
 Open access Journal Article DOI:10.1145/1327452.1327494

Near-optimal hashing algorithms for approximate nearest neighbor in high
dimensions — Source link

Alexandr Andoni, Piotr Indyk

Institutions: Massachusetts Institute of Technology

Published on: 01 Jan 2008 - Communications of The ACM (ACM)

Topics: Nearest neighbor search, Best bin first, Locality-sensitive hashing, Nearest neighbor graph and
Fixed-radius near neighbors

Related papers:

 Approximate nearest neighbors: towards removing the curse of dimensionality

 Locality-sensitive hashing scheme based on p-stable distributions

 Similarity Search in High Dimensions via Hashing

 Spectral Hashing

 Similarity estimation techniques from rounding algorithms

Share this paper:

View more about this paper here: https://typeset.io/papers/near-optimal-hashing-algorithms-for-approximate-nearest-
2u17o6r986

https://typeset.io/
https://www.doi.org/10.1145/1327452.1327494
https://typeset.io/papers/near-optimal-hashing-algorithms-for-approximate-nearest-2u17o6r986
https://typeset.io/authors/alexandr-andoni-7jiqg65ark
https://typeset.io/authors/piotr-indyk-4600w2h6i8
https://typeset.io/institutions/massachusetts-institute-of-technology-1y5l0xk3
https://typeset.io/journals/communications-of-the-acm-2yc9qsd3
https://typeset.io/topics/nearest-neighbor-search-2abtjlqb
https://typeset.io/topics/best-bin-first-lnq5c56f
https://typeset.io/topics/locality-sensitive-hashing-3sgz8t0y
https://typeset.io/topics/nearest-neighbor-graph-2z6ilx2u
https://typeset.io/topics/fixed-radius-near-neighbors-3gemwgd5
https://typeset.io/papers/approximate-nearest-neighbors-towards-removing-the-curse-of-27lmlz5prr
https://typeset.io/papers/locality-sensitive-hashing-scheme-based-on-p-stable-4wdnkpkjck
https://typeset.io/papers/similarity-search-in-high-dimensions-via-hashing-27z92j627a
https://typeset.io/papers/spectral-hashing-2n67qmexwr
https://typeset.io/papers/similarity-estimation-techniques-from-rounding-algorithms-1i3hjl99zj
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/near-optimal-hashing-algorithms-for-approximate-nearest-2u17o6r986
https://twitter.com/intent/tweet?text=Near-optimal%20hashing%20algorithms%20for%20approximate%20nearest%20neighbor%20in%20high%20dimensions&url=https://typeset.io/papers/near-optimal-hashing-algorithms-for-approximate-nearest-2u17o6r986
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/near-optimal-hashing-algorithms-for-approximate-nearest-2u17o6r986
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/near-optimal-hashing-algorithms-for-approximate-nearest-2u17o6r986
https://typeset.io/papers/near-optimal-hashing-algorithms-for-approximate-nearest-2u17o6r986

Near-Optimal Hashing Algorithms for

Approximate Nearest Neighbor in High Dimensions
by Alexandr Andoni and Piotr Indyk

The goal of this article is twofold. In the first part, we survey a family

of nearest neighbor algorithms that are based on the concept of locality-

sensitive hashing. Many of these algorithm have already been successfully

applied in a variety of practical scenarios. In the second part of this arti-

cle, we describe a recently discovered hashing-based algorithm, for the

case where the objects are points in the d-dimensional Euclidean space.

As it turns out, the performance of this algorithm is provably near-opti-

mal in the class of the locality-sensitive hashing algorithms.

1 Introduction
The nearest neighbor problem is defined as follows: given a collection

of n points, build a data structure which, given any query point, reports

the data point that is closest to the query. A particularly interesting and

well-studied instance is where the data points live in a d-dimensional

space under some (e.g., Euclidean) distance function. This problem is

of major importance in several areas; some examples are data com-

pression, databases and data mining, information retrieval, image and

video databases, machine learning, pattern recognition, statistics and

data analysis. Typically, the features of each object of interest (docu-

ment, image, etc.) are represented as a point in �d and the distance

metric is used to measure the similarity of objects. The basic problem

then is to perform indexing or similarity searching for query objects.

The number of features (i.e., the dimensionality) ranges anywhere from

tens to millions. For example, one can represent a 1000 × 1000 image

as a vector in a 1,000,000-dimensional space, one dimension per pixel.

There are several efficient algorithms known for the case when the

dimension d is low (e.g., up to 10 or 20). The first such data structure,

called kd-trees was introduced in 1975 by Jon Bentley [6], and remains

one of the most popular data structures used for searching in multidi-

mensional spaces. Many other multidimensional data structures are

known, see [35] for an overview. However, despite decades of inten-

sive effort, the current solutions suffer from either space or query time

that is exponential in d. In fact, for large enough d, in theory or in prac-

tice, they often provide little improvement over a linear time algorithm

that compares a query to each point from the database. This phenom-

enon is often called “the curse of dimensionality.”

In recent years, several researchers have proposed methods for over-

coming the running time bottleneck by using approximation (e.g., [5,

27, 25, 29, 22, 28, 17, 13, 32, 1], see also [36, 24]). In this formulation,

the algorithm is allowed to return a point whose distance from the query

is at most c times the distance from the query to its nearest points; c >

1 is called the approximation factor. The appeal of this approach is that,

in many cases, an approximate nearest neighbor is almost as good as the

exact one. In particular, if the distance measure accurately captures the

notion of user quality, then small differences in the distance should not

matter. Moreover, an efficient approximation algorithm can be used to

solve the exact nearest neighbor problem by enumerating all approxi-

mate nearest neighbors and choosing the closest point1.

In this article, we focus on one of the most popular algorithms for

performing approximate search in high dimensions based on the con-

cept of locality-sensitive hashing (LSH) [25]. The key idea is to hash

the points using several hash functions to ensure that for each func-

tion the probability of collision is much higher for objects that are

close to each other than for those that are far apart. Then, one can

determine near neighbors by hashing the query point and retrieving

elements stored in buckets containing that point.

The LSH algorithm and its variants has been successfully applied

to computational problems in a variety of areas, including web clus-

tering [23], computational biology [10.11], computer vision (see

selected articles in [23]), computational drug design [18] and compu-

tational linguistics [34]. A code implementing a variant of this method

is available from the authors [2]. For a more theoretically-oriented

overview of this and related algorithms, see [24].

The purpose of this article is twofold. In Sec tion 2, we describe the

basic ideas behind the LSH algorithm and its analysis; we also give an

overview of the current library of LSH functions for various distance

measures in Sec tion 3. Then, in Sec tion 4, we describe a recently

developed LSH family for the Euclidean distance, which achievies a

near-optimal separation between the collision probabilities of close

and far points. An interesting feature of this family is that it effectively

enables the reduction of the approximate nearest neighbor problem for

worst-case data to the exact nearest neighbor problem over random (or

pseudorandom) point configuration in low-dimensional spaces.

1See section 2.4 for more information about exact algorithms.

Abstract

I
n this article, we give an overview of efficient algorithms for the approximate and exact nearest
neighbor problem. The goal is to preprocess a dataset of objects (e.g., images) so that later, given
a new query object, one can quickly return the dataset object that is most similar to the query. The

problem is of significant interest in a wide variety of areas.

Biographies
Alexandr Andoni (andoni@mit.edu) is a Ph.D. Candidate in computer

science at Massachusetts Institute of Technology, Cambridge, MA.

Piotr Indyk (indyk@theory.lcs.mit.edu) is an associate professor in the

Theory of Computation Group, Computer Science and Artificial Intel-

ligence Lab, at Massachusetts Institute of Technology, Cambridge, MA.

COMMUNICATIONS OF THE ACM January 2008/Vol. 51, No. 1 117

Currently, the new family is mostly of theoretical interest. This is

because the asymptotic improvement in the running time achieved via

a better separation of collision probabilities makes a difference only for

a relatively large number of input points. Nevertheless, it is quite likely

that one can design better pseudorandom point configurations which do

not suffer from this problem. Some evidence for this conjecture is pre-

sented in [3], where it is shown that point configurations induced by so-

called Leech lattice compare favorably with truly random configurations.

Preliminaries
2.1 Geometric Normed Spaces

We start by introducing the basic notation used in this article. First,

we use P to denote the set of data points and assume that P has car-

dinality n. The points p from P belong to a d-dimensional space �d. We

use p
i
to the denote the ith coordinate of p, for i = 1…d.

For any two points p and q, the distance between them is defined as

for a parameter s > 0; this distance function is often called the l
s

norm.

The typical cases include s = 2 (the Euclidean distance) or s = 1 (the

Manhattan distance)2. To simplify notation, we often skip the subscript

2 when we refer to the Euclidean norm, that is, �p – q� = �p – q�2.

Occasionally, we also use the Hamming distance, which is defined

as the number of positions on which the points p and q differ.

2.2 Problem Definition

The nearest neighbor problem is an example of an optimization problem:

the goal is to find a point which minimizes a certain objective function

(in this case, the distance to the query point). In contrast, the algorithms

that are presented in this article solve the decision version of the prob-

lem. To simplify the notation, we say that a point p is an R-near neighbor

of a point q if the distance between p and q is at most R (see Figure 1).

In this language, our algorithm either returns one of the R-near neigh-

bors or concludes that no such point exists for some parameter R.

Fig. 1. An illustration of an R-near neighbor query. The nearest

neighbor of the query point q is the point p1. However, both p1

and p2 are R-near neighbors of q.

Naturally, the nearest and near neighbor problems are related. It is

easy to see that the nearest neighbor problem also solves the R-near

2The name is motivated by the fact that �p – q�1 = �d
i = 1 �pi – qi � is the length of the

shortest path between p and q if one is allowed to move along only one coordinate
at a time.

neighbor problem–one can simply check if the returned point is an

R-near neighbor of the query point. The reduction in the other direc-

tion is somewhat more complicated and involves creating several

instances of the near neighbor problem for different values of R. During

the query time, the data structures are queried in the increasing order

of R. The process is stopped when a data structure reports an answer.

See [22] for a reduction of this type with theoretical guarantees.

In the rest of this article, we focus on the approximate near neigh-

bor problem. The formal definition of the approximate version of the

near neighbor problem is as follows.

Definition 2.1 (Randomized c-approximate R-near neighbor, or

(c, R) – NN). Given a set P of points in a d-dimensional space �d, and

parameters R > 0, � > 0, construct a data structure such that, given

any query point q, if there exists an R-near neighbor of q in P, it reports

some cR-near neighbor of q in P with probability 1 – �.

For simplicity, we often skip the word randomized in the discus-

sion. In these situations, we will assume that � is an absolute constant

bounded away from 1 (e.g., 1/2). Note that the probability of success

can be amplified by building and querying several instances of the data

structure. For example, constructing two independent data structures,

each with � = 1/2, yields a data structure with a probability of failure

� = 1/2·1/2 = 1/4.

In addition, observe that we can typically assume that R = 1.

Otherwise we can simply divide all coordinates by R. Therefore, we

will often skip the parameter R as well and refer to the c-approximate

near neighbor problem or c-NN.

We also define a related reporting problem.

Definition 2.2 (Randomized R-near neighbor reporting). Given a set

P of points in a d-dimensional space �d, and parameters R > 0, � > 0,

construct a data structure that, given any query point q, reports each

R-near neighbor of q in P with probability 1 – �.

Note that the latter definition does not involve an approximation

factor. Also, unlike the case of the approximate near neighbor, here the

data structure can return many (or even all) points if a large fraction of

the data points are located close to the query point. As a result, one

cannot give an a priori bound on the running time of the algorithm.

However, as we point out later, the two problems are intimately

related. In particular, the algorithms in this article can be easily modi-

fied to solve both c-NN and the reporting problems.

2.3 Locality-Sensitive Hashing

The LSH algorithm relies on the existence of locality-sensitive hash

functions. Let H be a family of hash functions mapping �d to some

universe U. For any two points p and q, consider a process in which

we choose a function h from H uniformly at random, and analyze the

probability that h(p) = h(q). The family H is called locality sensitive

(with proper parameters) if it satisfies the following condition.

Definition 2.3 (Locality-sensitive hashing). A family H is called (R,

cR, P
1, P2)-sensitive if for any two points p, q � �d.

• if �p – q� ≤ R then Pr
H

[h(q) = h(p)] ≥ P1,

• if �p – q� ≥ cR then Pr
H

[h(q) = h(p)] ≤ P2.

In order for a locality-sensitive hash (LSH) family to be useful, it has

to satisfy P
1 > P2.

118 January 2008/Vol. 51, No. 1 COMMUNICATIONS OF THE ACM

Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions

To illustrate the concept, consider the following example. Assume

that the data points are binary, that is, each coordinate is either 0 or 1.

In addition, assume that the distance between points p and q is com-

puted according to the Hamming distance. In this case, we can use a

particularly simple family of functions H which contains all projec-

tions of the input point on one of the coordinates, that is, H contains

all functions h
i

from {0, 1}d to {0, 1} such that h
i
(p) = p

i
. Choosing

one hash function h uniformly at random from H means that h(p)

returns a random coordinate of p (note, however, that different appli-

cations of h return the same coordinate of the argument).

To see that the family H is locality-sensitive with nontrivial param-

eters, observe that the probability Pr
H

[h(q) = h(p)] is equal to the frac-

tion of coordinates on which p and q agree. Therefore, P
1 = 1 – R/d,

while P
2 = 1 – cR/d. As long as the approximation factor c is greater

than 1, we have P
1 > P2.

2.4 The Algorithm

An LSH family H can be used to design an efficient algorithm for

approximate near neighbor search. However, one typically cannot use

H as is since the gap between the probabilities P
1 and P2 could be

quite small. Instead, an amplification process is needed in order to

achieve the desired probabilities of collision. We describe this step

next, and present the complete algorithm in the Figure 2.

Given a family H of hash functions with parameters (R, cR, P
1, P2)

as in Definition 2.3, we amplify the gap between the high probability

P
1 and low probability P2 by concatenating several functions. In par-

ticular, for parameters k and L (specified later), we choose L functions

g
j
(q) = (h

1, j
(q),…,h

k, j
(q)), where h

t, j
(1 ≤ t ≤ k, 1 ≤ j ≤ L) are chosen

independently and uniformly at random from H. These are the actual

functions that we use to hash the data points.

The data structure is constructed by placing each point p from the

input set into a bucket g
j
(p), for j = 1,…,L. Since the total number of

buckets may be large, we retain only the nonempty buckets by resort-

ing to (standard) hashing3 of the values g
j
(p). In this way, the data

structure uses only O(nL) memory cells; note that it suffices that the

buckets store the pointers to data points, not the points themselves.

To process a query q, we scan through the buckets g1(q),…, g
L
(q), and

retrieve the points stored in them. After retrieving the points, we com-

3See [16] for more details on hashing.

pute their distances to the query point, and report any point that is a valid

answer to the query. Two concrete scanning strategies are possible.

1. Interrupt the search after finding the first L� points (including

duplicates) for some parameter L�.

2. Continue the search until all points from all buckets are

retrieved; no additional parameter is required.

The two strategies lead to different behaviors of the algorithms. In

particular, Strategy 1 solves the (c, R)-near neighbor problem, while

Strategy 2 solves the R-near neighbor reporting problem.

Strategy 1. It is shown in [25, 19] that the first strategy, with

L� = 3L, yields a solution to the randomized c-approximate R-near

neighbor problem, with parameters R and � for some constant failure

probability � < 1. To obtain this guarantee, it suffices to set L to �(n�),

where � = [19]. Note that this implies that the algorithm runs in

time proportional to n� which is sublinear in n if P1 > P2. For example,

if we use the hash functions for the binary vectors mentioned earlier,

we obtain � = 1/c [25, 19]. The exponents for other LSH families are

given in Sec tion 3.

Strategy 2. The second strategy enables us to solve the randomized

R-near neighbor reporting problem. The value of the failure probability

� depends on the choice of the parameters k and L. Conversely, for

each �, one can provide parameters k and L so that the error probabil-

ity is smaller than �. The query time is also dependent on k and L. It

could be as high as �(n) in the worst case, but, for many natural data -

sets, a proper choice of parameters results in a sublinear query time.

The details of the analysis are as follows. Let p be any R-neighbor

of q, and consider any parameter k. For any function g
i
, the probabil-

ity that g
i
(p) = g

i
(q) is at least P1

k. There fore, the probability that

g
i
(p) = g

i
(q) for some i = 1…L is at least 1 – (1 – P1

k)L. If we set L =

log
1 – P1

k � so that (1 – P1
k)L ≤ �, then any R-neighbor of q is returned by

the algorithm with probability at least 1 – �.

How should the parameter k be chosen? Intuitively, larger values of

k lead to a larger gap between the probabilities of collision for close

points and far points; the probabilities are P
1
k and P2

k, respectively (see

Figure 3 for an illustration). The benefit of this amplification is that the

hash functions are more selective. At the same time, if k is large then

P
1
k is small, which means that L must be sufficiently large to ensure

that an R-near neighbor collides with the query point at least once.

ln 1/P1

ln 1/P2

Preprocessing:

1. Choose L functions gj, j = 1,…L, by setting gj = (h1, j, h2, j,…hk, j), where h1, j,…hk, j are chosen at random from the LSH family H.

2. Construct L hash tables, where, for each j = 1,…L, the j th hash table contains the dataset points hashed using the function gj.

Query algorithm for a query point q:

1. For each j = 1, 2,…L

i) Retrieve the points from the bucket gj(q) in the j th hash table.

ii) For each of the retrieved point, compute the distance from q to it, and report the point if it is a correct answer (cR-near

neighbor for Strategy 1, and R-near neighbor for Strategy 2).

iii) (optional) Stop as soon as the number of reported points is more than L�.

Fig. 2. Preprocessing and query algorithms of the basic LSH algorithm.

COMMUNICATIONS OF THE ACM January 2008/Vol. 51, No. 1 119

A practical approach to choosing k was introduced in the E2LSH

package [2]. There the data structure optimized the parameter k as a

function of the dataset and a set of sample queries. Specifically, given

the dataset, a query point, and a fixed k, one can estimate precisely the

expected number of collisions and thus the time for distance compu-

tations as well as the time to hash the query into all L hash tables. The

sum of the estimates of these two terms is the estimate of the total

query time for this particular query. E2LSH chooses k that minimizes

this sum over a small set of sample queries.

3 LSH Library
To date, several LSH families have been discovered. We briefly survey

them in this section. For each family, we present the procedure of

chosing a random function from the respective LSH family as well as

its locality-sensitive properties.

Hamming distance. For binary vectors from {0, 1}d, Indyk and

Motwani [25] propose LSH function h
i
(p) = p

i
, where i � {1,…d} is a

randomly chosen index (the sample LSH family from Sec tion 2.3).

They prove that the exponent � is 1/c in this case.

It can be seen that this family applies directly to M-ary vectors (i.e.,

with coordinates in {1…M}) under the Hamming distance. Moreover,

a simple reduction enables the extension of this family of functions to

M-ary vectors under the l1 distance [30]. Consider any point p from

{1…M}d. The reduction proceeds by computing a binary string

Unary(p) obtained by replacing each coordinate p
i
by a sequence of p

i

ones followed by M – p
i
zeros. It is easy to see that for any two M-ary

vectors p and q, the Hamming distance between Unary(p) and

Unary(p) equals the ll1 distance between p and q. Unfor tun ately, this

reduction is efficient only if M is relatively small.

l1 distance. A more direct LSH family for �d under the l1 distance

is described in [4]. Fix a real w ≫ R, and impose a randomly shifted

grid with cells of width w; each cell defines a bucket. More specif -

ically, pick random reals s
1, s

2
,…s

d
� [0, w) and define h

s1,…sd
=

(
⌊
(x1 – s1)/w

⌋
,…,

⌊
(x

d
– s

d
)/w

⌋
). The resulting exponent is equal to

� = 1/c + O(R/w).

l
s
distance. For the Euclidean space, [17] propose the following LSH

family. Pick a random projection of �d onto a 1-dimensional line and

chop the line into segments of length w, shifted by a random value

b � [0, w). Formally, h
r, b

= (
⌊
(r·x + b)/w

⌋
, where the projection vector

r � �d is constructed by picking each coordinate of r from the Gaussian

distribution. The exponent � drops strictly below 1/c for some (carefully

chosen) finite value of w. This is the family used in the [2] package.

A generalization of this approach to l
s

norms for any s � [0, 2) is

possible as well; this is done by picking the vector r from so-called

s-stable distribution. Details can be found in [17].

Jaccard. To measure the similarity between two sets A, B � U (con-

taining, e.g., words from two documents), the authors of [9, 8] utilize the

Jaccard coefficient. The Jaccard coefficient is defined as s(A, B) = .

Unlike the Hamming distance, Jaccard coefficient is a similarity meas-

ure: higher values of Jaccard coefficient indicate higher similarity of the

sets. One can obtain the corresponding distance measure by taking

d(A, B) = 1 – s(A, B). For this measure, [9, 8] propose the following

LSH family, called min-hash. Pick a random permutation on the ground

universe U. Then, define h
π
(A) = min{π(a) � a � A}. It is not hard to

prove that the probability of collision Pr
π
[h

π
(A) = h

π
(B)] = s(A, B). See

[7] for further theoretical developments related to such hash functions.

Arccos. For vectors p, q � �d, consider the distance measure that is

the angle between the two vectors, � (p, q) = arccos . For this

distance measure, Charikar et al. (inspired by [20]) defines the fol-

lowing LSH family [14]. Pick a random unit-length vector u � �d and

define h
u
(p) = sign(u·p). The hash function can also be viewed as par-

titioning the space into two half-spaces by a randomly chosen hyperplane.

Here, the probability of collision is Pr
u
[h

u
(p) = h

u
(q)] = 1 – �(p, q)/π.

(a) The probability that gj (p) = gj (q) for a fixed j. Graphs are
shown for several values of k. In particular, the blue function
(k = 1) is the probability of collision of points p and q under a sin-
gle random hash function h from the LSH family.

(b) The probability that gj(p) = gj(q) for some j = 1…L. The prob-
abilities are shown for two values of k and several values of L.
Note that the slopes are sharper when k is higher.

Fig. 3. The graphs of the probability of collision of points p and q as a function of the distance between p and q for different values

of k and L. The points p and q are d = 100 dimensional binary vectors under the Hamming distance. The LSH family H is the one

described in Section 2.3.

�A � B�

�A � B�

p·q��p �·�q ��

120 January 2008/Vol. 51, No. 1 COMMUNICATIONS OF THE ACM

Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions

l2 distance on a sphere. Terasawa and Tanaka [37] propose an LSH

algorithm specifically designed for points that are on a unit hyper-

sphere in the Euclidean space. The idea is to consider a regular poly-

tope, orthoplex for example, inscribed into the hypersphere and

rotated at random. The hash function then maps a point on the hyper-

sphere into the closest polytope vertex lying on the hypersphere. Thus,

the buckets of the hash function are the Voronoi cells of the polytope

vertices lying on the hypersphere. [37] obtain exponent � that is an

improvement over [17] and the Leech lattice approach of [3].

4 Near-Optimal LSH Functions for
Euclidean Distance

In this section we present a new LSH family, yielding an algorithm

with query time exponent �(c) = 1/c2 + O(log log n / log1/3 n). For

large enough n, the value of �(c) tends to 1/c2. This significantly

improves upon the earlier running time of [17]. In particular, for c = 2,

our exponent tends to 0.25, while the exponent in [17] was around

0.45. More over, a recent paper [31] shows that hashing-based algo -

rithms (as described in Sec tion 2.3) cannot achieve � < 0.462/c2.

Thus, the running time exponent of our algorithm is essentially opti-

mal, up to a constant factor.

We obtain our result by carefully designing a family of locality-sen-

sitive hash functions in l2. The starting point of our construction is the

line partitioning method of [17]. There, a point p was mapped into �1

using a random projection. Then, the line �1 was partitioned into

intervals of length w, where w is a parameter. The hash function for p

returned the index of the interval containing the projection of p.

An analysis in [17] showed that the query time exponent has an

interesting dependence on the parameter w. If w tends to infinity, the

exponent tends to 1/c, which yields no improvement over [25, 19].

How ever, for small values of w, the exponent lies slightly below 1/c. In

fact, the unique minimum exists for each c.

In this article, we utilize a “multi-dimensional version” of the afore-

mentioned approach. Specifically, we first perform random projection

into � t, where t is super-constant, but relatively small (i.e., t = o(log n)).

Then we partition the space � t into cells. The hash function function

returns the index of the cell which contains projected point p.

The partitioning of the space � t is somewhat more involved than

its one-dimensional counterpart. First, observe that the natural idea of

partitioning using a grid does not work. This is because this process

roughly corresponds to hashing using concatenation of several one-

dimensional functions (as in [17]). Since the LSH algorithms perform

such concatenation anyway, grid partitioning does not result in any

improvement. Instead, we use the method of “ball partitioning”, intro-

duced in [15], in the context of embeddings into tree metrics. The par-

titioning is obtained as follows. We create a sequence of balls B
1, B2…,

each of radius w, with centers chosen independently at random. Each

ball B
i
then defines a cell, containing points B

i
\�

j< i
B

j
.

In order to apply this method in our context, we need to take care

of a few issues. First, locating a cell containing a given point could

require enumeration of all balls, which would take an unbounded

amount of time. Instead, we show that one can simulate this proce-

dure by replacing each ball by a grid of balls. It is not difficult then to

observe that a finite (albeit exponential in t) number U of such grids

suffices to cover all points in � t. An example of such partitioning (for

t = 2 and U = 5) is given in Figure 4.

Fig. 4. An illustration of the the ball partitioning of

the 2-dimensional space.

The second and the main issue is the choice of w. Again, it turns

out that for large w, the method yields only the exponent of 1/c.

Specifically, it was shown in [15] that for any two points p, q � � t, the

probability that the partitioning separates p and q is at most

O �	
t ·�p – q�/w�. This formula can be showed to be tight for the range

of w where it makes sense as a lower bound, that is, for w =

� �	
t ·�p – q��. However, as long as the separation probability depends

linearly on the distance between p and q, the exponent � is still equal

to 1/c. Fortunately, a more careful analysis4 shows that, as in the one-

dimensional case, the minimum is achieved for finite w. For that value

of w, the exponent tends to 1/c2 as t tends to infinity.

5 Related Work
In this section, we give a brief overview of prior work in the spirit of

the algorithms considered in this article. We give only high-level sim-

plified descriptions of the algorithms to avoid area-specific terminol-

ogy. Some of the papers considered a closely related problem of finding

all close pairs of points in a dataset. For simplicity, we translate them

into the near neighbor framework since they can be solved by per-

forming essentialy n separate near neighbor queries.

Hamming distance. Several papers investigated multi-index hashing-

based algorithms for retrieving similar pairs of vectors with respect to

the Hamming distance. Typically, the hash functions were projecting

the vectors on some subset of the coordinates {1…d} as in the exam-

ple from an earlier section. In some papers [33, 21], the authors con-

sidered the probabilistic model where the data points are chosen

uniformly at random, and the query point is a random point close to one

of the points in the dataset. A different approach [26] is to assume that

the dataset is arbitrary, but almost all points are far from the query

point. Finally, the paper [12] proposed an algorithm which did not make

any assumption on the input. The analysis of the algorithm was akin to

the analysis sketched at the end of section 2.4: the parameters k and L

were chosen to achieve desired level of sensitivity and accuracy.

Set intersection measure. To measure the similarity between two sets

A and B, the authors of [9, 8] considered the Jaccard coefficient s(A, B),

proposing a family of hash functions h(A) such that Pr[h(A) = h(B)] =

s(A, B) (presented in detail in Sec tion 3). Their main motivation was to

4Refer to [3] for more details.

COMMUNICATIONS OF THE ACM January 2008/Vol. 51, No. 1 121

construct short similarity-preserving “sketches” of sets, obtained by
mapping each set A to a sequence �h1(A), ..., h

k
(A)
. In section 5.3 of

their paper, they briefly mention an algorithm similar to Strategy 2
described at the end of the Sec tion 2.4. One of the differences is that,
in their approach, the functions h

i
are sampled without replacement,

which made it more difficult to handle small sets.

Acknowledgement
This work was supported in part by NSF CAREER grant CCR-0133849
and David and Lucille Packard Fellowship.

References
1. Ailon, N. and Chazelle, B. 2006. Approximate nearest neighbors

and the Fast Johnson-Lindenstrauss Transform. In Proceedings of
the Symposium on Theory of Computing.

2. Andoni, A. and Indyk, P. 2004. E2lsh: Exact Euclidean locality-
sensitive hashing. http://web.mit.edu/andoni/www/LSH/.

3. Andoni, A. and Indyk, P. 2006. Near-optimal hashing algorithms
for approximate nearest neighbor in high dimensions. In Proceed-
ings of the Symposium on Foundations of Computer Science.

4. Andoni, A. and Indyk, P. 2006. Efficient algorithms for substring
near neighbor problem. In Proceedings of the ACM-SIAM Sympo-
sium on Discrete Algorithms. 1203–1212.

5. Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., and Wu,

A. 1994. An optimal algorithm for approximate nearest neighbor
searching. In Proceedings of the ACM-SIAM Symposium on Dis-
crete Algorithms. 573–582.

6. Bentley, J. L. 1975. Multidimensional binary search trees used for
associative searching. Comm. ACM 18, 509–517.

7. Broder, A., Charikar, M., Frieze, A., and Mitzenmacher, M. 1998.
Min-wise independent permutations. J. Comput. Sys. Sci.

8. Broder, A., Glassman, S., Manasse, M., and Zweig, G. 1997. Syntac-
tic clustering of the web. In Proceedings of the 6th International
World Wide Web Conference. 391–404.

9. Broder, A. 1997. On the resemblance and containment of docu-
ments. In Proceedings of Compression and Complexity of Se-
quences. 21–29.

10. Buhler, J. 2001. Efficient large-scale sequence comparison by lo-
cality-sensitive hashing. Bioinform. 17, 419–428.

11. Buhler, J. and Tompa, M. 2001. Finding motifs using random
projections. In Proceedings of the Annual International Conference
on Computational Molecular Biology (RECOMB1).

12. Califano, A. and Rigoutsos, I. 1993. Flash: A fast look-up algo-
rithm for string homology. In Proceedings of the IEE Conference
on Computer Vision and Pattern Recognition (CVPR).

13. Chakrabarti, A. and Regev, O. 2004. An optimal randomised cell

probe lower bounds for approximate nearest neighbor searching. In

Proceedings of the Symposium on Foundations of Computer Science.

14. Charikar, M. 2002. Similarity estimation techniques from round-
ing. In Proceedings of the Symposium on Theory of Computing.

15. Charikar, M., Chekuri, C., Goel, A., Guha, S., and Plotkin, S. 1998.

Approximating a finite metric by a small number of tree metrics.
In Proceedings of the Symposium on Foundations of Computer Science.

16. Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. 2001.

Introduct. Algorithms. 2nd Ed. MIT Press.

17. Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. 2004. Locality-

sensitive hashing scheme based on p-stable distributions.In Proceed-
ings of the ACM Symposium on Computational Geometry.

18. Dutta, D., Guha, R., Jurs, C., and Chen, T. 2006. Scalable parti -

tioning and exploration of chemical spaces using geometric hashing.

J. Chem. Inf. Model. 46.

19. Gionis, A., Indyk, P., and Motwani, R. 1999. Similarity search in
high dimensions via hashing. In Proceedings of the International
Conference on Very Large Databases.

20. Goemans, M. and Williamson, D. 1995. Improved approximation
algorithms for maximum cut and satisfiability problems using
semidefinite programming. J. ACM 42. 1115–1145.

21. Greene, D., Parnas, M., and Yao, F. 1994. Multi-index hashing for in-

formation retrieval. In Proceedings of the Symposium on Founda-

tions of Computer Science. 722–731.

22. Har-Peled, S. 2001. A replacement for voronoi diagrams of near
linear size. In Proceedings of the Symposium on Foundations of
Computer Science.

23. Haveliwala, T., Gionis, A., and Indyk, P. 2000. Scalable techniques
for clustering the web. WebDB Workshop.

24. Indyk, P. 2003. Nearest neighbors in high-dimensional spaces. In
Handbook of Discrete and Computational Geometry. CRC Press.

25. Indyk, P. and Motwani, R. 1998. Approximate nearest neighbor:
 Towards removing the curse of dimensionality. In Proceedings of
the Symposium on Theory of Computing.

26. Karp, R. M., Waarts, O., and Zweig, G. 1995. The bit vector inter-
section problem. In Proceedings of the Symposium on Foundations
of Computer Science. pages 621–630.

27. Kleinberg, J. 1997. Two algorithms for nearest-neighbor search in
high dimensions. In Proceedings of the Symposium on Theory of
Computing.

28. Krauthgamer, R. and Lee, J. R. 2004. Navigating nets: Simple
 algorithms for proximity search. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms.

29. Kushilevitz, E., Ostrovsky, R., and Rabani, Y. 1998. Efficient search
for approximate nearest neighbor in high dimensional spaces. In
Proceedings of the Symposium on Theory of Computing. 614–623.

30. Linial, N., London, E., and Rabinovich, Y. 1994. The geometry of
graphs and some of its algorithmic applications. In Proceedings of
the Symposium on Foundations of Computer Science. 577–591.

31. Motwani, R., Naor, A., and Panigrahy, R. 2006. Lower bounds on
locality sensitive hashing. In Proceedings of the ACM Symposium
on Computational Geometry.

32. Panigrahy, R. 2006. Entropy-based nearest neighbor algorithm in
high dimensions. In Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms.

33. Paturi, R., Rajasekaran, S., and Reif, J.The light bulb problem.
Inform. Comput. 117, 2, 187–192.

34. Ravichandran, D., Pantel, P., and Hovy, E. 2005. Randomized al-
gorithms and nlp: Using locality sensitive hash functions for high
speed noun clustering. In Proceedings of the Annual Meeting of
the Association of Computational Linguistics.

35. Samet, H. 2006. Foundations of Multidimensional and Metric
Data Structures. Elsevier, 2006.

36. Shakhnarovich, G., Darrell, T., and Indyk, P. Eds. Nearest Neigh-
bor Methods in Learning and Vision. Neural Processing Informa-
tion Series, MIT Press.

37. Terasawa, T. and Tanaka, Y. 2007. Spherical lsh for approximate
nearest neighbor search on unit hypersphere. In Proceedings of
the Workshop on Algorithms and Data Structures.

122 January 2008/Vol. 51, No. 1 COMMUNICATIONS OF THE ACM

