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Abstract
Branch alignment reorders the basic blocks of a program to minimize pipeline penalties due to control-transfer instructions.
Prior work in branch alignment has produced useful heuristic methods. We present a branch alignment algorithm that usually
achieves the minimum possible pipeline penalty and on our benchmarks averages within 0.3% of a provable optimum. We
compare the control penalties and running times of our algorithm to an older, greedy approach and observe that both the
greedy method and our method are close to the lower bound on control penalties, suggesting that greedy is good enough. Sur-
prisingly, in actual execution our method produces programs that run noticeably faster than the greedy method. We also report
results from training and testing on different data sets, validating that our results can be achieved in real-world usage. Training
and testing on different data sets slightly reduced the benefits from both branch alignment algorithms, but the ranking of the
algorithms does not change, and the bulk of the benefits remain.

1 Introduction

On modern pipelined microprocessors, control-transfer
instructions (CTIs), such as conditional branches and
unconditional jumps, often incur execution time penalties.
The instruction fetch mechanism in these processors is best
able to supply a steady stream of instructions to the proces-
sor datapath when the instructions are ordered sequentially.
A CTI that redirects the fetch mechanism causes breaks in
the sequential fetching of instructions, and in pipelined
implementations, these breaks temporarily starve the pipe-
line datapath of instructions because the effects of a CTI are
often not known until late in the pipeline. For example, in
the pipeline for the Digital Alpha 21164 microprocessor [4],
the outcome of a conditional branch instruction is not
known until the end of the sixth stage of the pipeline, even
though the next fetch address must be ready by the end of
the first stage to maintain an uninterrupted flow of instruc-
tions to the datapath. Several studies have shown that the
compiler can improve processor performance by reordering
the pieces of a program so that breaks in the sequential
fetching of instructions happen less often [2,9,19,23]. These
studies use only greedy heuristics to guide the reordering of
the program blocks.

A natural question to ask is: how good is the best possible
reordering? Do the greedy approaches extract all possible

benefit from code reordering? And if not, is it computation-
ally feasible to find the ordering that maximizes the achiev-
able benefit?

In this paper, we reduce a limited form of the reordering
problem to the Directed Traveling Salesman Problem
(DTSP), allowing us to use DTSP analysis and solution
techniques. Mathematically provable lower bounds on
DTSP costs give us the lowest control penalty that any
branch alignment can hope to achieve. We also apply
recently developed powerful local search heuristics for
DTSP that efficiently produce layouts that often meet the
lower bounds. By comparing our near-optimal layouts with
those produced by greedy methods, we find that the greedy
techniques capture a significant portion of the total potential
pipeline penalty improvement, but not all of it.

In general, the compile-time reordering of program blocks
is referred to ascode placement. Good code placement tech-
niques can reduce instruction cache misses as well as pipe-
line penalties due to CTIs. For example, placing the most
likely follower of an instruction as its layout successor
improves performance because the following instruction
will be on the same or the next cache line and will not incur
any pipeline penalties when it is reached. Calder and Grun-
wald [2] investigated basic block ordering techniques solely
for the purpose of reducing pipeline penalties due to CTIs.
They refer to this limited version of the code placement
problem as thebranch alignment problem. For purposes of
discussion, we refer to CTIs generically asbranch instruc-
tions, unless it is important to the discussion to make a dis-
tinction between specific types of CTIs, and we refer to the
pipeline penalties due to branches ascontrol penalties.
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Control penalties are typically classified into two major
sources: misprediction or misfetch penalties.Misprediction
penalties occur on a conditional or multiway1 branch when
the processor incorrectly predicts the instruction that fol-
lows the branch. As shown in Figure 1, the Alpha 21164 has
a mispredict penalty of five cycles since the true direction of
a conditional branch is known by the end of the sixth pipe-
line stage.Misfetch penalties occur when the processor can-
not determine the target address of a branch, even if it
correctly predicts the branch, in time to fetch the target
instruction from the cache. Figure 1 shows that the Alpha
21164 has a misfetch penalty of one cycle because the earli-
est that the predicted target address is available is at the end
of the second pipeline stage. This misfetch penalty occurs
on any branch instruction that redirects the instruction
stream, e.g. a jump or a correctly-predicted taken branch.

A number of hardware techniques reduce control penalties.
Branch history tables [25] cache recent conditional branch
directions, reducing mispredict penalties. Similarly, branch
target buffers [16] cache recent branch target addresses,
reducing misfetch penalties.

Like hardware-based branch techniques, compiler-based
branch alignment techniques use past program behavior as a
predictor of its future actions. To obtain this information,
compilers can profile the program of interest to determine
the most likely target of each branch in the program. Profile-
based optimizations require good profiles to be effective.
This is well-known in the static branch prediction literature,
where researchers have gone to great lengths to show that

1. A jump to a target address contained in a source register
operand is an example of a multiway branch.

useful, general training data sets can be found [5]. Disap-
pointingly, we found that in the code placement and branch
alignment literature, only Pettis and Hansen [23] present
results using different training and testing data sets.

In this paper, we show how to encode branch alignment as a
DTSP2 and then apply a suite of DTSP solution and analysis
methods to the problem. In our experiments, we also present
performance results that use different training and testing
data sets. These numbers correspond to the performance
numbers that can be expected to hold in actual practice,
rather than the optimistic results achieved by ideal training
data sets.

The next section explains our reduction of the branch align-
ment problem to a DTSP. The appendix describes the cur-
rent state of the art in solutions to the DTSP. Section 3
describes our experimental methodology, while Section 4
presents our results and discusses our findings. Section 5
summarizes the related work in code placement. The last
section comments on our work and outlines future research.

2 Branch Alignment and Its Reduc-
tion to a DTSP

We now describe the basics behind compile-time branch
alignment and our transformation of this problem into a
standard DTSP. We assume that we are trying to optimize a

2. DTSP is a version of the traveling salesman problem, where
the goal is to find a minimum cost walk through a set of cities,
given the distances between all pairs of cities. In the directed case,
the distance from city A to city B is not the same as the distance
from city B to city A.

Figure 1. Pipeline diagram for the Digital Alpha 21164 microprocessor. It has a misfetch penalty of 1 cycle and a
conditional branch mispredict penalty of 5 cycles.
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program’s layout in memory for a particular training input,
with the hope that this will give a layout that also performs
well for other inputs (as shown by our results in Section
4.2). Once the program input is fixed, the resulting execu-
tion trace is fixed as well.

2.1 Basics of branch alignment

An intraprocedural branch alignment is essentially a permu-
tation of the basic blocks of each procedure in the program,
implemented with the appropriate inversions of conditional
branches and insertions or deletions of unconditional jumps
to ensure that program semantics are maintained. Given a
processor model and a control-flow graph (CFG) weighted
with execution frequencies on edges (the frequencies are
derived from the training input), a compiler estimates the
number of penalty cycles that will accrue from a particular
permutation. This estimation is based on the execution-time
penalty of having a particular basic block succeed another in
the program layout. In some cases, this cost includes the
penalty due to the addition of new unconditional jumps at
the end of basic blocks that no longer “fall into” their layout
successor block. Globally minimizing these penalties is the
goal of a branch alignment method.

It is important to keep clear the distinction between one
block succeeding another in the program layout and one
block following another in the execution trace. To avoid
confusion, we will use the termsucceed when referring to
the program layout and the termfollow when describing the
execution trace. We will always use the term “CFG succes-
sor” when referring to the relations between nodes in the
CFG.

Greedy branch alignment approaches generate their guess at
a good permutation of a procedure’s basic blocks by consid-
ering the edges in the CFG in some priority order, typically
decreasing order of execution frequency. As each edge is
considered, two checks are made to see if the two blocks at
the ends of this edge can be laid out consecutively. The first
check passes as long as there is not some other block
already succeeding the block at the head of the edge, and
there also is not some other block already preceding the
block at the tail of this edge. The second check verifies that
adding this edge will not create a layout cycle. If both
checks pass, then the layout is updated. If either check fails,
the algorithms move on to the next priority edge. Once all
the edges have been considered, the algorithms add uncon-
ditional jumps and invert conditional branches where neces-
sary to complete the layout and maintain program
semantics. Pettis and Hansen [23] and Calder and Grunwald
[2] each give a more detailed description of these greedy
branch alignment algorithms.

Greedy algorithms generally work because they take the
most common CFG successorA of a particular block and try
to place it immediately after the block. If this layout posi-
tion is unavailable, it is becauseA has already been claimed
by some other block that is followed byA more frequently.
The basic drawback of greedy approaches is that they rely

entirely on local information, and here they are further
handicapped by the fact that they use frequencies rather than
cost models based on the target machine. Using more accu-
rate cost models and looking at the problem from a global
point of view could well lead to permutations with lower
overall cost.

2.2 Reduction to DTSP

In general, we wish to find a linear ordering of the program
blocks that minimizes the total number of penalty cycles
caused by mispredicts and misfetches. Consider any layout
of the program blocks. The total number of penalty cycles is
just the sum over all blocks of the number of penalty cycles
occurring at the branch at the end of each block. We assume
a fixed program trace and an architectural model where the
number of penalty cycles occurring at the end of a blockB
depends only on which block succeedsB.3 We therefore
build a graph whose vertices are the program blocks. For
blocksB andB ,́ we place adirected edge(B,B´) with cost
c(B,B´) weighted by the number of penalty cycles that occur
at B in a layout whereB  ́succeedsB. Note that this graph is
a complete directed graph, with edges between every pair of
vertices. Even if blockB never branches to blockB ,́ we still
put an edge fromB to B  ́with a cost that accounts for any
fixup branches that have been added. We also add a dummy
block representing the end of the layout. Thus, this graph is
not the CFG.

Now consider a particularwalk through this graph—that is,
a traversal of the vertices (blocks) in some linear order
B1,...,Bn. In order to visit these blocks, we traverse a
sequence of edges(B1,B2),(B2,B3),...,(Bn-1,Bn). Thecost of
this walk is defined to be the sum of the traversed edge
costs, namelyc(B1,B2)+c(B2,B3)+...+c(Bn-1,Bn).

Sincec(B,B´) is the number of penalty cycles that occur at
B if B  ́succeedsB, we see that if we lay out the blocks in the
order the walk visits them, the total number of penalty
cycles caused by the layout is equal to the cost of the walk
above.

All that is left is the rule for assigning edge costs. We are
given penalties for four different branch outcomes. LetpTT
be the number of penalty cycles on a branch that is predicted
taken and is taken andpNT be the number of penalty cycles
on a branch that is predicted not taken and is taken. We
definepTN andpNN similarly. For the Alpha pipeline model
in the introduction,pTT is the misfetch penalty, andpTN and
pNT are the mispredict penalty. We now consider a particular
block B and the branch that terminates it. For any blockB ,́
let CBB  ́be the number of times that at blockB the processor
correctly predicts that blockB  ́will follow block B, and let
IBB  ́be the number of times we branch fromB to B  ́when
the processor incorrectly predicts that a different block will
follow B. Observe that whenB  ́succeedsB, CBB  ́counts the

3. For example, machines that predict backwards branches will
take and forward branches will fall through (BTFNT architectures)
do not meet this assumption.
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number of times that the processor correctly predicts the
branch will fall through, but whenB  ́ does not succeedB,
CBB  ́counts the number of times that the processor correctly
predicts that the branch toB  ́will be taken. Since the num-
bersCBB´ and IBB  ́depend only on the program’s CFG and
not on any particular layout of that program, it follows that
if we select blockX to succeedB, the total penalty at the end
of blockB is:

As argued previously, if we use this penalty count as the
cost of the corresponding edge(B, X), then minimizing the
total penalty time corresponds to finding the minimum cost
walk through the resulting graph. Section 3.3 presents the
specific values used to compute edge costs.

By the above reduction, an optimal solution to the con-
structed DTSP will yield the branch alignment with mini-
mum possible control penalty. Similarly, near-optimal
solutions to the DTSP will yield near-optimal solutions to
the branch alignment problems and lower bounds on the
optimal solution value for the DTSP are lower bounds on
the minimum possible control penalty.

Our approach to obtaining near-optimal solutions and lower
bounds exploits a second reduction, one that takes arbitrary
instances of the DTSP to the special case of thesymmetric
TSP (STSP), an approach whose power has only recently
been recognized [11]. In this study, we compute near-opti-
mal branch alignments by applying theiterated 3-Opt algo-
rithm for the STSP [10] to a symmetrized version of the
above DTSP, and compute lower bounds on the penalty by
computing the Held-Karp lower bound [6, 7] for that ver-
sion. In general, our results imply that both the tours and the
lower bounds typically come within 0.3% of the value of the

optimal solution. For more details and background on these
approaches, please see the Appendix.

3 Experimental Methodology

In this section, we describe our compilation and evaluation
environments. Since we are examining the practicality of
different branch alignment techniques, we present two kinds
of measurements: compile times and program execution
times. A summary of the compile times for the different
branch alignment techniques is contained in this section.
Program execution times are given in Section 4. Except for
the generation of the DTSP solutions, we performed all
compilations and performance evaluations on a Digital
Equipment AlphaStation 500/266 running Digital UNIX
version 3.2. This machine contains a 266MHz Alpha 21164
microprocessor, 2 MB of third-level cache, and 128 MB of
main memory.

3.1 Benchmarks

As shown in Table 1, we report results for a subset of the
SPECint92 and SPECfp92 benchmarks. SPEC92 bench-
marks touch a relatively small number of branch sites in the
program text, but they execute a reasonable number of
branch instructions (we will revisitxli.ne, the shortest-run-
ning data set by far, in our cross-validation study). For each
benchmark, we list two data sets; in the cross-validation
study we report the name of the testing data set and train
with the other data set.

3.2 Compilation environment and compile-
time costs

We compiled our programs using version 1.1.2 of the SUIF
research compiler [30], including mach-suif 1.1.2 exten-
sions [26]. SUIF is a research compiler that has been used

Benchmark Abbr. Description Data Sets Abbr.
Branch
Sites

Touched

Executed
Branch

Instructions

026.compress com Lempel-Ziv compressor
SPEC ref input (program text) in 56 11.8M

MPEG movie data st 56 135.4M

015.doduc dod nuclear reactor thermohy-
draulic simulation

SPEC ref input re 657 77.6M

SPEC small input sm 651 13.4M

023.eqntott eqn translates boolean equa-
tions to truth tables

fixed to floating point encoder fx 309 46.5M

SPEC ref input ip 303 335.8M

008.espresso esp boolean function minimizer
SPEC “ti” ref input ti 1,458 87.0M

SPEC “tial” ref input tl 1,440 157.2M

089.su2cor su2 statistical mechanics calcu-
lation

SPEC ref input re 318 168.3M

SPEC short input sh 316 13.1M

022.li xli Lisp interpreter
Lisp impl. of Newton’s method ne 295 0.1M

7 queens problem q7 367 42.0M

Table 1: Descriptions of benchmarks and data sets examined.

c B X,( ) CBXpNN I BXpTN CBB′ pTT I BB′ pNT+( )
B′ X≠
∑+ +=
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extensively to study automatic parallelization, interproce-
dural loop detection, and pointer analysis. The mach-suif
extensions support machine-specific optimizations such as
register allocation, instruction scheduling, and the branch
alignment optimizations performed in this paper. We also
used version 1.0 of the HALT instrumentation tool [33] to
add branch and procedure call instrumentation to our bench-
mark programs. As mentioned above, we performed all
aspects of our compilation process on the AlphaStation 500/
266, except for the DTSP solver.

In this study we were primarily interested in the ultimate
savings obtainable by the DTSP approach, rather than in the
immediate construction of an integrated tool. With this in
mind, it was more convenient to run the DTSP codes at
AT&T Labs where they were originally developed and
could most easily be adapted to this application. The runs
were performed on single 250 Mhz R4400 MIPS processors
in an SGI Power Challenge. These processors might be
expected to run about half as fast as the AlphaStation. The
running times were substantial, but not out of line with
those for the other parts of the compilation process. More-
over, there is reason to believe that much faster times would
be possible in a production version, as explained below.

Table 2 summarizes the time spent compiling and profiling
under our system. Compile times were collected using the
UNIX time(1) command; this command has a resolution of
1/10th of a second. The “Intermediate Representation” col-
umn gives the time to compile from C or FORTRAN source
to a mach-suif intermediate form suitable for producing
instrumented or optimized programs. The “Instrumented
Program” column shows the time to transform this interme-
diate form into a profiling executable. The “Greedy Pro-
gram” column lists the time to produce an executable pro-
gram using the greedy layout algorithm. The “TSP Matrix”
column shows the time to transform the profile data into
DTSP problem matrices. The “TSP Solver” column lists the
time to solve the DTSP representations of our branch align-
ment problems; recall that the solver runs on a different
machine so times are not necessarily comparable to other
columns. (The time for computing lower bounds on the
optimal solution is not included, since such computations
are not needed for solution generation, and are used here
solely for analytical purposes.) The “TSP Program” column
gives the time to build an executable using the solution
tours. Lastly, the “Profiling Run Time” column shows the
time it took to run the profiling executable on the data set.

The times in Table 2 confirm that SUIF is a research com-
piler, not intended for daily production use. SUIF reads and
writes files to disk between compiler passes. Our TSP solver
performs even larger amounts of file I/O, and the times
reported above for it are almost half system time, a half that
could be avoided in a production environment by revising
the code. The user time for the TSP solver could probably
also be substantially reduced by tailoring the code more
directly for the application at hand. Thus the time for the
TSP solver is unlikely to be the ultimate bottleneck.

Even with the large times reported in Table 2, however, the
given approach might be useful at high levels of optimiza-
tion or in applications with large numbers of users, assum-
ing the code improvements it yields are significant.

3.3 Control penalties

For our evaluation, we used a set of control penalties based
upon the Alpha 21164 microarchitecture. In this model, a
misfetch costs one cycle, and a conditional branch mispre-
diction costs five cycles. Table 3 summarizes the control
penalties for the Alpha 21164 model in our experiments.
Note that the penalty values vary based on the kind of
branch at the end of the basic block. Although the equation
in Section 2.2 does not show that the penalties depend onB,
it is simple to generalize the equation.

To produce DTSP edge costs, we need to weight the CFG
edge frequencies from profiling with the different control
penalties. As outlined theoretically in Section 2.2, this
amounts to accounting for all of the penalties that occur due
to control instructions at the ends of basic blocks. All prior
compile-time branch alignment techniques assume that con-
ditional branches are statically predicted4 when evaluating
different layouts. To simplify our presentation and calcula-
tions of CBB  ́and IBB ,́ we make the same assumption, but
nothing in our approach forces us to use it. So the values of
CBB  ́andIBB  ́are chosen as if the processor always predicts
the most common CFG successor of a basic block.

For all possible cases, Table 3 lists the relevant  values.
There are two cases to consider where a basic block has a
single CFG successor. In the desirable case, the basic block
falls through to its CFG successor with no penalty and no
prediction, so only  applies. In the undesirable
case, the CFG successor is not placed immediately after this
block, so an unconditional branch must be inserted. Again
we can always predict correctly so only  applies.

4. For each conditional branch, the processor always predicts
that this branch will be taken or will fall through.
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com st 33.4 12.5 7.5 4.4 36.5 7.7 86.9

dod re 1288.8 507.1 185.2 100.0 418.0 190.3 72.9

eqn ip 89.9 42.4 31.0 16.6 141.9 34.1 210.0

esp tl 520.8 241.1 164.1 98.9 634.9 162.7 98.2

su2 re 210.1 85.9 40.9 25.1 178.3 40.8 218.6

xli q7 163.4 83.9 58.4 36.8 314.1 58.3 29.4

Table 2: Compilation and profiling times for the
worst data set for each benchmark.
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Because we have inserted the unconditional branch,
equals 2 to account for the cost of the branch in addition to
the one cycle penalty for the misfetch.

Conditional and multiway branches also use the formula in
Section 2.2, employing the  values from Table 3. Some
layouts may not place either CFG successor of a conditional
branch block as its layout successor. In such cases we insert
a new unconditional branch as the fall-through successor of
the conditional branch; this unconditional branch is treated
as a new basic block and its costs are totaled appropriately.
Note that for the reduction to DTSP, it would not do to add a
new city (basic block) to the tour (CFG), so we attach the
penalties for this “fixup” basic block to the DTSP edge that
required it be created.

4 Results

In this section, we compare the performance of our bench-
mark applications under three different branch alignment
layouts: original, greedy, and DTSP. We compare both the
number of control-penalty cycles resulting from each layout
and the total running time of each benchmark program. Sec-
tion 4.1 presents results where we train and test on the same
data set, while Section 4.2 cross-validates aligned programs
under different training and testing data sets. Cross-valida-
tion gives insights into the degradation from ideal to practi-
cal training examples.

Control penalty cycles were estimated using the methodol-
ogy described in the previous section. Running times were
collected using the real-time clock on our AlphaStation 500/
266; this clock has a resolution of one millisecond5. We ran
each benchmark 5 times to warm the buffer cache, and then
took the arithmetic mean of the next 10 running times. We
present both kinds of measurements normalized against the
statistics for the original layout. Raw statistics for the con-
trol penalties and running times under the original layout
are listed in Table 4.

4.1 Same training and testing data set

The left graph in Figure 2 shows the compiler-computed
control penalties under the Alpha 21164 model for each of
our benchmarks and data sets. The vertical axis has been
normalized so that the control penalties for the original
branch alignment layout correspond to a value of 1.0. These
penalties are from training and testing on the same data set,
so these results are best-case for the DTSP algorithm and
likely to be best-case for the greedy algorithm. No layout
can achieve lower control penalty than the lower bounds.

From Figure 2, it appears that the bulk of the possible
branch alignment benefit is conferred by running the greedy
algorithm alone. The greedy heuristic removes a mean of

5. To collect times, we run a separate program that reads the
real-time clock before and after the program being timed. This
means that we count some “bookending” time in all of our mea-
surements. However, tests in single-user mode show that this addi-
tional measurement time is always less than 30 milliseconds and
very stable. Because all programs incur this measurement over-
head, we have ignored this effect and not compensated for it in our
results.

Block-ending Control Event
Control
Penalties
(cycles)

Formulaic
 Term for
Penalty

no branch 0

unconditional branch 2

conditional
branch

fall through to (common)
following block

0

branch to (common)
following block

1

mispredict following
block (any layout)

5
,

branch
through
register

fall through to (common)
following block

0

branch to any other CFG
successor

3

,

,

Table 3: A summary of the control penalties in our
21164 machine model. Note that “fixup”

unconditional branches count as separate basic
blocks; our algorithm accounts for their cost.

pNN

pTT

pNN

pTT

pNT

pTN

pNN

pTT

pNT

pTN

pTT

pXX
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(seconds)

Original
Program

Lower
Bound Mean Std. Dev.

com
in 19.9M 12.2M 0.89 1.0x10-3

st 223.3M 126.8M 9.27 11.8x10-3

dod
ref 150.9M 47.3M 19.86 9.3x10-3

sm 26.1M 8.2M 3.47 3.7x10-3

eqn
fx 66.9M 52.0M 2.46 4.4x10-3

ip 403.4M 311.8M 12.82 10.5x10-3

esp
ti 135.8M 93.0M 3.37 7.9x10-3

tl 250.6M 186.8M 6.11 7.4x10-3

su2
re 217.8M 206.1M 110.82 15.0x10-3

sh 15.5M 14.8M 11.70 13.3x10-3

xli
ne 0.2M 0.1M 0.04 2.7x10-3

q7 57.6M 22.7M 1.99 0.7x10-3

Table 4: Original control penalties, theoretical
lower bounds on control penalties, and running
times for each of our benchmarks and data sets.
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33% of the control penalty from running a particular bench-
mark, while the TSP-based aligner removes a mean of 36%.
The lower bound shows that the best we can do is to remove
36% of control penalties. Our TSP-based aligner is within
0.3% of the lower bounds, so it is possible, if costly, to find
nearly-optimal tours.

The right side of Figure 2 compares the running times of the
laid-out programs running on the Alpha 21164 machine
described above. On average, running times improved by
1.19% under greedy layout and 2.01% under TSP-based
layout. The running times generally follow the trends antici-
pated by the compiler estimates, except for thesu2cor runs,
where the greedy layout performs better than the TSP-based
layout. Forsu2.re, the TSP-based algorithm gives margin-
ally worse performance than the original program layout.
Su2cor has a very low ratio of control penalties to execution
time compared to the other benchmarks. InSu2cor, poten-
tial for benefit from branch alignment is relatively small,
and our rearrangement may have changed other factors that
contribute to execution time.

It is interesting to note that our two floating-point bench-
marks,doduc andsu2cor, show very different results from
branch alignment. Aligningdoduc with any algorithm
removes 2/3 of control penalties, while aligningsu2cor has
virtually no effect.

From the calculated control penalties, there appears to be
very little difference between the greedy and TSP-based
methods. Both methods achieve control penalties very close
to the lower bound. However, this does not translate directly
to differences in performance, where the TSP-based method
leads to a much larger improvement in execution time than
the greedy method.

To explore this unexpected behavior, we used IPROBE, a
tool that analyzes program behavior using the Alpha perfor-
mance counters. We found a correlation between branch
alignment and cache effects: good branch alignments also
appear to be good for caching. Basic block placement tech-

niques confer benefits in cache behavior that are not mod-
eled by control penalties (for example, fewer branches taken
may cause fewer cache misses). These unmodeled caching
benefits are responsible for the larger-than-expected differ-
ences in execution times. This suggests that we should
update the weights to reflect caching costs.

4.2 Cross-validation

Estimating control penalties becomes more complex with
different training and testing data sets. In such calculations,
one must set up the layout from the training data set, then
evaluate the control penalties in that layout using the edge
frequencies from the testing data set. This may mean that
the predicted direction of a conditional branch reverses, or
that the most common target of a multiway branch changes.

In Figure 3, we show the results of cross-validating different
training and testing data sets under the greedy and TSP-
based layout techniques. As expected, other data sets are
generally not as good as training and testing with the same
data set. We experimented with a number of data sets; in
general the ones that ran for a very short time or touched
few static branch sites gave the worst cross-validation per-
formance. For example,xli.ne runs for a very short time; it
turns out to be a poor training set for the longer-running
xli.q7, while the reverse is not true. This corresponds to our
experiences in branch prediction [31], where it is very
important to find good training inputs.

Under cross-validation, greedy layout removes a mean of
31% of the control penalties computed by the compiler, and
leads to a 1.06% mean reduction in running time. Compared
to the results in Section 4.1, this is basically no change in
computed control penalty, and not quite as good an
improvement in running time. With the TSP-based layout,
cross-validated results show a 34% reduction in computed
control penalties and a 1.66% reduction in running time.
These are both slightly worse than our earlier results, with
some dilution of execution time benefits.
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tical scale of the execution times graph does not start at the origin.
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Cross-validation shows mild dilution of control penalty and
timing results compared to training with ideal inputs. This
dilution does not change the relative effectiveness of the
methods and preserves the bulk of the benefits due to branch
alignment. As in profiled static branch prediction, it is
important to choose good training data sets. Cross-valida-
tion reduced some of the gap between the execution times of
the greedy and TSP-based layouts, but the small gap in con-
trol penalties still suggests that other benefits from branch
alignment are contributing to performance.

5 Related Work

Branch alignment is a special case of code placement tech-
niques. These techniques reorder the pieces of a program to
reduce both control penalties and cache misses. McFarling
[19], Hwu and Chang [9], Pettis and Hansen [23] did some
of the earliest work on greedy code placement using profile
data. McFarling focuses on cache effects and uses the pro-

file information to determine what fetches to exclude from a
direct-mapped instruction cache. Hwu and Chang examine
the combined effect of code-expanding optimizations and
basic block placement, concluding that they could achieve
instruction cache miss rates close to those of fully-associa-
tive caches using direct-mapped caches and compile trans-
formations. Pettis and Hansen use profiles of program runs
to reorder code at two levels: procedure ordering and basic
block ordering. Their greedy heuristic places procedures or
basic blocks near each other based on edge weights in the
call and control flow graphs. Pettis and Hansen’s primary
focus was to improve the instruction cache miss rate, but
their basic block ordering technique also works quite well to
reduce control penalties. Since their work appears to be the
basis for many existing commercial code-placement tools,
we have used their technique as a basis for our greedy
implementation. More recently, Torellas et al. [28] have
investigated code placement to improve operating system
performance. Their paper describes an algorithm that parti-
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Figure 3. Results from training and testing on different data sets. The upper graph shows control penalties; the lower
graph shows execution times. All values are normalized against the original program, where no layout optimizations
have been applied. The black and white bars are repeated from Figure 2. The cross-validated values for the greedy

layout algorithm appear with diagonal stripes. The cross-validated values for the TSP-based layout algorithm appear
in gray. Note that the vertical scales of the execution times graphs do not start at the origin.
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tions the second-level cache into separate sections for criti-
cal code, sometimes-used code, and seldom-or-never-used
code.

Calder and Grunwald [2], on the other hand, directly
address the branch alignment problem. They improved upon
the greedy heuristic described by Pettis and Hansen in two
ways. First, Calder and Grunwald expose the details of the
underlying microarchitecture to better estimate the cost of
control penalties. We also consider the specifics of the
microarchitecture when calculating the costs on the edges in
our DTSP. Second, they propose an alternative greedy heu-
ristic that exhaustively searches all orders of the basic
blocks touched by the 15 most frequently-executed edges in
the CFG. They claim that this heuristic produces slightly
better layouts and runs “in a few minutes.”

A number of commercial tools exist for code placement.
Speer, Kumar, and Partridge [27] describe the benefits of
code placement on the UNIX Kernel in HP-UX 9.0. IBM’s
FDPR/2 [3] performs interprocedural basic block placement
on AIX executables. NTOM and OM are examples of pro-
grams that perform code placement on Digital Alpha
machines [29].

Finally, we mention just a few other static techniques that
reduce control penalties. Static branch prediction hints [18]
allow the compiler to direct hardware fetching. Static corre-
lated branch prediction [15, 31] and conditional branch
removal [22] take advantage of correlated or redundant
information along paths in the program to make branches
more predictable or remove them entirely. Global instruc-
tion schedulers like trace schedulers [17] or superblock
schedulers [8] do not directly address branch penalties, but
they indirectly lower branch penalties by trying to identify
and linearize commonly-executed portions of the program.

6 Conclusions and Future Work

We exhibited a reduction from the branch alignment prob-
lem to the Directed Traveling Salesman Problem. Using this
reduction, we applied DTSP analysis techniques to place a
lower bound on the control penalties experienced by aligned
programs. We also used a DTSP solver to produce layouts
that approach the lower bound and meet it in many cases.
We observed that the greedy method also produces layouts
that approach the lower bound in expected control penalties,
but that the running times of the programs under TSP-based
layout were better than the running times of the same pro-
grams and data sets under greedy layout.

We cross-validated our results using different training and
testing data sets for each benchmark. As in static branch
prediction, it turns out to be important to choose good train-
ing data sets. As expected, training and testing with differ-
ent data sets gives worse results than training and testing
with the same data set. However, cross-validation did not
change the relative benefits of the greedy and TSP-based
methods, and most of the benefits due to performing branch
alignment remained.

The methodology we use, reduction to a well-understood
theoretical problem, is more important than the specifics of
our reduction or the performance gains that we report. Find-
ing more reductions that better model the underlying hard-
ware can be an endless task. For example, we could perform
a trace-driven simulation of the branch prediction hardware
in the target machine to derive more accurate frequencies of
correct and incorrect predictions6. But having chosen a par-
ticular reduction as sufficiently accurate, the lower bounds
can give us insight into whether further refinement is worth-
while. Further, efficient solvers make nearly optimal solu-
tions possible, if not cheap.

We would have preferred to run our algorithm on larger,
longer-running benchmarks, including those in SPEC95.
We plan to do so as soon as mach-suif matures enough to
correctly process the SPEC95 suite.

We are intrigued by the mismatch in differences between
expected control penalties and actual execution times. Other
branch alignment benefits, such as improved cache locality,
contribute to the larger-than-expected differences in execu-
tion times. We would like to analyze and model these cach-
ing effects in the future. We also would like to investigate
applying our method to other machine models, and we
would like to try to generalize our method to the interproce-
dural code placement problem.
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9 Appendix: Algorithms for the
Directed Traveling Salesman Problem

In the Directed Traveling Salesman Problem (DSTP) as dis-
cussed in this paper, one is given cities and for each ordered
pair of cities a distance. The goal is to find a permutation of
the cities that minimizes the total length of the path from
city to city. This permutation can also be viewed as a walk
through the cities.

In practice, this problem appears to be much harder than its
symmetric variant (the STSP) in which one asks for a mini-
mum length tour (Hamiltonian cycle) rather than path, even
though each version reduces to the other via NP-complete-
ness transformations. For the symmetric case, branch-and-
cut algorithms have successfully solved non-trivial
instances with over 7,000 cities [1], and the iterated Lin-
Kernighan algorithm typically finds solutions within 1% of
optimal in reasonable time for instances with as many as
100,000 cities [10].

For the directed case, the best of the published optimization
codes [21] was unable to solve real-world instances with
only a few dozen cities, although it could solve instances
with random distance matrices having as many as 500,000
cities. Aiding it in the latter was the fact that for such ran-
dom instances, the optimal tour length equaled the assign-
ment problem (AP) lower bound, i.e, the minimum length
collection of disjoint directed cycles that covers all the cit-
ies. The most widely used approximation algorithms for this
problem are also designed to exploit small gaps between the
AP bound and the optimal tour length, as they are based on
patching together cycle covers into tours [14, 34]. Unfortu-
nately, a majority of the instances arising in the branch
alignment problem do not have this property. For instance,
in esp.tl, although 71 of the 179 relevant procedures yield
instances with the AP bound equal to the optimal tour, the
median gap for the remaining 108 is 30% and for 15
instances the optimal is over 10 times as long as the AP
bound.

Thus more sophisticated techniques are needed. It has
recently been observed [11] that one can get surprisingly

good results for a wide variety of DTSP instances by using
the standard NP-completeness transformation to convert an
instance of the DTSP to an equivalent one for the STSP, and
then applying an appropriately chosen algorithm from that
domain. We use an efficient implementation of the iterated
3-Opt algorithm for the STSP [10]. This algorithm, based
on an idea originally proposed by Martin, Otto, and Felten
[20], returns the best tour found over a succession of “itera-
tions”, where each iteration consists of running the 3-Opt
local search algorithm to exhaustion and then making a ran-
domly-chosen 4-Opt move [20]. Our DTSP to STSP trans-
formation replaces each city by a pair of cities, with the
edge between them locked into the tour (such locks being a
feature of our code for iterated 3-Opt). Experiments with
this approach to the DTSP suggest that it is competitive with
AP-based approaches when the AP bound is close to opti-
mal, and outperforms them otherwise [11]. It also appears to
outperform the algorithm of Kanellakis and Papadimitriou
[13], a variable-depth local search algorithm that works
directly with the DTSP, this conclusion based on compari-
sons to results reported for Repetto’s implementation of that
algorithm [24].

Iterated 3-Opt is a randomized algorithm, and can be further
randomized by the choice of the starting tour. Thus it pays
to run it more than once, and then take the best tour found.
For the purpose of this study, we ran it 10 times on each
instance, 5 times using randomized “Greedy” starts, 4 times
using randomized “Nearest Neighbor” starts, and once
using the original ordering given by the compiler. Each run
consists of2N iterations, whereN is the number of cities in
the original DTSP. We then output the best tour found. In
practice, this number of runs should not always be neces-
sary, and indeed on 128 of the 179 procedures inesp.tl it
was found on all 10 runs.

To evaluate the quality of the tours, we compute the Held-
Karp lower bound on optimal tour length [6, 7], a much
more sophisticated bound than the AP bound mentioned
above. This bound equals the solution to the linear program-
ming relaxation of the standard integer programming for-
mulation of the STSP, and has been empirically shown to lie
quite close to the true optimal for a wide range of symmetric
instance classes [12]. The quality of the bound appears to
carry over to the cases under consideration here, as shown
from the results presented in the main body of this paper.
For each of the programs covered in this paper, the sum of
the HK lower bounds was never more than 0.9% below the
total lengths of the tours found, and the average was less
than 0.3%. The worst gap between tour and bound for any
individual procedure instance was 14%, which occurred
twice. In one case the best tour found was optimal, in the
other the optimal tour lay somewhere between the HK
bound and the best found.


