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Near-Optimal PLL Design for Decision-Feedback
Carrier and Timing Recovery

Oded Yaniy Senior Member, IEEEgnd Dan RaphaeglSenior Member, IEEE

Abstract—A new design method is presented for the design of the loop gain. Causes for such uncertainty are numerous, such
PLL loop filters for carrier recovery, bit timing, or other synchro-  as residual errors after AGC (or no AGC) in mobile receivers
nization loops given the phase noise spectrum and noise level. Un-o i 1yrst-mode receivers, error rate change in decision feed-

like the conventional designs, our design incorporates a possibleb K timi d int bol interf S|
large decision delay and S-curve slope uncertainty. Large decision ack loops, timing errors, and intersymbol interference (ISI).

delays frequently exists in modern receivers due to, for example, Although the implementation of the loop will be digital in most

a convolutional decoder or an equalizer. The new design also ap- cases, it is convenient to design first an analog loop and then
plies to coherent optical communications where delay in the loop convert the controller to discrete form using standard techniques
limits the laser linewidth. We provide an easy-to-use complete de- such as the bilinear transform. In this way, the design is not de-

sign procedure for second-order loops. We also introduce a design dent on th i te ch dth imation i
procedure for higher order loops for near-optimal performance. pendent on theé sampling raie chosen, an € approximation I1s

We show that using the traditional second-order loop is suboptimal  Very accurate if the sampling rate is much higher than the loop
when there is a delay in the loop, and also show large improve- delay. For example, the sampling rate is the symbol rate, and the
ments, either in the amount of allowed delay, or the phase error loop delay is tens of symbols. The case where the sampling rate

variance in the presence of delay. is lower than 10/delay is considered in a following paper.
When significant delay is incorporated into the PLL, the
. INTRODUCTION second-order loop which is traditionally used is far from being

HE phase-locked loop (PLL) principle has been succesptimal and a new loop filter design is desired. The design

fully used for decades for tracking the carrier phase amyiesented in this paper is very close to optimal with respect to
the bit timing. First- or second-order loops are sufficientin mo&t€ mean square error of the phase in the presence of a known
cases. Optimal design of PLL without delay in the presence $¢lay. phase noise spectrum, requirements for specific gain and
oscillator phase noise is well known [11], [14]. Most moderRhase margins, and given loop gain uncertainty. These margins
communication receivers incorporate coding and/or equaliZ&{lould be kept for any gain (within the range of uncertainty)
tion and/or partial response detectors, and it is advantageou§bthe PLL open loop. These combined design constraints are
sometimes necessary to use the output of the decoder or egfawn in the feedback control community as m|_xe§i/ He
izer for data detection before phase or timing error informgynthesis with output feedback and plant uncertainty.
tion is produced for the synchronization loop [6], [15], [19], Ve use the notation “upper gain margin” for the maximum
[20]. The decoder and/or equalizer creates delay into the ggnountof loop gain which the PLL can lose without losing sta-
eration of the PLL used for the synchronization, and, for tHllity and “lower gain margin” for maximum increase in loop
case when such delay becomes problematic, several authors Bfé? without losing stability. Both gain and phase margins en-
posed combined detection and phase tracking, for example [134]'€ fast settling step response and eliminate closed-loop reso-
[22], or use less reliable tentative decisions [23]. Between tR@nces. For third and higher order PLLs, lower as well as upper
two loops, the major problem is in the carrier tracking loop sinc@&in margins are mandatory in order to guarantee the stability
it needs to be wide enough to track the oscillator phase noiéthe PLL. ) )
The timing loop works at the symbol rate rather than carrier fre- A general treatment of optimal controller design for a loop
quency, therefore its phase noise is normally lower and the loBVing only rational transfer functions in the loop is given in
is allowed to be narrow. However, sufficient delay that can dé1l- Design of an optimal PLL with pure delay can be executed
caused by the decoder (for example, a turbo decoder) can!®én arbitrary accuracy using a Padé approximation of high
problematic even for timing loops. The problem of loop desig%”o}igh order [9] (a Padé is_a rational transfer function approxi-
becomes complicated when there is a large uncertainty in fR@tion of pure delay~>" which preserves amplitude). The out-

phase detector S-curve slope, which translates to uncertaintg@ne, of course, will be a complex loop filter, but second-order
approximation leads to satisfactory results. Unfortunately, for a
large delay, the optimal design will not satisfy the margins con-
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yaniv@eng_tau.ac.il; danr@eng.tau.ac.il ). QFT technique is applied to modify the loop filter designed in
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shown how to design an optimal Pl (second-order) loop filter e
and it was shown that the optimal loop filter of the PI form is — | Phase | o, | Delay
not satisfactory in case of significant delay and/or reasonab Detector Tsec.
gain uncertainty. A

The proposed design methodology also suits other fields sut v (a)
as optical communication using coherent detection and RF sy
thesizers. Although the theory developed here takes place
continuous time, the same approach can be used for a discr
time PLL.

Most of the work on PLLs with delay was done in the frame- n
work of optical communications. In [2] the loop filter com-
plexity was bypassed, for the usual laser phase noise spectru A ST L sl Fyg)
~ 1/f2, assuming the loop filter is of the Pl for@tw,, + w2, +
and a design technique to calculate the optimalwas pre- n
sented. In [18], first and second Padé approximations were us 9 (b)
to estimate the degradation of the phase noise variance col 1
pared to zero delay, and the loop filter again is of the PI form s
Treatment of the effect of time delay on the overall phase errc.
variance was also discussed in [10]. Here again, the same SHE].‘L
plified Pl loop filter was used and the optimal criterion was the

parametekv,, which was calculated numerically. The signifi- . . . L
cance of the loop delay on the stability of discrete time PLLs w&r problem is to design a loop filtdr(s) th"?‘t minimizes the
discussed quantitatively in [3]. Finally, we would like to menPPase error variance;, subject to the following data and con-

tion that loop delay also degrades the PLL loop pull-in ranggtraints

For a quantitative discussion based on a simple loop filter, see ® The power spectral density of the noisgjs @, (w).

[17]. The structure of this paper is as follows. After the problem * The power spectral density of the phase modulation or
statement, an algorithm for a high-order loop will be developed. ~ Phase noisé, is ¢4(w). We assume tha andn are un-
Next, an independent design procedure is given for loops having ~ correlated.

Y

F(s)

vCO

A

(a) PLL schematic model and (b) its linear approximation.

the PI form (second-order loops). * The open loop delay i¥'.
» The phase detector gaini, is fixed but only known to
Il. STATEMENT OF THE PROBLEM belong to an intervali € [4;, As] whereA; and A, are

known (for example, it reflects AGC inaccuracies). Note
that if A changes slowly within its allowed interval, the
closed-loop response in the time range, whérie about

Ag, will be approximately as ifA = Ag.

The open-loop response should have some gain and phase
margins in order to guarantee a well-damped closed-loop
response. These margins are defined here by a constant
or alternatively by a constaitsuch that

There are various forms for PLLs; however, without loss of
generality, we can treat the basic PLL form used for tracking a
sinusoid of frequencyg. The PLL model used here is depicted
schematically in Fig. 1(a). It consists of a phase detector, loop ,
filter F(s), voltage-controlled oscillator (VCO), and an optional
pure delay which represents the undesired effect, for example,
of a decision delay in a decision feedback loop. The inputs to
the phase detector are two signals: the sum of the carrier with
phase modulation or phase note) and noisen(t) ‘ L{jw) ‘ ‘ 1

1+ 2G| =7 [T+ 100 | @

y(t) = V2Asin(wot + 0(t)) + n(t)
and the VCO output
o(t) = V2 cos(wot + B(t)).

for all realw and A € [A;, As].
The parametet determines the gain and phase margins by

1 1
o 20log 2 dB; 2sin!_— deg
The output of the phase detector, assuming it includes an appro- v 2y

priate low-pass filter, is and the parameteérdetermines the gain and phase margins by

e(t) = Asin(f — 6(t)) + n(2).

20log 6
In other forms of PLLs, the functiorin(x) may be replaced 6—1
with other appropriate functions which are frequently callegdy, example, if§ = 1.4 and there is no gain uncertainty, the
S-curve functions. When tracking, the PLL can be approximatgflaranteed phase and gain margin are @%d 10 dB and the
for small phase errors by the linear model as depicted schemgtaranteed damping factor (assuming second order model) is
ically in Fig. 1(b), and its open loop transfer function is 0.4; if one adds 8 dB gain uncertainty (thati8Jog(As /A;) =

1 8), the guaranteed phase margin will not change but the gain

—sT . .

L(s) = A;F(S)C . (1) margin will be 18 dB for the low4; and 10 dB forA.. For the

dB; 2sin ! 2%5 deg 3)
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correlation between the margins, damping ratio and closed-lompere ¢,,(s) and ¢4(s) are proper minimum-phase stable

time response such as step, overshoot, etc.; see [7]. transfer functions. Substituting (6) and (7) into (4) gives
[Il. THE PROPOSEDALGORITHM o2 = / |M(Y — NQ)<7)n|2 dw
The Laplace transform of(¢) is given by T e y
+/ |IN(X + MQ)ps|” duw. (8)
4o 1 -
e(s) = 1+ L(S)”(S) + 1+ L(S)e(s) Using the notgtiprNM = UspUmp yvhereUaP is all-pass and
Unmp Stable minimum-phase, the integrand of (8)sat= jw
and its variance (assuming zero mean) is reduces to
1 oo L{jw) 2 |MY¢n - Uva,p[]mpff)ncﬂ2 + |NX¢0 + UapU111p¢0Q|2
o2 :—/ —A |, (w)dw LMY INX U
€ 2w oo 1+ L(Jw) | ap ¢n - mp¢nQ| + | ap ¢0 + mp¢9Q|

2 (UMY, UMY ) — U
Pp(w)dw. 4) ‘ ap 1) un + (Vap $n) p® Q

1 > 1
+%/_oo‘1+L<jw> ) 2
|05} + UV, + Vi)

From now on, for clarity, the factof2=)~! will be omitted. (9)
The solution forF'(s) which minimizes (4) where the margin
conditions are ignored and the pure delay is approximated Wjere the subscripin stands for the unstable part of the transfer
a rational transfer function, is a standard stationary filterirignction andst for its stable part (that isy = 2y, + z5¢). We
problem. For a review and extensions, see [21]. The algorith#ie now the observation that in time doméin, + x.:|*
which is developed here is based on coprime factorization alaa | + |- This is because by definition,, has only r|ght
controller parameterization [8]. The purpose of the derivatiofé&lf-plane poles, thus,,(t) = 0 at¢ > 0, and similarlyz;
to follow is twofold. It allows us to get the optimal solution, and1as only left half plane poles, thus(t) = 0 att < 0, hence
it allows us to modify the optimal solution in a way that is suitZunZs; = 0, and (9) becomes

able for the application of the a tool from feedback synthesis 0o 9
theory known as QFT [4], [12], [13] in order to meet the margin o2 :/ <‘ (Up MY 6
conditions while minimizing>2. - )

Sinpeae? depends orL(s)_(gnd not on its compo_nents), we + ‘(Uap My¢n) _ Ump%Q‘ )
shall incorporate, for simplicity of the representation, the free
integrator intoF(s). The open loop will then be +/ <‘ (Uap NXd)g) ‘

L(s) = Af(s)e="T, wheref'(s) = &) (5 -
| s + (U3 N X0) , + UnpaQ| ) do.
Let P(s) be a rational transfer function approximation of (10)

T, Using the algorithm from [8, ch. 5], we can find polyno-
mlaI transfer functionV(s), M(s), X (s), andY (s), such that From (10) itis cleiir thaf) nglglmlzedScf if and only if it mini-
P(s) = N(s)/M(s) is a coprime factorization over the familymlzes (removing terms not depending Q)

of all stable, rational, and proper transfer functions, ah@) ) 0 2
andY (s) belonging to the same family satisfying Te1 :/_ <‘ (Uap MY%) - Ump‘/)nQ‘
N(s)X(s)+ M(s)Y(s) =1. + ‘(UaLp NX(j)g) + Umpd)gQ‘ ) dw
For example, if a first-order Padé approximation is used, that is d:ef/ (|a(3) + b(s)Q|2 T le(s) + d(s)Q|2) dw
P(s)=(1—-sT/2)/(1+ sT/2) thenN = (1 — sT/2)/(1 + —oo s=je
sT/2), M =1, X(s) = 1, andY (s) = sT/(1 + sT/2). (11)
According to the theory found in [8, ch. 5f(s) stabilizes o i
the PLL if and only if where the last equality is used to defiaés), b(s), ¢(s), and
d(s), respectively. By complex arithmetic, it can be shown that
. X+MQ1 )
F(s)= ————— 6
&)=Y _Nga O 2@ = [ (lo+ QP+l o)
h (12)

whereQ(s) is any stable proper and rational function.
Let us denote the spectral factorizationdgf/A? and®, by
o, B(s)B(—s) =b(s)b(—s) + d(s)d(—s) (13)
2 = Pn(s)pn(=s), o = do(s)de(—s) () a(—s)f(s) =b(s)a(—s) + d(s)c(—s). (14)

wheregd(s) anda(s) satisfy the following equations:
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Equation (13) has power spectral density form, hefice is Let us write the desired which satisfies the specs dt= A,
minimum phase and stable. Therefore, the stdple) which as

minimizeso? (alsoc?) is the one that minimizes (after re- A(s)
moving terms not depending @p) Q = Qops — s) (19)
o%,(Q) = / (Iaun|2 o + /3Q|2) dw.  (15) WhereX(s) needs to be found. Then i, V, X, andY’ are the
—oc0 spectral factorization aP, we have (20), shown at the bottom of

the page. Hence, inequality (18) reduces to (21), the inequality

Since/3 is minimum phase, its inverse is stable, thereferes on the transfer function(s), shown at the bottom of the page.

minimum at Moreover, by (15)
ast(s) def K 00
—_ 0., 16 Ajw) :
OB A9 02 (@ = 500 ) = 0 @) = [ MG (22
and by (6) at where o?(x) meansc? computed using? = z. Hence,
) Xt MQupe 1 aut = 2(Qopt) is less thar2(Q) by the2-normof A(s). Equations
= B Fopi(s). (17) (21) and (22) translate our problem into the following constraint

) =5—~No
Y= NQopi A optimization problem: find a stable transfer functiok(s),

whose2-normis as small as possible that satisfies inequality
(21) at allw. The solution we seek will b of (6), where

a@ is defined in (19). This problem can be solved within the

framework of the feedback synthesis theory known as QFT
[4], [12], [13]. The QFT technique modified to our problem, as

stated above, is now described with the help of an example.

Due to the phase detector gain uncertainfydepends on the
phase detector gaid. SinceL(s) « A, the argument of each
integral in (4) in low frequencies is approximately proportion
to 1/A%, and since in general the spectral densityefis con-
centrated in low frequencies and that®f is white, we shall
assume the following.

Assumption 3.1:The maximum ob2(A) overA € [A;, As]
is O’E(Al).

This assumption means that a solution that minimizesi; ) The example parameters are (units are radians and seconds):
subjected to all other constraints is a solution to our problem®s = 507 /w*, ®,, = 0.01%, open-loop delay” = 0.01 which

Clearly .. (s) for A = A, is the solution we seek only if iS @pproximated by a second-order Padée approximation [9]

A. Example 1

the closed loop satisfies the gain and phase margin specification L2
for all possible loop gains. However, if the open-loop gain un- =T (=5 )2’
certainty is large and/or the desired margins are large and/or the (#)

delay is too large compared to the PLL open-loop bandwidth,

F.p:(s) will not be a satisfactory solution. It might even desta@Nd AGC gain,A, which can be any value in the interval €

bilize the system for some of the possible open-loop gains (mokt2l: The margins constraintis of the forf/(1+ L)| < 3 dB,
likely for high gains). Our next step is devoted to synthesizingh'Ch guarantee 45phase margin and 5-dB gain margin for
an appropriaté’(s) by modifying Qop:. = 2 and 11 dB forA = 1. These margins are about the
Let us assume that the gain and phase margin specificatidfi¥est one can choose for proper PLL operation [16].
are of the form For the AGC gaind = 1, the optw_nal filterF'(s) calculated
by the algorithm described above, is

L APF -
‘ - L‘ === =a vaelnal @9 sy — 130+ 35.3)(s + 400 )
1+ omjo s(s2 + 7505 + 6002)
L | AN(X + MQ)
1+L| |AMY-NQ)+ANX +MQ)
AN(X + MQop) — 2 N(s)
- ’ AIMN—-ANM (20)
ALM(Y — NQopt) + AN(X + M Qopt) + =525 A(s)
AN(X + MQop) — 2EMA(s)
: S <wv, VA€E[A,A 21
ATM(Y — NQopt) + AN(X + MQopt) + MMS) - v [A1, Ag] (21)
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; h =3'00 : —0.5 1 L L I L
_5? 0 0.05 0.1 0.15 0.2 0.25 0.3
-180 —13% -80 -30 -180-130 -80 -30 -180-130 -80 -30 time

eg

Fig. 3. Time-domain simulation for a phase step, faster responsé fer2,
Fig. 2. Complex plane regions for(jw) at some frequencies. The plot of slower for4 = 1.
A(jw) versusw is shown and the appropriaiéw ) is marked byx.

Nichels Charts

Using a Bode plot of the open loaf(s) of (1), one can show
that the gain and phase margins are approximatelyaB8l 7.5
dB, respectively, which is F0and 3.5 dB less than required by
the specificatior)L /(1 + L)| < v = 3 dB. The other transfer
function is involved in calculating’(s) where

sT

272 | sT | 1

g+ +1
$2T2 sT

M=1, N-= oo+l
’ 5272 sT

16 +5 + 1 T

5(50 — s) 5= 0.01s? ' ok *@=T00D P

52 4+ 100s + 5000 -360 -270 ~180

Open-Loop Phase (deg)

X=1, Y=

Open-Loop Gain (dB)

T =300... -+

@ 5241005 + 5000’
These expressions fdi(s), Q(s), andj3(s) are reduced order ' _ _ N '
(approximations with less poles and zeros of the orginal dE8_ . Comeeier beviee e SeSt) wich it e e
signs). Any approximation technique can be used with the cri-
terion of being as close as possible to the normef- 5Q [see
(15)]' the Matlab minreal.m function is an excellent approximéhen add more elements such as Iead, Iags, etc., until a satisfac-
tion for that purpose. The next step is to desigr), which is a tory result is obtained. For our example, the shapgd is

two-step procedure. First we calculate inequality (21). This in-
equality on\(jw) for each frequency and fixedA is a circle in A(s) = 348(s +70) .
the complex plane using real imaginary coordinates [5]. The in- (s +476)(s> + 52s + 37?)

tersection of all these circles over dlls in the specified interval This designed\(jw) appears in each subplot in Fig. 2 and the

[A1, As] is the region in the complex plane in whidlfjw) is . , i
. S relative frequencies are marked Ryclearly, at each frequency,
allowed to take values. These regions are shown in Fig. 2 usi S : . X
. : X . . It 15 within its allowed region. After performing model reduction
amplitude and phase coordinates instead of real imaginary

ordinates. For example, at= 70, A(j70) should be inside the ﬁg’y canceling close pole/zero pairs), the loop filter is

closed curve marked 70; at= 100, A(;j100) should be inside (54 20)(s + 205)

the closed curve marked 100; and.at 30, A(j30) should be F.(s) =140 5(s +700)

below the curve marked 30, which is in fact a closed curve in

the real imaginary plane. The PLL was simulated for a phase step foe= 1 and A = 2,

The next step is to desigh(s) such that\(jw) is within and the simulation is shown in Fig. 3.
the allowed region and it®-normis as small as possible. Fig. 4 compares the open loep*” F(s) which was calcu-
This process is a trial-and-error process known as lotgted forA = A; and the open Ioop*STF,,(s) which also sat-
shaping among the control community. One can start withigfies the margin constraints. The comparison uses the Nichols
second-order transfer function and iterate on its parametarstead of the Bode plot because the phase and gain margins
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Phase margin 40 deg

0.5

L ¢ a1 L 1 2 '
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g -25
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; -33
_80F : L
| =35
O -85+ - %-37
90} = 539
: O _41
-95 .

: -43
~100} = ~45
~105} 47

o . RAEEE s
10° 10° 10* 51,

log()

Fig. 5. Phase noise spectral density (solid line) antl/w* (dashed line).

10 1t 12 13 14 15

Fig. 6. Modifiedo-curves for phase margin 4@nd gain uncertainties from

) . L . . 0dBto 18 dB every 2 dB, also shown arg(n), bg(n) and the points:q at
are easily compared. Also depicted in Fig. 4 is a closed regians intersections, marked. The points marked are the points that minimize

This region means thak(jw) for A = A; must be outside ¢Z(1,0,1) on the modified)-curve.

it, at all frequencies, in order to satisfy the margin conditions

|AL/(1 + AL)| < 3dBforall A € [Ay, Ao]. Clearly the S0- \yith phase errov. = 3.6°. This resultis better by 7.7 dB if we
lution ', satisfies the margin constraints whitedoes not. For restrict ourselves to a second-order design (see Section IV-A-1).

Ay = 1, o, = 12.8°, which is 2.8 dB more than the result
using the solution which ignores the margin specs and unc
tainty F(s) of (23) for whicho, = 9.1°. It will be shown in

€ The Solution fors (w) x w—* and White Noise

Section IV that, when restricting ourselves to a second-orderSince the near-optimal design method described above
loop, F(s) = 31 4+ 450/s ande, = 19° which is 3.5 dB more is quite complex, we have chosen a very common case of

than the nonrestricted order design (£2.8

parameters and solved it fully. The result is a cookbook for

PLL design with delay, which can be used if the phase noise

B. Example 2

This is a practical design example for a coded-modulati
system employed by the company HeliOss Communica-
tion Inc.,Waltham, MA, who build a very high speed, 155
Mb/s, microwave link at around 30 GHz for transmission of
SDH/SONET. They use convolutionally coded QAM modu-
lation. The relevant parameters are as follows. The requir\é\’&1

spectrum can be approximated @s(w) « w~* and if the
(margins assumed here are appropriate. Let

B3
(I)g(w) = — and@n(w) =Ny (24)

wd

ere By is constant andV, is the usual white noise density.

minimum average power of the received signal multiplied bl;quation (5) gives

the bit duration £, divided by the noise spectral densi
(that is E5, /Np) is 11 dB, and the decoder delay is 77 bits. As-

suming that correct symbols are fed back, the normalized noise o?

spectral density ig,, = —93 dB/Hz. The measured phase noise
spectrum is shown in Fig. 5. In the relevant frequency range,
it can be approximated by the functidis6/w* also shown

in Fig. 5. The noise is assumed to be white, and the system
delay is0.5 - 107% s. It is required to design the PLL filter,
F(s), such that phase margin of 4Will be guaranteed when
the AGC uncertainty can be any value in the interval [1], [2],
i.e., 6-dB peak to peak. The optimal solution (ignoring margin
constraints) has a gain margin of 9 dB and a phase margin of
38°, which does not satisfy the closed-loop requirements, and
the phase error is. = 2.3°. A design subject to the margins
and uncertainty constraints using the technique presented here
after model reduction, whose criterion is minimurh is (s in

krad/s) where

(5 + 6150) (s + 4740)(s + 1180) (s + 220)
52(s + 538)(s2 + 153505 + 11 1002)

F(s) = 1700

2

1 [ AF(j
1 (jw) } Nodo
21 o | A (14 emeT AR (jw) )
1 [ ‘ 1 > B2 p
L L =P
27 oo |1+ e 9T AF (jw)| w*
_ Np /°° AFLZ2
2L\ Jso| A (14 emi2AP )
2
= 1 B2
— - | 2240
* /—oo 1+ e i2AFZE O
(25)
B3T*
B:=" Q=uwT.
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Clearly F(j$2/T), which minimizess? of (25), depends only 1 ' f ' v ; y '
on B, in the sense that if'(s) minimizeso? for T = 1 then

) 0.9
F(sTp) minimizeso? for T' = Ty; moreover, for giver32
0.8
N
oHT,No)= 202 (I'=1, No=1).  (26) °7
T 0.6

We therefore use the design technique developed here to pre:~, 0.5} -

a PLL designe#(s)’s which suits differen2’s. We limit our-

selves toF(s)’s which have only two free integrators, phast

margin 40 and uncertaintyl € [A;,2A;] (which is equivalent 0.3

to a phase margin of 4Gand gain margin 16 dB which is in the

reasonable PLL operation range). ; : :
By checking many cases, it was found thatfy < 0.02 the 0.1p L A S SRR

optimal solution satisfies the margin specifications; therefor ; ; ; . ; ; ;

the case wher8,, < 0.02is not an interesting case here. Onthi 002 003 004 005 006 007 008 009 01

other hand, a®,, increasesk(s) converges to a single solution. B, (B,T/NG®)

We found thatl"(s) approximately stays constant fd, >

0.15. Our designs are summarized below normalizedfpr=  Fig. 7. o2, its noise contributiow?, and its phase noise; versusB,, .

1:

0.4

0.2r.

IV. LOOPFILTERS HAVING A Pl FORM

F(B, = 0.02) = 0.22(s + 4)*(s 4 0.091) A restricted orderloop filter is a loop filter which has less
T $2(s? +8.0s +19.4) poles and zeros than the optimal loop filter. There are three rea-
- 0.29(s + 1.0)(s + 0.46)(s + 0.1094) sons for using a restricted order loop filter: 1) reduction of com-
F(Bn =003) = tation effort in real time; 2) the design of a restricted ord
(5 + 1.8)(s + 0.36)s2 putation effort in real time; 2) the design of a restricted order
. 0.34(s + 1.36)(s + 0.43)(s -+ 0.11) loop filter may be simpler and faster; and 3) the restricted order
F(B, =0.04) = loop filter can be close enough to the optimal loop filter. The

= 2
(5+25)(s +0.36)s drawback of using a restricted order loop filter is when 3) is not

(B, = 0.05) satisfied, that s, it produces too much error compared to a non-
_ 1.09(s + 348)(s + 2.6)(s + 0.43)(s + 0.106) restricted order design.
(s+13.7)(s + 3.7)(s + 0.30)s2 The PLL open loop when the loop filter is Pl can be written
F(B,, = 0.06) as follows:
~0.78(s + 5.08)(s + 0.46)(s + 0.087)(s + 5.85 + 8.7) =T a(1 + bsT)
- s2(s+7.6)(s + 0.28)(322 +7.85+ 22.0) Ws)=———7 (27)
~ 0.68(s +0.078)(s° + 1.57s +0.84
F(B, =0.08) = ( (5+4 6))((3 +0.34)s2 ) and the two parameters to design arendb. SinceL(jw) can
. ) ) be written as a function @§7’, the range of.(jw) for all realw
F(Ba, =0.1) does not depend dfi. Therefore, if margin specification of the
~0.79(s + 0.17)(s + 0.035)(s* 4+ 1.77s + 1.63) form
N (s +4.81)(s + 1.0)(s + 0.055)s2
F(B, =0.15) ‘— <6 Vw (28)
1+ L{y -
0.79(s +0.17)(s + 0.035)(s* + 1.77s + 1.63) + Lijw)
N (s +4.8)(s + 1.0)(s + 0.055)s? ’ is satisfied for som&’, it is satisfied for any/". This normalizes

the problem for the margin specification for &, and7 =
The o2 values for7 = 1 as a function ofB,, are given in 1 will be picked in the following. Let us now denote by, a
Fig. 7. Note that, for given spectrum structure [especially (24ffequency for which (28) is satisfied with equality. Explicitly
asB, — oo andN, — 0, F(s) converges to its value for there existsuo such that

Ny = 0. Based on the above results, a step-by-step procedure =T a(1 4 bsT) 1
for delayed PLL design is as follows. 1+ T T —jon 5
1) CalculateB,,. andwy is an extremum point oft + L(jw)|. Hence
2) If B,, <0.02, use a Pl loop filter or any optimal existing 2 9 .
. 1+b b 1
technique. ) ) P Rk 2qS0%0) + l sin(wo) | _ 2 =0
3) If B,, > 0.15, the open loop iF'(sT) using F'(B,, = “o “0 (29)
0.15). .
4) If 0.02 < B, < 0.15, choose the closest(s) fromthe 9 <a2 L+ 0% 0 S5 + bw sin(w) + 1) =0,
table above, then usg(sT’). w w? w? o

5) Calculates? via Fig. 7 and (26). (30)
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margin is 42 and the gain range is 10 dB, thér»> 9 must be

:1; picked in order to satisfy inequality (28) by all possitllés)
=211 which suffers from 10 dB gain uncertainty.
:gg Now let us suppose thaf, where a Pl loop filter is used, has
27 a unigue minimum, which does not satisfy given margin con-
-g? straints¢. Then, the(a, b) pair which minimizess? subjected
-33 to the margin constrairt must lie on the surface db,, that is,
o351 on theg-curve. In that case, the design process reduces into an
%:g;' ' extremum problem with a single parameter and single minimum
a1} as follows.
:ig 1) Pick the curve(a,b) from Fig. 8 for the chosen phase
-47 margin specification, and modify it to the appropriate gain
:g? uncertainty as described above.
_53 2) Find along thea, b) curve picked in 1 the extremum of
S s e [ | D
o 2m J_ oo [ (sT)? + e Ta(l+bsT) |, _;,,
X O, (w)dw
Fig. 8. (_a,,b)curveysfor_differgr_]t phase margiljs, marked on its right side. Also, 1 o0 (ST)Q 2
the location of a, b)’s which minimizes2 on theg-curves and thei{/n values. + =
2m J_ oo [ (sT)? + e Ta(l +bsT) |, _;,,
From (30), we have (31), shown at the bottom of the page. The x ©g(w)dw
solution of (29) and (31), for givef, as a function ofy is a 1 o0 a(l + bs) 2
curve (a(wo), b(wp)) in R?. These curves are functions of the “onT /_Oo 2+ ca(l+bs)| _,
parameteb which dictates phase marginaccording to (3); we w e
shall therefore call them thecurves orp-curves. These curves X &, (T) dw
are depicted in Fig. 8. Clearly, these curves cannot intersect. 1 00 2 2
Moreover, if we denote by, the region inside the curve of + / 5 —
phase margim, thenD,, C Dy, if ¢1 < ¢ (equivalently, 21T J oo | 5% +eva(l +bs) |,y
if 6(¢1) > 8(¢2)). Therefore, anya, b) curve splitsk? into x Oy “N do. (32)
two regions,D, in which inequality (28) is satisfied and its 3) The Pl optimal'loop filter will then be
complement in which inequality (28) is not satisfied. For ex- a(1 + bT's)
ample, if a phase margin of 4@s required (which is equivalent F(s) = T AT
to ¢ = 3.3 dB and 10 dB gain margin), then fér = 15 the whereAP = Ae="T/s anc:iLA € [A1, Ay].
allowed values for are—50.5 < a < —31.8, and forb = 10,
—425 < q < —28.5. A. The PI Solution foty (w) o< w=* and White Noise
. .The extension to ga_\in uncgrtainty is now straightforward: if \y/a treat here the case
it is known that the gain can increase hgB then the allowed B2
(I)g(w) =— and@n(w) =Ny (33)

region, D7, is the intersection ab,, and the regiorD,, shifted _ _ _ _ _
down byr dB (to protect against possible gain increasedB). WhereB, is a constant andV is the usual white noise density.
For example, if phase margin of 4@s requiredy = 15, and Substituting into (32) gives

r = 14 dB, then—56.5dB < a < —45.8dB,and ifb =10 , 1 [ | a(l+bs)\v/ Ny J

then—42.5 dB < a < —42.5 dB, that is, no tolerance in. % T 9T /_Oo s2 + e %a(l + bs) s v

Therefore, ifr > 14 dB, b < 10 cannot be used. The maximum - W2 Bt 2

gain range a Pl loop filter can tolerate as a function of the phase —i—i / W deo. (34)
margin for different values ob can easily be retrieved from 27T J_oo |82+ e *a(1+ bs) .y

Fig. 8. For example, at 40andb = 15, the gain uncertainty Clearly

range can be 19 dB, that is, in order to handle 19 dB uncertainty - 523 2 Ny
with b = 15, the chosen gain must he= (—28.5 — 19) dB 7(T, No, Bo) = By TP (1,m, 1), n = BT+
and the gain margin df(s) is between 10 dB for the maximumthus the(a, b) pair which minimizess2? depends only on the
gain and 29 dB for the minimum gain. If, for example, the phasingle parameten. Note thatn = B2 is defined in (26) but

(39)

2(cos(wo) 4 bwo sin(wop))
wo (31)

sin(wo) — bsin(wg) — bwo cos(wo) +

2
w8’+w0

a =
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Q g_ ():v . ,:’ ] 16
i ' o 1 14}
A N S N SR S S R R 12 v
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phase margin[deg]

Fig. 9. (a)y/mo as a function obg. (b) bo(¢) (solid line) (o can be picked
from Fig. 8 andb which minimizeso?(1,n = 0,1) on the samep-curve Fig.10. The phase erret, the phase noise contributie§, the thermal noise
(dashed line). contributionno By andn, versus phase margin.

we usen for clarity. Let{ao(n), bo(n)} be the point that mini- 1) Example 3.2—Continuationfor 40 phase margin and
mizeso? as a function of. The curve{ao(n), bo(n)} is plotted 6 dB gain margin, use Fig. 6 to get= —32.3 dB andb = 7,
on top of theg-curves in Fig. 8. Let us further denote the inthen

tersection point of the curviug(n), bo(n)} with a ¢-curve by Trs 4+ 1

ao($), bo(¢), andng(¢). For example, if a phase margin of40 F(s) = 0.0243 55—, whoseo. = 8.7°.

is required assuming no gain uncertainty, thgn, = 13.8,
ap = —26.3 dB andby = 7.8. ap(n), bo(n) were calculated as
follows: first o2 in (34) is written as

2) Tradeoff Amongst Restricted Order, Delay Time, and
Phase Noise:The first tradeoff is based on (34) which states
that whenNy is small enough then the thermal noise contribu-

o2 = nBy + ol tion in (35) is neglected and thereforé < B3T™.
‘ The next tradeoff we are interested in is by how muagltan
Hence,ao(n), bo(n) minimizess? for somen if be reduced by a loop filter designed by the method of Section llI

compared to a Pl loop filter. The answer provided here is based
on an example whose parameters @g:= 50%/w*, ®, can
be neglected, open loop deldy= 0.01, and gain uncertainty

) o o A in the intervalA € [1,2.5], that is, 8 dB uncertainty. The
The two partial derivative ratios in (36) where calculated alor}ﬂargin specification is of the forml + L|_1 < 3.3 dB. which

each of thep-curves in Fig. 8 and it was found that they have Buarantees a 4@phase margin and 10-dB gain margin for=
unique intersection, whosevalue is written on itsp-curve in- 5 = 21418 dB ford = 1.
Fig. 8. This proves, numerically, thaf(n) has a unique min- Using Fig. 6 for 8-dB uncertainty, = —34.3 dB andb = 7.

imum. Moreover, we observe tha(¢) is a monotonicaly in- £ that Pl loop filterg? = 0.57. Using the suboptimal method-
creasing function of. The same results are depicted in Fig. %Iogy described herein, the loop filter is

which includes a graph of, as a function ob, and a graph of
bo(9)- _
(Fig);. 9(b) also shows which minimizess2(1,n = 0,1) on Frls) =327
the ¢-curve. Since the two curves in Fig. 9(b) almost coincid
and the solution for constrained minimizationagf for n = 0
must lie on thep-curve, theag (), bo(¢) pair, for a very good
approximation, minimizer.(1,ny,1) for anyn; < no(¢). But
this will not be the case if uncertainty is introduced. Fig. 6 d
picts modified¢-curves for a phase margin of 4@nd uncer-
tainties between 0 dB and 18 dB every 2 dpn, at the in- V. CONCLUSION
tersection ofio(n), bo(n) with the modifiedp-curve is marked ~ We have presented a design method for near-optimal PLL
on each curve. For; < nog, the(a,b) pairs which minimize taking into consideration the phase noise, the thermal noise, the
o.(1,n1,1) on the modifiedp-curve move along that curve to-undesired but unavoidable loop delay caused by delayed de-
ward the point markedwhich is the minimum pointfon; = 0. cisions, and margins for protection from gain uncertainty and
Finally, Fig. 10 depicts/no,,, d¢, o, and+/n on the point insuring good step response. The method is general and can
ao(), bo(¢) as a function ofp. be used with any PLL. We find its main application in carrier

903 /0a B

3o /O
OB /b’

(36)

(s 4 120)(s + 570)(s% + 11.4s + 38)
s2(s+300)(s + 28)

?c’)r which o2 = 0.28. This figure is half of that figure when an
optimal Pl loop filter is used. By (35), it is equivalent to a 3-dB
reduction of the phase noise spectral density or 25% in the delay
dime.
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