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Near-Optimal PLL Design for Decision-Feedback
Carrier and Timing Recovery

Oded Yaniv, Senior Member, IEEE,and Dan Raphaeli, Senior Member, IEEE

Abstract—A new design method is presented for the design of
PLL loop filters for carrier recovery, bit timing, or other synchro-
nization loops given the phase noise spectrum and noise level. Un-
like the conventional designs, our design incorporates a possible
large decision delay and S-curve slope uncertainty. Large decision
delays frequently exists in modern receivers due to, for example,
a convolutional decoder or an equalizer. The new design also ap-
plies to coherent optical communications where delay in the loop
limits the laser linewidth. We provide an easy-to-use complete de-
sign procedure for second-order loops. We also introduce a design
procedure for higher order loops for near-optimal performance.
We show that using the traditional second-order loop is suboptimal
when there is a delay in the loop, and also show large improve-
ments, either in the amount of allowed delay, or the phase error
variance in the presence of delay.

I. INTRODUCTION

T HE phase-locked loop (PLL) principle has been success-
fully used for decades for tracking the carrier phase and

the bit timing. First- or second-order loops are sufficient in most
cases. Optimal design of PLL without delay in the presence of
oscillator phase noise is well known [11], [14]. Most modern
communication receivers incorporate coding and/or equaliza-
tion and/or partial response detectors, and it is advantageous or
sometimes necessary to use the output of the decoder or equal-
izer for data detection before phase or timing error informa-
tion is produced for the synchronization loop [6], [15], [19],
[20]. The decoder and/or equalizer creates delay into the op-
eration of the PLL used for the synchronization, and, for the
case when such delay becomes problematic, several authors pro-
posed combined detection and phase tracking, for example [15],
[22], or use less reliable tentative decisions [23]. Between the
two loops, the major problem is in the carrier tracking loop since
it needs to be wide enough to track the oscillator phase noise.
The timing loop works at the symbol rate rather than carrier fre-
quency, therefore its phase noise is normally lower and the loop
is allowed to be narrow. However, sufficient delay that can be
caused by the decoder (for example, a turbo decoder) can be
problematic even for timing loops. The problem of loop design
becomes complicated when there is a large uncertainty in the
phase detector S-curve slope, which translates to uncertainty in
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the loop gain. Causes for such uncertainty are numerous, such
as residual errors after AGC (or no AGC) in mobile receivers
or in burst-mode receivers, error rate change in decision feed-
back loops, timing errors, and intersymbol interference (ISI).
Although the implementation of the loop will be digital in most
cases, it is convenient to design first an analog loop and then
convert the controller to discrete form using standard techniques
such as the bilinear transform. In this way, the design is not de-
pendent on the sampling rate chosen, and the approximation is
very accurate if the sampling rate is much higher than the loop
delay. For example, the sampling rate is the symbol rate, and the
loop delay is tens of symbols. The case where the sampling rate
is lower than 10/delay is considered in a following paper.

When significant delay is incorporated into the PLL, the
second-order loop which is traditionally used is far from being
optimal and a new loop filter design is desired. The design
presented in this paper is very close to optimal with respect to
the mean square error of the phase in the presence of a known
delay, phase noise spectrum, requirements for specific gain and
phase margins, and given loop gain uncertainty. These margins
should be kept for any gain (within the range of uncertainty)
of the PLL open loop. These combined design constraints are
known in the feedback control community as mixed HH
synthesis with output feedback and plant uncertainty.

We use the notation “upper gain margin” for the maximum
amount of loop gain which the PLL can lose without losing sta-
bility and “lower gain margin” for maximum increase in loop
gain without losing stability. Both gain and phase margins en-
sure fast settling step response and eliminate closed-loop reso-
nances. For third and higher order PLLs, lower as well as upper
gain margins are mandatory in order to guarantee the stability
of the PLL.

A general treatment of optimal controller design for a loop
having only rational transfer functions in the loop is given in
[21]. Design of an optimal PLL with pure delay can be executed
to an arbitrary accuracy using a Padé approximation of high
enough order [9] (a Padé is a rational transfer function approxi-
mation of pure delay which preserves amplitude). The out-
come, of course, will be a complex loop filter, but second-order
approximation leads to satisfactory results. Unfortunately, for a
large delay, the optimal design will not satisfy the margins con-
straints. The approach taken here to solve the optimization is a
design process composed of two steps. The first step is the so-
lution of the optimal controller for PLL with delay when a Padé
approximation replaces the delay. The second step is based on
the feedback synthesis theory known as QFT [4], [12], [13]. The
QFT technique is applied to modify the loop filter designed in
the first step to satisfy the margins constraints. Finally, it was
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shown how to design an optimal PI (second-order) loop filter,
and it was shown that the optimal loop filter of the PI form is
not satisfactory in case of significant delay and/or reasonable
gain uncertainty.

The proposed design methodology also suits other fields such
as optical communication using coherent detection and RF syn-
thesizers. Although the theory developed here takes place in
continuous time, the same approach can be used for a discrete
time PLL.

Most of the work on PLLs with delay was done in the frame-
work of optical communications. In [2] the loop filter com-
plexity was bypassed, for the usual laser phase noise spectrum,

, assuming the loop filter is of the PI form ,
and a design technique to calculate the optimalwas pre-
sented. In [18], first and second Padé approximations were used
to estimate the degradation of the phase noise variance com-
pared to zero delay, and the loop filter again is of the PI form.
Treatment of the effect of time delay on the overall phase error
variance was also discussed in [10]. Here again, the same sim-
plified PI loop filter was used and the optimal criterion was the
parameter which was calculated numerically. The signifi-
cance of the loop delay on the stability of discrete time PLLs was
discussed quantitatively in [3]. Finally, we would like to men-
tion that loop delay also degrades the PLL loop pull-in range.
For a quantitative discussion based on a simple loop filter, see
[17]. The structure of this paper is as follows. After the problem
statement, an algorithm for a high-order loop will be developed.
Next, an independent design procedure is given for loops having
the PI form (second-order loops).

II. STATEMENT OF THE PROBLEM

There are various forms for PLLs; however, without loss of
generality, we can treat the basic PLL form used for tracking a
sinusoid of frequency . The PLL model used here is depicted
schematically in Fig. 1(a). It consists of a phase detector, loop
filter , voltage-controlled oscillator (VCO), and an optional
pure delay which represents the undesired effect, for example,
of a decision delay in a decision feedback loop. The inputs to
the phase detector are two signals: the sum of the carrier with
phase modulation or phase noise and noise

and the VCO output

The output of the phase detector, assuming it includes an appro-
priate low-pass filter, is

In other forms of PLLs, the function may be replaced
with other appropriate functions which are frequently called
S-curve functions. When tracking, the PLL can be approximated
for small phase errors by the linear model as depicted schemat-
ically in Fig. 1(b), and its open loop transfer function is

(1)

Fig. 1. (a) PLL schematic model and (b) its linear approximation.

Our problem is to design a loop filter that minimizes the
phase error variance , subject to the following data and con-
straints

• The power spectral density of the noise,, is .
• The power spectral density of the phase modulation or

phase noise,, is . We assume that and are un-
correlated.

• The open loop delay is .
• The phase detector gain,, is fixed but only known to

belong to an interval where and are
known (for example, it reflects AGC inaccuracies). Note
that if changes slowly within its allowed interval, the
closed-loop response in the time range, whereis about

, will be approximately as if .
• The open-loop response should have some gain and phase

margins in order to guarantee a well-damped closed-loop
response. These margins are defined here by a constant
or alternatively by a constantsuch that

or (2)

for all real and .
The parameter determines the gain and phase margins by

dB deg

and the parameterdetermines the gain and phase margins by

dB deg (3)

For example, if and there is no gain uncertainty, the
guaranteed phase and gain margin are 45and 10 dB and the
guaranteed damping factor (assuming second order model) is
0.4; if one adds 8 dB gain uncertainty (that is,
), the guaranteed phase margin will not change but the gain

margin will be 18 dB for the low and 10 dB for . For the
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correlation between the margins, damping ratio and closed-loop
time response such as step, overshoot, etc.; see [7].

III. T HE PROPOSEDALGORITHM

The Laplace transform of is given by

and its variance (assuming zero mean) is

(4)

From now on, for clarity, the factor will be omitted.
The solution for which minimizes (4) where the margin
conditions are ignored and the pure delay is approximated by
a rational transfer function, is a standard stationary filtering
problem. For a review and extensions, see [21]. The algorithm
which is developed here is based on coprime factorization and
controller parameterization [8]. The purpose of the derivations
to follow is twofold. It allows us to get the optimal solution, and
it allows us to modify the optimal solution in a way that is suit-
able for the application of the a tool from feedback synthesis
theory known as QFT [4], [12], [13] in order to meet the margin
conditions while minimizing .

Since depends on (and not on its components), we
shall incorporate, for simplicity of the representation, the free
integrator into . The open loop will then be

where (5)

Let be a rational transfer function approximation of
. Using the algorithm from [8, ch. 5], we can find polyno-

mial transfer functions , , , and , such that
is a coprime factorization over the family

of all stable, rational, and proper transfer functions, and
and belonging to the same family satisfying

For example, if a first-order Padé approximation is used, that is
then

, , , and .
According to the theory found in [8, ch. 5], stabilizes

the PLL if and only if

(6)

where is any stable proper and rational function.
Let us denote the spectral factorization of and by

(7)

where and are proper minimum-phase stable
transfer functions. Substituting (6) and (7) into (4) gives

(8)

Using the notation where is all-pass and
stable minimum-phase, the integrand of (8) at

reduces to

(9)

where the subscript stands for the unstable part of the transfer
function and for its stable part (that is, ). We
use now the observation that in time domain

. This is because by definition has only right
half-plane poles, thus at , and similarly
has only left half plane poles, thus at , hence

, and (9) becomes

(10)

From (10) it is clear that minimizes if and only if it mini-
mizes (removing terms not depending on)

(11)

where the last equality is used to define , , , and
, respectively. By complex arithmetic, it can be shown that

(12)
where and satisfy the following equations:

(13)

(14)
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Equation (13) has power spectral density form, hence is
minimum phase and stable. Therefore, the stable which
minimizes (also ) is the one that minimizes (after re-
moving terms not depending on)

(15)

Since is minimum phase, its inverse is stable, thereforeis
minimum at

(16)

and by (6) at

(17)

Due to the phase detector gain uncertainty,depends on the
phase detector gain. Since , the argument of each
integral in (4) in low frequencies is approximately proportional
to , and since in general the spectral density ofis con-
centrated in low frequencies and that of is white, we shall
assume the following.

Assumption 3.1:The maximum of over
is .

This assumption means that a solution that minimizes
subjected to all other constraints is a solution to our problem.

Clearly for is the solution we seek only if
the closed loop satisfies the gain and phase margin specification
for all possible loop gains. However, if the open-loop gain un-
certainty is large and/or the desired margins are large and/or the
delay is too large compared to the PLL open-loop bandwidth,

will not be a satisfactory solution. It might even desta-
bilize the system for some of the possible open-loop gains (most
likely for high gains). Our next step is devoted to synthesizing
an appropriate by modifying .

Let us assume that the gain and phase margin specifications
are of the form

(18)

Let us write the desired which satisfies the specs at
as

(19)

where needs to be found. Then, if , , , and are the
spectral factorization of , we have (20), shown at the bottom of
the page. Hence, inequality (18) reduces to (21), the inequality
on the transfer function , shown at the bottom of the page.
Moreover, by (15)

(22)

where means computed using . Hence,
is less than by the2-normof . Equations

(21) and (22) translate our problem into the following constraint
optimization problem: find a stable transfer function, ,
whose2-norm is as small as possible that satisfies inequality
(21) at all . The solution we seek will be of (6), where

is defined in (19). This problem can be solved within the
framework of the feedback synthesis theory known as QFT
[4], [12], [13]. The QFT technique modified to our problem, as
stated above, is now described with the help of an example.

A. Example 1

The example parameters are (units are radians and seconds):
, , open-loop delay which

is approximated by a second-order Padé approximation [9]

and AGC gain, , which can be any value in the interval
. The margins constraint is of the form dB,

which guarantee 45phase margin and 5-dB gain margin for
and 11 dB for . These margins are about the

lowest one can choose for proper PLL operation [16].
For the AGC gain , the optimal filter calculated

by the algorithm described above, is

(23)

(20)

(21)
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Fig. 2. Complex plane regions for�(j!) at some frequencies. The plot of
�(j!) versus! is shown and the appropriate�(!) is marked by�.

Using a Bode plot of the open loop of (1), one can show
that the gain and phase margins are approximately 35and 7.5
dB, respectively, which is 10and 3.5 dB less than required by
the specification dB. The other transfer
function is involved in calculating where

These expressions for , , and are reduced order
(approximations with less poles and zeros of the original de-
signs). Any approximation technique can be used with the cri-
terion of being as close as possible to the norm of [see
(15)]; the Matlab minreal.m function is an excellent approxima-
tion for that purpose. The next step is to design , which is a
two-step procedure. First we calculate inequality (21). This in-
equality on for each frequency and fixed is a circle in
the complex plane using real imaginary coordinates [5]. The in-
tersection of all these circles over all’s in the specified interval

is the region in the complex plane in which is
allowed to take values. These regions are shown in Fig. 2 using
amplitude and phase coordinates instead of real imaginary co-
ordinates. For example, at , should be inside the
closed curve marked 70; at , should be inside
the closed curve marked 100; and at should be
below the curve marked 30, which is in fact a closed curve in
the real imaginary plane.

The next step is to design such that is within
the allowed region and its2-norm is as small as possible.
This process is a trial-and-error process known as loop
shaping among the control community. One can start with a
second-order transfer function and iterate on its parameters,

Fig. 3. Time-domain simulation for a phase step, faster response forA = 2,
slower forA = 1.

Fig. 4. Comparison between the designF (s) which satisfies the margin
constraints and the optimal one,F (s), which does not satisfy these constraints.

then add more elements such as lead, lags, etc., until a satisfac-
tory result is obtained. For our example, the shaped is

This designed appears in each subplot in Fig. 2 and the
relative frequencies are marked by; clearly, at each frequency,
it is within its allowed region. After performing model reduction
(by canceling close pole/zero pairs), the loop filter is

The PLL was simulated for a phase step for and ,
and the simulation is shown in Fig. 3.

Fig. 4 compares the open loop which was calcu-
lated for and the open loop which also sat-
isfies the margin constraints. The comparison uses the Nichols
instead of the Bode plot because the phase and gain margins
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Fig. 5. Phase noise spectral density (solid line) and/ 1=! (dashed line).

are easily compared. Also depicted in Fig. 4 is a closed region.
This region means that for must be outside
it, at all frequencies, in order to satisfy the margin conditions

dB for all . Clearly the so-
lution satisfies the margin constraints whiledoes not. For

, which is 2.8 dB more than the result
using the solution which ignores the margin specs and uncer-
tainty of (23) for which . It will be shown in
Section IV that, when restricting ourselves to a second-order
loop, and which is 3.5 dB more
than the nonrestricted order design (12.8).

B. Example 2

This is a practical design example for a coded-modulation
system employed by the company HeliOss Communica-
tion Inc.,Waltham, MA, who build a very high speed, 155
Mb/s, microwave link at around 30 GHz for transmission of
SDH/SONET. They use convolutionally coded QAM modu-
lation. The relevant parameters are as follows. The required
minimum average power of the received signal multiplied by
the bit duration, , divided by the noise spectral density
(that is ) is 11 dB, and the decoder delay is 77 bits. As-
suming that correct symbols are fed back, the normalized noise
spectral density is dB/Hz. The measured phase noise
spectrum is shown in Fig. 5. In the relevant frequency range,
it can be approximated by the function also shown
in Fig. 5. The noise is assumed to be white, and the system
delay is s. It is required to design the PLL filter,

, such that phase margin of 40will be guaranteed when
the AGC uncertainty can be any value in the interval [1], [2],
i.e., 6-dB peak to peak. The optimal solution (ignoring margin
constraints) has a gain margin of 9 dB and a phase margin of
38 , which does not satisfy the closed-loop requirements, and
the phase error is . A design subject to the margins
and uncertainty constraints using the technique presented here
after model reduction, whose criterion is minimum is ( in
krad/s)

Fig. 6. Modified�-curves for phase margin 40and gain uncertainties from
0 dB to 18 dB every 2 dB, also shown area (n), b (n) and the pointsn at
the intersections, marked�. The points marked� are the points that minimize
� (1; 0; 1) on the modified�-curve.

with phase error . This result is better by 7.7 dB if we
restrict ourselves to a second-order design (see Section IV-A-I).

C. The Solution for and White Noise

Since the near-optimal design method described above
is quite complex, we have chosen a very common case of
parameters and solved it fully. The result is a cookbook for
PLL design with delay, which can be used if the phase noise
spectrum can be approximated as and if the
margins assumed here are appropriate. Let

and (24)

where is constant and is the usual white noise density.
Equation (5) gives

(25)

where
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Clearly , which minimizes of (25), depends only
on , in the sense that if minimizes for then

minimizes for ; moreover, for given

(26)

We therefore use the design technique developed here to present
a PLL designer ’s which suits different ’s. We limit our-
selves to ’s which have only two free integrators, phase
margin 40 and uncertainty (which is equivalent
to a phase margin of 40and gain margin 16 dB which is in the
reasonable PLL operation range).

By checking many cases, it was found that for the
optimal solution satisfies the margin specifications; therefore,
the case where is not an interesting case here. On the
other hand, as increases, converges to a single solution.
We found that approximately stays constant for

. Our designs are summarized below normalized for
:

The values for as a function of are given in
Fig. 7. Note that, for given spectrum structure [especially (24)]
as and , converges to its value for

. Based on the above results, a step-by-step procedure
for delayed PLL design is as follows.

1) Calculate .
2) If , use a PI loop filter or any optimal existing

technique.
3) If , the open loop is using

.
4) If , choose the closest from the

table above, then use .
5) Calculate via Fig. 7 and (26).

Fig. 7. � , its noise contribution� , and its phase noise� versusB .

IV. L OOPFILTERS HAVING A PI FORM

A restricted orderloop filter is a loop filter which has less
poles and zeros than the optimal loop filter. There are three rea-
sons for using a restricted order loop filter: 1) reduction of com-
putation effort in real time; 2) the design of a restricted order
loop filter may be simpler and faster; and 3) the restricted order
loop filter can be close enough to the optimal loop filter. The
drawback of using a restricted order loop filter is when 3) is not
satisfied, that is, it produces too much error compared to a non-
restricted order design.

The PLL open loop when the loop filter is PI can be written
as follows:

(27)

and the two parameters to design areand . Since can
be written as a function of , the range of for all real
does not depend on. Therefore, if margin specification of the
form

(28)

is satisfied for some , it is satisfied for any . This normalizes
the problem for the margin specification for all, and

will be picked in the following. Let us now denote by a
frequency for which (28) is satisfied with equality. Explicitly
there exists such that

and is an extremum point of . Hence

(29)

(30)
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Fig. 8. (a; b) curves for different phase margins, marked on its right side. Also,
the location of(a; b)’s which minimize� on the�-curves and their

p
n values.

From (30), we have (31), shown at the bottom of the page. The
solution of (29) and (31), for given, as a function of is a
curve in . These curves are functions of the
parameter which dictates phase marginaccording to (3); we
shall therefore call them the-curves or -curves. These curves
are depicted in Fig. 8. Clearly, these curves cannot intersect.
Moreover, if we denote by the region inside the curve of
phase margin , then if (equivalently,
if ). Therefore, any curve splits into
two regions, in which inequality (28) is satisfied and its
complement in which inequality (28) is not satisfied. For ex-
ample, if a phase margin of 40is required (which is equivalent
to dB and 10 dB gain margin), then for the
allowed values for are , and for ,

.
The extension to gain uncertainty is now straightforward: if

it is known that the gain can increase bydB then the allowed
region, , is the intersection of and the region shifted
down by dB (to protect against possible gain increase ofdB).
For example, if phase margin of 40is required, , and

dB, then dB dB, and if
then dB dB, that is, no tolerance in.
Therefore, if dB, cannot be used. The maximum
gain range a PI loop filter can tolerate as a function of the phase
margin for different values of can easily be retrieved from
Fig. 8. For example, at 40and , the gain uncertainty
range can be 19 dB, that is, in order to handle 19 dB uncertainty
with , the chosen gain must be dB
and the gain margin of is between 10 dB for the maximum
gain and 29 dB for the minimum gain. If, for example, the phase

margin is 42 and the gain range is 10 dB, then must be
picked in order to satisfy inequality (28) by all possible
which suffers from 10 dB gain uncertainty.

Now let us suppose that , where a PI loop filter is used, has
a unique minimum, which does not satisfy given margin con-
straints . Then, the pair which minimizes subjected
to the margin constraint must lie on the surface of , that is,
on the -curve. In that case, the design process reduces into an
extremum problem with a single parameter and single minimum
as follows.

1) Pick the curve from Fig. 8 for the chosen phase
margin specification, and modify it to the appropriate gain
uncertainty as described above.

2) Find along the curve picked in 1 the extremum of

(32)

3) The PI optimal loop filter will then be

where and .

A. The PI Solution for and White Noise

We treat here the case

and (33)

where is a constant and is the usual white noise density.
Substituting into (32) gives

(34)

Clearly

(35)

thus the pair which minimizes depends only on the
single parameter . Note that is defined in (26) but

(31)
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Fig. 9. (a)
p
n as a function ofb . (b) b (�) (solid line) (a can be picked

from Fig. 8 andb which minimizes� (1; n = 0; 1) on the same�-curve
(dashed line).

we use for clarity. Let be the point that mini-
mizes as a function of . The curve is plotted
on top of the -curves in Fig. 8. Let us further denote the in-
tersection point of the curve with a -curve by

, , and . For example, if a phase margin of 40
is required assuming no gain uncertainty, then ,

dB and . , were calculated as
follows: first in (34) is written as

Hence, , minimizes for some if

and (36)

The two partial derivative ratios in (36) where calculated along
each of the -curves in Fig. 8 and it was found that they have a
unique intersection, whosevalue is written on its -curve in
Fig. 8. This proves, numerically, that has a unique min-
imum. Moreover, we observe that is a monotonicaly in-
creasing function of . The same results are depicted in Fig. 9
which includes a graph of as a function of and a graph of

.
Fig. 9(b) also shows which minimizes on

the -curve. Since the two curves in Fig. 9(b) almost coincide,
and the solution for constrained minimization of for
must lie on the -curve, the , pair, for a very good
approximation, minimize for any . But
this will not be the case if uncertainty is introduced. Fig. 6 de-
picts modified -curves for a phase margin of 40and uncer-
tainties between 0 dB and 18 dB every 2 dB. at the in-
tersection of , with the modified -curve is marked
on each curve. For , the pairs which minimize

on the modified -curve move along that curve to-
ward the point markedwhich is the minimum point for .
Finally, Fig. 10 depicts , , , and on the point

, as a function of .

Fig. 10. The phase error� , the phase noise contribution� , the thermal noise
contributionn B andn versus phase margin.

1) Example 3.2—Continuation:For 40 phase margin and
6 dB gain margin, use Fig. 6 to get dB and ,
then

whose

2) Tradeoff Amongst Restricted Order, Delay Time, and
Phase Noise:The first tradeoff is based on (34) which states
that when is small enough then the thermal noise contribu-
tion in (35) is neglected and therefore .

The next tradeoff we are interested in is by how muchcan
be reduced by a loop filter designed by the method of Section III
compared to a PI loop filter. The answer provided here is based
on an example whose parameters are: , can
be neglected, open loop delay , and gain uncertainty

in the interval , that is, 8 dB uncertainty. The
margin specification is of the form dB, which
guarantees a 40phase margin and 10-dB gain margin for

and 18 dB for .
Using Fig. 6 for 8-dB uncertainty, dB and .

For that PI loop filter, . Using the suboptimal method-
ology described herein, the loop filter is

for which . This figure is half of that figure when an
optimal PI loop filter is used. By (35), it is equivalent to a 3-dB
reduction of the phase noise spectral density or 25% in the delay
time.

V. CONCLUSION

We have presented a design method for near-optimal PLL
taking into consideration the phase noise, the thermal noise, the
undesired but unavoidable loop delay caused by delayed de-
cisions, and margins for protection from gain uncertainty and
insuring good step response. The method is general and can
be used with any PLL. We find its main application in carrier
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tracking since a wide-loop bandwidth is required to track the
phase noise. We do not limit the loop order to be second order,
and we demonstrate a large performance gain with respect to a
well-designed second-order loop.
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