
Near Optimal Randomized Initialization on the
1-Dimensional Reconfigurable Mesh

Koji Nakano1

School of Engineering, Hiroshima University
Kagamiyama, Higashi-Hiroshima 739-8527, JAPAN

nakano@cs.hiroshima-u.ac.jp

Abstract. The reconfigurable mesh is a processor array that consists
processors arranged in 1-dimensional or 2-dimensional grids with a recon-
figurable bus system. We assume that processors are identical and have
no unique IDs. Initialization is a task that assigns sequential unique IDs
to processors in the reconfigurable mesh. The main contribution of this
paper is to show initialization algorithms on the 1-dimensional recon-
figurable mesh with n processors. We first show a simple deterministic
initialization algorithm for the 1-dimensional reconfigurable mesh that
runs in O(n) time. This deterministic algorithm is optimal, because no
deterministic solution can perform initialization in less than O(n) time.
Quite surprisingly, we show that expected sublinear-time initialization
is possible if we use randomized techniques. Our initialization algorithm
runs in O((log n+log f) log log n) time with probability at least 1− 1

f
for

every real number f > 1. It follows that the initialization algorithm runs
in expected O(log n log log n) time. We also proved that any randomized
initialization need to run in Ω(log n) time. Thus, our randomized ini-
tialization algorithm running in O(log n log log n) time is very close to a
theoretical lower bound Ω(log n) time.
Keywords: Parallel Algorithms, Reconfigurable Mesh, Reconfigurable
Computing, Randomized Algorithms

1 Introduction

A reconfigurable mesh is a processor array that consists of processors arranged
in 1-dimensional or 2-dimensional grids with a reconfigurable bus system. The
reconfigurable mesh of size m × n consists of mn processors arranged in a 2-
dimensional grid. Also, a 1-dimensional reconfigurable mesh of size m is the
reconfigurable mesh with a single row. Let PE(j) (0 ≤ j ≤ m − 1) denote a
processor at position j. Although all processors execute the same instructions,
their behaviors may differ, because they work on different input and different
coordinates. On the reconfigurable mesh, any two adjacent processors are con-
nected with a single fixed link. Each processor on the reconfigurable mesh has
two ports E(East) and W (West). Thus, the port E of PE(j) and the port W of
PE(j + 1) is connected by a link.

The connected components formed by adjacent fixed links and internal con-
nections constitute subbuses, through which the processors can communicate.

International Journal of Principles and Applications of Information Science and Technology
December 2007, Vol.1, No.1

Data sent to a port can be transferred through subbuses in one unit of time.
Figure 1 illustrates an example of subbuses on the 1-dimentional reconfigurable
mesh. The data sent to port E of PE(0) in the 1-dimensional reconfigurable
mesh is transferred through subbus A and it can be received by processors
PE(1), PE(2), PE(3), and PE(4). Note that subbus A can transfer any data
sent by processors PE(0),PE(1), . . ., PE(4). Similarly, subbus B can transfer
any data sent by processors PE(4), PE(5), PE(6), and PE(7). In this paper, we
also assume that the subbus is exclusive, that is, no two processors can send the
same subbus in the same time.

A B

E

W

E

W

E

W

E

W

E

W

E

W

E

W

E

W

0 1 2 3 4 5 6 7

Fig. 1. An example of subbuses

The reconfigurable mesh also can be classified by the capacity of the subbuses
as follows: bit model: The subbus can transfer 1-bit of data in a unit of time. It
is not allowed to send two or more processors to the same subbus in the same
time. word model: The subbus can transfer a word (usually, log n-bit1) of data
in a unit of time. It is not allowed to send two or more processors to the same
subbus in the same time. bitwise model: The subbus can transfer a word (usually,
log n-bit) of data in a unit of time. If two or more data sent to the subbus, the
bitwise OR of the data is transfered.

The reconfigurable mesh have attracted considerable attention as theoretical
models of parallel computation, and many studies have been devoted to devel-
oping efficient parallel algorithms on reconfigurable meshes. For example, they
efficiently solve problems such as sorting [11], selection [2], arithmetic opera-
tions [10], graph problems [3], geometric problems [7, 8], image processing [1].
See [12] for the comprehensive survey.

However, every algorithm presented in the above papers was based on an
initialized reconfigurable, that is, every processor on the mesh know its x and
y coordinates, although the assumption sometimes may not be explicit in the
literature. More precisely, every algorithm is implemented on a reconfigurable
mesh as follows: All processors execute the same program to complete the algo-
rithm, but each can refer its own coordinates stored in reserved variables of the
program, so the performance of processors differs according to their coordinates.
In this paper, we assume an uninitialized reconfigurable mesh. In other words,
all processors are completely identical: they have the same program, constants,
and variables and cannot refer to their coordinates. Initialization is a task that
gives the correct coordinates to the processors in the reconfigurable mesh. The

1 Let log and ln denote the logarithms to the base e and 2, respectively.

54 International Journal of PAIST, Dec. 2007, Vol.1, No.1

readers should refer to Figure 2 that illustrates the task of initialization on the
1-dimensional reconfigurable mesh.

initialization

unitizalized reconfigurable mesh

itizalized reconfigurable mesh
0 1 2 3 4 5 6 7

Fig. 2. Initialization on the 1-dimensional reconfigurable mesh

If a reconfigurable mesh is implemented on material which may have faults,
such as a WSI (Wafer Scale Integration), recovering fault processors becomes an
issue to consider. In that case, extra processors must be used instead of fault pro-
cessors, or a column which has fault processors must be bypassed, for example.
In a fault environment, it is more desirable that every processor on a reconfig-
urable mesh is completely identical and a reconfigurable mesh is initialized when
it is booted instead of when it is manufactured, because the coordinates of each
processor may be changed.

In [6], deterministic initialization algorithms on the 2-dimensional reconfig-
urable mesh of size n × n have been presented. It showed that the bit-model,
the word-model, and the bitwise-model reconfigurable meshes can be initialize
in O(log n) time, in O(log log n) time and O(log∗ n) time, respectively. Also it
proves that these initialization algorithms are optimal. However, the algorithms
presented in [6] do not work for 1-dimensional reconfigurable mesh.

The main contribution of this paper is to show deterministic and random-
ized initialization algorithms on the 1-dimensional reconfigurable mesh of the
bit model. We first show a deterministic initialization algorithm that runs in
O(n) time. We also prove that this deterministic algorithm is optimal, that
is, no deterministic solution can perform the initialization in less than O(n)
time. Quite surprisingly, sublinear-time initialization is possible if we use ran-
domized techniques. More specifically, we show a randomized initialization algo-
rithm on the bit model 1-dimensional reconfigurable mesh running in O((log n+
log f) log log n) time with probability at least 1 − 1

f for every real number f >
1. It follows that this randomized initialization algorithm runs in expected
O(log n log log n) time. The key idea of this randomized algorithm is to construct
an ordered binary tree such that each processor is a node. The initialization is
completed by providing the in-order numbers to all the processors. Since the
ordered binary tree is balanced with high probability, we can guarantee that the
initialization can be done in O((log n + log f) log log n) time with probability at
least 1 − 1

f for every f > 1. We also proved that any randomized initialization

Koji Nakano 55

need to run in Ω(log n) time. Thus, our randomized initialization is close to
optimal.

2 A refresher of basic probability theory

This section offers a quick review of basic probability theory results that are
useful for analyzing the performance of our randomized initilization algorithm.
For a more detailed discussion of background material we refer the reader to [5].

Throughout, Pr[A] will denote the probability of event A. For a random
variable X, E[X] denotes the expected value of X. Let X be a random variable
denoting the number of successes in n independent Bernoulli trials with param-
eters p and 1 − p. It is well known that X has a binomial distribution and that
for every r, (0 ≤ r ≤ n),

Pr[X = r] =
(

n
r

)
pr(1 − p)n−r.

Further, the expected value of X is given by

E[X] =
n∑

r=0

r · Pr[X = r] = np.

To analyze the tail of the binomial distribution, we shall make use of the following
estimate, commonly referred to as Chernoff bounds [4, 5]:

Pr[X ≥ (1 + ε)E[X]] ≤ e−
ε2
3 E[X] (0 ≤ ε ≤ 1). (1)

Pr[X < (1 − ε)E[X]] < e−
ε2
2 E[X] (0 ≤ ε ≤ 1). (2)

3 Deterministic Initialization and the Lower Bounds

This section shows a deterministic initialization algorithm on the 1-dimensional
reconfigurable mesh of the bit model.

First, all processors disconnect ports and send 1 to E and try to receive 1
from W . Clearly, the processor that fails to receive 1 is the leftmost processor
PE(0). Next, PE(0) sends 1 to E and all remaining processors try to receive
it. The processor that succeeds in receiving 1 is PE(1). In the same way PE(1)
sends 1 to E and all remaining processors try to receive it. By repeating this
procedure, we have,

Lemma 1. The 1-dimensional reconfigurable mesh of the bit model of size n can
be initialized in n time.

Next, let us formally prove the lower bound of the computing time for ini-
tialization. For this purpose, let us consider the configuration of the processors.
The configuration of a processor is the contents of memories and registers of it.

56 International Journal of PAIST, Dec. 2007, Vol.1, No.1

Initially, all processors in the uninitialized reconfigurable mesh have the same
configuration. It should be clear that all processors must have difference status
at the end of the initialization, because each of them stores the unique ID in its
memory.

Since all processors have the same configuration their behavior is the same
at the beginning of the initialization. So, all of them connect W and E, or they
do not connect W and E. Suppose that all of them connect W and E. Then,
all processors are connected by a single subbus. Since it is not allowed that two
or more processors send to the same subbus, no processor broadcast. Hence, all
the processors still have the same configuration. Suppose that all of them do not
connect W and E. Also, all processors can

Case 1 send data to W and receive it from E, or
Case 2 send data to E and receive it from W

Note that all the data must be the same because the configurations of the pro-
cessors are identical. In Case 1, only the leftmost processor fails to receive, and
the other processors succeed in receiving. So, all the processors excluding the
leftmost one still have the same configuration. Similarly, in Case 2, all the pro-
cessors excluding the rightmost one still have the same configuration. We can
easily generalize this discussion as follows: if PE(i), PE(i + 1), . . . ,PE(j) (i < j)
have the same configuration, after a unit of time,

– PE(i), PE(i + 1), . . . ,PE(j − 1) still have the same configuration, or
– PE(i + 1),PE(i + 2), . . . ,PE(j) still have the same configuration.

Therefore, if m (≥ 2) consecutive processors on the 1-dimensional reconfigurable
mesh have the same configuration, at least m−1 consecutive processors have the
same configuration. Since all the processors must have different configurations,
we have,

Lemma 2. Any initialization algorithm need to run in at least n time on the
1-dimensional reconfigurable mesh of size n.

Thus, the initialization algorithm for Lemma 1 is optimal. Also, note that this
lower bound holds for the reconfigurable meshes of the word model and the
exclusive word model.

The lower bound of 2 is not applicable to randomized initialization. If we
use randomized techniques, all processors can have different configuration with-
out any communication. However, we can have the different lower bound for
randomized algorithms. We assume that randomized algorithms are Las Vegas
algorithms [5], that is, algorithms never give incorrect results but the running
time is probabilistic. Thus, Las Vegas initialization algorithms always assign se-
quentail IDs to all the processors, but the running time is not fixed. Since at
least log n bits must be sent to or receive from each processor, we have,

Lemma 3. Any Las Vegas randomized initialization algorithm runs in at least
log n time on the 1-dimensional bit model reconfigurable mesh of size n.

Koji Nakano 57

4 Randomized Leader Election on the Reconfigurable
Mesh

The main purpose of this section is to show a randomized leader algorithm, which
is a key ingredient of our initialization algorithm. The leader election algorithm
runs in O(log log n+log f) time with probability at least 1− 1

f for every f > 1 in
the uninitialized 1-dimensional reconfigurable mesh with n processors. The idea
of leader election is based on the leader election algorithm on the radio network
presented in [9].

We assume that processor is not initialized, that is, no processor knows its
position (or coordinate). Also, no processor knows the number n of the proces-
sors. However, the leftmost processor PE(0) knows that it is the leftmost one,
and the rightmost processor PE(n − 1) knows that it is the rightmost one. As
we have shown in Section 3, the leftmost and the rightmost processors can learn
that they are the leftmost and the rightmost in O(1) time.

Let S be the subset of the n processors. We first show that every processor
can learn that if |S| = 0, |S| = 1, or |S| ≥ 2. The algorithm is spelled out as
follows.

Step 1 Every processor that is not in S connects ports W and E. PE(0) sends
1 to W , PE(n − 1) sends 1 to E and every processor in S tries to receive it
from both ports.

Step 2 Every processor connects ports W and E. A processor in S that has
succeeded in receiving 1 from both W and E broadcast 1 and and all the
processors try to receive it.

Step 3 Every processor connects ports W and E. A processors in S that has
succeeded in receiving 1 from W and failed to receive 1 from E broadcast 1,
and all the processors try to receive it.

It is clear that, if |S| = 0 then no processor broadcasts 1 in Steps 2 and 3. If
|S| = 1, then the unique processor in S receives 1 from both ports in Step 1.
Thus, it broadcasts 1 in Step 2. Also, if |S| ≥ 2 the leftmost processor in S
receives 1 from W and broadcasts 1 in Step 3. Therefore, we can determine if
|S| = 0, |S| = 1, or |S| ≥ 2 in 3 unit time.

Using this algorithm, we can find a leader at random in O(log log n + log f)
time for every f > 0 on the 1-dimensional reconfigurable mesh. Suppose that
each of n processors on the reconfigurable mesh belongs to S with probability
p. Let S(p) be the subset of processors thus obtained. It is clear that we can
determine if |S(p)| = 0, |S(p)| = 1, or |S(p)| ≥ 2 in O(1) time. The following
algorithm elects a unique processor as a leader.

Phase 1 For each t = 0, 1, 2, . . ., find S(1
22t) and determine if |S(1

22t)| = 0 or
not until, for the first time, |S(1

22t)| = 0. Let T be the value of t such that
|S(1

22t)| = 0 for the first time.
Phase 2 Execute the binary search for the range [0, 2T] as follows: Let m =

� 0+2T

2 � be the median of [0, 2T]. Find S(1
2m) and check if |S(1

2m)| = 0 or

58 International Journal of PAIST, Dec. 2007, Vol.1, No.1

|S(1
2m)| ≥ 1. If |S(1

2m)| = 0 then recursively execute the binary search for
the range [0,m]. If |S(1

2m)| ≥ 1 then recursively execute the binary search
for the range [m, 2T]. Let U be the integer obtained by the binary search.

Phase 3 Find S(U) and checking if |S(U)| = 0, |S(U)| = 1, or |S(U)| ≥ 2. If
|S(U)| = 1 then the unique processor is declared as a leader and terminate
the algorithm. If |S(U)| = 0 then let U ← U − 1. If |S(U)| ≥ 2 then let
U ← U + 1. Repeat finding S(U) for the first time |S(U)| = 1.

Note that the expected number of processors in S(p) is E[|S(p)|] = np. Hence,
since S(1

22T) = 0 at the end of Phase 1, n

22T ≤ 1 holds with high probability.
Hence, Phase 1 takes O(T) = O(log log n) time with high probability. Since
the binary search is executed for the range [0, 2T], Phase 2 takes O(log 2T) =
O(log log n) time. By a complicated proof that we can guarantee that U ≈ n
with high probability and that Step 3 runs in O(log log log n) time with high
probability. By the more detailed analysis of the performance, this algorithm
runs in O(log log n + log f) time with probability at least 1 − 1

f for all f > 1.
See [9] for the details of the proof.

Lemma 4. A leader processor on the 1-dimensional bit-model reconfigurable
mesh of size n can be elected in O(log log n + log f) time with probability at
least 1 − 1

f for every f > 1.

Also, note that, using the algorithm for Lemma 4 every processor can be a leader
with the equal probability 1

n .

5 Randomized Initialization on the Reconfigurable Mesh

The main purpose of this section is to show a randomized initialization algorithm
on the 1-dimensional reconfigurable mesh.

Our randomized algorithm first make a binary tree as follows. Let p denote
a processor of the reconfigurable mesh of size n. Further, let I(p) be the index
of processor p, that is, p = PE(I(p)). Our goal is to find the index I(p) for every
processor p.

Phase 1 Find an binary tree such that every processor p is its node. We call
this ordered tree partition tree.

Phase 2 Compute the number of nodes in every subtree of the partition tree.
Phase 3 Assign index I(p) to every processor p.

The details of Phase 1 are spelled out as follows:

Phase 1 Find a partition tree such that every processor p is its node.
Phase 1.1 If the reconfigurable mesh has 1 processor, that is, n = 1, then

select it as a leader and terminate the algorithm. Otherwise, select a leader
processor using the algorithm for Lemma 4. Let p be the leader processor
thus obtained.

Koji Nakano 59

Fig. 3. The reconfigurable mesh and a partition tree computed in Phase 1

Phase 1.2 Partition the reconfigurable mesh into two submeshes as follows:
The left submesh consists processors PE(0), PE(1), . . ., PE(I(p) − 1) and
the right submesh has processors PE(I(p)+1), PE(I(p)+2), . . ., PE(n−1).
Recursively find the leaders of the left submesh and the right submesh.

Let us consider that the left child is the leader of the left submesh and the
right child is that of the right submesh. Then, we can obtain an ordered binary
tree such that the root is the leader of the whole reconfigurable mesh. Also, it is
easy to confirm that the order of visit in each node p by the in-order traversal
is the index I(p).

For each node (or processor) p of the partition tree, let N(p) denote the
number of processors in the subtree with root p. Initially, we assume that N(p)
is undefined. Also, let pL and pR denote the left and the right children of node
p if exist. The following algorithm compute N(p) for every p.

Phase 2 Compute the number of nodes in every subtree.
Phase 2.1 For each leaf node p, let N(p) = 1. Each leaf processor p sends N(p)

to its parent.
Phase 2.2 For each internal node p, when processor p receives N(pL) and

N(pR) from its children, it computes N(p) ← N(pL) + N(pR) + 1 and sends
N(p) to its parent. If the root node p receives N(pL) and N(pR) from its
children, it computes N(p) ← N(pL) + N(pR) + 1 and terminate Phase 2.

At the end of this stage, each processor p knows the values of N(p), N(pL)
and N(pR). For each node p, let M(p) denote the number of nodes whose indexes
smaller than all nodes in subtree with root p. Phase 3 computes M(p) and I(p)
for all node p. Initially, M(p) and I(p) are undefined.

Phase 3 Assign index I(p) to every processor p.
Phase 3.1 For the root node p, let M(p) ← 0 and I(p) ← N(pL). The root

node PE(p) sends M(p) (= 0) to the left child pL and I(p) + 1 to the right
child. to the right child pR.

60 International Journal of PAIST, Dec. 2007, Vol.1, No.1

N = 1

N = 1 N = 1N = 1 N = 2

N = 4 N = 3

N = 8

Fig. 4. The values of N(p) computed in Phase 2

Phase 3.2 For each non-root node p, when it receives an integer m, let M(p) ←
m and I(p) ← M(p) + N(pL). Also, it sends M(p) to the left child pL and
I(p) + 1 to the right child pR if exist.

M = 0
I = 4

M = 0
I = 1

M = 0
I = 0

M = 2
I = 2

M = 3
I = 3

M = 4
I = 5

M = 5
I = 6

M = 7
I = 7

0

5

5 70 2

3

Fig. 5. The values of M(p) and I(p) computed in Phase 3

Let h be the height of the ordered binary tree, that is, the maximum number
of nodes over all paths from the root to leaves. We will prove that h = O(log n)
with high probability.

Recall that, the reconfigurable mesh is recursively partitioned into two sub-
meshes in Phase 1. Let n be the number of processors in the reconfigurable mesh.
We call the partitioning is success if both of the left and the right submeshes
have at most 3

4n processors. Let p be the leader elected in Phase 1.1. Then, the
left submesh has I(p) processors and the right submesh has (n − 1) − I(p) pro-
cessors. Thus, the partitioning is success if 1

4n− 1 ≤ I(p) ≤ 3
4n. Since a leader p

Koji Nakano 61

is elected at random from n processors, the partition is success with probability
at least 1

2 . We can say that, for any path from the root to a leaf, it has at most
log n
log 4

3
success nodes. If there exists a path from the root to a leaf p that has more

than log n
log 4

3
success nodes, N(p) < (3

4)
log n

log 4
3 n ≤ 1 holds. However, since p is a leaf,

N(p) = 1. Therefore, every path has at most log n
log 4

3
success nodes.

Let X be a 4 log n
log 4

3
+8 ln(nf) Bernoulli trials with success probability 1

2 , where

f > 1 is any real number. Clearly, E[X] = 2 log n
log 4

3
+ 4 ln(nf). From the Chernoff

bound, The probability that X is less than log n
log 4

3
is

Pr[X <
log n

log 4
3

] < Pr[X < (1 − 1
2
)(2

log n

log 4
3

+ 8 ln(nf))]

< e−
1
8 E[X] < e− ln(nf) =

1
nf

.

Hence, X is at most log n
log 4

3
with probability at most 1

nf . Therefore, a particular

path from the root to a leaf has at least 4 log n
log 4

3
+ 8 ln(nf) nodes with probability

at most 1
nf . The binary tree of n nodes has at most n

2 leaves, and thus, has n
2

paths. It follows that all of the paths have at most 4 log n
log 4

3
+ 8 ln(nf) nodes with

probability at most n
2 × 1

nf < 1
f . Therefore, the height of the tree is at most

4 log n
log 4

3
+ 8 ln(nf) = O(log n + log f) with probability at least 1 − 1

f .

Lemma 5. The height of the partition tree obtained in Phase 1 is at most
O(log n + log f) with probability at least 1 − 1

f for every f > 1.

Next, let us evaluate the computing time using Lemma 5. In Phase 2, the
values of N(p)’s are sent from the leaf to the root. The operation in each node
takes O(1) time. Hence, the computing time of Phase 2 is proportional to the
height of the partition tree. Similarly, in Phase 3, the values of M(p)’s and I(p)’s
are sent from the root to the leaf and the operation in each node takes O(1)
time. Thus, the computing time of Phase 3 is also proportional to the height.
Consequently, Phases 2 and 3 run in O(log n + log f) time with probability at
least 1 − 1

f .
Finally, let us evaluate the computing time of Phase 1. Recall that from

Lemma 4, a leader can be elected in in O(log log n+log f) time with probability
at least 1 − 1

f . For each integer i ≥ 1, let Ti be the computing time such that a
leader can be elected in Ti time with probability 1− 1

2i . Further, for each i ≥ 2,
let ti = Ti − Ti−1. From Ti = O(log log n + i), we have T1 = O(log log n) and
ti = O(1). Clearly, the probability that the leader election does not terminate in
Ti (i ≥ 1) time and terminates in additional ti+1 time is exactly 1

2 .
Suppose that the leader election algorithm for Lemma 4 is executed on the

reconfigurable mesh with n processors. Then, it elects a leader in T1 time with
probability 1

2 . If it does not elect a leader in T1 time, then it elects a leader in

62 International Journal of PAIST, Dec. 2007, Vol.1, No.1

additional t2 time. Again, if it does not elect a leader in additional t2 time, then
it elects a leader in additional t3 time. In general, for every i ≥ 1, if a leader does
not elected in Ti time then a leader is elected in additional ti+1 = O(1) time
with probability 1

2 . Let us put black and white pebbles in nodes of the partition
tree for the purpose of evaluating the computing time. Recall that a node of the
partition tree corresponds to a leader election and the partitioning is success if
both of the left and the right submeshes have at most 3

4n processors. We put
the black and white pebbles in every node according to the following rules. Note
that each node may have two or more pebbles.

Rule 1 If the leader election terminates in T1 time and the partitioning is suc-
cess then put a black pebble in the node.

Rule 2 If the leader election terminates in T1 time but the partitioning is failure
then put a white pebble in the node.

Rule 3 If the leader election does not terminates in T1 time, put a white pebble
in the node.

Rule 4 For each i (≥ 1), if the leader election does not terminate in Ti time
but terminates in additional ti+1 time and the partitioning is success then
put a black pebble.

Rule 5 For each i (≥ 1), if the leader election does not terminate in Ti time but
terminates in additional ti+1 time and the partitioning is failure then put a
white pebble.

Rule 6 For each i (≥ 1), if the leader election does not terminate in Ti+1 =
Ti + ti+1 time then put a white pebble.

Clearly, the leader election does not terminate in Ti time but terminates in
additional ti+1, the corresponding node has i+1 pebbles. Also if the partitioning
is failure, all pebbles in the node is white. If the partitioning is success, then one
of the pebbles is black and the others are white.

Next let us estimate the number of pebbles in the path of the partition tree
from the root to a leaf. The leader election terminates in T1 time with probability
1
2 . The probability that the leader election terminates in additional ti+1 time is
1
2 if it has not terminate in Ti time. Also, the partition is success with probability
at least 1

2 , Thus, a particular pebble is black with probability at least 1
4 . As we

have proved, a path from the root to a leaf has at most 4 log n
log 4

3
success nodes.

Hence, any path has at most log n
log 4

3
black pebbles. Using this fact, we will show

that a path has no more than 8 log n
log 4

3
pebbles with high probability.

Let Y be a 8 log n
log 4

3
+ 32 ln(nf) Bernoulli trials with success probability 1

4 ,

where f > 1 is any real number. Clearly, E[Y] = 2 log n
log 4

3
+ 8 ln(nf). From the

Chernoff bound, The probability that Y is less than log n
log 4

3
is

Pr[Y <
log n

log 4
3

] < Pr[Y < (1 − 1
2
)(2

log n

log 4
3

+ 8 ln(nf))]

< e−
1
8 E[Y] < e− ln(nf) =

1
nf

.

Koji Nakano 63

Hence, Y is at most log n
log 4

3
with probability at most 1

nf . It follows that, a particular

path has at least 8 log n
log 4

3
+32 ln(nf) pebbles with probability at most 1

nf . Since the

partition tree has less than n paths, no path has more than 8 log n
log 4

3
+32 ln(nf) peb-

bles with probability at most 1− 1
f . Since each pebble corresponds to O(log log n)

time, we have,

Theorem 1. The 1-dimensional reconfigurable mesh of the bit model of size n
can be initialized in O((log n+log f) log log n) time with probability at least 1− 1

f
for every f > 1.

As we have shown, the expected value of random variable that is no more than
log f with probability at lest 1 − 1

f is O(1). Thus, this algorithm to runs in
expected O(log n log log n) time. Also, the initialization algorithm for 1 is a Las
Vegas type randomized algorithm [5] because it always returns the correct results
but the running time is probabilistic.

References

1. A. G. Bourgeois and J. L. Trahan. Fault tolerant algorithms for a linear array
with a reconfigurable pipelined bus system. Parallel Algorithms and Applications,
18(3):139–153, 2003.

2. E. Hao, P. D. Mackenzie, and Q. F. Stout. Selection on the reconfigurable mesh.
In Proceedings of 4th Symposium on Frontiers of Massively Parallel Computation,
pages 38–45. IEEE, Oct. 1992.

3. T. Hayashi, K. Nakano, and S. Olariu. Efficient list ranking on the reconfigurable
mesh, with applications. Theory of Computing Systems, 31:593–611, 1998.

4. J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.
5. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University

Press, 1995.
6. K. Nakano. Optimal initializing algorithms for a reconfigurable mesh. Journal of

Parallel and Distributed Computing, 24(2):218–223, Feb. 1995.
7. K. Nakano and S. Olariu. An optimal algorithm for the angle-restricted all nearest

neighbor problem on the reconfigurable mesh, with applications. IEEE Transac-
tions on Parallel and Distributed Systems, 8(9):983–990, 1997.

8. K. Nakano and S. Olariu. An optimal algorithm for the angle-restricted all nearest
neighbor problem on the reconfigurable mesh, with applications. IEEE Transac-
tions on Parallel and Distributed Systems, 8(9):983–990, 1997.

9. K. Nakano and S. Olariu. Uniform leader election protocols in radio networks.
IEEE Transactions on Parallel and Distributed Systems, 13(5):516–526, May 2002.

10. K. Nakano and K. Wada. Integer summing algorithms on reconfigurable meshes.
Theoretical Computer Science, 197(57–77), 1998.

11. M. Nigam and S. Sahni. Sorting n numbers on n × n reconfigurable meshes with
buses. Journal of Parallel and Distributed Computing, 23(1):37–48, Oct. 1994.

12. R. Vaidyanathan and J. L. Trahan. Dynamic Reconfiguration: Architectures and
Algorithms. Kluwer Academic/Plenum Publishers, 2003.

64 International Journal of PAIST, Dec. 2007, Vol.1, No.1

