to the 64 bit of DDR memory.

An HBM module consists of multiple DRAM dies and a logic die, which are all connected via
TSVs, as illustrated in Figure 1. Such a stack of HBM can contain up to 16 GiB of memory in
products adhering to the second version of the specification, with up to eight DRAM dies stacked.2

The original specification of HBM specified 16 banks per rank [43]. HBM2 increases this to up to
32 banks. Each DRAM die in an HBM2 package provides two memory channels.3

2https://www.micron.com/-/media/client/global/documents/products/data-sheet/hmc/gen2/hmc_gen2.pdf.
3Micron Technology, Inc. High-bandwidth Memory with ECC. URL: https://media-www.micron.com/-/media/client/

global/documents/products/data-sheet/dram/hbm2e/8gb_and_16gb_hbm2e_dram.pdf.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

https://www.xilinx.com
https://www.micron.com/-/media/client/global/documents/products/data-sheet/hmc/gen2/hmc_gen2.pdf
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/dram/hbm2e/8gb_and_16gb_hbm2e_dram.pdf

Near-Memory Computing on FPGAs with 3D-stacked Memories 16:5

Fig. 2. Hybrid memory cube (HMC). Figure adapted from www.micron.com.

Table 1. Properties of HBM and HMC Memories

Property HBM HMC
Stacked Layers 4–8 4–8
Channels 8–16 (HBM 2) 1 (controller in logic die)
Banks 16–32 (HBM 2) 256 (Gen1), 128 (Gen 2)
Vaults — 32 (Gen 1), 16 (Gen 2)
Capacity 8–16 GB 2–4 GB
Bandwidth up to 410 GB/s 160 GB/s (10 GB/s per vault)

Hybrid Memory Cube (HMC). Like HBM, HMC is a 3D memory whose DRAM layers and logic
die are connected using TSVs. In contrast to other memory technologies, HMC removes the mem-
ory controller from the host processor by integrating it into the logic die of the memory module.
The structure of the HMC is shown in Figure 2. However, the most important difference between
HMC and HBM (and consequently traditional DRAM memory types) is the internal organization
of the memory. The memory inside the memory stack is grouped vertically. Across all layers of
the stack, memory is organized into vertical vaults, which operate independently. The logic die is
partitioned according to the vault structure into small memory controllers, called vault controllers.
As a result of this internal organization, many more banks can be utilized concurrently; at the same
time, the size of a row is drastically reduced [22]. Since HMC moves the memory controller from
the host processor onto the logic die, the processor is not connected to the memory via traditional
memory channels, but so-called links. These links implement a packet-based protocol to transmit
commands and data. Each packet is composed of 128 bit Flow Control Digits (FLITs).

HBM as well as HMC attempt to increase application performance by increasing some form of
parallelism. While HBM increases throughput by widening the interface, i.e., the available chan-
nels, HMC increases bank-level parallelism and therefore the number of simultaneous requests.
However, both approaches involve trade offs. The key properties of both memories are summa-
rized in Table 1. HBM2 in current products achieves much higher memory density and capacity,
and significantly higher peak bandwidth, than HMC. However, the vault organization of HMC pro-
vides up to 16 times the number of banks. Interestingly, Micron decreased the number of vaults
and therefore the number of banks in the second generation of HMC. This may well be an at-
tempt to improve the performance of the memory in applications, which are less able to exploit
the high bank-level parallelism provided by the memory. HBM2, however, increases the number
of banks compared to the first generation. According to Ghose et al. [22] HBM and HMC differ in
row hit/miss and row conflict latencies with HMC achieving lower latencies in all cases.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

https://www.micron.com

16:6 V. Iskandar et al.

Competing high-bandwidth memory technologies like GDDR5 increase clock speeds and the
number of connected memory modules to increase bandwidth. However, this comes at a cost of
power consumption, which increases with clock speed and voltage. While clock speed alone has a
linear relationship with power consumption, voltage increases it quadratically. Therefore, power
efficiency worsens with increasing clock speed if no other factors like node shrinks cancel the
increased power consumption out. Therefore, HBM has a much lower clock speed than compet-
ing technologies. In contrast, HMC has more than double the operating frequency of HBM [22].
In addition to the higher clock speed, HMC needs to implement the link protocol, which poten-
tially consumes significant extra power. There are no recent studies comparing the power con-
sumption and efficiency for different workloads. However, according to Ghose et al., HMC can
outperform competing memory technologies significantly in specific workloads. Power efficiency
is application-specific and there may well be workloads in which one or the other memory tech-
nology or even traditional DDR has better power efficiency.

2.4 FPGA-HBM Platforms

Intel and Xilinx have recently launched HBM2 FPGA boards: Xilinx’s Alveo U50 [105], U280 [104],
Virtex Ultrascale+ [103], and Intel’s Stratix 10 MX [37]. These boards integrate an FPGA and two
HBM2 stacks (8 HBM dies).

Xilinx integrates two HBM stacks and an HBM controller inside the FPGA. Each HBM stack
has eight independent memory channels, and each memory channel is further divided into two
64-bit pseudo-channels (PCs). Each PC has 256 MB of capacity (8 GB in total). 32 AXI channels
provide interaction with the user logic. Each AXI channel implements the AXI3 protocol to en-
sure a standardized interface to the FPGA programmer. Each AXI channel connects to an HBM
pseudo-channel, so each AXI channel is restricted to accessing its own memory region. To enable
global access, an optional switch between the 32 AXI channels and the 32 pseudo-channels is im-
plemented. It has been proved difficult to fully implement the switch, because of its large resource
requirement. Instead, Xilinx’s eight mini-switches can be used. Each mini-switch is connected to
4 AXI channels. Each AXI channel can communicate with any pseudo-channel connected to the
same mini-switch with the same latency and throughput. Moreover, there are two bidirectional
links between two adjacent mini switches to allow global addressing. The thermal design power

(TDP) of Alveo U280 is 200W. The Alveo U280 also includes traditional DDR DRAM [9].
In Stratix 10 MX, each PC is connected to the FPGA PHY layer through 64 data I/Os that run

at 800 MHz (double data rate). The data communication between the user logic and the HBM2
memory is managed by the HBM controller, which runs at 400 MHz. AXI4 [6] and Avalon [36]
interfaces (256 bitwidth) are used to communicate with the user logic. The clock frequency of
kernels can reach at most 450 MHz. Since the frequency of the HBM memory controller cannot
exceed 400 MHz, rate matching FIFOs are implemented between the user logic and the memory
controllers.

The Xilinx Alveo U280 FPGA is divided into three super logic regions (SLRs). The FPGA
connects to the HBM2 stacks on SLR0. The data I/Os to the HBM run at 900 MHz. Data transmission
is handled by the HBM memory controllers. A memory controller connects with the user logic by
an AXI3 interface (256b) operating at 450 MHz. An 512b AXI3 master interface is available to the
user logic. The clock frequency of the user logic is limited at 300 MHz. Therefore, we can calculate
the ideal memory bandwidth as 460 GB/s (= 256b * 32PCs * 450 MHz).

Data can be sent between the four user logic AXI masters and any of the four adjacent PC AXI
slaves using a fully-connected switch. For instance, the first AXI master directly connects to PCs
0–3 (Figure 3). In case an AXI master requires to read/write in non-adjacent PCs, it crosses lateral

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

Near-Memory Computing on FPGAs with 3D-stacked Memories 16:7

Fig. 3. Xilinx alveo U280 HBM subsystem. Figure adapted from www.xilinx.com.

connections among the unit switches. However, network contention could constrict the resultant
bandwidth [106].

2.5 FPGA-HMC Platforms

One of the most used boards in literature is the AC-510 evaluation board by Micron/
PicoComputing. The AC-510 [78] features a 4 GB Micron Hybrid Memory Cube connected to a
Xilinx Kintex Ultrascale XCKU060- FFVA1156 FPGA, which forms the Pico Computing AC-510
daughter card. The FPGA is connected to the HMC via two quarter-width HMC links, producing a
single half-width link. The FPGA has access only to a quarter of the maximum HMC throughput,
which supports two full-width links. The Micron/Pico Computing AC-510 daughter card is inte-
grated on a Pico EX-700, which can support a maximum of six cards. PCIe interconnect between
the FPGAs as well PCIe interconnect to the host are provided.

The Micron SB-800 board was produced by Intel, featuring 4 Altera Stratix V FPGAs, and a 4 GB
HMC with a single high speed serial link to each FPGA. To achieve the best performance, each link
can only access memory inside its own four HMC vaults. The AC-520 platform features an Intel
Arria 10 GX 1150 FPGA and a 4 GB HMC module. The HMC interfaces with FPGA with four half-
width links, which provide a two-way bandwidth of 60 GB/s. The AC-520 additionally exposes the
interface for power consumption measurement.

3 A MOTIVATION FOR NEAR-MEMORY COMPUTING ON FPGAS

Modern FPGA boards are ideal for releasing the NMC paradigm to accelerate data-intensive work-
loads. This is because such FPGAs can deal with irregular memory access patterns efficiently and
can achieve considerably higher memory bandwidth than the CPU due to their on-chip URAMs

(UltraRAM), BRAMs (block RAM), and off-chip high-bandwidth memory. Thanks to their ar-
chitectural flexibility, FPGAs are popularly exploited for various data processing tasks including
machine and deep learning [17, 46, 97], database processing [8, 47], and networking [84].

Additionally, recent FPGAs can deploy new cache-coherent interconnects, such as IBM CAPI
[95], Cache Coherent Interconnect for Accelerators (CCIX) [95], and Compute Express

Link (CXL) [89], which allow tight integration of FPGAs with CPUs at high bidirectional band-
width (in the order of tens of GB/s). Such interconnects allow acceleration kernels to be efficiently
offloaded from a host CPU to the FPGA to be processed near the memory. Figure 4 shows a typical
architecture of an FPGA-based NMC system.

Specialized hardware architectures are being proposed by major cloud providers to provide an
alternative to general-purpose processors to achieve high performance and energy efficiency. Ex-
amples of such approaches are the manufacturing of Tensor Processing Unit (TPU) by Google
to accelerate deep learning [42], the usage of FPGAs by Microsoft in their datacenters to offload

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

https://www.xilinx.com

16:8 V. Iskandar et al.

Fig. 4. A typical structure of an FPGA-based NMC system.

computation to the network [80] and perform low latency inference [10], the design of efficient
interconnects such as OpenCAPI [95], which simplify the integration of accelerators into host
systems, and FPGAs being incorporated in the AWS cloud [1] and Baidu [2].

However, leveraging the full potential of FPGAs for accelerating an application is not a trivial
task. FPGAs must achieve at least one order of magnitude more parallelism in a given workload.
This requires considerable FPGA programming knowledge to map the application kernel and op-
timize the design for the FPGA microarchitecture.

4 CLASSIFICATION AND EVALUATION

This section introduces the classification and evaluation metrics that are used in the next sections
and are summarized in Table 2. For each architecture, the following main categories are evaluated
and classified:

(1) FPGA platform. The decision of using which type of FPGA and 3D memory is one of the
most primary questions on which the near-memory architecture depends, as HBM and HMC
vary greatly in their implementation, and vendors also vary in provided interfaces and tools.

(2) Workload. NMC architectures are data-centric. A given architecture is usually special-
ized for a particular application. Hence, in our classification, we include the domain of the
application.

(3) Implementation language. Using low-level hardware description languages like Verilog
requires good knowledge of hardware design details and hands-on experience. However,
higher-level languages such as HLS can reduce programming efforts needed by FPGA pro-
grammers. An example for this is the Vitis framework [107] provided by Xilinx. Even though
HLS increases programmability, high performance cannot be simply obtained without care-
ful design of the hardware pipeline and the memory subsystem.

(4) Processing. The implemented processing units on the FPGA and the granularity of their
processing are investigated.

(5) Optimization target. The goal of implementing the NMC architecture could be to improve
throughput, reduce latency, or reduce power consumption of the workload.

(6) Evaluation comparison. We investigate the baseline architectures, such as CPUs, GPUs or
other FPGAs to which the NMC architectures are compared.

(7) Open source. The research community benefits most by open-source proposals.

We first show a classification of NMC architectures based on their purpose, 3D memory inte-
grated on the FPGA platform, and their implementation language (Figure 5). In Figure 5, the clas-
sification starts by classifying the architectures by looking into their target and their processing

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

Near-Memory Computing on FPGAs with 3D-stacked Memories 16:9

Table 2. Classification Metrics, Legend for Table 3

Property Abbreviation Description

FPGA Platform

ac510 Xilinx AC-510
ac520 Altera AC-520
SC-6 Pico SC-6 Mini
V6 Xilinx Virtex6

VU37P Xilinx VU37P
SB Altera SB-800
MX Intel Stratix 10 MX 2100

ADM Alpha Data ADM-PCIE-9H7
VU+ Xilinx Virtex Ultrascale+
U280 Xilinx Alveo U280
Emul Emulation
Indp Platform-independent

3D Memory
HMC Hybrid Memory Cube
HBM High-bandwidth Memory

Workload
— Target application for acceleration
C Characterization of the 3D memory

Implementation Language

V Verilog
SV SystemVerilog
Ch Chisel
CL OpenCL

HDL Unspecified hardware description language
HLS High-Level Synthesis

NMC processing elements

Acc App specific accelerator
CPU Central Processing Unit
MC Memory controller

Optimization Target

P Power
T Performance (throughput or execution time)
C Characterization of the 3D memory

Comparison

DDR DDR-attached FPGA
CPU CPU-based software implementation
GPU Graphics Processing Unit

CGRA Coarse-Grained Reconfigurable Array
Open Source — Availability of the working code

elements, to highlight the main goals of designing FPGA-based NMC architectures. The three main
categories are application-specific accelerators, generic architectures, and performance character-
ization architectures. Application-specific accelerators implement processing elements targeting
the acceleration of a specific application. Generic architectures implement general-purpose cores
that can run any type of workload. Performance characterization architectures target stressing
the memory system for extraction of its characteristics. Performance characterization architec-
tures also require the implementation of simple processing elements to interact with the mem-
ory. However, the focus is not accelerating a specific application, but to investigate the memory
properties.

Afterwards, we detail the properties of each architecture in Table 3. From Table 3, we ob-
serve that the majority of proposals target homogeneous application-specific accelerators near the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

16:10 V. Iskandar et al.

Fig. 5. Classification of NMC architectures based on purpose, 3D memory used, and implementation
language.

memory. Most NMC proposals target various types of data processing workloads such as graph
processing, MapReduce, sorting, machine learning, and database analytics. Additionally, we no-
tice that prior proposals of NMC architectures on FPGA have started with HMC-based FPGAs, but
nowadays the majority of papers published in this field target the HBM. This is mainly due to the
shift of FPGA vendor support towards the HBM, and also the similarity of the memory protocols
of HBM to traditional DDR memory. For this reason, we focus on FPGA-HBM proposals when we
discuss design challenges and open research directions.

5 APPLICATION-SPECIFIC ACCELERATION ARCHITECTURES

Most NMC application-specific accelerators target performance improvement of certain applica-
tions. Few of such works [72, 88] also investigate power consumption as an important factor be-
sides throughput maximization. Application-specific NMC architectures extensively use both the
HBM [40, 41, 72, 88, 112] and the HMC [18, 19, 50, 63, 66, 70, 82, 110]. A typical HBM-based FPGA-
NMC accelerator system is shown in Figure 6.

Sparse matrix operations are one of the most popular applications for FPGA-NMC acceleration.
Sgherzi et al. [88], Parravicini et al. [72], Sextans [93], HiSparse [14], and Graphlily [32] present
HBM-based NMC architectures to improve the throughput of sparse matrix operations using the
Xilinx Alveo U280. Sgherzi et al. [88] propose an approximate a solution to the Top-K eigenprob-
lem on sparse matrices, which is memory-intensive. Additionally, a Systolic Array design is imple-
mented for the computationally-intensive Jacobi eigenvalue algorithm. Similarly, Parravicini et al.
[72] propose a Top-K SpMV FPGA design that leverages reduced precision. Top-K SpMV is highly
memory intensive and includes sequential and random memory accesses, rendering it unsuit-
able for traditional caching. Sextans [93] is an accelerator for general-purpose SpMM processing.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

Near-Memory Computing on FPGAs with 3D-stacked Memories 16:11

Table 3. Architectures Classification and Evaluation

NMC Architecture Year FPGA 3D
Mem.

Workload Impl. PEs Target Evalua-
tion

Open
Source

openHMC [86] 2015 Indp HMC — V MC — — yes
Lloyd et al. [63] 2015 Emul HMC Analytics HDL Acc T CPU no
Schmidt et al. [87] 2016 Emul HMC HPC HDL Acc C — no
HRL [18] 2016 V6 HMC Analytics HLS Acc P, T DDR,

CGRA
no

Garg et al. [19] 2017 ac510 HMC SuperLU [60] CL Acc T — no
Hadidi et al. [28] 2017 ac510 HMC GUPS V Acc C — no
Rozhko et al. [82] 2017 ac510 HMC Packet matching HLS,

SV
Acc T — no

Mcvicar et al. [66] 2017 SB HMC K-mer Counting V Acc T CPU, DDR no
CoolPIM [67] 2018 ac510 HMC Graph processing V Acc C — no
Khan et al. [50] 2018 ac510 HMC Packet processing HLS Acc T — no
Hadidi et al. [29] 2018 SC6 HMC GUPS, stream V Acc C — no
Pantho et al. [70] 2018 ac510 HMC Image processing — Acc T CPU, DDR no
Zhang et al. [110] 2018 ac510,

ac520
HMC Graph processing HDL Acc T CPU, DDR,

GPU
no

Volcan [81] 2019 ac510 HMC HPC V, HLS Acc T CPU, DDR no
2GRVI Phalanx
[24]

2019 VU37P HBM Generic SV CPU — — no

Kara et al. [48] 2020 ADM HBM Analytics HLS,
SV

Acc T CPU no

MEG [111] 2020 VU+ HBM Generic Ch CPU EM — yes
Nero[92] 2020 ADM HBM Weather

prediction
HLS Acc T, P DDR no

Yang et al. [108] 2020 MX HBM Hash table HDL Acc T GPU, DDR no
MICROREC [40] 2021 U280 HBM Inference HLS Acc T CPU yes
Scalabfs [61] 2021 U280 HBM BFS CL, Ch Acc T DDR, GPU yes
Sgherzi et al. [88] 2021 U280 HBM Top-K

eigenproblem
HDL Acc T,P CPU no

Parravicini et al.
[72]

2021 U280 HBM Top-K SpMV HLS Acc T, P CPU yes

Zhu et al. [112] 2021 U280 HBM Inference HLS Acc T CPU no
FleetRec [41] 2021 U280 HBM Inference HLS Acc T CPU, DDR no
HBM Connect [9] 2021 U280 HBM Sorting HLS Acc C — yes
Shuhai [33] 2021 U280 HBM RST V Acc C — yes
Graphlily [32] 2021 U280 HBM Graph processing HLS Acc T GPU, CPU,

DDR
yes

Sextans [93] 2022 U280 HBM SpMM HLS Acc T GPU, CPU,
DDR

yes

HiSparse [14] 2022 U280 HBM SpMV HLS Acc T GPU, CPU,
DDR

yes

Refer to Table 2 for a legend.

HiSparse [14] is a high-performance SpMV accelerator optimized for maximizing performance on
multi-die HBM-equipped FPGA device. GraphLily [32] is an overlay to accelerate graph processing
using the GraphBLAS interface, which constructs graph algorithms as sparse linear algebra oper-
ations. HMC-based acceleration of sparse matrix operations is also studied by Garg et al. [19] on
the AC-510 platform for investigating potential performance improvements for the sparse direct
solver library, SuperLU. The work focuses on migration of kernels to OpenCL and concludes that
more careful optimization for SuperLU are needed, as well as more hardware support for bursty
HMC read/write accesses.

MicroRec [40], Zhu et al. [112], and FleetRec [41] use an HBM to accelerate recommendation
inference systems using Xilinx FPGAs. MicroRec [40] utilizes both hardware and data structure

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

16:12 V. Iskandar et al.

Fig. 6. Block graph of a typical HBM-based accelerator.

mechanisms to mitigate the memory bottleneck due to embedding lookups. However, the compu-
tation highly constrains the overall performance on a single FPGA after the memory bottleneck
is avoided. As an improvement over the previous work, Zhu et al. [112] leverage an FPGA cluster
for recommendation inference operations to gain high throughput on the embedding layer com-
putation while keeping a low inference latency. For reliable data transmission, an open-source
100 Gbps TCP/IP stack customized for Vitis HLS is leveraged. FleetRec [41] additionally intro-
duces using a configurable heterogeneous computing cluster for recommendation inference. On
the embedding table lookup side, FPGAs equipped with HBMs are employed to perform parallel
lookup operations, and CPUs with sufficient DRAM memory storage are used for large tables. On
the computation side, GPUs perform DNN computations to avoid the irregular memory accesses
that decrease the GPU performance. The GPUs, FPGAs, and CPU servers are connected through
a high-speed network.

Improving the performance of packet processing applications using HMC memory is the focus
of the work of Rozhko et al. [82] and Khan et al. [50]. Rozhko et al. [82] implement a packet pro-
cessing architecture that uses an HMC memory to stream rules to a packet matching engine. The
processing elements of the matching engine are implemented as a systolic array to reduce the
fanout of the Rule Stream data signal and avoid large multiplexers and demultiplexers. A Micron
AC-510 FPGA accelerator card and the Pico Framework are used. The Pico Framework is a wrapper
for the FPGA to include the PCIe and HMC links in hardware designs, as well as software libraries
and drivers for the host CPU. The memory bandwidth is 10 GB/s. Though more bandwidth is avail-
able, it is a trade-off with routability. More research is required to investigate methods to use the
full memory bandwidth, such as leveraging multi-FPGA structures. Khan et al. [50] use the HMC
memory for assisting packet processing look-up on FPGAs. The authors present the suitability of
HLS as an intermediate language for packet processing. An AC-510 platform is leveraged, which
integrates a 4 GB Micron Hybrid Memory Cube connected to a Xilinx Kintex Ultrascale FPGA. HLS
supports ease of programming and allows a close correlation between the packet processing ker-
nels and the corresponding processing units. The disadvantage, however, is the limited expression
and abstraction of hardware.

Pantho et al. [70] propose a framework for automatic mapping of OpenCV image processing
kernels to transparently benefit from the performance and concurrent memory channels of HMC.
The mapping process identifies kernel functions in software that are mapped then to hardware
components, pre-synthesized in the FPGA. Data transfer and memory access scheduling are also
handled automatically by the framework. A workstation with four HMC-enabled AC-510 FPGAs
attached through PCIe connections is used.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

Near-Memory Computing on FPGAs with 3D-stacked Memories 16:13

ScalaBFS [61] and Kara et al. [48] both propose accelerators for data analytics workloads. Scal-
aBFS [61] is an open-source accelerator for graph processing, with focus on the Breadth-First
Search algorithm. ScalaBFS is implemented on Xilinx Alveo U280 FPGA card and tested with real-
world graphs. Kara et al. [48] analyse the benefits of HBM on FPGAs for data analytics workloads
such as range selection, hash join, and stochastic gradient descent for linear model training. The
designs are integrated into MonetDB to study the data movement and partitioning trade-offs. The
target platform is the Alpha Data ADM-PCIE-9H7 [76] card attached to a POWER9 machine via
Open-CAPI [95]. Yang et al. [108] propose a parallel hash table accelerator implemented on an
HBM-based FPGA system. The accelerator has a dedicated processing engine and hash table copy
designed to connect to one or more adjacent HBM channels. The Intel Stratix 10 MX 2100 FPGA is
used. Zhang et al. [110] aim to accelerate graph processing workloads using an Intel-based HMC
design. The architecture uses the PicoFramework, and is implemented on both an AC-510 and an
AC-520 FPGA-HMC platform. Improvements to the graph algorithm can include degree-aware ad-
jacency list reordering to decrease the number of unneeded edge checks. A compression technique
is also applied to the adjacency list to decrease the data access to the external HMC memory.

Nero [92] accelerates complex memory-bound weather prediction stencils. Scalability analysis
is conducted for both DDR4 and HBM-based FPGA boards. It sends/receives data to/from the host
using Coherent Accelerator Processor Interface (CAPI2). COSMO API manages offloading
jobs to NERO. SNAP (Storage, Network, and Analytics Programming) supports integration of the
COSMO API.

Mcvicar et al. [66] use a Micron SB-800 board featuring four Altera Stratix V FPGAs, and a 4 GB
HMC with a single high- speed serial link to each FPGA to accelerate K-mer counting. The HMC’s
high random-access rate is suitable for large Bloom filters used in k-mer counting. For optimizing
performance, a given HMC link can only access its four HMC vaults, so each of the four FPGAs
works independently on a small Bloom filter.

Lloyd et al. [63] investigate accelerating several applications such as RandomAccess, PageR-
ank, and Image differencing through in-memory data restructuring. The rearrangement hard-
ware executes data reduction, not compute offload. An FPGA emulator on a Xilinx Zynq 7000
System-on-Chip is used to evaluate the near-memory hardware structures that organize data into a
cache-friendly layout. Applications are partitioned between restructuring data in memory and
computing with data in the CPU. A more comprehensive use case would include multiple data re-
arrangement engines, managed by multiple CPUs. HRL [18] proposes a reconfigurable array NMC
system tailored for analytics workloads including MapReduce, graph, and deep neural networks.
The architecture integrates coarse-grained and fine-grained logic blocks. HRL arrays are lever-
aged as NMC processing elements, with support for efficient communication and synchronization
across multiple stacks and memory channels. Each vault in the memory stacks contains multiple
processing elements to take advantage of the large bandwidth and high parallelism. HRL has the
power efficiency of an FPGA and the area efficiency of CGRA. Although both architectures are
not implemented on an FPGA board with an HMC included, the PEs are designed based on Xilinx
devices. The performance of the NMC systems in HRL are modeled using simulation.

Volcan [81] explores the interactions and issues of compatibility and performance between HLS
and HMC. An interface of HLS-FPGA-HMC technologies is developed. It consists of a hardware
design and a software methodology. The hardware block design is implemented in Verilog and
HLS and the software applications are designed in C/C++. The hardware of FPGA and HMC mem-
ory (AC-510 board) is connected to the x86 Linux system host via PCIe. Pico framework includes
the software driver on the host machine and a hardware interface. The HLS compatibility prob-
lems with HMC memory are due to HMC FLIT addressing (16 bytes) and non-burst support. The
HLS compilers designed for DDR as off-chip memory generate an incompatible byte addressable

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

16:14 V. Iskandar et al.

memory request for HMC. The Volcan framework converts the incompatible memory address from
the HLS into a compatible HMC memory address. To improve performance, the hardware design
is augmented with a software methodology.

6 GENERIC ARCHITECTURES

2GRVI Phalanx [24] and MEG [111] are generic HBM-based NMC architectures using general-
purpose Risc-V cores as processing elements. 2GRVI Phalanx [24] is a parallel processor and accel-
erator array overlay framework. Processing elements and accelerator cores are integrated into a
shared memory architecture on Xilinx FPGAs equipped with an HBM. Communication across ele-
ments is achieved by message passing through the Hoplite torus soft NoC. Parallel programming
is achieved by an OpenCL-like programming model and tools. The system is a kilocore RV64I SoC.
MEG [111] is an open source, cycle-exact, RISC-V-based full-system emulation infrastructure using
FPGA and HBM. A Linux image is available for the system, and can be booted to allow software-
hardware co-design in a full-system environment. MEG provides performance monitoring utilities
to control the performance optimization. A lightweight IOMMU provides virtual memory support
for near-memory accelerators. A prototype of MEG is implemented on a HTG-937 board that in-
cludes a combination of a Xilinx Virtex Ultrascale+ FPGA and an HBM module. Four RV64GC
out-of-order BOOM cores are integrated into MEG. There is plenty of opportunity left for improv-
ing the platform, such as the usability, flexibility, portability, and easy-to-use software interface.

OpenHMC [86] and Schmidt et al. [87] investigate an efficient memory controller on an FPGA
for the HMC. OpenHMC [86] is a vendor-agnostic, fully synthesizable, open-source Verilog im-
plementation of an HMC host controller that can be configured for different datapath widths and
HMC link variations. Due to its modular design, the controller can be integrated in many dif-
ferent system environments. It includes a Universal Verification Methodology (UVM)-based
test environment. The functionality of openHMC is completely independent of HMC link width.
OpenHMC outperforms a comparable controller by Altera in terms of configurability and resource
utilization. However, the openHMC controller still requires optimization for core latency. Schmidt
et al. [87] investigate a system consisting of an FPGA in combination with an implementation of
the openHMC host controller. The study observes that maximizing the performance of the HMC
requires properly ordered request streams to avoid flow-control issues. The authors investigate of-
floading computation using atomic operations to mitigate computation and communication over-
head. Complex operations, however, still require processor interaction. An evaluation of sustained
bandwidth of chained topologies is yet needed.

7 PERFORMANCE CHARACTERIZATION ARCHITECTURES

Hadidi et al. [28], CoolPIM [67], and Hadidi et al. [29] aim to characterize the behavior of HMC
memory on FPGA. Hadidi et al. [28] characterize the thermal behavior of HMC and identify tem-
perature as a limitation for HMC-based designs. A Verilog realisation of GUPS and the Pico API
[77] are used to run synthetic workloads on the AC-510. The authors conclude that optimizing
HMC bandwidth requires large accesses with a mix of reads and writes. Furthermore, HMC ac-
cesses do not benefit from spatial locality. CoolPIM [67] is a study of thermal constraints of NMC
using an HMC 1.1 prototype. The study concludes that simply offloading applications to NMC
results in a thermal bottleneck and decreases performance. They propose a source throttling ap-
proach that adjusts offloading intensity so that the temperature does not peak. Hadidi et al. [29] run
GUPS on Micron’s AC-510 accelerator board on a Pico SC-6 Mini [79] machine to investigates the
HMC access and bandwidth characteristics. The authors conclude that there is a trade-off between
optimizing HMC bandwidth and latency. Another important design point is to optimize queuing
delays introduced by the HMC internal packet-based structure. The internal NoC complicates QoS

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

Near-Memory Computing on FPGAs with 3D-stacked Memories 16:15

for memory accesses because of variations in latency even within an access pattern. However, it
ensures QoS for smaller packets at a cost of decreasing bandwidth.

Similarly, HBM Connect [9] and Shuhai [33] characterize and benchmark the behavior of the
HBM memory on Xilinx’s Alveo U280 accelerator card. HBM Connect [9] aims to design a high
performance interconnect for FPGA HBM boards. HLS-based optimization methods are leveraged
to improve the performance of AXI bus masters and switches. The authors also present a high-
performance customized crossbar, which can be used as an alternative for the built-in crossbar.
Shuhai [33] is a benchmarking tool to investigate the underlying details of HBM on an FPGA. The
authors observe that HBM can theoretically provide up to 425 GB/s memory bandwidth but how
the HBM is used has a significant impact on performance. Shuhai can be adapted to other FPGA
boards or other generations of memory. Choosing the suitable address mapping policy is crucial
to achieving high bandwidth. Various address mapping policies provide an order of magnitude
throughput differences for workloads with a typical memory access pattern (Repetitive sequential
traversal) on HBM, indicating that the address mapping policy must be matched to a particular
application. Additionally, they note that the latency of HBM is much higher than DDR4. The con-
nection between HBM chips and the associated FPGA is done via serial I/O connection, introducing
extra processing for parallel-to-serial-to-parallel conversion. They also observe that spatial local-
ity greatly improves performance. Random memory access that does not keep spatial locality leads
to low memory throughput.

8 PERFORMANCE COMPARISON OF RECENT NMC ARCHITECTURES

In Table 4, we observe the performance and power consumption of recent FPGA-based NMC ar-
chitectures grouped by similar workloads. It can be seen from the table that in most proposals,
the achieved bandwidth is still much smaller than the theoretical bandwidth. One reason for that
is random and irregular access patterns, which limit the achievable bandwidths of each HBM PC
using DRAM. Additionally, bandwidth is limited if the FPGA logic runs at relatively low clock fre-
quencies. We also analyse the resource utilization in Table 4. Four kinds of resources (DSP, LUT,
FF, and BRAM) are considered.

Before the emergence of high-bandwidth memories and the near-memory computing paradigm,
most FPGA-based designs achieved less speedup than GPUs, but had the advantage of better en-
ergy efficiency. FPGA-NMC designs have changed this trend as the high bandwidth offered by
3D-stacked memories enables a large number of parallel computations, which sometimes outper-
form GPUs. As an example, Liu et al. [61] compare the performance of Gunrock GPU (64 HBM
PCs) against their FPGA-HBM solution (32 HBM PCs). Their results show that for sparse graphs
with short neighbor lists, the performance is almost similar for both architectures. This can be at-
tributed to the small burst lengths of the memory accesses exhibited by such graphs, which make
the HBM the system bottleneck. The FPGA solution implements customized BRAM bitmaps for
the many memory accesses, and thus achieves a performance as high as the GPU. Additionally, the
power efficiency of the FPGA is 5× to 10.× better than the GPU, due to the low power consumption
of the Alveo U280. Figure 7 shows the speedup and power efficiency values of several benchmarks
compared to a GPU solution. The x-axis shows the benchmark name and the paper reference.

Some works also report the speedup over CPU solutions. For example, Parravicini et al. [72]
report a speedup for their FPGA-HBM architecture as high as 100× over a parallelized CPU base-
line, and a power efficiency improvement of 400×. Compared to a GPU, their architecture is 2×
faster and 14× more power-efficient. The power efficiency of the HBM architecture proposed by
Sgherzi et al. [88] is 6.5× better than a CPU baseline. Mcvicar et al. [66] measure the speedup of
their HMC-based architecture over a CPU baseline as 9.31× to 17.6×.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

16:16 V. Iskandar et al.

Table 4. Comparison of NMC Architectures Grouped by Workload

Work Benchmark FPGA Freq. Mem. Peak Perf. Power Peak BW
Resource %

DSP LUT FF BRAM

Data Analytics

[110] RMAT graphs
[5]

Arria 10
GX 1150

125
MHz

4 GB
HMC

79.8 GTEPS 43.6 W 120
GB/s

4 64 7

[61] RMAT graphs
[5, 12]

Ultrascale+ 90
MHz

8 GB
HBM

19.1 GTEPS 32 W 46 GB/s — 39 13 46

[67] GraphBIG [68] Kintex — 8 GB
HMC

— — 320
GB/s

— — — —

[48] Database
analytics

XCVU37P-
2E

200
MHz

8 GB
HBM

— — 190
GB/s

38 55 47 56

[40] Inference [27] XCU280 140
MHz

8 GB
HBM

379.45
GOPS

— — 57 45 30 85

[70] OpenCV filters XCVU060 250
MHz

4 GB
HMC

— 14 W — — — — —

[66] SAX, SHA-256
hash

Stratix V — 4 GB
HMC

57.5
KMERS/s

— — — — — —

[108] 1M hash table Stratix 10
MX

225
MHz

8 GB
HBM

3575 MOPS — — — 8 — 1

Sparse Matrix Operations

[88] Top-K
eigensolver

XCU280 225
MHz

8 GB
HBM

— 38 W 72 GB/s 16 42 13 15

[72] Top-K SpMV XCU280 225
MHz

8 GB
HBM

— 35 W 460
GB/s

17 35 33 20

[93] SuiteSparse
[11]

XCU280 189
MHz

8 GB
HBM

181.1 GOPS 52 W 460
GB/s

36 29 26 76

[32] PageRank
(orkut)

XCU280 165
MHz

8 GB
HBM

6973
MTEPS

44 W 285
GB/s

8 35 21 24

[14] Googleplus,
hollywood,
pokec, OGB,
transformer

XCU280 237
MHz

8 GB
HBM

16.65 GOPS 45 W 258
GB/s

8 47 22 7

Packet Processing

[82] 1M rules Kintex
Ultrascale
060

4 GB
HMC

16.4 Mbps — 10.6
GB/s

40 35 81 42

Weather Prediction Stencils

[92] Horizontal
diffusion

XCVU37P-2 — 8GB
HBM

120
GFLOP/s

1.5
Gflop/W

— 4 11 6 58

Fig. 7. Speedup and power efficiency values of NMC compared to a GPU solution.

From the analysis performance of FPGA-based NMC systems, we observe that application-
specific accelerators involve both optimizations on the host-side and the hardware. In the following
sections, we will focus on HBM-based architectures and introduce previous work in these two as-
pects, respectively. Table 5 classifies HBM-based designs according to the techniques presented in
the next two sections.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

Near-Memory Computing on FPGAs with 3D-stacked Memories 16:17

9 HARDWARE DESIGN OF FPGA-HBM: BANDWIDTH-EFFICIENT ARCHITECTURE

9.1 Processing Unit Design

Most FPGA-HBM architectures offer several low-profile processing elements that operate inde-
pendently. Each processing element operates on a partition of the input data. Designing complex
processing units and heavily optimizing them is not the main focus of such architectures. Rather,
the goal is to optimize memory paths to and across the processing elements.

9.1.1 Scale-out Processing Units. Highest bandwidth can be reached only if the physical mem-
ory channels are accessed in parallel. Additionally, how the data is accessed is incredibly important
for HBM performance. If there is only one copy of the data, then it creates a bottleneck when ac-
cessing the HBM from multiple cores in parallel, removing the HBM bandwidth advantage. To
efficiently exploit the HBM, data replication is needed such that each processing element can ac-
cess its own physical memory channel without reverting to the crossbar [48].

It is not trivial to achieve high computing parallelism, because the parallel implementation of
some applications is not able to guarantee execution locality. ScalaBFS [61] divides the graph data
into several subgraphs, and stores each subgraph in an HBM PC to ensure locality of accessing. Ad-
ditionally, ScalaBFS implements multiple computing cores to provide high computing parallelism.
In Microrec [40], embedding tables are distributed to the HBM banks such that each bank contains
one or a few tables, and up to 32 tables can be looked up concurrently.

Sgherzi et al. [88] use multiple SpMV computing units to process partitions of the input matrix,
where computing units process equal numbers of rows. Every computing unit operates to produce
a part of the output vector, and partial results are collected and duplicated across HBM channels to
be available in the next iteration. The vector is replicated five times for each computing unit, so that
inefficient global access across HBM is prevented and parallel computation is enabled. Similarly,
Parravicini et al. [72] assign each computing unit to compute a partition of the input matrix. Each
core uses a single HBM channel to read the input matrix and store its output at the end of the
computation. As processing elements read 512 bits every clock cycle through their HBM memory
ports and memory transactions are realised in continuous maximum length AXI4 bursts, the FPGA
can theoretically achieve the maximum bandwidth offered by HBM, by coalescing transactions
with packets containing multiple non-zero entries, and without expensive distributed memory
controllers.

In FleetRec [41], the embedded tables lookup process is highly concurrent. The number of tables
stored in every memory channel (DDR and HBM) is balanced so that the lookup workload is equal
across channels. The embedding vectors are read in parallel and concatenated before they are sent
to the computation module. As a result of the high embedding lookup throughput due to the high
retrieval concurrency, the computation workload is partitioned to multiple FPGA nodes.

Nero’s [92] design integrates several processing elements that leverage data-level parallelism.
Each processing element owns a separate HBM PC; hence, the design uses as many HBM ports
as the number of processing elements. Such parallelism allows the exploitation of the high HBM
bandwidth as each processing element reads its data from an independent port. Yang et al. [108]
provide a design that can run with a maximum of 16 processing elements. Increasing hash table
copies as many as possible has a negative effect on throughput because of the increased overhead
of communication across processing elements.

9.1.2 Dataflow Programming. The HLS dataflow programming style enables exploiting a work-
load’s task-level parallelism. Most FPGA-HBM application-specific accelerators implement C/C++
functions operating in parallel and communicating through streaming FIFOs. This method enables
kernels to provide high throughput while maintaining small BRAM consumption.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

16:18 V. Iskandar et al.

The architecture proposed by Kara et al. [48] scans the input data N times (where N is the
number of epochs), and distributes it to the processing elements, which execute following the
dataflow paradigm. MiroRec [40] provides a pipelined accelerator where several data items are
processed by the accelerator in parallel in multiple stages. The embedding lookup and the com-
putation stages are pipelined. Every DNN processing module further implements three pipeline
stages: feature broadcasting, computation, and result gathering. Inter-module communication is
achieved through FIFOs built by BRAMs or registers. Nero [92] leverages the algorithm parallelism
via pipelining. All the hardware modules work in a dataflow fashion that enables task-level par-
allelism. The accelerator in Graphlily [32] employs FIFOs to decouple the hardware modules and
allow efficient dataflow operation. Each processing element is a three-level pipeline: fetching a
temporary result from the output buffer, updating the result value, and finally writing it back to
the output buffer. The processing elements perform data forwarding to resolve read-after-write

(RAW) dependencies.

9.1.3 Processing Elements Clusters. Scale-out FPGA-HBM designs involve multiple parallel ele-
ments operating on portions of the data. Often, several processing elements require access to the
same data. For example, in the case of SpMV, each processing element needs random accesses to
the same input dense vector. Replicating the input vector for each processing element is not scal-
able to many HBM PCs for a design with numerous processing elements. To mitigate this issue,
the processing elements can be grouped into multiple clusters, with a data loader module and a
result collection module. Each cluster is assigned one HBM channel. The data loader reads in the
data from the external memory and provides each cluster a copy of the data, which will be shared
inside that cluster. The collection unit concatenates the partial results from the clusters to produce
the final result and writes it back to the off-chip memory.

HiSparse [14] uses the processing element clusters design to compute SpMV where the dense
vector is shared between all the processing elements of a given cluster and the shared data is
banked to improve throughput. The input vector is therefore replicated for every cluster. Graphlily
[32] similarly implements multiple processing element clusters, each assigned its own HBM chan-
nel. Each processing element cluster integrates a matrix reader, a vector reader, and an array of
processing elements, each operating on one input stream. This processing element cluster de-
sign is similar to a SIMD computation on CPUs in that both execute vectorized calculations. The
main difference is that the processing element cluster needs significantly less synchronization.
When a lane in a SIMD module finalizes operating on a row of the matrix and writes back the
output, the rest of the lanes stall. The processing elements in Graphlily, however, synchronize
once when the processing of the whole matrix is finished. Sextans [93] implements 8 process-
ing engine groups to calculate Sparse-Matrix Dense-Matrix multiplication. Each group consists of
8 processing elements. To stream in the partitioned sparse matrix from HBM to each processing
element group, 8 read modules are implemented. A separate module is deployed to stream the
dense matrix in a given window size from HBM and propagate the partial data to the eight pro-
cessing element groups. Sgherzi et al. [88] use five computational units for SpMV. The hardened
AXI switch controls the number of processing units, which fully use the 32 AXI master channels
to HBM. Each SpMV compute unit calculates a portion of the output vector. Partial results are
replicated five times for each compute unit across HBM channels to use them in the following
iteration.

Yang et al. [108] take a different approach where they divide the HBM PCs into multiple groups,
and each processing element is connected to a group of PCs. The number of PCs that is assigned
to each PE is an architecture parameter that can be decided at design time. The full hash table is
stored for each group of PCs. Table entries are equally divided across the PCs of each group.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

Near-Memory Computing on FPGAs with 3D-stacked Memories 16:19

9.1.4 Simple Synchronization Constructs. Most architectures we surveyed do not implement
explicit synchronization barriers for the processing elements. Simple FIFOs are used to maintain
loose synchronization. The FIFO depth is an architecture-dependent parameter that decides the
highest number of ahead/delay cycles of asynchronization allowed between processing units. If
the asynchronization cycles are greater than the FIFO depth, then there is one processing element
that has consumed all elements of its FIFO while another processing element’s FIFO is full. At
the producer side, the sending is stalled. The former processing element stays idle, because the
connected FIFO is empty. After the latter element consumes at least one element in the connected
FIFO, the processing resumes.

Sextans [93] uses FIFO to obtain loose synchronization that is implicitly maintained in the broad-
casting where one Read module is the producer, and the processing units are the consumers. Yang
et al. [108] ensure that their processing elements maintain the AXI in-order response, hence the
ordering between their request queue and response queue for the same HBM channel is kept syn-
chronized. chronized. The arbitration module is a simple FIFO. In MicroRec’s inference [40], the
input feature vectors are broadcasted to all processing elements, and the partial results are col-
lected when the layer computation is finished and sent to the next layer. The authors observe
that this broadcasting and gathering implementation for the interconnection across processing
elements has less latency than other interconnect designs, such as systolic arrays [99]. The data
forwarding design in the systolic arrays causes a higher inference latency, especially for designs
with many processing elements.

Kara et al. [48] interface several processing elements to the HBM. A central control unit asyn-
chronously starts/stops and monitors the processing elements. The control unit communicates
with the CPU through a register read/write interface enabling asynchronous control by software.
Hence, each processing element can be started/stopped individually in parallel. Synchronization
among them can be implemented in software.

9.1.5 Efficient Pipelining. The irregularity in the computations and access patterns of some ap-
plications lead to bank conflicts and carried data dependencies, which reduce compute occupancy.
Bank conflicts and carried dependencies present difficulties to HLS compilers, which usually em-
ploy static scheduling to produce a conservative pipeline with high performance.

HiSparse [14] makes the observation that using the conventional HLS implicit control logic for
their shuffle unit, which manages data replication and banking for several processing elements,
is suboptimal. The static scheduling of HLS is unable to produce appropriate arbitration logic as
the compile-time analysis assumes the worst-case traffic pattern. Therefore the generated HLS
schedule processes input lanes sequentially, with an initiation interval (II) equal to the number
of input lanes. HiSparse solves bank conflicts through data reordering. Re-sending logic is imple-
mented in HLS by iteration-level modeling, which selects the computations the datapath should
execute per iteration. If the datapath needs information from past iterations, then special data
structures are leveraged to hold and forward the information. To fully pipeline the processing
elements, load-store forwarding is used to dynamically resolve RAW dependencies.

9.2 Multi-level Memory Optimizations

Inefficiently accessing memory and fetching huge amounts of random data from off-chip memory
significantly reduces FPGA-HBM architectures performance. Multi-level memory optimizations
with HBM are required for efficient accessing and streaming.

9.2.1 Trade-off between On-chip and Off-chip Memory. An important design goal for FPGA de-
signs is to minimize off-chip memory accesses, given limited on-chip memory capacity. The size
of on-chip memory, i.e., BRAMs and URAMs, is always limited. For example, the RAM size on the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

16:20 V. Iskandar et al.

Alveo U280 is 41 MB. In many of the works we studied [40, 41, 61, 72, 109, 112], not all the data fits
in the FPGA’s on-chip memory, which means that some data is read from external memory. Since
external memory access is quite expensive, the aim is to decrease external memory accesses. This
is achieved by leveraging precious on-chip memory resources to store frequently modified data.
Careful selection must be performed, to decide where data should be placed. Modern FPGAs now
enjoy increasingly-growing on-chip memory capacity, which can store larger amounts of data.

Sextans [93] divides the random memory read and write by an access window, so random mem-
ory accesses are kept to fast on-chip memory. The read-only dense matrix is stored in BRAMs to
limit random read from on-chip memory. A scratchpad memory is leveraged to maintain the ran-
dom accumulation operations on-chip using the URAM. FleetRec [41] aims to prevent the random
DRAM accesses from retrieving embedding vectors on many tables, which cause severe under-
utilization of HBM bandwidth and reduced performance. The random accesses of retrieving vec-
tors from different tables is sub-optimal to the hardware, because it forces the row buffer of the
DRAM bank to be charged and discharged continuously. Since a given vector is short (usually
between 4 and 64 elements), the DRAM bandwidth utilization is very low. Hence, as many small
tables as possible are stored in SRAM, since that allows low-latency and high-concurrency vector
retrieval. Nero [92] divides on-chip memory to avoid the stalling of the pipelined design, since the
on-chip BRAM/URAM has only two read/write ports.

9.2.2 Streaming Access. To exploit the high bandwidth of HBM, architectures must possess a
high degree of parallelism to effectively use multiple channels, and maintain streaming accesses to
hide latencies. In Sextans [93], the three matrices in SpMMs are partitioned according to the pro-
cessing window size and the partitioned matrix fragments are stored in HBM. Individual element
accessing is not issued to HBM, but rather accessing a matrix fragment. This allows efficient stream-
ing accessing. Similarly, Yang et al. [108] read data batches instead of one slot at a time to improve
HBM efficiency and collision handling overhead. FleetRec [41] performs single-millisecond-level
inference on small and medium models using medium batch sizes (e.g., 256), while the CPU needs
around 10 ms. Using a medium batch size of 256 already allows FleetRec to achieve close-to-peak
throughput (around 85% of the peak performance), while the CPU only achieves around half of
the throughput reached with batch sizes of 1,024.

9.2.3 External Memory Burst Access. To enable serving random memory accesses, a crossbar is
needed to globally access all the memory channels of HBM. Taking the Alveo U280 as an example
to study, there are two types of crossbar offered by Xilinx.

• A Full Xilinx AXI Interconnect. The full Xilinx AXI Interconnect IP [102] only supports up
to 16 × 16 AXI interconnect, which is exceedingly inefficient considering that the U280 has
32 HBM PCs.
• Xilinx’s Switch Network. Liu et al. [61] analyse the performance of the Xilinx’s built-in

switch network when there exist memory accesses that are global across HBM channels.
Shuhai [33] is used to measure the performance of each AXI channel by reading data from
adjacent HBM channels. They use a data width of 256 bits, an outstanding buffer size of
256, and a burst length of 64. The pressure on the switch network grows with increasing
the number of HBM channels each AXI channel reads from. This has a severe impact on
the achievable throughput of each AXI channel. Crossing 32 HBM channels achieves less
than 0.5 GB/s, more than 20 times less than the bandwidth when no crossing occurs. Hence,
Xilinx’s built-in switch network cannot handle globally random accesses. Such accesses
cause significantly low performance for the system. For the design proposed by Liu et al.
[61], Xilinx crossbars cannot reach the memory bandwidth needs of the BFS engine. Sgherzi

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

Near-Memory Computing on FPGAs with 3D-stacked Memories 16:21

et al. [88] and Choi et al. [9] also observe that the hardened AXI switch in the Alveo U280 pro-
vides very low performance if several AXI master channel access the same HBM bank. Only
32 AXI master channels are available, and small memory transactions (32 bits) have the same
performance as larger transactions, preventing bandwidth sharing.

Enabling external memory burst access to several HBM PCs in the HLS programming environ-
ment is non-trivial. This is the case when multiple AXI masters access multiple PCs in many-to-
many fashion [9]. Vivado HLS provides a specific coding style to allow access to multiple PCs. This
coding style depends on the concept of a Vivado HLS bundle, which corresponds to an AXI master.
The advantage of this HLS coding style is that it is easy to code and area-efficient. However, it
creates two problems.

The first issue is that when accessing multiple PCs from one AXI master, data from different
AXI masters typically share the lateral connections, which decreases the resultant bandwidth. As
an example, Choi et al. [9] analyze a 16×16 unicast interface, where 16 AXI masters (M0–M15) ac-
cess 16 HBM PCs (PC0–PC15) in round robin fashion. In that case, the lateral connections become
the bottleneck. AXI master M0 needs to cross three lateral connections of unit switches to reach
PC12–PC15. Multiple crossings considerably decreases the overall memory bandwidth. The effec-
tive write bandwidth of a given PC is reduced to as low as 7.5 GB/s. The decline in the effective
bandwidth increases as more AXI masters compete with each other to access a given PC.

The second issue is that loops containing write variables whose values differ in the various
iterations imply to Vivado HLS to set the AXI burst length to one for each write operation. This
also negatively affects the HBM maximum bandwidth. As an example, Choi et al. [9] analyze the
bucket sort application, where processing elements distribute the keys to output HBM PCs based
on its value (each PC corresponds to a bucket). Since each AXI master transfers data to any PC
via the built-in crossbar, there is a one-to-one connection between a processing element and an
AXI master. The built-in AXI crossbar is used to distribute the keys to the processing elements.
Vivado direct access results in only 59 GB/s among 16 PCs as it is possible that two consecutive
keys from input PC will be sent to different buckets (output PC). Existing HLS tools are not capable
of automatically buffering the data for burst AXI access to each HBM PC. The burst value in case
of different output PCs is calculated as one, which severely harms the obtained bandwidth.

To mitigate burst access problems, Choi et al. [9] present an HLS-based buffering scheme that
allows sharing a single FIFO among multiple virtual channels in HLS. This increases the utilization
of BRAM depth as the FIFOs for many different PCs. Additionally, the authors found that band-
width benefits by integrating AXI burst buffers and custom crossbar levels. For some applications
such as bucket sort, a full custom crossbar outperforms the built-in crossbar if the result from
several processing elements is written into a single memory space.

9.3 Frequency Optimization

Modern FPGA architectures incorporate several chip dies to provide more on-chip resources for
developers to implement large designs. However, the interconnections between dies extend across
the silicon interposer, which results in considerable latencies. Additionally, not all dies have direct
connections to the HBM interface. The Alveo U280 has a heterogeneous architecture, where all the
HBM channels connect to a single die. The Alveo U250, however, has a homogeneous architecture,
where four DDR channels each connects to one die. On U280, all HBM ports reside at SLR0. There-
fore, the AXI interfaces from the processing cores present in other SLRs must be routed across
SLRs to reach the HBM. A hardware module’s access to HBM would incur a long cross-die delay
when the module is placed on a die far from the HBM interface, raising challenges to timing clo-
sure. Since FPGA-HBM architectures are inherently scale-out designs, they are more prone to be
constrained on resource utilization. This leads to the usage of multiple SLRs.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

16:22 V. Iskandar et al.

One simple method of building an accelerator is writing one OpenCL kernel to iterate over all
data partitions. This can be referred to as a monolithic accelerator. The monolithic accelerator
design does not take into account the physical layout of the device. Therefore, it is challenging to
find an optimal place-and-route solution. Without manual floorplanning, the placement tool will
attempt to fit all logic onto the same chip die to decrease expensive die boundary crossings, leading
to a highly condensed placement and routing congestion. Manual floorplanning is not always
effective to improve the place-and-route results and improve the timing. The data and control
signals generated by HLS frequently include combinational logic, which cannot be pipelined to
amortize the die-boundary-crossing timing penalty.

Hisparse [14] takes the split-kernel approach to address this problem. Split-kernel means split-
ting the accelerator into several OpenCL kernels to reduce die-boundary crossings and allow the
pipelining of inter-die connections. The logic to be placed on a single chip die is limited to one
kernel. Different kernels communicate through pipelined connections to hide the latency of die-
boundary-crossing. The AXI standard is used for kernel communication as it is common for FPGA
design tools. The split-kernel approach is appropriate for the heterogeneous architecture of the
FPGA-HBM hardware. Registers are added to paths that cross die boundaries to pipeline the re-
mote connection. For the same count of clusters and the same buffer size, the Hisparse split-kernel
SpMV obtains 237 MHz, significantly higher than the monolithic SpMV, which achieves 117 MHz.
We note that the implementation of HiSparse on Xilinx Alveo U280 uses 18 HBM channels, of-
fering a memory bandwidth of 258 GB/s. Further scaling to more than 18 HBM channels causes
routability issues.

Kara et al. [48] deal with this challenge to some degree by first constraining one processing
core to be placed in only one SLR, and second adding AXI-interconnects with internal buffering
in SLRs in between the compute engine and the HBM. For example, for a core in SLR2, two AXI-
interconnect modules in SLR1 and SLR0 are added to ease routing. In Graphlily [32], the large
output buffer results in a high-fanout logic structure. The technique proposed in Reference [26] is
used to decrease wire delays by implementing a pipelined multi-level tree structure. This optimiza-
tion increases the frequency from 145 to 165 MHz. A more general solution to this issue is hardened
overlays on top of the FPGA fabric that route signals in wide busses rather than bit-wise routing.
More advancements on the device level are needed to make the FPGA-HBM development easier.

9.4 Data Movement

In the presence of a host CPU, the data to be consumed is initially stored in the main memory of
the CPU. How to bring this data to the FPGA to be used by the processing elements that are also
connected to the HBM is one of the problems that the NMC architecture should solve. One solution
can be to connect each processing element both to the DMA communicating with the CPU and
to one port on HBM. This however creates a bandwidth imbalance and requires arbitration when
accessing the DMA by multiple processing elements, complicating system architecture and leading
to difficult routing. Another alternative is presented in Reference [48], where two dedicated data
movers move the data between the CPU memory and the HBM. The data movers occupy 2 of the
16 ports that the HBM-shim exposes. The remaining ports are usable by the computing elements,
consuming and producing data via the HBM.

PCIe protocols incur increasing latency, do not support arbitrary lane organization to optimize
bandwidth, and do not offer coherence. Supporting coherence adds the overhead of explicit copies,
locks, and critical sections. Although IBM’s CAPI coherent I/O interface supports coherence, it
is still dependent on PCIe for data movement. OpenCAPI [95], however, ensures high bandwidth
and provides a low latency coherent interface to memories and accelerators. As such, OpenCAPI
provides an opportunity to integrate NMC processing units in a systematic and scalable way.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

Near-Memory Computing on FPGAs with 3D-stacked Memories 16:23

We now refer to some NMC architectures that investigated the data movement challenge. Such
systems exploit the Dual-inline Memory Module (DIMM) to integrate processing modules
within DRAM memory. Although not HBM-based, these architectures provide an inspiration for
tackling this issue. Contutto [96] uses IBM’s DMI memory interface and integrates an FPGA be-
tween the host memory interface and the DRAM DIMMs. No modification to the host system or
the DIMMs is required. The FPGA communicates with the memory through the DIMM, hence does
not fully leverage the benefits of NMC. Closer coupling with the DRAM chips is still required.

Acceleration DIMM (AXDIMM) [4, 49] is a DDR4-compatible FPGA-based near-memory ac-
celeration platform. A smart buffer chip acts as a conventional buffer chip for a high-capacity
DIMM. ARM cores and FPGA fabrics are provided for memory-intensive computations. AXDIMM
allows for simultaneous access to every rank within a DIMM, hence it increases the bandwidth
and enhances the performance. Processing the data locally in the DIMM instead of moving it to
the CPU, which additionally decreases power consumption. These properties allow AXDIMM to
integrate NMC with a host via the standard memory interface. Samsung provides a use case for
AxDIMM by incorporating a deep learning recommendation model with AXDIMM to demonstrate
that AXDIMM can boost performance and power efficiency.

TensorDIMM [54] investigates accelerating gather-and-reduction by incorporating processing
modules for every rank in the buffer chip of DRAM to leverage the internal bandwidth. The bad-
width in this case is the single channel bandwidth multiplied by the number of ranks per channel.
However, rank-level parallelism is not capable of reaching the maximum potential of NMC. NEST
[34] accelerates k-mer counting by modifying the LRDIMM. Communication is achieved via the
standard DDR channel with host support. Similar to AxDIMM and TensorDIMM, an NMC module
is placed for each LRDIMM rank.

10 HARDWARE-ORIENTED HOST-SIDE OPTIMIZATION

10.1 Data Preprocessing

Data preprocessing is used to ensure that the input data is presented to the hardware through
streaming accesses to amortize latency penalties. ScalaBFS [61] uses Compressed Sparse Row

(CSR) and Compressed Sparse Column (CSC) to represent the graph data. The CSR contains
an edge array, in addition to an offset array, which holds the offsets of the outgoing neighbor lists.
The CSC differs in that its edge array holds the incoming neighbor lists. ScalaBFS employs both
CSR and CSC such that the processing elements can easily access both the outgoing and incoming
neighbor lists of a selected vertex.

Parravicini et al. [72] observe that the popular CSR format is not optimized for fully pipelined
streaming accelerators due to the inherent data dependencies to access matrix values. Hiding the
memory controller latency is challenging without hardware prefetching techniques. However, the
Coordinate (COO) format consists of three arrays to store the two coordinates of a matrix element
and the element’s value. COO provides streaming burst accesses of non-zero matrix elements to
fully use the bandwidth, as data-dependent memory accesses determined by the number of non-
zero values of each row do not exist. However, COO incurs a large storage space, decreasing the
effective operational intensity. The authors propose BS-CSR, a sparse matrix storage layout that
incorporates the low memory footprint of CSR with the streaming properties of COO. As the HBM
memory controllers favor memory transactions of blocks between 256 and 512 bits, each packet
in BS-CSR is built as an independent CSR partition.

HiSparse [14] tailors the sparse matrix format to allow streaming accesses to each HBM channel
and simultaneous access to several channels. This is achieved via partitioning, streamizing, and
packing. Partitioning deals with matrices that are larger than buffer size by dividing the matrix

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

16:24 V. Iskandar et al.

along both the rows and columns. Streamizing assigns rows to processing elements in round robin
fashion and integrates rows assigned to a given processing element into one stream, with a special
marker at the end of a row to avoid indirect addressing and enable fully streaming accesses. Finally,
the streams are packaged as streams of packets, where a packet consists of two elements. One
stream of packets is written per HBM channel and accessed by a cluster of two processing elements,
each processing one stream of elements.

Graphlily [32] aims to fully utilize the HBM streaming bandwidth by representing the sparse
matrix in a tailored format that provides vectorized accesses to each HBM channel and simultane-
ous accesses to several HBM channels. Cyclic packed streams of rows (CPSR) is a sparse matrix
storage format customized for HBM. CPSR provides packing of consecutive rows, and concurrent
memory accesses to several HBM channels by interleaving the row packs in a cyclic manner. CPSR
requires much lower storage capacity than that required by CSR.

In MicroRec [40], tables are combined using cartesian products to decrease random memory
accesses.

10.2 Scheduling

Poor scheduling and workload imbalance makes parallelization, and thus exploitation of HBM
bandwidth, difficult. Architectures aim to reach a balanced workload distribution among process-
ing elements with an II = 1 pipeline. Sextans [93] employs non-zero out-of-order scheduling for
SpMM computation. A non-zero element from the sparse matrix is scheduled at the earliest cy-
cle where the row index of the scheduled non-zero has no RAW with the row index of non-zeros
being processed in previous N cycles, where N is the distance of RAW dependency of a specific
hardware platform. This scheduling obtains an II = 1 pipeline. It is integrated in the preprocessing
of the sparse elements and provided as a host C++ wrapper.

GraphLily [32] implements a middleware to perform data transfer between the CPU host and the
FPGA device, in addition to kernel scheduling. The middleware exposes the GraphBLAS interface
to users for porting existing GraphBLAS programs to the hardware accelerators on the FPGA with
little changes to the CPU/GPU versions. Graph algorithms are built by specifying the required
modules and scheduling the execution order of the modules. A set of APIs manage data transfer
between the host and the FPGA, and between kernels on the FPGA. GraphLily middleware is based
on Xilinx Runtime Library (XRT). The middleware leverages a simple scalar-vector add kernel
in the GraphLily overlay to perform on-device data transfer by setting the scalar to zero. This is
more than 2 orders of magnitudes faster than AXI Central DMA2, which XRT uses for on-device
data transfer.

11 OPEN RESEARCH QUESTIONS

Based on our analysis of many existing FPGA NMC architectures, we identify the following key
directions for future research, which are essential to exploit the full potential of processing near
to high-performance memory.

11.1 HLS Tools Optimization

Low-level hardware description languages like Verilog require good knowledge of hardware design
and hands-on experience. However, higher-level languages such as HLS can reduce programming
efforts needed by FPGA programmers. Even though HLS increases programmability, high perfor-
mance cannot be simply obtained without careful design of the hardware pipeline and the memory
subsystem. Choi et al. [9] observe that the HLS programming environment does not provide an
efficient communication architecture when multiple processing units access multiple HBM chan-
nels, leading to a severe impact on the effective bandwidth. They implement several optimizations

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

Near-Memory Computing on FPGAs with 3D-stacked Memories 16:25

Table 5. Classification of HBM-based Architectures According to Design Techniques in Sections 9 and 10

Technique Proposal

9.1.1 Scale-out Processing Units [9, 14, 32, 40, 41, 48, 61, 72, 88, 92, 93, 108, 112]

9.1.2 Dataflow Programming [9, 14, 32, 40, 41, 48, 61, 72, 88, 92, 93, 112]
9.1.3 Processing Element Clusters [14, 32, 72, 93]

9.1.4 Simple Synchronization Constructs [9, 32, 40, 41, 72, 88, 92, 93, 108]
9.1.5 Efficient Pipelining [14, 32, 93]

9.2.1 Tradeoff between On-Chip and Off-Chip Memory [14, 32, 40, 41, 61, 72, 92, 93, 112]

9.2.2 Streaming Access [14, 32, 40, 41, 61, 72, 88, 92, 93, 112]
9.2.3 Optimizing External Memory Burst Access [9, 33, 61, 88]

9.3 Frequency Optimization [14, 32, 48, 93]

9.4 Data Movement [48, 92]
10.1 Data Preprocessing [14, 32, 61, 72, 93]

10.2 Scheduling [32, 93]

targeting HLS such as the HVB and the mux-demux switch to overcome the shortcoming of current
HLS HBM syntax. They also found out that for some workloads, utilizing a full custom crossbar
provides the best trade-off of using on-chip memory in case the data from several processing units
can be stored into a single memory space.

Shuhai [33] implements benchmarks in HDL while HBM Connect [9] implements benchmarks
in HLS. Comparing performance results, HLS on the Alveo U280 has about 5X lower bandwidth
when accessing data with a fixed address stride. The cause can be understood when investigat-
ing how the memory request is sent to the AXI bus. In Shuhai, a new memory request is sent
as soon as the AXI bus is ready to receive a new request. In HLS, the generated AXI master has
some limitations in book-keeping the outstanding requests. Since a burst access cannot be used for
strided access, the number of outstanding requests becomes much larger than that of sequential
access. As a result, HLS AXI master often stalls and the performance is limited to about 50–80
GB/s. In case new page in the HBM, and the bandwidth becomes equivalent to that of Shuhai.
The bandwidth of the Intel Stratix 10 MX, however, decreases less with greater strides. Stratix
10 MX fixes the AXI burst length to one and instead depends on several outstanding requests
even for sequential access. Therefore, the Stratix 10 MX’s HLS AXI master is designed to han-
dle more outstanding requests, and it can better retain the effective bandwidth even with short
accesses.

Potential enhancements are required in HLS tools to better support developing high-
performance accelerators. First, many workloads exhibit random access patterns in addition to
data reuse, which requires efficient on-chip buffering. Hardware templates similar to shuffle units
[14] need to be included in the HLS libraries. Second, some workloads such as sparse linear algebra
operators often incorporate accumulation. Load-store forwarding should be implemented to serve
as a general approach to resolving inter-iteration carried dependencies. The HLS tools can offer
users some pragmas based on which the tool performs dependence resolution at compile time [14].
Additionally, when an accelerator consumes more resources than available in one die, the HLS tool
should automatically switch to pipelined communication protocols and insert registers or at least
warn the programmer of potential timing degradation [14].

11.2 Hardware Flexibility

An important direction is how to design a general-purpose accelerator that does not need to go
through the slow FPGA development flow of synthesis, place, and route. The aim is to support
execution of different input sizes directly by hardware as a general-purpose accelerator. In an

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

16:26 V. Iskandar et al.

ideal case, the accelerator should be called by OpenCL run-time without the need to customize the
hardware and design details. A promising work in this direction is Hflex in Sextans [93]. HFlex
is implemented via an iteration pointer list that resembles an instruction queue. The sparse input
matrix is divided into several sub-matrices. Every sub-matrix is in turn encoded into an array of
non-zeros. The arrays of all sub-matrices are stored linearly in a memory space. The iteration
pointer list memorizes the starting index of each scheduled nonzero array. When computation
starts, elements of the iteration pointer are considered as the loop iteration number. Therefore,
the design enables the operation of an arbitrary SpMM without changes to the hardware.

11.3 Optimal Number of Processing Elements

It is unclear how to decide the optimal number of processing elements for a certain design. Given a
fixed number of HBM pseudo-channels, there exists a number of processing units that can achieve
the upper-bound performance. Intuitively, increasing the number of processing elements should
lead to an improvement in performance. Nevertheless, there might be a break-point after which
the performance will decrease with increasing processing elements, due to channel saturation.
Additionally the required data replication per processing element might limit the number of pro-
cessing elements due to HBM capacity. Yang et al. [108] observe that HBM can be saturated with 8
or more elements. When this happens, read heavy query distribution benefits from large number
of processing elements. However, as query distribution becomes write heavy, lesser processing
elements could perform better, especially when the memory efficiency is low. Inter-element com-
munication overheads are the main reason causing the throughput drop with more elements. For
instance, with 16 elements running in parallel, the design can easily oversubscribe the HBM. The
optimal number of elements, however, varies across various works as it is application-specific. In
ScalaBFS [61], the design reports small resource utilization but cannot scale to more than 64 pro-
cessing elements due to placement and routing issues. The HBM bandwidth is constrained due to
the low clock frequency of processing elements logic.

11.4 Remote Computing at the Memory Interface

Another promising direction of research is to explore enhancing the NoC-AXI RDMA bridges to
perform remote computing at the memory interface, such as: scatter/gather accesses, block zero,
block copy, add to memory, checksum, select, reduce, regexp, sort, and decompress. Such com-
pute at the memory controllers should decrease the need for FPGA-spanning full HBM bandwidth
read/write.

11.5 Optimizing FPGA Architecture for HBM

Increased bandwidth can strain the FPGA routing fabric, as it did in tests with several of the works
we studied. Using high-bandwidth interfaces on current routing resources is challenging, and it
is a complicated task to design hardware that is able to distribute wide memory response signals
across the FPGA. Providing an overlay to augment the routing resources to distribute these high-
bandwidth signals, optimizing multi-channel hardened memory controllers and perhaps hardened
NoCs would be a promising FPGA architecture exploration. Systematic studies of various trade-
offs to find the best design parameters for a future FPGA architecture is required. To stand up
to the challenges of technology scaling and ever more demanding acceleration tasks, the FPGA
routing architecture will have to evolve. Understanding existing routing architectures using tools
such as NetCracker [75] is necessary for providing the right basis for innovation.

While the HBM architecture offers some space on the logic die to integrate a custom FPGA
solution, one could consider a new HBM architecture with a larger logic die for computation to
be closer to the memory. However, modern FPGAs are significantly larger than the existing HBM

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

Near-Memory Computing on FPGAs with 3D-stacked Memories 16:27

logic dies. Thus, this could be a very invasive approach and would require significant engineering
effort and re-design.

11.6 Automatic Detection of Offload Kernels

Enhanced automatic detection of offload kernels is another promising research direction. Employ-
ing profiling and compiler techniques is beneficial to allow architectures to dynamically decide
which kernels are suitable for NMC execution. The characteristics of kernels that obtain a high
speedup when accelerated using FPGA-HBM architectures should be extracted, such that they
serve as a guide for the offloading decision. Such work has been done before for different architec-
tures [20, 64, 65, 69], but has not been adapted to FPGA-HBM architectures.

12 CONCLUSION

The decreasing performance and energy efficiency for modern memory-intensive workloads on
conventional CPU systems, has led to a large amount of research in processing close to mem-
ory. This paradigm is enabled by FPGAs that are enhanced with 3D-stacked memories. Such FP-
GAs have been used in numerous works in recent years to accelerate various applications. In this
article, we have analyzed and organized the literature of placing compute units close to a high-
performance 3D memory on an FPGA.

According to the performance evaluation presented in Section 8, some FPGA-NMC architectures
can achieve a power efficiency as high as 10× that of state-of-the-art GPUs. However, careful design
is needed to leverage the full bandwidth of the HBM memory, especially in terms of controlling
the access of processing elements to the HBM channels, and data replication to provide parallel
computation.

By systematically reviewing the existing FPGA-NMC systems, we have identified key challenges
that motivate future research directions. There is a number of open research questions in this field,
many of which focus around designing a programming model for NMC architectures.

REFERENCES

[1] AWS. [n. d.]. AWS F1 instances. Retrieved from aws.amazon.com/ec2/instance-types/f1/.

[2] Baidu. [n. d.]. Baidu FPGA instances. Retrieved from https://cloud.baidu.com/product/fpga.html.

[3] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. A scalable processing-in-memory

accelerator for parallel graph processing. In Proceedings of the ACM/IEEE 42nd Annual International Symposium on

Computer Architecture (ISCA’15). 105–117.

[4] Mohammad Alian, Seung Won Min, Hadi Asgharimoghaddam, Ashutosh Dhar, Dong Kai Wang, Thomas Roewer,

Adam McPadden, Oliver O’Halloran, Deming Chen, Jinjun Xiong, Daehoon Kim, Wen-mei Hwu, and Nam Sung Kim.

2018. Application-transparent near-memory processing architecture with memory channel network. In Proceedings

of the 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’18). 802–814. https://doi.org/10.

1109/MICRO.2018.00070

[5] James A. Ang, Brian W. Barrett, Kyle B. Wheeler, and Richard C. Murphy. 2010. Introducing the graph 500. Cray

Users Group (CUG) 19 (2010), 45–74.

[6] arm. 2020. AMBA AXI and ACE protocol specification AXI3, AXI4, and AXI4-Lite, ACE and ACE-Lite. Retrieved

from www.arm.com.

[7] Oreoluwatomiwa O. Babarinsa and Stratos Idreos. 2015. JAFAR: Near-data processing for databases. In Proceedings

of the ACM SIGMOD International Conference on Management of Data.

[8] Jared Casper and Kunle Olukotun. 2014. Hardware acceleration of database operations. In Proceedings of the

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA’14). ACM, 151–160.

[9] Young-kyu Choi, Yuze Chi, Weikang Qiao, Nikola Samardzic, and Jason Cong. 2021. HBM connect: High-performance

HLS interconnect for FPGA HBM. In Proceedings of the ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays. ACM, 116–126.

[10] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian Caulfield, Todd Massengill, Ming

Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Maleen Abeydeera, Logan Adams, Hari Angepat, Christian

Boehn, Derek Chiou, Oren Firestein, Alessandro Forin, Kang Su Gatlin, Mahdi Ghandi, Stephen Heil, Kyle Holohan,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

aws.amazon.com/ec2/instance-types/f1/
https://cloud.baidu.com/product/fpga.html
https://doi.org/10.1109/MICRO.2018.00070
www.arm.com

16:28 V. Iskandar et al.

Ahmad El Husseini, Tamas Juhasz, Kara Kagi, Ratna K. Kovvuri, Sitaram Lanka, Friedel van Megen, Dima Mukhortov,

Prerak Patel, Brandon Perez, Amanda Rapsang, Steven Reinhardt, Bita Rouhani, Adam Sapek, Raja Seera, Sangeetha

Shekar, Balaji Sridharan, Gabriel Weisz, Lisa Woods, Phillip Yi Xiao, Dan Zhang, Ritchie Zhao, and Doug Burger.

2018. Serving DNNs in real time at datacenter scale with project brainwave. IEEE Micro 38, 2 (2018), 8–20.

[11] Tim Davis and Yifan Hu. 2011. The university of florida sparse matrix collection. ACM Trans. Math. Softw. 38 (Nov.

2011), 1. https://doi.org/10.1145/2049662.2049663

[12] Timothy A. Davis and Yifan Hu. 2011. The university of florida sparse matrix collection. ACM Trans. Math. Softw. 38,

1, Article 1 (Dec. 2011), 25 pages.

[13] Michael F. Deering, Stephen A. Schlapp, and Michael G. Lavelle. 1994. FBRAM: A new form of memory optimized

for 3D graphics. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques (SIG-

GRAPH’94). ACM, 167–174.

[14] Yixiao Du, Yuwei Hu, Zhongchun Zhou, and Zhiru Zhang. 2022. High-performance sparse linear algebra on HBM-

Equipped FPGAs using HLS: A case study on SpMV. In Proceedings of the ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays (FPGA’22). 54–64.

[15] D. G. Elliott, W. M. Snelgrove, and M. Stumm. 1992. Computational ram: A memory-simd hybrid and its application

to dsp. In Proceedings of the IEEE Custom Integrated Circuits Conference. 30.6.1–30.6.4.

[16] Ivan Fernandez, Ricardo Quislant, Eladio Gutiérrez, Oscar Plata, Christina Giannoula, Mohammed Alser, Juan Gómez-

Luna, and Onur Mutlu. 2020. NATSA: A near-data processing accelerator for time series analysis. In Proceedings of

the IEEE 38th International Conference on Computer Design (ICCD’20). 120–129.

[17] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay,

Michael Haselman, Logan Adams, Mahdi Ghandi, Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa Woods,

Sitaram Lanka, Steven K. Reinhardt, Adrian M. Caulfield, Eric S. Chung, and Doug Burger. 2018. A configurable

cloud-scale DNN processor for real-time AI. In Proceedings of the ACM/IEEE 45th Annual International Symposium

on Computer Architecture (ISCA’18). 1–14.

[18] Mingyu Gao and Christos Kozyrakis. 2016. HRL: Efficient and flexible reconfigurable logic for near-data processing.

In Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA’16). IEEE,

126–137.

[19] Kartikay Garg and Jeffrey Young. 2017. Evaluating hybrid memory cube infrastructure to support high-performance

sparse algorithms. In Proceedings of the International Symposium on Memory Systems. ACM, 112–114.

[20] Anirban Ghose, Soumyajit Dey, Pabitra Mitra, and Mainak Chaudhuri. 2016. Divergence aware automated partition-

ing of OpenCL workloads. In Proceedings of the 9th India Software Engineering Conference (ISEC’16). ACM, 131–135.

https://doi.org/10.1145/2856636.2856639

[21] Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun, and Onur Mutlu. 2018. Enabling the

adoption of processing-in-memory: Challenges, mechanisms, future research directions. Retrieved from http://arxiv.

org/abs/1802.00320.

[22] Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur Mutlu. 2019. Demystifying complex

workload-DRAM interactions: An experimental study. Proc. ACM Meas. Anal. Comput. Syst. 3, 3, Article 60 (Dec.

2019), 50 pages.

[23] M. Gokhale, B. Holmes, and K. Iobst. 1995. Processing in memory: The terasys massively parallel PIM array. Computer

28, 4 (1995), 23–31.

[24] Jan Gray. 2019. 2GRVI phalanx: A 1332-Core RISC-V RV64I processor ClusterArray with an HBM2 high-bandwidth

memory system, and an OpenCL-like programming model, in a Xilinx VU37P FPGA (WIP report). In Proceedings of

the International Conference for High Performance Computing, Networking, Storage, and Analysis.

[25] Bon-Geun Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jonghyun Yoon, Jeong-Uk Kang, Moonsang

Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon Jeong, and Duckhyun Chang. 2016. Biscuit: A framework for near-data

processing of big data workloads. In Proceedings of the ACM/IEEE 43rd Annual International Symposium on Computer

Architecture (ISCA’16). 153–165.

[26] Licheng Guo, Jason Lau, Yuze Chi, Jie Wang, Cody Hao Yu, Zhe Chen, Zhiru Zhang, and Jason Cong. 2020. Analysis

and optimization of the implicit broadcasts in FPGA HLS to improve maximum frequency. In Proceedings of the 57th

ACM/IEEE Design Automation Conference (DAC’20). 1–6. https://doi.org/10.1109/DAC18072.2020.9218718

[27] Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, Brandon Reagen, Gu-Yeon Wei, Hsien-Hsin S. Lee, David

Brooks, and Carole-Jean Wu. 2020. DeepRecSys: A system for optimizing end-to-end at-scale neural recommendation

inference. In Proceedings of the ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA’20).

982–995. https://doi.org/10.1109/ISCA45697.2020.00084

[28] Ramyad Hadidi, Bahar Asgari, Burhan Ahmad Mudassar, Saibal Mukhopadhyay, Sudhakar Yalamanchili, and Hye-

soon Kim. 2017. Demystifying the characteristics of 3D-stacked memories: A case study for hybrid memory cube. In

Proceedings of the IEEE International Symposium on Workload Characterization (IISWC’17). 66–75.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2856636.2856639
http://arxiv.org/abs/1802.00320
https://doi.org/10.1109/DAC18072.2020.9218718
https://doi.org/10.1109/ISCA45697.2020.00084

Near-Memory Computing on FPGAs with 3D-stacked Memories 16:29

[29] Ramyad Hadidi, Bahar Asgari, Jeffrey Young, Burhan Ahmad Mudassar, Kartikay Garg, Tushar Krishna, and Hyesoon

Kim. 2018. Performance implications of NoCs on 3D-stacked memories: Insights from the hybrid memory cube. In

Proceedings of the IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS’18). 99–108.

[30] P. Holzinger, D. Reiser, T. Hahn, and M. Reichenbach. 2021. Fast HBM access with FPGAs: Analysis, architectures,

and applications. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium Workshops

(IPDPSW’21). IEEE Computer Society, 152–159. https://doi.org/10.1109/IPDPSW52791.2021.00030

[31] Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali Boroumand, Saugata Ghose, and Onur

Mutlu. 2016. Accelerating pointer chasing in 3D-stacked memory: Challenges, mechanisms, evaluation. In Proceed-

ings of the IEEE 34th International Conference on Computer Design (ICCD’16). 25–32.

[32] Yuwei Hu, Yixiao Du, Ecenur Ustun, and Zhiru Zhang. 2021. GraphLily: Accelerating graph linear algebra on HBM-

Equipped FPGAs. In Proceedings of the IEEE/ACM International Conference On Computer Aided Design (ICCAD’21).

1–9. https://doi.org/10.1109/ICCAD51958.2021.9643582

[33] Hongjing Huang, Zeke Wang, Jie Zhang, Zhenhao He, Chao Wu, Jun Xiao, and Gustavo Alonso. 2021. Shuhai: A tool

for benchmarking high-bandwidth memory on FPGAs. IEEE Trans. Comput. (2021), 1–1.

[34] Wenqin Huangfu, Krishna T. Malladi, Shuangchen Li, Peng Gu, and Yuan Xie. 2020. NEST: DIMM based near-data-

processing accelerator for K-mer counting. In Proceedings of the IEEE/ACM International Conference On Computer

Aided Design (ICCAD’20). 1–9.

[35] Gabriel H. Loh, Nuwan Jayasena, Mark H. Oskin, Mark Nutter, and Da Ignatowski. 2013. A processing-in-memory

taxonomy and a case for studying fixed-function PIM. In Workshop on Near-Data Processing (WoNDP). 1–4.

[36] Intel. 2020. Avalon interface specifications. Retrieved from https://www.intel.com/.

[37] Intel. 2020. High-bandwidth memory (HBM2) interface intel FPGA IP user guide. Retrieved from https://www.intel.

com/.

[38] Zsolt István, David Sidler, and Gustavo Alonso. 2017. Caribou: Intelligent distributed storage. Proc. VLDB Endow. 10

(Aug. 2017), 1202–1213. https://doi.org/10.14778/3137628.3137632

[39] Joe Jeddeloh and Brent Keeth. 2012. Hybrid memory cube new DRAM architecture increases density and perfor-

mance. In Proceedings of the Symposium on VLSI Technology (VLSIT’12). 87–88.

[40] Wenqi Jiang, Zhenhao He, Shuai Zhang, Thomas B. Preußer, Kai Zeng, Liang Feng, Jiansong Zhang, Tongxuan Liu,

Yong Li, Jingren Zhou, Ce Zhang, and Gustavo Alonso. [n. d.]. MicroRec: Efficient recommendation inference by

hardware and data structure solutions. Retrieved from https://arxiv.org/abs/2010.05894.

[41] Wenqi Jiang, Zhenhao He, Shuai Zhang, Kai Zeng, Liang Feng, Jiansong Zhang, Tongxuan Liu, Yong Li, Jingren

Zhou, Ce Zhang, and Gustavo Alonso. 2021. FleetRec: Large-scale recommendation inference on hybrid GPU-FPGA

clusters. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (KDD’21).

[42] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh

Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike

Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert

Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,

Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James

Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire

Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,

Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory

Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia

Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017. In-

datacenter performance analysis of a tensor processing unit. SIGARCH Comput. Archit. News 45, 2 (June 2017), 1–12.

[43] Hongshin Jun, Jinhee Cho, Kangseol Lee, Ho-Young Son, Kwiwook Kim, Hanho Jin, and Keith Kim. 2017. HBM (high-

bandwidth memory) DRAM technology and architecture. In Proceedings of the IEEE International Memory Workshop

(IMW’17). 1–4.

[44] Sang-Woo Jun. 2015. BlueDBM: An appliance for big data analytics. In Proceedings of the 42nd Annual International

Symposium on Computer Architecture (ISCA’15).

[45] Yi Kang, Wei Huang, Seung-Moon Yoo, D. Keen, Zhenzhou Ge, V. Lam, P. Pattnaik, and J. Torrellas. 1999. FlexRAM:

Toward an advanced intelligent memory system. In Proceedings of the IEEE International Conference on Computer

Design: VLSI in Computers and Processors. 192–201.

[46] Kaan Kara, Dan Alistarh, Gustavo Alonso, Onur Mutlu, and Ce Zhang. 2017. FPGA-accelerated dense linear machine

learning: A precision-convergence trade-off. In Proceedings of the IEEE 25th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM’17). 160–167.

[47] Kaan Kara, Jana Giceva, and Gustavo Alonso. 2017. FPGA-based data partitioning. In Proceedings of the ACM Inter-

national Conference on Management of Data (SIGMOD’17). ACM, 433–445.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

https://doi.org/10.1109/IPDPSW52791.2021.00030
https://doi.org/10.1109/ICCAD51958.2021.9643582
https://www.intel.com/
https://www.intel.com/
https://doi.org/10.14778/3137628.3137632
https://arxiv.org/abs/2010.05894

16:30 V. Iskandar et al.

[48] Kaan Kara, Christoph Hagleitner, Dionysios Diamantopoulos, Dimitris Syrivelis, and Gustavo Alonso. 2020. High-

bandwidth memory on FPGAs: A data analytics perspective. In Proceedings of the 30th International Conference on

Field-Programmable Logic and Applications (FPL’20). 1–8. ISSN: 1946–1488.

[49] Liu Ke, Xuan Zhang, Jinin So, Jong-Geon Lee, Shin-Haeng Kang, Sukhan Lee, Songyi Han, YeonGon Cho, Jin Hyun

Kim, Yongsuk Kwon, KyungSoo Kim, Jin Jung, Ilkwon Yun, Sung Joo Park, Hyunsun Park, Joonho Song, Jeonghyeon

Cho, Kyomin Sohn, Nam Sung Kim, and Hsien-Hsin S. Lee. 2022. Near-memory processing in action: Accelerating

personalized recommendation with AxDIMM. IEEE Micro 42, 1 (2022), 116–127. https://doi.org/10.1109/MM.2021.

3097700

[50] Jehandad Khan and Peter Athanas. [n. d.]. Creating custom network packet processing pipelines on HMC-enabled

FPGAs. In Proceedings of the Third Workshop on Networking and Programming Languages (NetPL).

[51] Jung-Sik Kim, Chi Sung Oh, Hocheol Lee, Donghyuk Lee, Hyong Ryol Hwang, Sooman Hwang, Byongwook Na,

Joungwook Moon, Jin-Guk Kim, Hanna Park, Jang-Woo Ryu, Kiwon Park, Sang Kyu Kang, So-Young Kim, Hoyoung

Kim, Jong-Min Bang, Hyunyoon Cho, Minsoo Jang, Cheolmin Han, Jung-Bae LeeLee, Joo Sun Choi, and Young-

Hyun Jun. 2012. A 1.2 V 12.8 GB/s 2 Gb mobile wide-I/O DRAM with 4 × 128 I/Os using TSV based stacking. IEEE J.

Solid-State Circ. 47, 1 (2012), 107–116.

[52] Peter M. Kogge. 1994. EXECUBE-A new architecture for scaleable MPPs. In Proceedings of the International Conference

on Parallel Processing. Vol. 1, 77–84.

[53] C. E. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K. Asanovic, N. Cardwell, R. Fromm, J. Golbus, B. Gribstad, K.

Keeton, R. Thomas, N. Treuhaft, and K. Yelick. 1997. Scalable processors in the billion-transistor era: IRAM. Computer

30, 9 (1997), 75–78.

[54] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. 2019. TensorDIMM: A practical near-memory processing architecture

for embeddings and tensor operations in deep learning. In Proceedings of the 52nd Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO’19). 740–753.

[55] Dong Uk Lee, Kyung Whan Kim, Kwan Weon Kim, Hongjung Kim, Ju Young Kim, Young Jun Park, Jae Hwan Kim,

Dae Suk Kim, Heat Bit Park, Jin Wook Shin, Jang Hwan Cho, Ki Hun Kwon, Min Jeong Kim, Jaejin Lee, Kun Woo

Park, Byongtae Chung, and Sungjoo Hong. 2014. 25.2 A 1.2V 8Gb 8-channel 128GB/s high-bandwidth memory (HBM)

stacked DRAM with effective microbump I/O test methods using 29nm process and TSV. In Proceedings of the IEEE

International Solid-State Circuits Conference Digest of Technical Papers (ISSCC’14). 432–433.

[56] Bing Li, Yu Hu, Ying Wang, Jing Ye, and Xiaowei Li. 2017. Power-utility-driven write management for MLC PCM.

ACM J. Emerg. Technol. Comput. Syst. 13 (2017), 1–22.

[57] Bing Li and Bonan Yan. 2019. An overview of in-memory processing with emerging non-volatile memory for data-

intensive applications. In Proceedings of the Great Lakes Symposium on VLSI (GLSVLSI’19). 381–386. https://doi.org/

10.1145/3299874.3319452

[58] Bing Li, Bonan Yan, Chenchen Liu, and Hai Li. 2019. Build reliable and efficient neuromorphic design with memristor

technology. In Proceedings of the 24th Asia and South Pacific Design Automation Conference (ASPDAC’19). 224–229.

https://doi.org/10.1145/3287624.3288744

[59] Shuangchen Li, Dimin Niu, Krishna T. Malladi, Hongzhong Zheng, Bob Brennan, and Yuan Xie. 2017. DRISA: A

DRAM-based reconfigurable in-situ accelerator. In Proceedings of the 50th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO’17). 288–301.

[60] Xiaoye S. Li and James W. Demmel. 2003. SuperLU_DIST: A scalable distributed-memory sparse direct solver for

unsymmetric linear systems. ACM Trans. Math. Softw. 29, 2 (June 2003), 110–140.

[61] Chenhao Liu, Zhiyuan Shao, Zeke Wang, Kexin Li, Minkang Wu, Jiajie Chen, Xiaofei Liao, and Hai Jin. 2021. ScalaBFS:

A scalable BFS accelerator on HBM-enhanced FPGAs. Retrieved from http://arxiv.org/abs/2105.11754.

[62] Zhiqiang Liu, Yong Dou, Jingfei Jiang, Qiang Wang, and Paul Chow. 2017. An FPGA-based processor for training

convolutional neural networks. In Proceedings of the International Conference on Field Programmable Technology

(ICFPT’17). 207–210.

[63] Scott Lloyd and Maya Gokhale. 2015. In-memory data rearrangement for irregular, data-intensive computing. Com-

puter 48, 8 (Aug. 2015), 18–25.

[64] Guixiang Ma, Yao Xiao, Theodore L. Willke, Nesreen K. Ahmed, Shahin Nazarian, and Paul Bogdan. 2020. A Vertex

Cut Based Framework for Load Balancing and Parallelism Optimization in Multi-core Systems. Retrieved from https:

//arXiv:2010.04414.

[65] Alexander Matz, Mark Hummel, and Holger Fröning. 2016. Exploring LLVM infrastructure for simplified multi-GPU

programming. In MULTIPROG Workshop, Co-located with HiPEAC 2016.

[66] Nathaniel Mcvicar, Chih-Ching Lin, and Scott Hauck. 2017. K-mer counting using bloom filters with an FPGA-

attached HMC. In Proceedings of the IEEE 25th Annual International Symposium on Field-Programmable Custom Com-

puting Machines (FCCM’17). 203–210.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

https://doi.org/10.1109/MM.2021.3097700
https://doi.org/10.1145/3299874.3319452
https://doi.org/10.1145/3287624.3288744
http://arxiv.org/abs/2105.11754
https://arXiv:2010.04414

Near-Memory Computing on FPGAs with 3D-stacked Memories 16:31

[67] Lifeng Nai, Ramyad Hadidi, He Xiao, Hyojong Kim, Jaewoong Sim, and Hyesoon Kim. 2018. CoolPIM: Thermal-

aware source throttling for efficient PIM instruction offloading. In Proceedings of the IEEE International Parallel and

Distributed Processing Symposium (IPDPS’18). IEEE, Vancouver, BC, 680–689.

[68] Lifeng Nai, Yinglong Xia, Ilie G. Tanase, Hyesoon Kim, and Ching-Yung Lin. 2015. GraphBIG: Understanding graph

computing in the context of industrial solutions. In Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis (SC’15). 1–12.

[69] Tomas Öhberg, August Ernstsson, and Christoph W. Kessler. 2019. Hybrid CPU–GPU execution support in the skele-

ton programming framework SkePU. J. Supercomput. 76 (2019), 5038–5056.

[70] Md Jubaer Hossain Pantho, Joel Mandebi Mbongue, Christophe Bobda, and David Andrews. 2018. Transparent ac-

celeration of image processing kernels on FPGA-attached hybrid memory cube computers. In Proceedings of the

International Conference on Field-Programmable Technology (FPT’18). 342–345.

[71] Sang Phill Park, Sumeet Gupta, Niladri Mojumder, Anand Raghunathan, and Kaushik Roy. 2012. Future cache design

using STT MRAMs for improved energy efficiency: Devices, circuits and architecture. In Proceedings of the Design

Automation Conference (DAC’12). 492–497.

[72] Alberto Parravicini, Luca Giuseppe Cellamare, Marco Siracusa, and Marco Domenico Santambrogio. 2021. Scaling

up HBM efficiency of top-K SpMV for approximate embedding similarity on FPGAs. Retrieved from http://arxiv.org/

abs/2103.04808.

[73] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas, and K. Yelick. 1997. A case

for intelligent RAM. IEEE Micro 17, 2 (1997), 34–44.

[74] J. Thomas Pawlowski. 2011. Hybrid memory cube (HMC). In Proceedings of the IEEE Hot Chips 23 Symposium (HCS’11).

1–24.

[75] Morten B. Petersen, Stefan Nikolic, and Mirjana Stojilovic. 2021. NetCracker: A peek into the routing architecture of

Xilinx 7-series FPGAs. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays

(FPGA’21), Lesley Shannon and Michael Adler (Eds.). ACM, 11–22. https://doi.org/10.1145/3431920.3439285

[76] PicoComputing. [n. d.]. Retrieved from https://www.alpha-data.com/dcp/products.php?product=adm-pcie-9h7.

[77] PicoComputing. [n. d.]. Pico framework documentation. Retrieved from http://picocomputing.zendesk.com/hc/.

[78] Picocomputing. 2016. UltraScale-based SuperProcessor with hybrid memory cube. Retrieved from http://

picocomputing.com/ac-510-superprocessor-module.

[79] PicoComputing. 2017. SC6-Mini. Retrieved from http://picocomputing.com/products/picocube/picomini/.

[80] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Constantinides, John Demme, Hadi

Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil,

Amir Hormati, Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong,

Phillip Yi Xiao, and Doug Burger. 2015. A reconfigurable fabric for accelerating large-scale datacenter services. IEEE

Micro 35, 3 (2015), 10–22.

[81] Abhi D. Rajagopala, Ron Sass, and Andrew G. Schmidt. 2019. Volcan: System integration of HLS and HMC on FPGAs.

In Proceedings of the International Conference on ReConFigurable Computing and FPGAs (ReConFig’19). 1–2.

[82] Daniel Rozhko, Geoffrey Elliott, Daniel Ly-Ma, Paul Chow, and Hans-Arno Jacobsen. 2017. Packet matching on

FPGAs using HMC memory: Towards one million rules. In Proceedings of the ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays. ACM, 201–206.

[83] Zhenyuan Ruan, Tong He, and Jason Cong. 2019. INSIDER: Designing in-storage computing system for emerging

high-performance drive. In Proceedings of the USENIX Annual Technical Conference.

[84] Mario Ruiz, David Sidler, Gustavo Sutter, Gustavo Alonso, and Sergio López-Buedo. 2019. Limago: An FPGA-based

open-source 100 GbE TCP/IP stack. In Proceedings of the 29th International Conference on Field Programmable Logic

and Applications (FPL’19). 286–292.

[85] Paulo C. Santos, Geraldo F. Oliveira, Diego G. Tomé, Marco A. Z. Alves, Eduardo C. Almeida, and Luigi Carro. 2017.

Operand size reconfiguration for big data processing in memory. In Proceedings of the Design, Automation Test in

Europe Conference Exhibition (DATE’17). 710–715.

[86] Juri Schmidt and Ulrich Bruning. 2015. openHMC—A configurable open-source hybrid memory cube controller. In

Proceedings of the International Conference on ReConFigurable Computing and FPGAs (ReConFig’15). 1–6.

[87] Juri Schmidt, Holger Fröning, and Ulrich Brüning. 2016. Exploring time and energy for complex accesses to a hybrid

memory cube. In Proceedings of the 2nd International Symposium on Memory Systems. ACM, 142–150.

[88] Francesco Sgherzi, Alberto Parravicini, Marco Siracusa, and Marco Domenico Santambrogio. 2021. Solving large top-

K graph eigenproblems with a memory and compute-optimized FPGA design. Retrieved from http://arxiv.org/abs/

2103.10040. arXiv: 2103.10040.

[89] D. Sharma. 2019. Compute express link. CXL Consortium White Paper.

[90] Patrick Siegl, Rainer Buchty, and Mladen Berekovic. 2016. Data-centric computing frontiers: A survey on processing-

in-memory. In Proceedings of the Second International Symposium on Memory Systems (MEMSYS’16). ACM.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

http://arxiv.org/abs/2103.04808
https://doi.org/10.1145/3431920.3439285
https://www.alpha-data.com/dcp/ products.php?product=adm-pcie-9h7
http://picocomputing.zendesk.com/hc/
http://picocomputing.com/ac-510-superprocessor-module
http://picocomputing.com/products/ picocube/picomini/
http://arxiv.org/abs/2103.10040

16:32 V. Iskandar et al.

[91] Gagandeep Singh, Lorenzo Chelini, Stefano Corda, Ahsan Javed Awan, Sander Stuijk, Roel Jordans, Henk Corporaal,

and Albert-Jan Boonstra. 2019. Near-memory computing: Past, present, and future. Microprocess. Microsyst. 71 (2019).

[92] Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gomez-Luna, Sander Stuijk, Onur Mutlu,

and Henk Corporaal. 2020. NERO: A near high-bandwidth memory stencil accelerator for weather prediction model-

ing. In Proceedings of the 30th International Conference on Field-Programmable Logic and Applications (FPL’20). IEEE,

9–17.

[93] Linghao Song, Yuze Chi, Atefeh Sohrabizadeh, Young kyu Choi, Jason Lau, and Jason Cong. 2022. Sextans: A stream-

ing accelerator for general-purpose sparse-matrix dense-matrix multiplication. In Proceedings of the ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays.

[94] Harold S. Stone. 1970. A logic-in-memory computer. IEEE Trans. Comput. 19, 1 (Jan. 1970), 73–78.

[95] J. Stuecheli, W. J. Starke, J. D. Irish, L. B. Arimilli, D. Dreps, B. Blaner, C. Wollbrink, and B. Allison. 2018. IBM POWER9

opens up a new era of acceleration enablement: OpenCAPI. IBM J. Res. Dev. 62, 4/5 (2018), 8:1–8:8.

[96] Bharat Sukhwani, Thomas Roewer, Charles L. Haymes, Kyu-Hyoun Kim, Adam J. McPadden, Daniel M. Dreps, Dean

Sanner, Jan Van Lunteren, and Sameh Asaad. 2017. ConTutto—A novel FPGA-based prototyping platform enabling

innovation in the memory subsystem of a server class processor. In Proceedings of the 50th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture (MICRO’17). 15–26.

[97] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip Leong, Magnus Jahre, and Kees Vis-

sers. 2017. FINN: A framework for fast, scalable binarized neural network inference. In Proceedings of the ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays (FPGA’17). ACM, 65–74.

[98] Zeke Wang, Bingsheng He, and Wei Zhang. 2015. A study of data partitioning on OpenCL-based FPGAs. In Proceed-

ings of the 25th International Conference on Field Programmable Logic and Applications (FPL’15). 1–8.

[99] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han Hu, Yun Liang, and Jason Cong. 2017.

Automated systolic array architecture synthesis for high throughput CNN inference on FPGAs. In Proceedings of the

54th ACM/EDAC/IEEE Design Automation Conference (DAC’17). 1–6.

[100] Louis Woods, Gustavo Alonso, and Jens Teubner. 2015. Parallelizing data processing on FPGAs with shifter lists.

ACM Trans. Reconfig. Technol. Syst. 8, 2 (2015), 7:1–7:22. https://doi.org/10.1145/2629551

[101] Wm. A. Wulf and Sally A. McKee. 1995. Hitting the memory wall: Implications of the obvious. SIGARCH Comput.

Archit. News 23, 1 (Mar. 1995).

[102] Xilinx. 2017. AXI interconnect v2.1. Retrieved from https://www.xilinx.com/support/documentation/ipdocumentati-

on/axi_interconnect/v2_1/ pg059-axi-interconnect.pdf.

[103] Xilinx. 2019. Virtex UltraScale+ HBM FPGA: A revolutionary increase in memory performance. Retrieved from https:

//www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus-hbm.html.

[104] Xilinx. 2020. Alveo U280 data center accelerator card user guide. Retrieved from https://www.xilinx.com/support/

documentation/boards_and_kits/acceleratorcards/ug1314-u280-reconfig-accel.pdf.

[105] Xilinx. 2020. Alveo U50 data center accelerator card user guide. Retrieved from https://www.xilinx.com/support/

documentation/boards_and_kits/acceleratorcards/ug1371-u50-reconfig-accel.pdf.

[106] Xilinx. 2020. AXI high-bandwidth memory controller v1.0. Retrieved from https://www.xilinx.com/support/

documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf.

[107] Xilinx. 2020. Vitis unified software platform. Retrieved from https://www.xilinx.com/products/design-tools/vitis/

vitis-platform.html.

[108] Yang Yang, Sanmukh R. Kuppannagari, and Viktor K. Prasanna. 2020. A high throughput parallel hash table ac-

celerator on HBM-enabled FPGAs. In Proceedings of the International Conference on Field-Programmable Technology

(ICFPT’20). IEEE, 148–153.

[109] Hanqing Zeng and Viktor Prasanna. 2020. GraphACT: Accelerating GCN training on CPU-FPGA heterogeneous

platforms. In Proceedings of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. ACM,

255–265.

[110] Jialiang Zhang and Jing Li. 2018. Degree-aware hybrid graph traversal on FPGA-HMC platform. In Proceedings of

the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. ACM, 229–238.

[111] Jialiang Zhang, Yue Zha, Nicholas Beckwith, Bangya Liu, and Jing Li. 2020. MEG: A RISCV-based system emulation

infrastructure for near-data processing using FPGAs and high-bandwidth memory. ACM Trans. Reconfig. Technol.

Syst. 13, 4 (Oct. 2020), 1–24.

[112] Yu Zhu, Zhenhao He, Wenqi Jiang, Kai Zeng, Jingren Zhou, and Gustavo Alonso. 2021. Distributed recommendation

inference on FPGA clusters. In Proceedings of the 31st International Conference on Field-Programmable Logic and

Applications (FPL’21).

Received 7 February 2022; revised 25 April 2022; accepted 19 June 2022

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 16. Pub. date: December 2022.

https://doi.org/10.1145/2629551
https://www.xilinx.com/support/documentation/ip documentation/axi_interconnect/v2_1/ pg059-axi-interconnect.pdf
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus-hbm.html
https://www.xilinx.com/support/documentation/boards_and_kits/acceleratorcards/ug1314-u280-reconfig-accel.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/acceleratorcards/ ug1371-u50-reconfig-accel.pdf
https://www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html

