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We study echelon-stock (R, nQ) policies in a multistage, serial inventory system with compound Poisson demand. We provide a
simple method for determining near-optimal control parameters. This is achieved in two steps. First, we establish lower and upper
bounds on the cost function by over- and under-charging a penalty cost to each upstream stage for holding inadequate stock. Second,
we minimize the bounds, which are simple, separable functions of the control parameters, to obtain heuristic solutions. We also
provide an algorithm that guarantees an optimal solution at the expense of additional computational effort. A numerical study
suggests that the heuristic solutions are easy to compute (even for systems with many stages) and are close to optimal. It also suggests
that a traditional approach for determining the order quantities can be seriously suboptimal. All the results can be easily extended to
the discrete-time case with independent, identically distributed demands.

Basic models of multistage, production/distribution sys-
tems are central to supply chain management, a field

that has lately attracted much attention from academics
and practitioners alike. This paper considers one such
model where the material is processed sequentially before
being used to satisfy uncertain customer demand. The
model is depicted in Figure 1 where the stages represent
the different stocking points in the production-distribution
process. Material flow from one stage to the next requires
a leadtime and incurs a setup cost (in addition to a vari-
able cost proportional to the flow quantity). Due to the
value added, inventory becomes more expensive to carry as
it moves closer to the customer. Demand unsatisfied from
on-hand inventory is backlogged, incurring penalty costs.
The entire supply chain is controlled by a system manager
whose goal is to satisfy the customer demand and to min-
imize the long-run average system-wide cost. (When the
different stages are controlled by independent managers,
the jointly optimal solution can serve as a benchmark.)

The above model was originally proposed by Clark and
Scarf (1962) as a generalization of the now classic model
(Clark and Scarf 1960) which does not allow setup costs at
any stages except stage N. They introduced the important
concept of echelon stock. A stage’s echelon stock is the
inventory position of the subsystem consisting of the stage
itself and all its downstream stages.

Our model can also be viewed as a generalization of the
deterministic models studied by Roundy (1986), Maxwell
and Muckstadt (1985), and Atkins and Sun (1995). They
show that the so-called power-of-two policies are close to
optimal, under which the reorder intervals (order quanti-
ties) at all stages are restricted to be power-of-two multi-

ples of a base time (quantity) unit. This power-of-two
structure is designed to facilitate coordination among the
different stages.

For our serial model with random demand and setup
costs, Clark and Scarf (1962) have pointed out correctly
that the optimal policy does not have a simple structure.
Thus, an optimal policy, even if it exists and is identified,
would not be easy to implement. In other words, the “op-
timal” policy is no longer optimal or even attractive once
the managerial effort of implementation is taken into ac-
count. Therefore, we turn to simple, cost-effective heuristic
policies. Specifically, we consider the echelon-stock (r, nQ)
policy, which is a natural generalization of the power-of-
two policy. An (r, nQ) policy operates as follows: whenever
the inventory position is at or below the reorder point r,
order nQ units where n is the minimum integer required to
increase the inventory position to above r. We call Q the
base quantity. Combining the (r, nQ) policy with the
echelon-stock concept leads to the echelon-stock (r, nQ)
policy whereby every stage uses an (r, nQ) policy based on
its echelon stock. (A closely related policy is the
installation-stock (r, nQ) policy whereby each stage follows
an (r, nQ) policy based on its local inventory position. For
serial systems echelon-stock policies are superior to
installation-stock policies, see Axsater and Rosling 1993.)
To achieve quantity coordination, we require the base
quantity of stage i 1 1 be a positive integer multiple of the
base quantity of stage i. Based on the insight from Roundy
(1986) and Zheng (1992), we further restrict the base
quantities to be of the power-of-two type.

Echelon-stock (r, nQ) policies are easy to implement.
Although the initial measurement of a stage’s echelon
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stock requires the inventory information at every down-
stream stage, its update requires the demand information
only at stage 1. Since modern information technologies
(e.g., EDI) are capable of effortlessly transmitting the
point-of-sale data to the upstream stages of the supply
chain, the information infrastructure for implementing
echelon-stock policies is in place.

We aim to determine the optimal reorder points and
base quantities that minimize the average system-wide
cost. Recent developments show that the exact cost of an
echelon stock (r, nQ) policy can be computed recursively
(Chen and Zheng 1994a) and for fixed base quantities, the
optimal reorder points can be determined sequentially
(Chen 1995). (In a nutshell, determining the optimal reor-
der points for fixed base quantities is, after a proper trans-
formation, essentially the same as finding the optimal
base-stock levels in the Clark-Scarf model without setup
costs.) But it is still unclear how the optimal base quanti-
ties can be determined. This paper provides a simple
method for determining near-optimal base quantities. We
first bound the exact cost function from both above and
below by simple functions of the control parameters.
These bounds are obtained by over- and under-charging a
penalty cost to each upstream stage for holding less-than-
adequate stock. Each bound is the sum of N single-stage
cost functions. Substituting these bounds for the exact cost
function, we effectively decouple the N-stage system into N
single-stage systems. Solving these single-stage problems
leads to heuristic base quantities. We also provide an algo-
rithm that finds the optimal base quantities at the expense
of additional computational effort. A numerical study sug-
gests that the heuristic solutions can be computed effi-
ciently (even for systems with many stages) and more
importantly, are close to optimal.

For stochastic inventory systems with fixed ordering
costs, it has been widely suggested that the order quanti-
ties can be obtained by solving the deterministic counter-
part of the problem (see, e.g., Graves and Schwarz 1977).
Let us call the order quantities obtained in this way the
EOQs. In a numerical study, we observed that our solu-
tions dominate the EOQ solution with substantial savings
in examples with high demand volatility. We also observed
that the EOQs tend to be too small, and thus should be
adjusted upward for stochastic systems. This observation
echoes a recent finding from the single-stage (r, Q) model
(Zheng 1992).

There is an extensive literature on multiechelon systems
with uncertain demand and scale economies, see, e.g.,
Deuermeyer and Schwarz (1981), De Bodt and Graves
(1985), Moinzadeh and Lee (1986), Lee and Moinzadeh
(1987a, b), Svoronos and Zipkin (1988), Badinelli (1992),
Axsater (1993a, b), and Chen and Zheng (1994a, b, 1997).

Most of this literature focuses on evaluating the cost of a
heuristic policy with predetermined control parameters,
and not on determining the optimal values of the control
parameters.

The rest of the paper is organized as follows. Section 1
presents preliminaries. Section 2 bounds the exact cost
function. Section 3 describes an algorithm for computing
heuristic base quantities. Section 4 outlines a search proce-
dure for determining the optimal base quantities. Section 5
reports a numerical study. Section 6 concludes the paper.

1. PRELIMINARIES

Consider an N-stage, serial system where stage 1 orders
from stage 2, 2 from 3, etc., and stage N orders from an
outside supplier with unlimited stock. There are econo-
mies of scale at each stage for placing orders. The trans-
portation leadtime from stage i 1 1 to stage i is a constant
Li for i 5 1, . . . , N, with stage N 1 1 being the outside
supplier. The demand process is compound Poisson. That
is, customers arrive at stage 1 according to a Poisson pro-
cess with an average rate l; the demand sizes of different
customers are independent and identically distributed, and
are independent of the arrival process. We assume that the
demand sizes only take integer values. Let m be the aver-
age demand size per customer. Excess demand is back-
logged with backorder cost rate p. Let hi . 0 be the
echelon holding cost rate at stage i for i 5 1, . . . , N. The
planning horizon is infinite, and the objective is to mini-
mize the long-run average total cost. (A transportation
cost proportional to the quantity shipped can be easily
included. We omit it because its long-run average value is
constant.)

For any time t, define

B(t) 5 backorder level at stage 1,
Ii(t) 5 echelon inventory at stage i,

5 on-hand inventory at stage i plus inventories at,
or in transit to, stages 1, . . . , i 2 1,

ILi(t) 5 echelon inventory level at stage i 5 Ii(t) 2
B(t),

IPi(t) 5 echelon inventory position at stage i
5 ILi(t) plus inventories in transit to stage i, and

ESi(t) 5 echelon stock at stage i
5 ILi(t) plus stage i’s outstanding orders, in

transit or backlogged at stage i 1 1.

Note that the above variables take integer values only. The
difference between IPi(t) and ESi(t) is that the former is
constrained by ILi11(t), a variable controlled by the up-
stream stages, while the latter is controlled by stage i only.

The inventory flow through the system is controlled by
an echelon-stock (r, nQ) policy. That is, stage i orders nQi

units from stage i 1 1 whenever stage i’s echelon stock
falls to or below ri, where n is the minimum integer so that
stage i’s echelon stock after ordering is above ri. We call Qi

(a positive integer) the base quantity, and ri (an integer)
the reorder point, at stage i. The base quantities at the
different stages are coordinated in the sense that Qi11 5

Figure 1. The serial system.
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niQi, where ni is a positive integer, for i 5 1, . . . , N 2 1.
Moreover, we assume that the initial on-hand inventory at
stage i is an integer multiple of Qi21, i 5 2, . . . , N. (This
initial state can always be reached by sending the residual
units at each stage, if any, to its immediate downstream
stage.) As a result, the on-hand inventory at stage i is
always an integer multiple of Qi21, i 5 2, . . . , N.

At stage i we assess a setup cost Ki for each Qi ordered.
Thus, the long-run average setup costs in the system are

O
i51

N lmK i

Q i
. (1)

See Zipkin (1995) for a discussion on this convention of
charging setup costs. (There are at least two other ways to
assess setup costs: one charges a setup cost for each order
placed, and the other charges a setup cost for each ship-
ment received. Both lead to more complex expressions for
the average setup costs. See Zheng and Chen 1992 and
Chen and Zheng 1994a.)

Note that the rate at which the system-wide holding and
backorder costs accrue at time t is

O
i51

N

h i I i ~t! 1 pB~t!

5 O
i51

N

h i IL i ~t! 1 ~ p 1 H 1 ! B~t! ,

where H1 is the installation holding cost rate at stage 1,
i.e., H1 5 ¥i51

N hi. Let IPi and ILi represent IPi(t) and
ILi(t) in steady state, i 5 1, . . . , N. The following equation
is well known:

IL i ~t 1 L i ! 5 IP i ~t! 2 D~t, t 1 L i ! ,

where D(t, t 1 Li) is the total demand in the interval (t,
t 1 Li). Since the demand process is compound Poisson,
IPi(t) is independent of D(t, t 1 Li). Thus,

IL i 5 IP i 2 D i , (2)

where Di is identically distributed as D(t, t 1 Li) and is
independent of IPi. For any integer y, define

G 1 ~ y! 5 E@h 1 ~ y 2 D 1 ! 1 ~ p 1 H 1 !~ y 2 D 1 ! 2#,

where (x)2 5 max{0, 2x}. Let B represent B(t) in steady
state. Since B 5 (IL1)2 and IL1 5 IP1 2 D1 (see (2)), we
have E[h1IL1 1 ( p 1 H1) B] 5 EG1(IP1). Therefore, the
average total holding-backorder cost is

O
i51

N

h i E~IL i ! 1 ~ p 1 H 1 ! E~B!

5 O
i52

N

h i E~IL i ! 1 EG 1 ~IP 1 ! .

Adding the average setup costs in (1) to the above expres-
sion, we have the long-run average total cost of the
echelon-stock (r, nQ) policy:

C~r, Q! 5
def O

i51

N lmK i

Q i
1 O

i52

N

h i E~IL i ! 1 EG 1 ~IP 1 !, (3)

where r 5 (r1, . . . , rN) and Q 5 (Q1, . . . , QN). An opti-
mal echelon-stock (r, nQ) policy minimizes the above cost
function.

2. BOUNDS

Here we derive upper and lower bounds on the cost func-
tion. These bounds have a simple form and will be used
later to determine the control parameters.

2.1. Upper-Bound Function

We first define recursively a sequence of functions Gi[ for
i 5 1, . . . , N. Let G1( y) 5 G1( y) for any integer y. Let Yi

be the minimum point of Gi[. For i 5 1, . . . , N 2 1 and
any integer y, define

G i,i11~ y! 5 HG i~ y! 2 G i~Y i !, y < Y i ,

0 otherwise,

and

G i11~ y! 5 E@h i11 ~ y 2 D i11 ! 1 G i,i11~ y 2 D i11 !# .

Since G1[ is convex, G12[ is convex (and nonincreasing).
Thus, G2[ is convex. Repeating this argument, we know
that Gi[ is convex for i 5 1, . . . , N. Note that
Gi,i11(ILi11) is the induced-penalty cost charged to stage
i 1 1 in the Clark-Scarf model; see Chen and Zheng
(1994b).

For any integer r and any positive integer Q, define

C i~r, Q! 5
lmK i 1 O y5r11

r1Q G i~ y!

Q , i 5 1, 2, . . . , N.

One reason why the minimization of the exact cost func-
tion is difficult is that the stages are “coupled” in the sense
that IPi depends on not only the control policy at stage i
but also the control policies at the upstream stages. The
following lemma provides a way to decouple the system
since ILi11 is independent of, and ESi is completely deter-
mined by, the control policy at stage i.

Lemma 1. For i 5 1, . . . , N 2 1, Gi(IPi) ¶ Gi,i11(ILi11)
1 Gi(ESi).

Proof. By definition, IPi ¶ ILi11 and the difference,
ILi11 2 IPi, is the on-hand inventory at stage i 1 1. If IPi

, ILi11, i.e., stage i 1 1 has positive on-hand inventory,
then IPi 5 ESi. (Note that the echelon stock is the same as
the echelon inventory position as long as the upper stage
has inventory on hand.) The lemma follows since the
induced-penalty cost, Gi,i11[, is nonnegative. Now sup-
pose IPi 5 ILi11. If IPi , Yi then Gi(IPi) 5 Gi,i11(IPi) 1
Gi(Yi) 5 Gi,i11(ILi11) 1 Gi(Yi). The lemma follows since
Gi(ESi) Ä Gi(Yi). On the other hand, if IPi Ä Yi then the
lemma follows since Gi( y) is nondecreasing for y Ä Yi and
IPi ¶ ESi by definition. □

Corollary 1. For i 5 1, . . . , N 2 1, EGi(IPi) ¶
EGi,i11(ILi11) 1 ¥y5ri11

ri1Qi Gi( y)/Qi.
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Proof. Follows directly from Lemma 1 since ESi is uni-
formly distributed from ri 1 1 to ri 1 Qi. □

Theorem 1. For any feasible echelon-stock (r, nQ) policy,
C(r, Q) ¶ ¥i51

N Ci(ri, Qi).

Proof. Apply Corollary 1 (with i 5 1) to the right side of (3).
Since IL2 5 IP2 2 D2, we have E[h2IL2 1 G12(IL2)] 5
EG2(IP2). Now apply Corollary 1 again (with i 5 2), etc. □

2.2. Lower-Bound Function

We first define recursively a sequence of functions Gi[,
i 5 1, . . . , N. G1[ is given above. Suppose we have Gi[.
For any integer r and any positive integer Q, define

C i ~r, Q! 5
lmK i 1 O y5r11

r1Q G i ~ y!

Q
.

For fixed Q, let Ci(r, Q) be minimized at r 5 ri(Q). Let
Ci(ri(Q), Q) be minimized at Qi

0. Set ri
0 5 ri(Qi

0) and Ci
0 5

Ci(ri
0, Qi

0). Then, for any integer y, define

G ii ~ y! 5 HG i ~ y! , r i
0 1 1 < y < r i

0 1 Q i
0,

C i
0, otherwise,

G i,i11 ~ y! 5 HG i ~ y! 2 C i
0, y < r i

0,
0 otherwise,

and

G i11 ~ y! 5 E@h i11 ~ y 2 D i11 ! 1 G i,i11 ~ y 2 D i11 !# .

Note that Gi,i11[ is the induced-penalty cost used by Chen
and Zheng (1994b) to construct a lower bound on the aver-
age costs of all feasible policies for several production/inven-
tory networks. Here, we use it to derive a lower-bound
function.

Since G1[ is convex, C1(r, Q) has the form of the cost
function of a single-stage (r, Q) policy, which has been
thoroughly studied by Federgruen and Zheng (1992). Be-
low are some of its properties:

(i) G1(r1
0 1 1) ¶ C1

0 Ä G1(r1
0 1 Q1

0),
(ii) r1

0 , y1 ¶ r1
0 1 Q1

0,
(iii) r1(Q) , y1 ¶ r1(Q) 1 Q, for any positive integer Q,

where y1 is the minimum point of G1[. Using these prop-
erties, one can easily verify that 2G11[ is unimodal, and
that G12[ and G2[ are both convex. Thus, the above
properties still hold with subscript 1 replaced by subscript
2. Repeating the above argument, we have that 2Gii[ is
unimodal for i 5 1, . . . , N 2 1 and that Gi[ is convex for
i 5 1, . . . , N.

For i 5 1, . . . , N 2 1, let Hi( y) be the yth smallest value
of Gii[, y 5 1, 2, . . . . Let HN( y) be the yth smallest value
of GN[, y 5 1, 2, . . . . For any positive integer Q, define

C i ~Q! 5
lmK i 1 O y51

Q H i ~ y!

Q , i 5 1, . . . , N.

Lemma 2. (i) For i 5 1, . . . , N 2 1, EGii(IPi) Ä ¥y51
Qi

Hi( y)/Qi.
(ii) EGN(IPN) Ä ¥y51

QN HN( y)/QN.

Proof. (ii) is essentially a single-location result. The proof
of (i) is harder. The first step is to show ¥m52`

1` Pr(IPi 5
x 1 mQi) 5 1/Qi for any integer x. Then show that ¥m52`

1`

Pr(IPi 5 x 1 mQi)Gii(x 1 mQi) Ä Gii(z)/Qi where z 5
x 1 m9Qi for some integer m9 and ri(Qi) 1 1 ¶ z ¶ ri(Qi)
1 Qi. We leave the details to the reader. □

Take any i 5 1, . . . , N 2 1. By definition, Gi( y) Ä
Gi,i11( y) 1 Gii( y) for any integer y. This, together with the
fact that Gi,i11[ is nonincreasing and IPi ¶ ILi11, leads to
EGi(IPi) Ä EGi,i11(ILi11) 1 EGii(IPi). From Lemma 2,
we have

EG i ~IP i ! > EG i,i11 ~IL i11 ! (4)

1 O
y51

Qi

H i ~ y!/Q i , i 5 1, . . . , N 2 1.

Note that the first term on the right side is independent of
the control policy at stage i, while the second term de-
pends on Qi only. This enables us to decouple the system.

Theorem 2. For any feasible echelon-stock (r, nQ) policy,
C(r, Q) Ä ¥i51

N Ci(Qi).

Proof. Apply (4) (with i 5 1) to the right side of (3). Since
IL2 5 IP2 2 D2, we have E[h2IL2 1 G12(IL2)] 5
EG2(IP2). Now apply (4) (with i 5 2) again, etc. The final
step uses Lemma 2 (ii). □

2.3. Alternative Lower-Bound Functions

By allocating the setup costs among the stages, we may be
able to obtain a better lower-bound function. To see the
intuition, consider a two-stage system where K1 is much
larger than K2 so that Q1

0 . Q2
0. In this case, it is conceiv-

able that the optimal base quantities at the two stages
must be the same due to the constraint Q1 ¶ Q2. Now
allocate part of K1 to K2. This reduces Q1

0 and thus in-
creases the induced-penalty cost charged to stage 2. But
for any feasible policy with Q1 5 Q2, the allocation does
not change the average total setup cost. The result is a
better lower-bound function. Below, we state a condition
which must be satisfied by the allocated setup costs in
order to have an alternative lower-bound function. A spe-
cific allocation will be given in Section 3.3.

Let K̃i be the new setup cost at stage i, i 5 1, . . . , N.
Suppose

K 1 1 · · · 1 K i > K̃ 1 1 · · · 1 K̃ i , i 5 1, . . . , N. (5)

Since Q1 ¶ . . . ¶ QN, we have

O
i51

N K i

Q i
5 O

i51

N21 S 1
Q i

2
1

Q i11
D O

j51

i

K j 1
1

Q N
O
j51

N

K j

> O
i51

N21 S 1
Q i

2
1

Q i11
D O

j51

i

K̃ j 1
1

Q N
O
j51

N

K̃ j

5 O
i51

N K̃ i

Q i
.

Therefore,
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C~r, Q! > O
i51

N lmK̃ i

Q i
1 O

i52

N

h i E~IL i ! 1 EG 1 ~IP 1 !.

Now treat the right side of the above inequality as a new
cost function and follow the approach in Section 2.2. This
leads to a new lower-bound function. (Many lower bounds
have been derived by setup-cost allocations, see, e.g., At-
kins and Iyogun 1987, Atkins 1990, and Rosling 1993.)

3. HEURISTICS

The upper- and lower-bound functions developed in the
previous section have a simple form. We suspect that they
are reasonably close to the exact cost function. By mini-
mizing the upper- and lower-bound functions, we hope to
identify near-optimal control parameters.

3.1. Heuristic I

Consider the upper-bound function established in Section
2.1. Let ri(Qi) be the optimal ri that minimizes Ci(ri, Qi) or
equivalently ¥y5ri11

ri1Qi Gi( y) for fixed Qi. Define Ci(Qi) 5
Ci(ri(Qi), Qi). The minimization of the upper-bound func-
tion can be formulated as:

P u : min O
i51

N

C i~Q i !

s.t. Q i11 5 n i Q i

n i > 1, integer, i 5 1, . . . , N 2 1.

This problem can be solved in two steps.
First consider the following relaxation of Pu:

P u
2: min O

i51

N

C i~Q i !

s.t. Q i11 > Q i , i 5 1, . . . , N 2 1.

This problem can be solved by a simple clustering tech-
nique. Let S 5 {1, 2, . . . , N}. For any i, j [ S with i ¶ j,
the set {i, i 1 1, . . . , j} is called a cluster. For any cluster
c, define

Q c 5 argminQ O
i[c

C i~Q! .

(The minimization is over all positive integers. Thus Qc is
a positive integer.) A partition of S is a set of disjoint
clusters whose union is S. A partition, {c(1), . . . , c(n)}, is
optimal if and only if

Y Qc(1) ¶ Qc(2) ¶ . . . ¶ Qc(n), and
Y for each cluster c(k) 5 {l1, . . . , l2}, there does not exist

an l with l1 ¶ l , l2 so that Qc2(k) , Qc1(k) where c2(k)
5 {l1, . . . , l} and c1(k) 5 {l 1 1, . . . , l2}.

(An algorithm for finding an optimal partition is in Muck-
stadt and Roundy 1993.) Let {c(1), . . . , c(n)} be an opti-
mal partition. Let Q# i 5 Qc(k) for i [ c(k), k 5 1, 2, . . . , n.
Then (Q# 1, Q# 2, . . . , Q# N) is the optimal solution to Pu

2.
The above solution to Pu

2 can be rounded to power-of-
two integers: Qi

u 5 2mi, i 5 1, . . . , N, where mi is the

unique integer with 2mi/=2 ¶ Q# i , 2mi=2. (Since Q# i is a
positive integer, mi Ä 0 or Qi

u Ä 1.) For example, if N 5 3
and (Q# 1, Q# 2, Q# 3) 5 (1, 3, 9) then (Q1

u, Q2
u, Q3

u) 5 (1, 4, 8).
Now use Qi

u as the base quantity at stage i, i 5 1, . . . , N.
(Clearly these base quantities satisfy the constraint in Pu.)
Given these base quantities, determine the optimal reor-
der points by using the sequential algorithm in Chen
(1995). The resulting heuristic policy is called Heuristic I.
(An alternative is to use ri(Qi

u) as the reorder point at
stage i. This turns out to be near optimal for the given Qs,
see Section 5.)

Remark. Although the above power-of-two quantities may
not be the optimal solution to Pu, it should be close. The
reason is that the function Ci[ is rather flat near its min-
imum (Zheng 1992). In fact, if we allow the decision vari-
ables to be continuous, then (Q1

u, . . . , QN
u ) is within 6

percent of the optimal solution to Pu.

3.2. Heuristic II

A different heuristic solution can be obtained by minimiz-
ing the lower-bound function established in Theorem 2.
Replace Ci[ in Pu and Pu

2 with Ci[, and call the resulting
problems Pl and Pl

2. The clustering algorithm solves Pl
2.

Let (Q1, . . . , QN) be the optimal solution. Define

C l
2 5 O

i51

N

C i ~Q i !.

Clearly, Cl
2 is a lower bound on the average costs of all

feasible echelon-stock (r, nQ) policies. It can be used as a
benchmark for any heuristic solution.

Now let Qi
l 5 2mi, i 5 1, . . . , N, where mi is the unique

integer with 2mi/=2 ¶ Qi , 2mi=2. Use Qi
l as the base

quantity at stage i, i 5 1, . . . , N, and determine the corre-
sponding optimal reorder point for each stage. The result-
ing heuristic policy is Heuristic II. (We can also use ri

l 5
ri(Qi

l) as the reorder point at stage i, i 5 1, . . . , N; see
Section 5 for details.)

Remarks. (1) The lower-bound function has some special
properties. Consider Ci(Q), i 5 1, . . . , N 2 1. First note
that Ci(Qi

0) 5 Ci
0, which is the minimum value of Ci[.

Since Hi( y) 5 Ci
0 for y . Qi

0, we have for Q . Qi

C i ~Q! 5
Q i

0

Q C i ~Q i
0! 1

Q 2 Q i
0

Q C i
0 5 C i

0.

Therefore Ci(Q) is flat for Q Ä Qi
0. Now take any cluster c

with N [y c. Let Qc 5 argminQ ¥i[c Ci(Q). This problem
has an infinite number of solutions. One of them is Qc 5
max{Qi

0, i [ c}, with ¥i[c Ci(Qc) 5 ¥i[c Ci
0.

(2) Note that ¥i51
N Ci

0 is the induced-penalty bound es-
tablished in Chen and Zheng (1994b), which is a lower
bound on the average costs of all feasible policies. Now
suppose Q1

0 ¶ . . . ¶ QN
0 . In this case, (Q1

0, . . . , QN
0 ) is an

optimal solution to Pl
2 and Cl

2 reduces to the induced-
penalty bound. In fact, Cl

2 is equal to the induced-penalty
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bound as long as QN
0 Ä Qi

0, i 5 1, . . . , N 2 1. Otherwise,
Cl

2 is larger.

3.3. Heuristic III

First, we suggest an allocation of setup costs based on the
solution to a deterministic problem. Second, we verify that
the new setup costs satisfy condition (5) and thus can be
used to derive a new lower-bound function. We then pro-
pose a new heuristic solution.

Define

P d : min O
i51

N

~K i /T i 1 \ i T i !

s.t. T i11 > T i , i 5 1, . . . , N 2 1,

where

\ i 5
lmp 2h i

2~ p 1 H i !~ p 1 H i11 !
, i 5 1, . . . , N,

and Hi 5 ¥j5i
N hj for i 5 1, . . . , N and HN11 5 0. (The

solution to Pd provides a lower bound on the average costs
of any feasible policies in the deterministic counterpart of
our serial system where demand arrives at a constant rate
lm. See Atkins and Sun 1995 and Chen 1998.) The prob-
lem can again be solved by the clustering algorithm. Let
{c(1), . . . , c(n)} be the optimal partition and (T*1, . . . ,
T*N) the optimal solution to Pd. Consequently,

T*i 5 T c~k! 5 ÎO j[c~k! K j

O j[c~k! \ j

, ; i [ c~k! , k 5 1, . . . , n .

The above solution suggests the following new setup
costs:

K̃ i 5 \ i ~T*i ! 2, i 5 1, . . . , N. (6)

We next verify that the new setup costs satisfy (5). Take
any cluster in the optimal partition, say, c(k) 5 {l1, . . . ,
l2}. Notice that

O
i[c~k!

K̃ i 5 ~T c~k! !
2 O

i[c~k!

\ i 5 O
i[c~k!

K i . (7)

Take any l with l1 ¶ l , l2. Let c2(k) 5 {l1, . . . , l} and
c1(k) 5 {l 1 1, . . . , l2}. Since Tc2(k) Ä Tc1(k) or

O i[c 2~k! K i

O i[c 2~k! \ i

>
O i[c 1~k! K i

O i[c 1~k! \ i

,

we have

O i[c 2~k! K i

O i[c 2~k! \ i

>
O i[c~k! K i

O i[c~k! \ i

5 ~T c~k! !
2,

or

O
i[c 2~k!

K i > O
i[c 2~k!

K̃ i . (8)

From (7) and (8) we have (5).
Now allocate setup costs according to (6). These new

setup costs lead to a new lower-bound function (Section

2.3). Use the new lower-bound function to re-define the
problems Pl and Pl

2 in Section 3.2. The solution to the new
Pl

2 leads to a new lower bound on the average costs of all
feasible echelon-stock (r, nQ) policies, which is denoted by
Ca

2. Let (Q1
a, . . . , QN

a ) be the power-of-two solution to the
new Pl. Now use Qi

a as the base quantity at stage i, i 5
1, . . . , N, and determine the optimal reorder point for
each stage. The resulting heuristic policy is Heuristic III.

4. THE OPTIMAL SOLUTION

Let Q* 5 (Q*1, . . . , Q*N) be the optimal base quantities.
Here we present an algorithm that finds Q*. We begin by
deriving bounds on Q*.

Let Hi be the installation holding cost rate at stage i.
Thus, Hi 5 ¥j5i

N hj. For any integer y, define

G i
i~ y! 5 E@H i ~ y 2 D i ! 1 G i21,i ~ y 2 D i !# ,

i 5 1, . . . , N,

where G0,1( y) 5 ( p 1 H1)y2 and Gi21,i[ is defined in
Section 2.2 for i 5 2, . . . , N. It is easy to see that Gi

i[ is
convex, i 5 1, . . . , N. For any integer r and any positive
integer Q, define

C i
i~r, Q! 5

lmK i 1 O y5r11
r1Q G i

i~ y!

Q
.

For fixed Q, let Ci
i(r, Q) be minimized at r 5 ri

i(Q). Set
Ci

i(Q) 5 Ci
i(ri

i(Q), Q).
Consider an arbitrary unit of inventory. It travels from

the outside supplier to stage N, then to stage N 2 1, etc.
Take any i 5 1, . . . , N. We want to determine a lower
bound on the total holding cost incurred by this unit be-
fore it reaches stage i. Note that holding costs start to
accumulate as soon as the unit enters the system (or stage
N). While traveling from stage N to stage N 2 1, the unit
is counted as the (installation) on-hand inventory at stage
N. Since it takes LN21 units of time to go from stage N to
stage N 2 1 and the installation holding cost rate at stage
N is HN, the total holding cost accumulated from stage N
to stage N 2 1 is HNLN21. Repeating this argument, we
know that the total holding cost incurred by the unit be-
fore reaching stage i is at least ¥j5i11

N HjLj21. (The unit
may pause before reaching stage i.) Since inventory flows
through the system at an average rate of lm units per unit
of time, a lower bound on the average total holding cost
incurred in the subsystem of stages i 1 1, . . . , N is

O
j5i11

N

lmH j L j21 . (9)

Now consider the subsystem of stages 1, . . . , i. Imagine
that stage i 1 1 is an outside supplier with unlimited stock.
The subsystem becomes an i-stage serial system. For this
serial system, one can show that a lower bound on the
average total cost is

O
j51

i21

C j ~Q j ! 1 C i
i~Q i !. (10)
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(The proof is essentially the same as in Section 2.2. The
only difference is that the echelon holding cost rate at
stage i is now Hi. We omit the details. The same idea is
also used in Chen 1995.) Combining (9) and (10), we have
the following theorem.

Theorem 3. For i 5 1, . . . , N, C (r, Q) Ä ¥j5i11
N lmHjLj21

1 ¥j51
i21 Cj(Qj)1Ci

i(Qi).

Let Cf be the average cost of a feasible echelon-stock (r,
nQ) policy. This can be the average cost of one of the
heuristic policies identified in Section 4. For i 5 1, . . . , N,
define

Q i 5 minH q > 1, integeruC i
i~q!

< C f 2 O
j5i11

N

lmH j L j21 2 O
j51

i21

C j
0J ,

and

Q# i 5 maxH q > 1, integeruC i
i~q!

< C f 2 O
j5i11

N

lmH j L j21 2 O
j51

i21

C j
0J .

Corollary 2. Qi ¶ Q*i ¶ Q# i, i 5 1, . . . , N.

Proof. From Theorem 3, we have

C f > O
j5i11

N

H j lmL j21 1 O
j51

i21

C j ~Q*j ! 1 C i
i~Q*i ! .

The corollary follows since the minimum value of Cj[ is
Cj

0.
Corollary 2 defines a bounded region that contains Q*.

Clearly, the bounds become tighter as Cf decreases. To
determine the optimal base quantities, it suffices to search

the entire region. Of course, we only need to consider
those base quantities that satisfy the integer-ratio con-
straint.

5. NUMERICAL EXAMPLES

The main objective here is to test the performance of the
heuristic solutions developed in Section 3. This is achieved
by comparing the heuristic solutions with the optimal solu-
tions if they are available or the lower bounds otherwise.
Another objective is to compare our solution method with
a widely recommended approach which determines the or-
der quantities by solving a deterministic model.

We assume that the demand-size distribution is geomet-
ric, i.e.,

Pr~D 5 x! 5 ~1 2 a! x21a, x 5 1, 2, . . . ,

where D is the demand size of a customer and 0 , a ¶ 1.
(This demand process is also called a stuttering Poisson
process. When a 5 1, it reduces to simple Poisson.) The
coefficient of variation of the total demand in one unit of
time is =(2 2 a)/l. The examples used have a coefficient
of variation ranging from below to above one.

The numerical examples are divided into six groups. The
first two groups are used to illustrate the performance of
the heuristics and the lower bounds, using the optimal
solution as a benchmark. Groups 3 and 4 are used to test
the performance of the heuristics and the lower bounds as
the number of stages increases. The purpose of the final
two groups is to compare our approach with a traditional
one for finding the order quantities.

Group 1. The examples in this group have the following
in common: N 5 3, a 5 1, K2 5 10, hi 5 1 and Li 5 1 for
i 5 1, 2, 3. We varied the remaining parameters, l, K1, K3

and p, to generate 16 examples. For these examples, Table
I reports the best heuristic among Heuristics I, II and III;
the optimal echelon-stock (r, nQ) policy; and the two

Table I
Heuristic vs. Optimal Solutions: Simple Poisson Demand

Heuristic Solution Optimal Solution Lower
Bound I

Lower
Bound

II
Heuristic

Dev
Bound

DevNo. l K1 K3 p R1 Q1 R2 Q2 R3 Q3 Cost R1 Q1 R2 Q2 R3 Q3 Cost

1 1 10 10 10 0 8 0 8 1 8 18.1737 0 6 1 6 2 6 17.7390 17.5064 17.5542 2.45% 1.05%
2 1 10 10 20 1 4 2 4 3 4 20.6137 1 5 2 5 3 5 19.9160 19.7038 19.7267 3.50% 0.96%
3 1 10 100 10 0 8 0 8 0 16 26.5296 0 7 1 7 0 14 26.4164 26.0826 26.1126 0.43% 1.16%
4 1 10 100 20 1 4 2 4 2 16 29.2051 1 5 2 5 2 15 28.6695 28.4559 28.4608 1.87% 0.73%
5 1 100 10 10 0 8 0 8 1 8 29.4237 0 11 0 11 0 11 28.2272 26.5410 28.0909 4.24% 0.49%
6 1 100 10 20 1 8 1 8 2 8 31.7901 0 10 1 10 2 10 30.9436 29.5157 30.8671 2.74% 0.25%
7 1 100 100 10 21 16 21 16 21 16 35.7187 21 14 21 14 21 14 35.4643 33.3376 35.2861 0.72% 0.51%
8 1 100 100 20 0 16 0 16 1 16 39.0118 0 13 1 13 1 13 38.4416 36.2356 38.1725 1.48% 0.70%
9 10 10 10 10 10 16 19 16 28 16 76.7482 9 19 18 19 27 19 76.2283 75.5898 75.7323 0.68% 0.65%

10 10 10 10 20 11 16 21 16 31 16 82.7607 11 18 21 18 30 18 82.5368 82.0675 82.1183 0.27% 0.51%
11 10 10 100 10 10 16 19 16 22 64 106.1548 9 22 17 22 23 44 104.0117 103.0929 103.1260 2.06% 0.86%
12 10 10 100 20 11 16 21 16 26 64 112.6840 11 17 21 17 27 51 110.6577 109.9992 110.0139 1.83% 0.59%
13 10 100 10 10 7 32 15 32 23 32 110.1429 7 34 15 34 22 34 109.9492 104.4476 109.5840 0.18% 0.33%
14 10 100 10 20 9 32 18 32 27 32 118.0247 9 33 18 33 27 33 118.0225 113.2123 117.7525 0.00% 0.23%
15 10 100 100 10 7 32 15 32 20 64 136.5550 6 44 13 44 20 44 132.8222 125.8141 132.2654 2.81% 0.42%
16 10 100 100 20 9 32 18 32 25 64 144.7779 8 42 17 42 25 42 142.0274 134.8886 141.2871 1.94% 0.52%
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lower bounds (Lower Bound I is Cl
2 and Lower Bound II

is Ca
2). The last two columns indicate the relative differ-

ences between of the heuristic and the optimal solution
and between the optimal solution and the better lower
bound.

Group 2. Same as Group 1 except that a 5 0.2. The
results are in Table II.

Group 3. The examples in this group have: l 5 1, a 5
1, p 5 10, and Ki 5 10, hi 5 1, and Li 5 1 for i 5 1, . . . ,
N, where N ranges from 2 to 12. Figure 2 summarizes the
results. We only include the best heuristic and lower
bound.

Group 4. Same as Group 3 except that a 5 0.2. The
results are in Figure 3.

Group 5. The examples in this group have the following
in common: N 5 3, a 5 1, p 5 30, hi 5 1 and Li 5 1 for
i 5 1, 2, 3. We varied the remaining parameters, l, K1, K2

and K3, to generate 24 examples. For these examples, we
computed the best heuristic, the EOQ solution, and the
two lower bounds. To compute the EOQ solution, we first
determined the base quantities by solving a deterministic

serial model and then identified the corresponding optimal
reorder points. The deterministic model assumes that de-
mand arrives at constant rate l and the system uses nested,
stationary policies (Chen 1998). The results are in Table
III, which also provides the relative deviations of the heu-
ristic and the EOQ solutions from the better lower bound.

Group 6. Same as Group 5 except that a 5 0.2. The
results are in Table IV. (Here the deterministic model
assumes that demand arrives at constant rate lm.)

Observations

(1) Our numerical experience suggests that there is no
clear dominance among the three heuristics. The heuristic
reorder points, i.e., ri(Qi

u) (resp., ri(Qi
l) and ri(Qi

a)) for
Heuristic I (resp., II and III) are near optimal. Using the
optimal reorder points, for the given Qs, only leads to
improvements which are typically less than 1 percent. (The
heuristic reorder points are not reported here.)

(2) The heuristics are very easy to compute. For the
examples in Table I (2), the average time on a 486 PC is

Table II
Heuristic vs. Optimal Solutions: Compound Poisson Demand

Heuristic Solution Optimal Solution Lower
Bound I

Lower
Bound

II

Heu-
ristic
Dev

Bound
DevNo. l K1 K3 p R1 Q1 R2 Q2 R3 Q3 Cost R1 Q1 R2 Q2 R3 Q3 Cost

1 1 10 10 10 9 16 13 16 16 16 77.3892 8 19 12 19 15 19 77.1160 76.0334 76.1636 0.35% 1.25%
2 1 10 10 20 13 16 18 16 23 16 93.0702 12 18 17 18 22 18 92.8886 92.0098 92.0651 0.20% 0.89%
3 1 10 100 10 9 16 13 16 12 32 93.7445 8 20 11 20 10 40 92.7435 91.7937 91.8117 1.08% 1.01%
4 1 10 100 20 13 16 18 16 19 32 109.4850 12 19 17 19 17 38 108.6316 107.8263 107.8375 0.79% 0.74%
5 1 100 10 10 5 32 7 32 10 32 95.0581 5 31 8 31 10 31 95.0137 91.0108 93.7259 0.05% 1.37%
6 1 100 10 20 9 32 13 32 17 32 111.5689 9 30 14 30 18 30 111.4384 107.9957 110.3237 0.12% 1.01%
7 1 100 100 10 5 32 7 32 10 32 109.1206 3 38 6 38 8 38 108.0819 103.8674 106.7689 0.96% 1.23%
8 1 100 100 20 9 32 13 32 17 32 125.6314 8 36 12 36 16 36 124.9496 120.9207 123.7624 0.55% 0.96%
9 10 10 10 10 59 64 107 64 153 64 335.1443 61 56 110 56 156 56 334.3862 330.6367 331.0603 0.23% 1.00%

10 10 10 10 20 68 64 121 64 172 64 373.5888 70 53 125 53 176 53 371.9675 368.9920 369.1689 0.44% 0.76%
11 10 10 100 10 59 64 107 64 139 128 386.9145 60 60 109 60 141 120 386.5565 383.0998 383.1586 0.09% 0.89%
12 10 10 100 20 68 64 121 64 159 128 426.1509 69 58 123 58 162 116 425.2815 422.4206 422.4440 0.20% 0.67%
13 10 100 10 10 47 128 88 128 129 128 403.5995 53 92 98 92 142 92 394.3214 380.8020 390.3738 2.35% 1.01%
14 10 100 10 20 68 64 121 64 172 64 443.9013 63 88 114 88 163 88 435.3080 423.9342 432.1055 1.97% 0.74%
15 10 100 100 10 47 128 88 128 129 128 438.7558 48 116 91 116 133 116 437.5073 423.6013 433.8099 0.29% 0.85%
16 10 100 100 20 57 128 105 128 151 128 483.7613 59 109 109 109 157 109 480.8285 467.4089 477.5360 0.61% 0.69%

Figure 2. Simple Poisson Examples. Figure 3. Compound Poisson Examples.
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about seven seconds (one minute) per example for com-
puting the three heuristics. Moreover, the computational
time grows only linearly as N increases. For the examples
in Figure 2 (3), the time increases about 10 (25) seconds as

N increases by one. In contrast, the computational effort
for the optimal solution is much greater. For the examples
in Table I (2), the average time is about 10 minutes (two
hours). (Since no special effort has been devoted to

Table III
Heuristic vs. EOQ Solutions: Simple Poisson

Heuristic Solution EOQ Solution Lower
Bound I

Lower
Bound

II

Heu-
ristic
Dev

EOQ
DevNo. l K1 K2 K3 R1 Q1 R2 Q2 R3 Q3 Cost R1 Q1 R2 Q2 R3 Q3 Cost

1 0.1 10 10 10 0 2 0 2 0 2 6.1376 0 2 0 2 0 2 6.1376 6.1143 6.1173 0.33% 0.33%
2 0.1 10 10 1000 0 2 0 2 21 16 18.0669 0 2 0 2 21 16 18.0669 17.9738 17.9745 0.51% 0.51%
3 0.1 10 1000 10 0 2 21 8 21 8 22.4009 0 2 21 8 21 8 22.4009 21.5823 21.6235 3.60% 3.60%
4 0.1 10 1000 1000 0 2 21 16 21 16 29.7292 0 2 21 16 21 16 29.7292 29.5680 29.5671 0.55% 0.55%
5 0.1 1000 10 10 21 8 21 8 21 8 24.0731 21 8 21 8 21 8 24.0731 21.4457 23.9872 0.36% 0.36%
6 0.1 1000 10 1000 21 8 21 8 21 16 34.0403 21 8 21 8 21 16 34.0403 29.4624 33.1991 2.53% 2.53%
7 0.1 1000 1000 10 21 16 21 16 22 16 34.8553 21 16 21 16 22 16 34.8553 33.5251 33.5939 3.75% 3.75%
8 0.1 1000 1000 1000 21 16 21 16 22 16 41.0428 21 16 21 16 22 16 41.0428 41.0001 41.0020 0.10% 0.10%
9 1 10 10 10 1 4 3 4 4 4 21.8985 1 4 3 4 4 4 21.8985 20.9064 20.8986 4.75% 4.75%

10 1 10 10 1000 1 4 2 8 0 64 62.2741 1 4 3 4 1 32 62.8649 59.1110 59.1042 5.35% 6.35%
11 1 10 1000 10 1 4 1 32 0 32 71.6989 1 4 1 32 0 32 71.6989 70.7729 71.1667 0.75% 0.75%
12 1 10 1000 1000 1 4 21 64 22 64 100.7495 1 4 1 32 0 32 102.6364 95.9278 95.9390 5.01% 6.98%
13 1 1000 10 10 0 32 0 32 0 32 80.0156 0 32 0 32 0 32 80.0156 69.7383 79.1786 1.06% 1.06%
14 1 1000 10 1000 0 32 0 32 21 64 110.5859 0 32 0 32 0 32 110.9531 94.8869 107.8111 2.57% 2.91%
15 1 1000 1000 10 0 32 0 32 0 32 110.9531 0 32 0 32 0 32 110.9531 108.1585 108.8462 1.94% 1.94%
16 1 1000 1000 1000 21 64 22 64 23 64 137.8828 21 64 22 64 23 64 137.8828 131.8266 131.8723 4.56% 4.56%
17 10 10 10 10 12 16 22 16 32 16 86.0823 12 16 22 16 32 16 86.0823 85.5558 85.5939 0.57% 0.57%
18 10 10 10 1000 12 16 22 16 25 128 208.5540 12 16 22 16 25 128 208.5540 206.8252 206.8380 0.83% 0.83%
19 10 10 1000 10 12 16 16 128 21 128 249.5842 12 16 16 128 21 128 249.5842 243.9881 245.4230 1.70% 1.70%
20 10 10 1000 1000 12 16 16 128 21 128 326.9280 12 16 16 128 21 128 326.9280 323.6436 323.6884 1.00% 1.00%
21 10 1000 10 10 8 64 16 64 25 64 283.5951 8 64 16 64 25 64 283.5951 240.3115 271.1053 4.61% 4.61%
22 10 1000 10 1000 6 128 12 128 18 128 365.3680 6 128 12 128 18 128 365.3680 319.9833 361.6762 1.02% 1.02%
23 10 1000 1000 10 6 128 12 128 18 128 365.3680 6 128 12 128 18 128 365.3680 362.4384 364.9963 0.10% 0.10%
24 10 1000 1000 1000 6 128 12 128 18 128 442.7117 6 128 12 128 18 128 442.7117 437.5647 437.7054 1.14% 1.14%

Table IV
Heuristic vs. EOQ Solutions: Compound Poisson

Heuristic Solution EOQ Solution Lower
Bound I

Lower
Bound II

Heu-
ristic
Dev

EOQ
DevNo. l K1 K2 K3 R1 Q1 R2 Q2 R3 Q3 Cost R1 Q1 R2 Q2 R3 Q3 Cost

1 0.1 10 10 10 2 8 2 8 2 8 34.1279 4 4 4 4 4 4 34.9230 33.9818 33.9868 0.42% 2.75%
2 0.1 10 10 1000 2 8 2 8 21 32 56.5721 4 4 4 4 21 32 57.2681 56.3065 56.3085 0.47% 1.70%
3 0.1 10 1000 10 2 8 21 32 21 32 62.5413 4 4 1 16 0 16 68.0167 61.1993 61.3614 1.92%10.85%
4 0.1 10 1000 1000 2 8 21 32 21 32 78.0100 4 4 21 32 21 32 78.3513 77.6430 77.6498 0.46% 0.90%
5 0.1 1000 10 10 21 32 21 32 22 32 67.8887 21 16 21 16 21 16 68.3526 60.4385 64.1636 5.81% 6.53%
6 0.1 1000 10 1000 21 32 21 32 22 32 83.3575 21 32 21 32 22 32 83.3575 76.9267 82.4456 1.11% 1.11%
7 0.1 1000 1000 10 21 32 21 32 22 32 83.3575 21 32 21 32 22 32 83.3575 82.4680 82.9947 0.44% 0.44%
8 0.1 1000 1000 1000 21 32 21 32 22 32 98.8262 21 32 21 32 22 32 98.8262 98.1219 98.1472 0.69% 0.69%
9 1 10 10 10 15 16 21 16 27 16 102.4332 18 8 25 8 30 8 109.1891 101.4970 101.5286 0.89% 7.55%

10 1 10 10 1000 15 16 21 16 12 128 180.8281 18 8 25 8 12 128 185.4027 178.4009 178.4086 1.36% 3.92%
11 1 10 1000 10 15 16 13 64 15 64 202.7745 15 16 13 64 15 64 202.7745 197.0042 198.3647 2.22% 2.22%
12 1 10 1000 1000 15 16 7 128 7 128 253.4318 15 16 7 128 7 128 253.4318 250.4091 250.4588 1.19% 1.19%
13 1 1000 10 10 6 64 10 64 13 64 211.7500 6 64 10 64 13 64 211.7500 194.2092 210.5454 0.57% 0.57%
14 1 1000 10 1000 6 64 10 64 9 128 277.3369 6 64 10 64 9 128 277.3369 247.6107 270.1098 2.68% 2.68%
15 1 1000 1000 10 6 64 10 64 13 64 289.0937 6 64 10 64 13 64 289.0937 269.8533 271.9096 6.32% 6.32%
16 1 1000 1000 1000 1 128 3 128 4 128 323.9484 1 128 3 128 4 128 323.9484 320.3702 320.5030 1.07% 1.07%
17 10 10 10 10 73 64 129 64 182 64 395.4860 81 32 140 32 194 32 401.6991 390.7442 390.8422 1.19% 2.78%
18 10 10 10 1000 73 64 129 64 156 256 656.9875 81 32 140 32 157 256 661.4803 641.7312 641.7519 2.37% 3.07%
19 10 10 1000 10 73 64 105 256 146 256 714.0915 81 32 105 256 146 256 715.6901 706.5210 711.1186 0.42% 0.64%
20 10 10 1000 1000 73 64 105 256 146 256 907.4509 81 32 105 256 146 256 909.0495 878.1704 878.3418 3.31% 3.50%
21 10 1000 10 10 51 256 96 256 139 256 767.8306 51 256 96 256 139 256 767.8306 697.9401 755.9829 1.57% 1.57%
22 10 1000 10 1000 51 256 96 256 139 256 961.1900 51 256 96 256 139 256 961.1900 869.7933 948.5653 1.33% 1.33%
23 10 1000 1000 10 51 256 96 256 139 256 961.1900 51 256 96 256 139 256 961.1900 947.4553 954.5282 0.70% 0.70%
24 10 1000 1000 1000 51 256 96 256 139 256 1154.5494 51 256 96 256 139 256 1154.5494 1110.1104 1110.5356 3.96% 3.96%
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improving the efficiency of the computer programs, these
times should only be interpreted in relative terms.)

(3) The heuristic solution is close to optimal. It is
remarkable that as the number of stages increases,
the performance of the heuristic solution does not
deteriorate.

(4) Ca
2 is often larger (thus better) than Cl

2. When Cl
2

is larger, the difference is very small. Therefore the setup-
cost allocation suggested in Section 3.3 indeed improves
the lower bound. Sometimes the improvement is substan-
tial. This happens when the setup cost at a downstream
stage is much larger than the setup cost at an upstream
stage, as expected.

(5) The heuristic solution dominates the EOQ solution.
In one example (No. 3 in Table IV), the average cost of
the EOQ solution is almost 10 percent higher than that of
the heuristic solution. For this example, the coefficient of
variation is 4.24 (highest among all the examples). This
seems to suggest that the EOQ solution may perform
badly in systems with high demand volatility.

(6) The heuristic base quantities are always larger than
or equal to the EOQs. This observation echoes a recent
finding in the single-stage (r, Q) model that the optimal Q
is larger than the EOQ (Zheng 1992). It suggests that the
EOQs should be adjusted upward for stochastic systems,
especially those with high demand volatility.

6. CONCLUSION

This paper provides an efficient algorithm for determining
near-optimal control parameters of echelon-stock (r, nQ)
policies in multi-stage, serial, production/distribution sys-
tems. The algorithm is based on simple lower and upper
bounds on the exact cost function. The bounds are sepa-
rable functions of the control parameters, whose mini-
mization leads to heuristic control parameters. We also
provide an algorithm that is more time consuming but
finds the optimal solution. Numerical experience suggests
that the order quantities based on the solution to a determin-
istic problem can be seriously suboptimal, especially when the
demand is volatile. Although the entire paper focuses on the
continuous-time model with compound Poisson demand,
all the results can be easily extended to the discrete-time
case with independent, identically distributed demands.
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