NEAR-OPTIMAL ECHELON-STOCK (R, nQ) POLICIES IN MULTISTAGE SERIAL SYSTEMS

FANGRUO CHEN
Columbia University, New York, New York

YU-SHENG ZHENG

University of Pennsylvania, Philadelphia, Pennsylvania
(Received August 1994; revisions received November 1995; December 1996; accepted January 1997)

Abstract

We study echelon-stock $(R, n Q)$ policies in a multistage, serial inventory system with compound Poisson demand. We provide a simple method for determining near-optimal control parameters. This is achieved in two steps. First, we establish lower and upper bounds on the cost function by over- and under-charging a penalty cost to each upstream stage for holding inadequate stock. Second, we minimize the bounds, which are simple, separable functions of the control parameters, to obtain heuristic solutions. We also provide an algorithm that guarantees an optimal solution at the expense of additional computational effort. A numerical study suggests that the heuristic solutions are easy to compute (even for systems with many stages) and are close to optimal. It also suggests that a traditional approach for determining the order quantities can be seriously suboptimal. All the results can be easily extended to the discrete-time case with independent, identically distributed demands.

Basic models of multistage, production/distribution systems are central to supply chain management, a field that has lately attracted much attention from academics and practitioners alike. This paper considers one such model where the material is processed sequentially before being used to satisfy uncertain customer demand. The model is depicted in Figure 1 where the stages represent the different stocking points in the production-distribution process. Material flow from one stage to the next requires a leadtime and incurs a setup cost (in addition to a variable cost proportional to the flow quantity). Due to the value added, inventory becomes more expensive to carry as it moves closer to the customer. Demand unsatisfied from on-hand inventory is backlogged, incurring penalty costs. The entire supply chain is controlled by a system manager whose goal is to satisfy the customer demand and to minimize the long-run average system-wide cost. (When the different stages are controlled by independent managers, the jointly optimal solution can serve as a benchmark.)

The above model was originally proposed by Clark and Scarf (1962) as a generalization of the now classic model (Clark and Scarf 1960) which does not allow setup costs at any stages except stage N. They introduced the important concept of echelon stock. A stage's echelon stock is the inventory position of the subsystem consisting of the stage itself and all its downstream stages.

Our model can also be viewed as a generalization of the deterministic models studied by Roundy (1986), Maxwell and Muckstadt (1985), and Atkins and Sun (1995). They show that the so-called power-of-two policies are close to optimal, under which the reorder intervals (order quantities) at all stages are restricted to be power-of-two multi-
ples of a base time (quantity) unit. This power-of-two structure is designed to facilitate coordination among the different stages.

For our serial model with random demand and setup costs, Clark and Scarf (1962) have pointed out correctly that the optimal policy does not have a simple structure. Thus, an optimal policy, even if it exists and is identified, would not be easy to implement. In other words, the "optimal" policy is no longer optimal or even attractive once the managerial effort of implementation is taken into account. Therefore, we turn to simple, cost-effective heuristic policies. Specifically, we consider the echelon-stock ($r, n Q$) policy, which is a natural generalization of the power-oftwo policy. An $(r, n Q)$ policy operates as follows: whenever the inventory position is at or below the reorder point r, order $n Q$ units where n is the minimum integer required to increase the inventory position to above r. We call Q the base quantity. Combining the ($r, n Q$) policy with the echelon-stock concept leads to the echelon-stock ($r, n Q$) policy whereby every stage uses an $(r, n Q)$ policy based on its echelon stock. (A closely related policy is the installation-stock ($r, n Q$) policy whereby each stage follows an $(r, n Q)$ policy based on its local inventory position. For serial systems echelon-stock policies are superior to installation-stock policies, see Axsater and Rosling 1993.) To achieve quantity coordination, we require the base quantity of stage $i+1$ be a positive integer multiple of the base quantity of stage i. Based on the insight from Roundy (1986) and Zheng (1992), we further restrict the base quantities to be of the power-of-two type.

Echelon-stock ($r, n Q$) policies are easy to implement. Although the initial measurement of a stage's echelon

Figure 1. The serial system.
stock requires the inventory information at every downstream stage, its update requires the demand information only at stage 1 . Since modern information technologies (e.g., EDI) are capable of effortlessly transmitting the point-of-sale data to the upstream stages of the supply chain, the information infrastructure for implementing echelon-stock policies is in place.

We aim to determine the optimal reorder points and base quantities that minimize the average system-wide cost. Recent developments show that the exact cost of an echelon stock ($r, n Q$) policy can be computed recursively (Chen and Zheng 1994a) and for fixed base quantities, the optimal reorder points can be determined sequentially (Chen 1995). (In a nutshell, determining the optimal reorder points for fixed base quantities is, after a proper transformation, essentially the same as finding the optimal base-stock levels in the Clark-Scarf model without setup costs.) But it is still unclear how the optimal base quantities can be determined. This paper provides a simple method for determining near-optimal base quantities. We first bound the exact cost function from both above and below by simple functions of the control parameters. These bounds are obtained by over- and under-charging a penalty cost to each upstream stage for holding less-thanadequate stock. Each bound is the sum of N single-stage cost functions. Substituting these bounds for the exact cost function, we effectively decouple the N-stage system into N single-stage systems. Solving these single-stage problems leads to heuristic base quantities. We also provide an algorithm that finds the optimal base quantities at the expense of additional computational effort. A numerical study suggests that the heuristic solutions can be computed efficiently (even for systems with many stages) and more importantly, are close to optimal.

For stochastic inventory systems with fixed ordering costs, it has been widely suggested that the order quantities can be obtained by solving the deterministic counterpart of the problem (see, e.g., Graves and Schwarz 1977). Let us call the order quantities obtained in this way the EOQs. In a numerical study, we observed that our solutions dominate the EOQ solution with substantial savings in examples with high demand volatility. We also observed that the EOQs tend to be too small, and thus should be adjusted upward for stochastic systems. This observation echoes a recent finding from the single-stage (r, Q) model (Zheng 1992).

There is an extensive literature on multiechelon systems with uncertain demand and scale economies, see, e.g., Deuermeyer and Schwarz (1981), De Bodt and Graves (1985), Moinzadeh and Lee (1986), Lee and Moinzadeh (1987a, b), Svoronos and Zipkin (1988), Badinelli (1992), Axsater (1993a, b), and Chen and Zheng (1994a, b, 1997).

Most of this literature focuses on evaluating the cost of a heuristic policy with predetermined control parameters, and not on determining the optimal values of the control parameters.

The rest of the paper is organized as follows. Section 1 presents preliminaries. Section 2 bounds the exact cost function. Section 3 describes an algorithm for computing heuristic base quantities. Section 4 outlines a search procedure for determining the optimal base quantities. Section 5 reports a numerical study. Section 6 concludes the paper.

1. PRELIMINARIES

Consider an N-stage, serial system where stage 1 orders from stage 2,2 from 3, etc., and stage N orders from an outside supplier with unlimited stock. There are economies of scale at each stage for placing orders. The transportation leadtime from stage $i+1$ to stage i is a constant L_{i} for $i=1, \ldots, N$, with stage $N+1$ being the outside supplier. The demand process is compound Poisson. That is, customers arrive at stage 1 according to a Poisson process with an average rate λ; the demand sizes of different customers are independent and identically distributed, and are independent of the arrival process. We assume that the demand sizes only take integer values. Let μ be the average demand size per customer. Excess demand is backlogged with backorder cost rate p. Let $h_{i}>0$ be the echelon holding cost rate at stage i for $i=1, \cdots, N$. The planning horizon is infinite, and the objective is to minimize the long-run average total cost. (A transportation cost proportional to the quantity shipped can be easily included. We omit it because its long-run average value is constant.)

For any time t, define
$B(t)=$ backorder level at stage 1,
$I_{i}(t)=$ echelon inventory at stage i,
$=$ on-hand inventory at stage i plus inventories at, or in transit to, stages $1, \ldots, i-1$,
$I L_{i}(t)=$ echelon inventory level at stage $i=I_{i}(t)-$ $B(t)$,
$I P_{i}(t)=$ echelon inventory position at stage i
$=I L_{i}(t)$ plus inventories in transit to stage i, and $E S_{i}(t)=$ echelon stock at stage i
$=I L_{i}(t)$ plus stage i 's outstanding orders, in transit or backlogged at stage $i+1$.
Note that the above variables take integer values only. The difference between $I P_{i}(t)$ and $E S_{i}(t)$ is that the former is constrained by $I L_{i+1}(t)$, a variable controlled by the upstream stages, while the latter is controlled by stage i only.

The inventory flow through the system is controlled by an echelon-stock $(r, n Q)$ policy. That is, stage i orders $n Q_{i}$ units from stage $i+1$ whenever stage i 's echelon stock falls to or below r_{i}, where n is the minimum integer so that stage i 's echelon stock after ordering is above r_{i}. We call Q_{i} (a positive integer) the base quantity, and r_{i} (an integer) the reorder point, at stage i. The base quantities at the different stages are coordinated in the sense that $Q_{i+1}=$
$n_{i} Q_{i}$, where n_{i} is a positive integer, for $i=1, \ldots, N-1$. Moreover, we assume that the initial on-hand inventory at stage i is an integer multiple of $Q_{i-1}, i=2, \ldots, N$. (This initial state can always be reached by sending the residual units at each stage, if any, to its immediate downstream stage.) As a result, the on-hand inventory at stage i is always an integer multiple of $Q_{i-1}, i=2, \ldots, N$.

At stage i we assess a setup cost K_{i} for each Q_{i} ordered. Thus, the long-run average setup costs in the system are
$\sum_{i=1}^{N} \frac{\lambda \mu K_{i}}{Q_{i}}$.
See Zipkin (1995) for a discussion on this convention of charging setup costs. (There are at least two other ways to assess setup costs: one charges a setup cost for each order placed, and the other charges a setup cost for each shipment received. Both lead to more complex expressions for the average setup costs. See Zheng and Chen 1992 and Chen and Zheng 1994a.)

Note that the rate at which the system-wide holding and backorder costs accrue at time t is

$$
\begin{aligned}
\sum_{i=1}^{N} & h_{i} I_{i}(t)+p B(t) \\
& =\sum_{i=1}^{N} h_{i} I L_{i}(t)+\left(p+H_{1}\right) B(t)
\end{aligned}
$$

where H_{1} is the installation holding cost rate at stage 1 , i.e., $H_{1}=\sum_{i=1}^{N} h_{i}$. Let $I P_{i}$ and $I L_{i}$ represent $I P_{i}(t)$ and $I L_{i}(t)$ in steady state, $i=1, \ldots, N$. The following equation is well known:
$I L_{i}\left(t+L_{i}\right)=I P_{i}(t)-D\left(t, t+L_{i}\right)$,
where $D\left(t, t+L_{i}\right)$ is the total demand in the interval $(t$, $\left.t+L_{i}\right)$. Since the demand process is compound Poisson, $I P_{i}(t)$ is independent of $D\left(t, t+L_{i}\right)$. Thus,
$I L_{i}=I P_{i}-D_{i}$,
where D_{i} is identically distributed as $D\left(t, t+L_{i}\right)$ and is independent of $I P_{i}$. For any integer y, define
$G_{1}(y)=E\left[h_{1}\left(y-D_{1}\right)+\left(p+H_{1}\right)\left(y-D_{1}\right)^{-}\right]$,
where $(x)^{-}=\max \{0,-x\}$. Let B represent $B(t)$ in steady state. Since $B=\left(I L_{1}\right)^{-}$and $I L_{1}=I P_{1}-D_{1}$ (see (2)), we have $E\left[h_{1} I L_{1}+\left(p+H_{1}\right) B\right]=E G_{1}\left(I P_{1}\right)$. Therefore, the average total holding-backorder cost is

$$
\begin{aligned}
\sum_{i=1}^{N} & h_{i} E\left(I L_{i}\right)+\left(p+H_{1}\right) E(B) \\
& =\sum_{i=2}^{N} h_{i} E\left(I L_{i}\right)+E G_{1}\left(I P_{1}\right) .
\end{aligned}
$$

Adding the average setup costs in (1) to the above expression, we have the long-run average total cost of the echelon-stock ($r, n Q$) policy:
$C(\mathbf{r}, \mathbf{Q}) \stackrel{\operatorname{def}}{=} \sum_{i=1}^{N} \frac{\lambda \mu K_{i}}{Q_{i}}+\sum_{i=2}^{N} h_{i} E\left(I L_{i}\right)+E G_{1}\left(I P_{1}\right)$,
where $\mathbf{r}=\left(r_{1}, \ldots, r_{N}\right)$ and $\mathbf{Q}=\left(Q_{1}, \ldots, Q_{N}\right)$. An optimal echelon-stock ($r, n Q$) policy minimizes the above cost function.

2. BOUNDS

Here we derive upper and lower bounds on the cost function. These bounds have a simple form and will be used later to determine the control parameters.

2.1. Upper-Bound Function

We first define recursively a sequence of functions $G^{i}(\cdot)$ for $i=1, \ldots, N$. Let $G^{1}(y)=G_{1}(y)$ for any integer y. Let Y_{i} be the minimum point of $G^{i}(\cdot)$. For $i=1, \ldots, N-1$ and any integer y, define
$G^{i, i+1}(y)= \begin{cases}G^{i}(y)-G^{i}\left(Y_{i}\right), & y \leqslant Y_{i}, \\ 0 & \text { otherwise },\end{cases}$
and
$G^{i+1}(y)=E\left[h_{i+1}\left(y-D_{i+1}\right)+G^{i, i+1}\left(y-D_{i+1}\right)\right]$.
Since $G^{1}(\cdot)$ is convex, $G^{12}(\cdot)$ is convex (and nonincreasing). Thus, $G^{2}(\cdot)$ is convex. Repeating this argument, we know that $G^{i}(\cdot)$ is convex for $i=1, \ldots, N$. Note that $G^{i, i+1}\left(I L_{i+1}\right)$ is the induced-penalty cost charged to stage $i+1$ in the Clark-Scarf model; see Chen and Zheng (1994b).

For any integer r and any positive integer Q, define
$C^{i}(r, Q)=\frac{\lambda \mu K_{i}+\sum_{\substack{r=r+1}}^{r+Q} G^{i}(y)}{Q}, \quad i=1,2, \ldots, N$.
One reason why the minimization of the exact cost function is difficult is that the stages are "coupled" in the sense that $I P_{i}$ depends on not only the control policy at stage i but also the control policies at the upstream stages. The following lemma provides a way to decouple the system since $I L_{i+1}$ is independent of, and $E S_{i}$ is completely determined by, the control policy at stage i.

Lemma 1. For $i=1, \ldots, N-1, G^{i}\left(I P_{i}\right) \leqslant G^{i, i+1}\left(I L_{i+1}\right)$ $+G^{i}\left(E S_{i}\right)$.

Proof. By definition, $I P_{i} \leqslant I L_{i+1}$ and the difference, $I L_{i+1}-I P_{i}$, is the on-hand inventory at stage $i+1$. If $I P_{i}$ $<I L_{i+1}$, i.e., stage $i+1$ has positive on-hand inventory, then $I P_{i}=E S_{i}$. (Note that the echelon stock is the same as the echelon inventory position as long as the upper stage has inventory on hand.) The lemma follows since the induced-penalty cost, $G^{i, i+1}(\cdot)$, is nonnegative. Now suppose $I P_{i}=I L_{i+1}$. If $I P_{i}<Y_{i}$ then $G^{i}\left(I P_{i}\right)=G^{i, i+1}\left(I P_{i}\right)+$ $G^{i}\left(Y_{i}\right)=G^{i, i+1}\left(I L_{i+1}\right)+G^{i}\left(Y_{i}\right)$. The lemma follows since $G^{i}\left(E S_{i}\right) \geqslant G^{i}\left(Y_{i}\right)$. On the other hand, if $I P_{i} \geqslant Y_{i}$ then the lemma follows since $G^{i}(y)$ is nondecreasing for $y \geqslant Y_{i}$ and $I P_{i} \leqslant E S_{i}$ by definition.

Corollary 1. For $i=1, \ldots, N-1, E G^{i}\left(I P_{i}\right) \leqslant$ $E G^{i, i+1}\left(I L_{i+1}\right)+\sum_{y=r_{i}+1}^{r_{i}+Q_{i}} G^{i}(y) / Q_{i}$.

Proof. Follows directly from Lemma 1 since $E S_{i}$ is uniformly distributed from $r_{i}+1$ to $r_{i}+Q_{i}$.

Theorem 1. For any feasible echelon-stock ($r, n Q$) policy, $C(\mathbf{r}, \mathbf{Q}) \leqslant \sum_{i=1}^{N} C^{i}\left(r_{i}, Q_{i}\right)$.

Proof. Apply Corollary 1 (with $i=1$) to the right side of (3). Since $I L_{2}=I P_{2}-D_{2}$, we have $E\left[h_{2} I L_{2}+G^{12}\left(I L_{2}\right)\right]=$ $E G^{2}\left(I P_{2}\right)$. Now apply Corollary 1 again (with $i=2$), etc.

2.2. Lower-Bound Function

We first define recursively a sequence of functions $G_{i}(\cdot)$, $i=1, \ldots, N . G_{1}(\cdot)$ is given above. Suppose we have $G_{i}(\cdot)$. For any integer r and any positive integer Q, define
$C_{i}(r, Q)=\frac{\lambda \mu K_{i}+\sum_{y=r+1}^{r+Q} G_{i}(y)}{Q}$.
For fixed Q, let $C_{i}(r, Q)$ be minimized at $r=r_{i}(Q)$. Let $C_{i}\left(r_{i}(Q), Q\right)$ be minimized at Q_{i}^{0}. Set $r_{i}^{0}=r_{i}\left(Q_{i}^{0}\right)$ and $C_{i}^{0}=$ $C_{i}\left(r_{i}^{0}, Q_{i}^{0}\right)$. Then, for any integer y, define
$G_{i i}(y)= \begin{cases}G_{i}(y), & r_{i}^{0}+1 \leqslant y \leqslant r_{i}^{0}+Q_{i}^{0}, \\ C_{i}^{0}, & \text { otherwise },\end{cases}$
$G_{i, i+1}(y)= \begin{cases}G_{i}(y)-C_{i}^{0}, & y \leqslant r_{i}^{0}, \\ 0 & \text { otherwise },\end{cases}$
and
$G_{i+1}(y)=E\left[h_{i+1}\left(y-D_{i+1}\right)+G_{i, i+1}\left(y-D_{i+1}\right)\right]$.
Note that $G_{i, i+1}(\cdot)$ is the induced-penalty cost used by Chen and Zheng (1994b) to construct a lower bound on the average costs of all feasible policies for several production/inventory networks. Here, we use it to derive a lower-bound function.

Since $G_{1}(\cdot)$ is convex, $C_{1}(r, Q)$ has the form of the cost function of a single-stage (r, Q) policy, which has been thoroughly studied by Federgruen and Zheng (1992). Below are some of its properties:
(i) $G_{1}\left(r_{1}^{0}+1\right) \leqslant C_{1}^{0} \geqslant G_{1}\left(r_{1}^{0}+Q_{1}^{0}\right)$,
(ii) $r_{1}^{0}<y_{1} \leqslant r_{1}^{0}+Q_{1}^{0}$,
(iii) $r_{1}(Q)<y_{1} \leqslant r_{1}(Q)+Q$, for any positive integer \mathbf{Q},
where y_{1} is the minimum point of $G_{1}(\cdot)$. Using these properties, one can easily verify that $-G_{11}(\cdot)$ is unimodal, and that $G_{12}(\cdot)$ and $G_{2}(\cdot)$ are both convex. Thus, the above properties still hold with subscript 1 replaced by subscript 2. Repeating the above argument, we have that $-G_{i i}(\cdot)$ is unimodal for $i=1, \ldots, N-1$ and that $G_{i}(\cdot)$ is convex for $i=1, \ldots, N$.

For $i=1, \ldots, N-1$, let $H_{i}(y)$ be the y th smallest value of $G_{i i}(\cdot), y=1,2, \ldots$ Let $H_{N}(y)$ be the y th smallest value of $G_{N}(\cdot), y=1,2, \ldots$ For any positive integer Q, define
$C_{i}(Q)=\frac{\lambda \mu K_{i}+\sum_{y=1}^{Q} H_{i}(y)}{Q}, \quad i=1, \ldots, N$.
Lemma 2. (i) For $i=1, \ldots, N-1, E G_{i i}\left(I P_{i}\right) \geqslant \sum_{y=1}^{Q_{i}}$ $H_{i}(y) / Q_{i}$.
(ii) $E G_{N}\left(I P_{N}\right) \geqslant \sum_{y=1}^{Q_{N}} H_{N}(y) / Q_{N}$.

Proof. (ii) is essentially a single-location result. The proof of (i) is harder. The first step is to show $\sum_{m=-\infty}^{+\infty} \operatorname{Pr}\left(I P_{i}=\right.$ $\left.x+m Q_{i}\right)=1 / Q_{i}$ for any integer x. Then show that $\sum_{m=-\infty}^{+\infty}$ $\operatorname{Pr}\left(I P_{i}=x+m Q_{i}\right) G_{i i}\left(x+m Q_{i}\right) \geqslant G_{i i}(z) / Q_{i}$ where $z=$ $x+m^{\prime} Q_{i}$ for some integer m^{\prime} and $r_{i}\left(Q_{i}\right)+1 \leqslant z \leqslant r_{i}\left(Q_{i}\right)$ $+Q_{i}$. We leave the details to the reader.

Take any $i=1, \ldots, N-1$. By definition, $G_{i}(y) \geqslant$ $G_{i, i+1}(y)+G_{i i}(y)$ for any integer y. This, together with the fact that $G_{i, i+1}(\cdot)$ is nonincreasing and $I P_{i} \leqslant I L_{i+1}$, leads to $E G_{i}\left(I P_{i}\right) \geqslant E G_{i, i+1}\left(I L_{i+1}\right)+E G_{i i}\left(I P_{i}\right)$. From Lemma 2, we have

$$
\begin{align*}
E G_{i}\left(I P_{i}\right) \geqslant & E G_{i, i+1}\left(I L_{i+1}\right) \tag{4}\\
& +\sum_{y=1}^{Q_{i}} H_{i}(y) / Q_{i}, \quad i=1, \ldots, N-1
\end{align*}
$$

Note that the first term on the right side is independent of the control policy at stage i, while the second term depends on Q_{i} only. This enables us to decouple the system.

Theorem 2. For any feasible echelon-stock ($r, n Q$) policy, $C(\mathbf{r}, \mathbf{Q}) \geqslant \sum_{i=1}^{N} C_{i}\left(Q_{i}\right)$.

Proof. Apply (4) (with $i=1$) to the right side of (3). Since $I L_{2}=I P_{2}-D_{2}$, we have $E\left[h_{2} I L_{2}+G_{12}\left(I L_{2}\right)\right]=$ $E G_{2}\left(I P_{2}\right)$. Now apply (4) (with $i=2$) again, etc. The final step uses Lemma 2 (ii).

2.3. Alternative Lower-Bound Functions

By allocating the setup costs among the stages, we may be able to obtain a better lower-bound function. To see the intuition, consider a two-stage system where K_{1} is much larger than K_{2} so that $Q_{1}^{0}>Q_{2}^{0}$. In this case, it is conceivable that the optimal base quantities at the two stages must be the same due to the constraint $Q_{1} \leqslant Q_{2}$. Now allocate part of K_{1} to K_{2}. This reduces Q_{1}^{0} and thus increases the induced-penalty cost charged to stage 2 . But for any feasible policy with $Q_{1}=Q_{2}$, the allocation does not change the average total setup cost. The result is a better lower-bound function. Below, we state a condition which must be satisfied by the allocated setup costs in order to have an alternative lower-bound function. A specific allocation will be given in Section 3.3.

Let \tilde{K}_{i} be the new setup cost at stage $i, i=1, \ldots, N$. Suppose
$K_{1}+\cdots+K_{i} \geqslant \tilde{K}_{1}+\cdots+\tilde{K}_{i}, \quad i=1, \ldots, N$.
Since $Q_{1} \leqslant \cdots \leqslant Q_{N}$, we have

$$
\begin{aligned}
\sum_{i=1}^{N} \frac{K_{i}}{Q_{i}} & =\sum_{i=1}^{N-1}\left(\frac{1}{Q_{i}}-\frac{1}{Q_{i+1}}\right) \sum_{j=1}^{i} K_{j}+\frac{1}{Q_{N}} \sum_{j=1}^{N} K_{j} \\
& \geqslant \sum_{i=1}^{N-1}\left(\frac{1}{Q_{i}}-\frac{1}{Q_{i+1}}\right) \sum_{j=1}^{i} \tilde{K}_{j}+\frac{1}{Q_{N}} \sum_{j=1}^{N} \tilde{K}_{j} \\
& =\sum_{i=1}^{N} \frac{\tilde{K}_{i}}{Q_{i}}
\end{aligned}
$$

Therefore,
$C(\mathbf{r}, \mathbf{Q}) \geqslant \sum_{i=1}^{N} \frac{\lambda \mu \tilde{K}_{i}}{Q_{i}}+\sum_{i=2}^{N} h_{i} E\left(I L_{i}\right)+E G_{1}\left(I P_{1}\right)$.
Now treat the right side of the above inequality as a new cost function and follow the approach in Section 2.2. This leads to a new lower-bound function. (Many lower bounds have been derived by setup-cost allocations, see, e.g., Atkins and Iyogun 1987, Atkins 1990, and Rosling 1993.)

3. HEURISTICS

The upper- and lower-bound functions developed in the previous section have a simple form. We suspect that they are reasonably close to the exact cost function. By minimizing the upper- and lower-bound functions, we hope to identify near-optimal control parameters.

3.1. Heuristic I

Consider the upper-bound function established in Section 2.1. Let $r^{i}\left(Q_{i}\right)$ be the optimal r_{i} that minimizes $C^{i}\left(r_{i}, Q_{i}\right)$ or equivalently $\sum_{y=r_{i}+1}^{r_{i}+Q_{i}} G^{i}(y)$ for fixed Q_{i}. Define $C^{i}\left(Q_{i}\right)=$ $C^{i}\left(r^{i}\left(Q_{i}\right), Q_{i}\right)$. The minimization of the upper-bound function can be formulated as:

$$
\begin{aligned}
P_{u}: \min & \sum_{i=1}^{N} C^{i}\left(Q_{i}\right) \\
\text { s.t. } & Q_{i+1}=n_{i} Q_{i} \\
& n_{i} \geqslant 1, \text { integer, } i=1, \ldots, N-1
\end{aligned}
$$

This problem can be solved in two steps.
First consider the following relaxation of P_{u} :

$$
\begin{aligned}
P_{u}^{-}: \min & \sum_{i=1}^{N} C^{i}\left(Q_{i}\right) \\
\text { s.t. } & Q_{i+1} \geqslant Q_{i}, i=1, \ldots, N-1 .
\end{aligned}
$$

This problem can be solved by a simple clustering technique. Let $S=\{1,2, \ldots, N\}$. For any $i, j \in S$ with $i \leqslant j$, the set $\{i, i+1, \ldots, j\}$ is called a cluster. For any cluster c, define
$Q_{c}=\operatorname{argmin}_{Q} \sum_{i \in c} C^{i}(Q)$.
(The minimization is over all positive integers. Thus Q_{c} is a positive integer.) A partition of S is a set of disjoint clusters whose union is S. A partition, $\{c(1), \ldots, c(n)\}$, is optimal if and only if

- $Q_{c(1)} \leqslant Q_{c(2)} \leqslant \cdots \leqslant Q_{c(n)}$, and
- for each cluster $c(k)=\left\{l_{1}, \ldots, l_{2}\right\}$, there does not exist an l with $l_{1} \leqslant l<l_{2}$ so that $Q_{c^{-}(k)}<Q_{c^{+}(k)}$ where $c^{-}(k)$
$=\left\{l_{1}, \ldots, l\right\}$ and $c^{+}(k)=\left\{l+1, \ldots, l_{2}\right\}$.
(An algorithm for finding an optimal partition is in Muckstadt and Roundy 1993.) Let $\{c(1), \ldots, c(n)\}$ be an optimal partition. Let $\bar{Q}_{i}=Q_{c(k)}$ for $i \in c(k), k=1,2, \ldots, n$. Then $\left(\bar{Q}_{1}, \bar{Q}_{2}, \ldots, \bar{Q}_{N}\right)$ is the optimal solution to P_{u}^{-}.

The above solution to P_{u}^{-}can be rounded to power-oftwo integers: $Q_{i}^{u}=2^{m_{i}}, i=1, \ldots, N$, where m_{i} is the
unique integer with $2^{m_{i}} / \sqrt{2} \leqslant \bar{Q}_{i}<2^{m_{i}} \sqrt{2}$. (Since \bar{Q}_{i} is a positive integer, $m_{i} \geqslant 0$ or $Q_{i}^{u} \geqslant 1$.) For example, if $N=3$ and $\left(\bar{Q}_{1}, \bar{Q}_{2}, \bar{Q}_{3}\right)=(1,3,9)$ then $\left(Q_{1}^{u}, Q_{2}^{u}, Q_{3}^{u}\right)=(1,4,8)$. Now use Q_{i}^{u} as the base quantity at stage $i, i=1, \ldots, N$. (Clearly these base quantities satisfy the constraint in P_{u}.) Given these base quantities, determine the optimal reorder points by using the sequential algorithm in Chen (1995). The resulting heuristic policy is called Heuristic I. (An alternative is to use $r^{i}\left(Q_{i}^{u}\right)$ as the reorder point at stage i. This turns out to be near optimal for the given $Q \mathrm{~s}$, see Section 5.)

Remark. Although the above power-of-two quantities may not be the optimal solution to P_{u}, it should be close. The reason is that the function $C^{i}(\cdot)$ is rather flat near its minimum (Zheng 1992). In fact, if we allow the decision variables to be continuous, then $\left(Q_{1}^{u}, \ldots, Q_{N}^{u}\right)$ is within 6 percent of the optimal solution to P_{u}.

3.2. Heuristic II

A different heuristic solution can be obtained by minimizing the lower-bound function established in Theorem 2. Replace $C^{i}(\cdot)$ in P_{u} and P_{u}^{-}with $C_{i}(\cdot)$, and call the resulting problems P_{l} and P_{l}^{-}. The clustering algorithm solves P_{l}^{-}. Let $\left(\underline{Q}_{1}, \ldots, \underline{Q}_{N}\right)$ be the optimal solution. Define
$C_{l}^{-}=\sum_{i=1}^{N} C_{i}\left(\underline{Q_{i}}\right)$.
Clearly, C_{l}^{-}is a lower bound on the average costs of all feasible echelon-stock $(r, n Q)$ policies. It can be used as a benchmark for any heuristic solution.

Now let $Q_{i}^{l}=2^{m_{i}}, i=1, \ldots, N$, where m_{i} is the unique integer with $2^{m_{i}} / \sqrt{2} \leqslant \underline{Q}_{i}<2^{m_{i}} \sqrt{2}$. Use Q_{i}^{l} as the base quantity at stage $i, i=1, \ldots, N$, and determine the corresponding optimal reorder point for each stage. The resulting heuristic policy is Heuristic II. (We can also use $r_{i}^{l}=$ $r_{i}\left(Q_{i}^{l}\right)$ as the reorder point at stage $i, i=1, \ldots, N$; see Section 5 for details.)

Remarks. (1) The lower-bound function has some special properties. Consider $C_{i}(Q), i=1, \ldots, N-1$. First note that $C_{i}\left(Q_{i}^{0}\right)=C_{i}^{0}$, which is the minimum value of $C_{i}(\cdot)$. Since $H_{i}(y)=C_{i}^{0}$ for $y>Q_{i}^{0}$, we have for $Q>Q_{i}$
$C_{i}(Q)=\frac{Q_{i}^{0}}{Q} C_{i}\left(Q_{i}^{0}\right)+\frac{Q-Q_{i}^{0}}{Q} C_{i}^{0}=C_{i}^{0}$.
Therefore $C_{i}(Q)$ is flat for $Q \geqslant Q_{i}^{0}$. Now take any cluster c with $N \notin c$. Let $Q_{c}=\operatorname{argmin}_{Q} \Sigma_{i \in c} C_{i}(Q)$. This problem has an infinite number of solutions. One of them is $Q_{c}=$ $\max \left\{Q_{i}^{0}, i \in c\right\}$, with $\Sigma_{i \in c} C_{i}\left(Q_{c}\right)=\Sigma_{i \in c} C_{i}^{0}$.
(2) Note that $\sum_{i=1}^{N} C_{i}^{0}$ is the induced-penalty bound established in Chen and Zheng (1994b), which is a lower bound on the average costs of all feasible policies. Now suppose $Q_{1}^{0} \leqslant \cdots \leqslant Q_{N}^{0}$. In this case, $\left(Q_{1}^{0}, \ldots, Q_{N}^{0}\right)$ is an optimal solution to P_{l}^{-}and C_{l}^{-}reduces to the inducedpenalty bound. In fact, C_{l}^{-}is equal to the induced-penalty
bound as long as $Q_{N}^{0} \geqslant Q_{i}^{0}, i=1, \ldots, N-1$. Otherwise, C_{l}^{-}is larger.

3.3. Heuristic III

First, we suggest an allocation of setup costs based on the solution to a deterministic problem. Second, we verify that the new setup costs satisfy condition (5) and thus can be used to derive a new lower-bound function. We then propose a new heuristic solution.

Define
$P_{d}: \min \sum_{i=1}^{N}\left(K_{i} / T_{i}+\hbar_{i} T_{i}\right)$

$$
\text { s.t. } T_{i+1} \geqslant T_{i}, i=1, \ldots, N-1
$$

where
$\hbar_{i}=\frac{\lambda \mu p^{2} h_{i}}{2\left(p+H_{i}\right)\left(p+H_{i+1}\right)}, \quad i=1, \ldots, N$,
and $H_{i}=\sum_{j=i}^{N} h_{j}$ for $i=1, \ldots, N$ and $H_{N+1}=0$. (The solution to P_{d} provides a lower bound on the average costs of any feasible policies in the deterministic counterpart of our serial system where demand arrives at a constant rate $\lambda \mu$. See Atkins and Sun 1995 and Chen 1998.) The problem can again be solved by the clustering algorithm. Let $\{c(1), \ldots, c(n)\}$ be the optimal partition and $\left(T_{1}^{*}, \ldots\right.$, T_{N}^{*}) the optimal solution to P_{d}. Consequently,
$T_{i}^{*}=T_{c(k)}=\sqrt{\frac{\sum_{j \in c(k)} K_{j}}{\sum_{j \in c(k)} \hbar_{j}}}, \forall i \in c(k), k=1, \ldots, n$.
The above solution suggests the following new setup costs:
$\tilde{K}_{i}=\hbar_{i}\left(T_{i}^{*}\right)^{2}, \quad i=1, \ldots, N$.
We next verify that the new setup costs satisfy (5). Take any cluster in the optimal partition, say, $c(k)=\left\{l_{1}, \ldots\right.$, $\left.l_{2}\right\}$. Notice that

$$
\begin{equation*}
\sum_{i \in c(k)} \tilde{K}_{i}=\left(T_{c(k)}\right)^{2} \sum_{i \in c(k)} \hbar_{i}=\sum_{i \in c(k)} K_{i} . \tag{7}
\end{equation*}
$$

Take any l with $l_{1} \leqslant l<l_{2}$. Let $c^{-}(k)=\left\{l_{1}, \ldots, l\right\}$ and $c^{+}(k)=\left\{l+1, \ldots, l_{2}\right\}$. Since $T_{c^{-}(k)} \geqslant T_{c^{+}(k)}$ or $\frac{\sum_{i \in c^{-}(k)} K_{i}}{\sum_{i \in c^{-}(k)} \hbar_{i}} \geqslant \frac{\sum_{i \in c^{+}(k)} K_{i}}{\sum_{i \in c^{+}(k)} \hbar_{i}}$,
we have
$\frac{\sum_{i \in c^{-}(k)} K_{i}}{\sum_{i \in c^{-}(k)} \hbar_{i}} \geqslant \frac{\sum_{i \in c(k)} K_{i}}{\sum_{i \in c(k)} \hbar_{i}}=\left(T_{c(k)}\right)^{2}$,
or
$\sum_{i \in c^{-}(k)} K_{i} \geqslant \sum_{i \in c^{-}(k)} \tilde{K}_{i}$.
From (7) and (8) we have (5).
Now allocate setup costs according to (6). These new setup costs lead to a new lower-bound function (Section
2.3). Use the new lower-bound function to re-define the problems P_{l} and P_{l}^{-}in Section 3.2. The solution to the new P_{l}^{-}leads to a new lower bound on the average costs of all feasible echelon-stock $(r, n Q)$ policies, which is denoted by C_{a}^{-}. Let $\left(Q_{1}^{a}, \ldots, Q_{N}^{a}\right)$ be the power-of-two solution to the new P_{l}. Now use Q_{i}^{a} as the base quantity at stage $i, i=$ $1, \ldots, N$, and determine the optimal reorder point for each stage. The resulting heuristic policy is Heuristic III.

4. THE OPTIMAL SOLUTION

Let $\mathbf{Q}^{*}=\left(Q_{1}^{*}, \ldots, Q_{N}^{*}\right)$ be the optimal base quantities. Here we present an algorithm that finds \mathbf{Q}^{*}. We begin by deriving bounds on \mathbf{Q}^{*}.

Let H_{i} be the installation holding cost rate at stage i. Thus, $H_{i}=\sum_{j=i}^{N} h_{j}$. For any integer y, define
$G_{i}^{i}(y)=E\left[H_{i}\left(y-D_{i}\right)+G_{i-1, i}\left(y-D_{i}\right)\right]$,

$$
i=1, \ldots, N
$$

where $G_{0,1}(y)=\left(p+H_{1}\right) y^{-}$and $G_{i-1, i}(\cdot)$ is defined in Section 2.2 for $i=2, \ldots, N$. It is easy to see that $G_{i}^{i}(\cdot)$ is convex, $i=1, \ldots, N$. For any integer r and any positive integer Q, define
$C_{i}^{i}(r, Q)=\frac{\lambda \mu K_{i}+\sum_{y=r+1}^{r+Q} G_{i}^{i}(y)}{Q}$.
For fixed Q, let $C_{i}^{i}(r, Q)$ be minimized at $r=r_{i}^{i}(Q)$. Set $C_{i}^{i}(Q)=C_{i}^{i}\left(r_{i}^{i}(Q), Q\right)$.

Consider an arbitrary unit of inventory. It travels from the outside supplier to stage N, then to stage $N-1$, etc. Take any $i=1, \ldots, N$. We want to determine a lower bound on the total holding cost incurred by this unit before it reaches stage i. Note that holding costs start to accumulate as soon as the unit enters the system (or stage N). While traveling from stage N to stage $N-1$, the unit is counted as the (installation) on-hand inventory at stage N. Since it takes L_{N-1} units of time to go from stage N to stage $N-1$ and the installation holding cost rate at stage N is H_{N}, the total holding cost accumulated from stage N to stage $N-1$ is $H_{N} L_{N-1}$. Repeating this argument, we know that the total holding cost incurred by the unit before reaching stage i is at least $\sum_{j=i+1}^{N} H_{j} L_{j-1}$. (The unit may pause before reaching stage i.) Since inventory flows through the system at an average rate of $\lambda \mu$ units per unit of time, a lower bound on the average total holding cost incurred in the subsystem of stages $i+1, \ldots, N$ is

$$
\begin{equation*}
\sum_{j=i+1}^{N} \lambda \mu H_{j} L_{j-1} \tag{9}
\end{equation*}
$$

Now consider the subsystem of stages $1, \ldots, i$. Imagine that stage $i+1$ is an outside supplier with unlimited stock. The subsystem becomes an i-stage serial system. For this serial system, one can show that a lower bound on the average total cost is
$\sum_{j=1}^{i-1} C_{j}\left(Q_{j}\right)+C_{i}^{i}\left(Q_{i}\right)$.

Table I
Heuristic vs. Optimal Solutions: Simple Poisson Demand

(The proof is essentially the same as in Section 2.2. The only difference is that the echelon holding cost rate at stage i is now H_{i}. We omit the details. The same idea is also used in Chen 1995.) Combining (9) and (10), we have the following theorem.

Theorem 3. For $i=1, \ldots, N, C(\mathbf{r}, \mathbf{Q}) \geqslant \sum_{j=i+1}^{N} \lambda \mu H_{j} L_{j-1}$ $+\sum_{j=1}^{i-1} C_{j}\left(Q_{j}\right)+C_{i}^{i}\left(Q_{i}\right)$.

Let C_{f} be the average cost of a feasible echelon-stock (r, $n Q)$ policy. This can be the average cost of one of the heuristic policies identified in Section 4. For $i=1, \ldots, N$, define

$$
\begin{aligned}
& \underline{Q_{i}}=\min \left\{q \geqslant 1, \text { integer } \mid C_{i}^{i}(q)\right. \\
& \\
& \left.\leqslant C_{f}-\sum_{j=i+1}^{N} \lambda \mu H_{j} L_{j-1}-\sum_{j=1}^{i-1} C_{j}^{0}\right\},
\end{aligned}
$$

and
$\bar{Q}_{i}=\max \left\{q \geqslant 1\right.$, integer $\mid C_{i}^{i}(q)$

$$
\left.\leqslant C_{f}-\sum_{j=i+1}^{N} \lambda \mu H_{j} L_{j-1}-\sum_{j=1}^{i-1} C_{j}^{0}\right\} .
$$

Corollary 2. $\underline{Q}_{i} \leqslant Q_{i}^{*} \leqslant \bar{Q}_{i}, i=1, \ldots, N$.
Proof. From Theorem 3, we have
$C_{f} \geqslant \sum_{j=i+1}^{N} H_{j} \lambda \mu L_{j-1}+\sum_{j=1}^{i-1} C_{j}\left(Q_{j}^{*}\right)+C_{i}^{i}\left(Q_{i}^{*}\right)$.
The corollary follows since the minimum value of $C_{j}(\cdot)$ is C_{j}^{0}.

Corollary 2 defines a bounded region that contains \mathbf{Q}^{*}. Clearly, the bounds become tighter as C_{f} decreases. To determine the optimal base quantities, it suffices to search
the entire region. Of course, we only need to consider those base quantities that satisfy the integer-ratio constraint.

5. NUMERICAL EXAMPLES

The main objective here is to test the performance of the heuristic solutions developed in Section 3. This is achieved by comparing the heuristic solutions with the optimal solutions if they are available or the lower bounds otherwise. Another objective is to compare our solution method with a widely recommended approach which determines the order quantities by solving a deterministic model.

We assume that the demand-size distribution is geometric, i.e.,

$$
\operatorname{Pr}(D=x)=(1-\alpha)^{x-1} \alpha, \quad x=1,2, \ldots
$$

where D is the demand size of a customer and $0<\alpha \leqslant 1$. (This demand process is also called a stuttering Poisson process. When $\alpha=1$, it reduces to simple Poisson.) The coefficient of variation of the total demand in one unit of time is $\sqrt{(2-\alpha) / \lambda}$. The examples used have a coefficient of variation ranging from below to above one.

The numerical examples are divided into six groups. The first two groups are used to illustrate the performance of the heuristics and the lower bounds, using the optimal solution as a benchmark. Groups 3 and 4 are used to test the performance of the heuristics and the lower bounds as the number of stages increases. The purpose of the final two groups is to compare our approach with a traditional one for finding the order quantities.

Group 1. The examples in this group have the following in common: $N=3, \alpha=1, K_{2}=10, h_{i}=1$ and $L_{i}=1$ for $i=1,2,3$. We varied the remaining parameters, λ, K_{1}, K_{3} and p, to generate 16 examples. For these examples, Table I reports the best heuristic among Heuristics I, II and III; the optimal echelon-stock ($r, n Q$) policy; and the two

Table II
Heuristic vs. Optimal Solutions: Compound Poisson Demand

No.	λ	Heuristic Solution								Optimal Solution								Lower Bound I	Lower Bound II	Heuristic Dev	Bound Dev
1	1	10	1010	,	16	13	16	16	16	77.3892	8	19	12	19	15	19	77.1160	7.033	76.1636	0.35	1.25
2	1	10	1020	13	16	18	16	23	16	93.0702	12	18	17	18	22	18	92.8886	22.0098	92.065	0.20	0.89\%
3		10	10010		16	13	16	12	32	93.7445	8	20	11	20	10	40	92.7435	91.7937	91.8117	1.08\%	1.01\%
4	1	10	10020	13	16	18	16	19	32	109.4850	12	19	17	19	17	38	108.6316	107.8263	107.8375	0.79\%	0.74\%
5	1	100	1010	5	32	7	32	10	32	95.0581	5	31	8	31	10	31	95.0137	91.0108	93.7259	0.05	7\%
6		100	1020	9	32	13	32	17	32	111.5689		30	14	30	18	30	111.4384	107.9957	110.3237	0.12\%	1.01\%
7		100	10010	5	32	7	32	10	32	109.1206	3	38	6	38	8	38	108.0819	103.8674	106.7689	0.96\%	23\%
8	1	100	10020	9	32	13	32	17	32	125.6314	8	36	12	36	16	36	124.9496	120.9207	123.7624	0.55\%	0.96\%
9	10	10	1010	59	64	107	64	153	64	335.1443	61	56	110	56	156	56	334.3862	330.6367	331.0603	0.23\%	1.00\%
10	10	10	1020	68	64	121	64	172	64	373.5888	70	53	125	53	176	53	371.9675	368.9920	369.1689	0.44\%	0.76\%
11	10	10	10010	59	64	107	64	139	128	386.9145	60	60	109	60	141	120	386.5565	383.0998	383.1586	0.09\%	0.89\%
12	10	10	10020	68	64	121	64	159	128	426.1509	69	58	123	58	162	116	425.2815	422.4206	422.4440	0.20\%	0.67\%
13	10	100	1010	47	128	88	128	129	128	403.5995	53	92	98	92	142	92	394.3214	380.8020	390.3738	2.35\%	1.01\%
14	10	100	1020	68	64	121	64	172	64	443.9013	63	88	114	88	163	88	435.3080	423.9342	432.1055	1.97\%	0.74\%
15	10	100	10010	47	128	88	128	129	128	438.7558	48	116	91	116	133	116	437.5073	423.6013	433.8099	0.29\%	0.85\%
16	10	100	10020	57	128	105	128	151	128	483.7613	59	109	109	109	157	109	480.8285	467.4089	477.5360	0.61\%	0.69\%

lower bounds (Lower Bound I is C_{l}^{-}and Lower Bound II is C_{a}^{-}). The last two columns indicate the relative differences between of the heuristic and the optimal solution and between the optimal solution and the better lower bound.

Group 2. Same as Group 1 except that $\alpha=0.2$. The results are in Table II.

Group 3. The examples in this group have: $\lambda=1, \alpha=$ $1, p=10$, and $K_{i}=10, h_{i}=1$, and $L_{i}=1$ for $i=1, \ldots$, N, where N ranges from 2 to 12 . Figure 2 summarizes the results. We only include the best heuristic and lower bound.

Group 4. Same as Group 3 except that $\alpha=0.2$. The results are in Figure 3.

Group 5. The examples in this group have the following in common: $N=3, \alpha=1, p=30, h_{i}=1$ and $L_{i}=1$ for $i=1,2,3$. We varied the remaining parameters, λ, K_{1}, K_{2} and K_{3}, to generate 24 examples. For these examples, we computed the best heuristic, the EOQ solution, and the two lower bounds. To compute the EOQ solution, we first determined the base quantities by solving a deterministic

Figure 2. Simple Poisson Examples.
serial model and then identified the corresponding optimal reorder points. The deterministic model assumes that demand arrives at constant rate λ and the system uses nested, stationary policies (Chen 1998). The results are in Table III, which also provides the relative deviations of the heuristic and the EOQ solutions from the better lower bound.

Group 6. Same as Group 5 except that $\alpha=0.2$. The results are in Table IV. (Here the deterministic model assumes that demand arrives at constant rate $\lambda \mu$.)

Observations

(1) Our numerical experience suggests that there is no clear dominance among the three heuristics. The heuristic reorder points, i.e., $r^{i}\left(Q_{i}^{u}\right)$ (resp., $r_{i}\left(Q_{i}^{l}\right)$ and $\left.r_{i}\left(Q_{i}^{a}\right)\right)$ for Heuristic I (resp., II and III) are near optimal. Using the optimal reorder points, for the given $Q \mathrm{~s}$, only leads to improvements which are typically less than 1 percent. (The heuristic reorder points are not reported here.)
(2) The heuristics are very easy to compute. For the examples in Table I (2), the average time on a 486 PC is

Figure 3. Compound Poisson Examples.

Table III
Heuristic vs. EOQ Solutions: Simple Poisson

No. λ	Heuristic Solution									EOQ Solution								Lower Bound I	Lower Bound II	Heuristic Dev	$\begin{aligned} & \text { EOQ } \\ & \text { Dev } \end{aligned}$
10.1	10	10	10	0	- 2	20	2	0	2	6.1376	0) 2	0) 2	0) 2	76	43	6.1173	0.33\%	\%
20.1	10	10	1000				2	-1	16	18.0669			0) 2	-1	16	18.0669	17.9738	17.9745	0.51	0.51\%
30.1	10	1000	10	0		-1	8	-1	8	22.4009	0) 2	-1		-1	8	22.4009	21.5823	21.6235	3.60\%	3.60\%
40.1	10	1000	1000	0	2	-1	16	-1	16	29.7292			-1	16		16	29.7292	29.5680	29.5671	0.55	0.55\%
50.1	1000	10	10	-1		-1	8	-1	8	24.0731	-1		-1		-1	8	24.0731	21.4457	23.9872	0.36\%	0.36\%
60.1	1000	10	1000	-1		-1	8	-1	16	34.0403	-1		-1		-1	16	34.0403	29.4624	33.1991	2.53\%	.53\%
70.1	1000	1000	10	-1	16	-1	16	-2	16	34.8553	-1	16	-1	16	-2	16	34.8553	33.5251	33.5939	3.75%	.75\%
80.1	1000	1000	1000	-1	16	-1	16	-2	16	41.0428	-1	16	-1	16		16	41.0428	41.0001	41.0020	0.10	0.10\%
9	10	10	10	1			4	4	4	21.8985	1	4	3	4		4	21.8985	20.9064	20.8986	4.75	.75\%
10	10	10	1000		4		8	0	64	62.2741		4	3	4	1	32	62.8649	59.1110	59.1042	5.35\%	6.35\%
	10	1000	10		4		32	0	32	71.6989		4	1	32	0	0 32	71.6989	70.7729	71.1667	0.75\%	0.75\%
12	10	1000	1000	1		4-1	64	-2	64	100.7495		14		32		032	102.6364	95.9278	95.9390	5.01\%	.98\%
13	1000	10	10	0	32	2	32	0	32	80.0156	0	32	0	32	0	32	80.0156	69.7383	79.1786	1.06\%	. 06%
14	1000	10	1000	0	32		32	-1		110.5859		- 32	0) 32	0	032	110.9531	94.8869	107.8111	2.57\%	.91\%
15	1000	1000	10	0	32	2	32	0		110.9531) 32	0	32		032	110.9531	108.1585	108.8462	1.94\%	.94\%
161	1000	1000	1000	-1	64	-2	64	-3		137.8828	-1	64	-2	64			137.8828	131.8266	131.8723	4.56\%	. 56%
1710	10	10	10	12	16	622	16	32	16	86.0823	12	16	22	16	32	16	86.0823	85.5558	85.5939	0.57\%	0.57\%
1810	10	10	1000	12	16	622	16	25	128	208.5540	12	16	22	16	25	128	208.5540	206.8252	206.8380	0.83\%	0.83\%
1910	10	1000	10	12	16	16	128	21		249.5842	12	16	16	128	21	128	249.5842	243.9881	245.4230	1.70\%	. 70%
2010	10	1000	1000	12	16	16	128	21	128	326.9280	12	16	16	128	21	128	326.9280	323.6436	323.6884	1.00\%	1.00\%
2110	1000	10	10	8	64	416	64	25		283.5951	8	864	16	64	25		283.5951	240.3115	271.1053	4.61\%	4.61\%
2210	1000	10	1000	6	128	12	128	18		365.3680		6128	12	128			365.3680	319.9833	361.6762	1.02\%	1.02\%
2310	1000	1000	10		128	12	128	18	128	365.3680		6128	12	128	18	128	365.3680	362.4384	364.9963	0.10\%	0.10\%
2410	1000	1000	1000		128	12	128	18	128	442.7117		6128	12	128	18	128	442.7117	437.5647	437.705	1.14\%	1.14\%

about seven seconds (one minute) per example for computing the three heuristics. Moreover, the computational time grows only linearly as N increases. For the examples in Figure 2 (3), the time increases about 10 (25) seconds as
N increases by one. In contrast, the computational effort for the optimal solution is much greater. For the examples in Table I (2), the average time is about 10 minutes (two hours). (Since no special effort has been devoted to

Table IV
Heuristic vs. EOQ Solutions: Compound Poisson

No. λ			Heur K_{3}	ristic	Q_{1}	(${ }_{1} \mathrm{R}_{2}$	${ }_{2} \mathrm{C}$						$\mathrm{Q}_{1} \mathrm{R}_{2}$				Cos	Lower Bound I	Lower Bound II	Heuristic Dev	$\begin{gathered} \text { EOQ } \\ \text { Dev } \end{gathered}$
0.1	10	10	10	2			2			34.1279						44	34.9230	33.9818	33.		2.75\%
0.1	10		00				28	-1	132	56.5721			44	4	-1	132	57.2681	6.3065	5.	.	. 70%
0.1		1000	10	2		8-1	132	-1	132	62.5413			41	16		016	68.0167	61.1993	61.36	. 92	0.85\%
40.1		000	00			8-1	132	-1		78.0100			4-1	132	-1	132	78.3513	77.6430	77.	46	0.90\%
50.1	1000	10		-1	32	-1	132	-2	23	67.8887	-		6-1	116	-1	116	68.3526	60.4385	64.16	.81	53\%
60.1	1000		1000	-1	32	-1	132	-2	23	83.3575	-1	32	$32-1$	132	-2	232	83.3575	76.9267	82.445	11	1.11\%
70.	1000	1000		-1	2	-1	132	-2		83.3575			$32-1$	132	-2	232	83.3575	2.4680	2.9	0.44	.44\%
80.	1000	1000	1000		2	-1	132	-2		98.8262	-1		$32-1$	132	-2	232	98.8262	98.1219	98.1	0.69\%	\%
9	10	10	10	15	6	621	116	27	76	102.4332	18		825	-	30	08	109.1891	101.4970	101.52	89	7.55\%
	10		1000	15	6	621	1		128	180.8281	18		825		12	2128	185.4027	178.4009	178.	. 36	92\%
11		1000	10	15	16	613	364	15	64	202.7745	15	16	1613	364	15	564	202.7745	197.0042	198.36	22	2\%
12		000	1000	15	6		7128		7128	253.4318	15	16	167	7128		7128	253.4318	250.4091	250.458	19	1.19\%
13	1000	10		6	4	410	1064			211.7500			6410	06	13	364	211.7500	194.2092	210.	. 57	.57\%
14	1000		1000	6	64	410	1064			277.3369		6	6410	64		9128	277.3369	247.6107	270.10	. 68	2.68\%
15	1000	1000	10		64	410	106			289.0937		6	6410	- 64	13	364	289.0937	269.8533	271.90	32	32\%
16	1000	1000	1000		128		3128		4128	323.9484		128		3128		4128	323.9484	320.3702	320.5030	1.07\%	.07\%
1710	10	10	10			4129	9 64	182		395.4860	81		32140		194	43	401.6991	390.7442	390.842	19	2.78\%
1810	10		1000	73	64	4129	9 64	156	256	656.9875	81		32140		157	7256	661.4803	641.7312	641.75	37	3.07\%
1910		1000		73		4105	05256		256	714.0915	81		32105	5256	146	6256	715.6901	706.5210	711.118	42	0.64\%
2010		1000	1000			4105	05256			907.4509	81		32105	256	146	6256	909.0495	878.1704	878.3418	,	3.50\%
2110	1000	10	10	51	256	69	96256	139	256	767.8306		256	5696	6256	139	256	767.8306	697.9401	755.9829	.57\%	1.57\%
2210	1000	10	1000		256		96256			961.1900		256		256	139	9256	961.1900	869.7933	948.5653	. 33	1.33\%
2310	1000	1000	10			696	96256			961.1900		256	5696	256	139	9256	961.1900	947.4553	954.5282	0.70	0.70\%
2410	1000	1000	1000		256		96256	139	256	1154.5494		256	5696	256	139	9256	154.5494	110.1104	110.5356	3.96\%	3.96\%

improving the efficiency of the computer programs, these times should only be interpreted in relative terms.)
(3) The heuristic solution is close to optimal. It is remarkable that as the number of stages increases, the performance of the heuristic solution does not deteriorate.
(4) C_{a}^{-}is often larger (thus better) than C_{l}^{-}. When C_{l}^{-} is larger, the difference is very small. Therefore the setupcost allocation suggested in Section 3.3 indeed improves the lower bound. Sometimes the improvement is substantial. This happens when the setup cost at a downstream stage is much larger than the setup cost at an upstream stage, as expected.
(5) The heuristic solution dominates the EOQ solution. In one example (No. 3 in Table IV), the average cost of the EOQ solution is almost 10 percent higher than that of the heuristic solution. For this example, the coefficient of variation is 4.24 (highest among all the examples). This seems to suggest that the EOQ solution may perform badly in systems with high demand volatility.
(6) The heuristic base quantities are always larger than or equal to the EOQs. This observation echoes a recent finding in the single-stage (r, Q) model that the optimal Q is larger than the EOQ (Zheng 1992). It suggests that the EOQs should be adjusted upward for stochastic systems, especially those with high demand volatility.

6. CONCLUSION

This paper provides an efficient algorithm for determining near-optimal control parameters of echelon-stock ($r, n Q$) policies in multi-stage, serial, production/distribution systems. The algorithm is based on simple lower and upper bounds on the exact cost function. The bounds are separable functions of the control parameters, whose minimization leads to heuristic control parameters. We also provide an algorithm that is more time consuming but finds the optimal solution. Numerical experience suggests that the order quantities based on the solution to a deterministic problem can be seriously suboptimal, especially when the demand is volatile. Although the entire paper focuses on the continuous-time model with compound Poisson demand, all the results can be easily extended to the discrete-time case with independent, identically distributed demands.

ACKNOWLEDGMENT

The authors thank Paul Zipkin and the anonymous reviewers for their helpful suggestions. This research was supported in part by the Faculty Research Fund of the Columbia Business School.

REFERENCES

Atkins, D. 1990. A Survey of Lower Bounding Methodologies for Production/Inventory Models. Annals O. R. 26, 9-28.
Atkins, D. and P. Iyogun. 1987. A Lower Bound on a Class of Coordinated Inventory/Production Problems. O. R. Lett. 6, 63-67.

Atkins, D. and D. Sun. 1995. 98\%-Effective Lot-Sizing for Series Inventory System with Backlogging. Opns. Res. 43, 335-345.
Axsater, S. 1993a. Exact and Approximate Evaluation of Batch Ordering Policies for Two-Level Inventory Systems. Opns. Res. 41, 777-785.
Axsater, S. 1993b. Simple Evaluation of Echelon Stock (R, $Q)$ Policies for Two-Level Inventory Systems. Working Paper, Lulea University of Technology, Sweden.
Axsater, S. and K. Rosling. 1993. Installation vs. Echelon Stock Policies for Multi-Level Inventory Control. Mgmt. Sci. 39, 1274-1280.
Badinelli, R. 1992. A Model for Continuous-Review Pull Policies in Serial Inventory Systems. Opns. Res. 40, 142-156.
Chen, F. 1995. Echelon Reorder Points, Installation Reorder Points, and the Value of Centralized Demand Information. To appear in Mgmt. Sci.
Chen, F. 1998. Stationary Policies in Multi-Echelon Inventory Systems with Deterministic Demand and Backlogging. Opns. Res. 46, S26-S34.
Chen, F. and Y.-S. Zheng. 1994a. Evaluating Echelon Stock $(R, n Q)$ Policies in Serial Production/Inventory Systems with Stochastic Demand. Mgmt. Sci. 40, 1262-1275.
Chen, F. and Y.-S. Zheng. 1994b. Lower Bounds for MultiEchelon Stochastic Inventory Systems. Mgmt. Sci. 40, 1426-1443.
Chen, F. and Y.-S. Zheng. 1997. One-Warehouse MultiRetailer Systems with Centralized Stock Information. Oper. Res. 45, 275-287.
Clark, A. and H. Scarf. 1960. Optimal Policies for a MultiEchelon Inventory Problem. Mgmt. Sci. 6, 475-490.
Clark, A. and H. Scarf. 1962. Approximate Solutions to a Simple Multi-Echelon Inventory Problem. In Studies in Applied Probability and Management Science. Arrow et al. (eds.), Stanford University Press, Stanford, CA.
De Bodt, M. and S. Graves. 1985. Continuous Review Policies for a Multi-Echelon Inventory Problem with Stochastic Demand. Mgmt. Sci. 31, 1286-1295.
Deuermeyer, B. and L. Schwarz. 1981. A Model for the Analysis of System Service Level in Warehouse/Retailer Distribution Systems: The Identical Retailer Case. In Studies in the Management Sciences: The Multi-Level Production/Inventory Control Systems, Schwarz (Ed), Volume 16, North-Holland, Amsterdam, 163-193.
Federgruen, A. and Y.-S. Zheng. 1992. An Efficient Algorithm for Computing an Optimal (r, Q) Policy in Continuous Review Stochastic Inventory Systems. Opns. Res. 40, 808-813.
Graves, S. and L. Schwarz. 1977. Single Cycle Continuous Review Policies for Arborescent Production/Inventory Systems. Mgmt. Sci. 23, 529-540.
Lee, H. and K. Moinzadeh. 1987a. Two-Parameter Approximations for Multi-Echelon Repairable Inventory Models with Batch Ordering Policy. IIE Trans. 19, 140-149.
Lee, H. and K. Moinzadeh. 1987b. Operating Characteristics of a Two-Echelon Inventory System for Repairable and Consumable Items Under Batch Ordering and Shipment Policy. Naval Res. Logist. 34, 365-380.
Moinzadeh, K. and H. Lee. 1986. Batch Size and Stocking Levels in Multi-Echelon Repairable Systems. Mgmt. Sci. 32, 1567-1581.

602 / Chen and Zheng
Maxwell, W. and J. Muckstadt. 1985. Establishing Consistent and Realistic Reorder Intervals in Production-Distribution Systems. Opns. Res. 33, 1316-1341.
Muckstadt, J. and R. Roundy. 1993. Analysis of Multistage Production Systems. In Handbooks in OR and MS, Volume 4. Graves et al. (eds.), Elsevier Science Publishers, North-Holland.
Rosling, K. 1993. 94\%-Effective Lotsizing: User-Oriented Algorithms and Proofs. Working Paper, Linkoping Institute of Technology, Sweden.

Roundy, R. 1986. 98\% Effective Lot-Sizing Rule for a MultiProduct, Multi-Facility Production-Inventory Systems. Math. O. R. 11, 699-727.
Svoronos, A. and P. Zipkin. 1988. Estimating the Performance of Multi-Level Inventory Systems. Opns. Res. 36, 57-72.
Zheng, Y.-S. 1992. On Properties of Stochastic Inventory Systems. Mgmt. Sci. 38, 87-103.
Zheng, Y.-S. and F. Chen. 1992. Inventory Policies with Quantized Ordering. Naval Res. Logist. 39, 285-305.
Zipkin, P. 1995. Foundation of Inventory Management, Columbia Business School.

