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Abstract—With the advent of industrial standards such as
WirelessHART, process industries are now gravitating towards
wireless control systems. Due to limited bandwidth in a wireless
network shared by multiple control loops, it is critical to optimize
the overall control performance. In this paper, we address
the scheduling-control co-design problem of determining the
optimal sampling rates of feedback control loops sharing a
WirelessHART network. The objective is to minimize the overall
control cost while ensuring that all data flows meet their end-to-
end deadlines. The resulting constrained optimization based on
existing delay bounds for WirelessHART networks is challenging
since it is non-differentiable, non-linear, and not in closed-form.
We propose four methods to solve this problem. First, we present
a subgradient method for rate selection. Second, we propose a
greedy heuristic that usually achieves low control cost while
significantly reducing the execution time. Third, we propose
a global constrained optimization algorithm using a simulated
annealing (SA) based penalty method. Finally, we formulate
rate selection as a differentiable convex optimization problem
that provides a closed-form solution through a gradient descent
method. This is based on a new delay bound that is convex and
differentiable, and hence simplifies the optimization problem. We
evaluate all methods through simulations based on topologies
of a 74-node wireless sensor network testbed. Surprisingly, the
subgradient method is disposed to incur the longest execution
time as well as the highest control cost among all methods. SA and
the greedy heuristic represent the opposite ends of the tradeoff
between control cost and execution time, while the gradient
descent method hits the balance between the two.

I. INTRODUCTION

With the advent of industrial wireless standards such as

WirelessHART [1], recent years have seen successful real-

world deployments of process control systems over wireless

sensor-actuator networks (WSANs). In a wireless control sys-

tem, the control performance not only depends on the design of

control algorithms, but also relies on real-time communication

over the shared wireless network. The choice of sampling rates

of the feedback control loops must balance between control

performance and real-time communication. A low sampling

rate usually degrades the control performance while a high

sampling rate may cause excessive communication delays

causing degraded performance. The coupling between real-

time communication and control requires a scheduling-control

co-design approach to optimize the control performance sub-

ject to stringent bandwidth constraints of the wireless network.

In this paper, we address the sampling rate optimiza-

tion problem for multiple feedback control loops sharing a

WirelessHART network. A feedback control loop periodically

delivers data from sensors to the controller, and then delivers

the control messages to the actuators through the network. We

consider a wireless control system wherein transmissions over

a multi-hop WSAN are scheduled based on fixed priorities.

The objective is to determine the optimal sampling rates of

the feedback control loops to minimize their total control

cost, subject to the constraints that their end-to-end network

delays are within their respective sampling periods. To our

knowledge, this is the first work on scheduling-control co-

design for WirelessHART networks.

We formulate the sampling rate optimization problem based

on existing end-to-end delay bounds [2], [3] for data flows

in multi-hop WirelessHART mesh networks. The resulting

constrained non-linear optimization problem is challenging

because the existing delay bounds are non-differentiable and

not in closed-form. To address this difficult scheduling-control

co-design problem in wireless control systems based on Wire-

lessHART networks, we study and propose four methods:

• First, to handle non-differentiability and non-convexity of

the delay bounds, we develop a subgradient based method

to find sampling rates through Lagrangian relaxation.

• Second, we propose an efficient polynomial time greedy

heuristic that usually achieves low control cost, and is

suitable for large-scale WSANs and online rate selection.

• Third, we propose a global constrained optimization algo-

rithm that adopts a penalty approach based on simulated

annealing (SA).

• Finally, we derive a convex and differentiable delay

bound by relaxing an existing delay bound. Then, we for-

mulate the co-design as a differentiable convex optimiza-

tion problem and, thus, provide a closed-form solution

for rate selection through a gradient descent method.

We evaluate the proposed algorithms through simulations

based on the real network topologies of a wireless sensor

network testbed of 74 TelosB motes. The results demonstrate

that, among all methods, SA achieves the least control cost

while requiring the longest execution time. In contrast, the

greedy heuristic runs faster but leads to higher control cost.

The gradient descent method based on the new delay bound

hits the balance between control cost and execution time.

Interestingly, due to high nonlinearity and existence of a large

number of local extrema, the subgradient method is both

ineffective and inefficient.

In the rest of the paper, Section II reviews related works.



Section III presents the network model. Section IV describes

the control loop model. Section V formulates the rate selection

problem. Sections VI, VII, and VIII present the subgradient

method, the greedy heuristic method, and the SA based penalty

method, respectively, for rate selection. Section IX derives a

convex delay bound and presents the gradient descent method

for rate selection. Section X presents evaluation results. Sec-

tion XI concludes the paper.

II. RELATED WORKS

There have been extensive studies on real-time CPU

scheduling and control co-design in single-processor systems

(see survey [4]). Some notable works [5]–[7] among them

address rate selection under schedulability constraints. How-

ever, these works do not apply for networked control systems

since network induced delays have significant effects on con-

trol performance, and the schedulability analysis through the

network is usually more complicated than CPU scheduling.

Following the seminal work on integrated communication

and control [8], a number of works [9]–[15] have treated

the co-design in networked control systems. However, these

works have not been designed for wireless networks where

end-to-end delay analysis introduces challenging non-linear

optimization problems.

For wireless control system, a conceptual study of a wireless

real-time system dedicated for remote sensor/actuator control

in production automation has been presented in [16]. Wireless

control co-design has been studied in [17]–[19]. But these

works do not consider multi-hop wireless networks. The

rate selection under schedulability constraints for multi-hop

wireless sensor network (WSN) has been studied in [20], [21].

But these works consider a simplified network model where

a WSN is cellular with a base station functioning as a router

at the center of each cell. An inner cell is surrounded by 6
cells. The base station in a cell uses 7 orthogonal channels for

communication with 6 surrounding cells, periodically enabling

transmission in each direction. The utilization based analysis

used for this model does not apply for common WSANs

based on industrial standards such as WirelessHART. To our

knowledge, there exists no utilization based schedulability

analysis for multi-hop wireless networks. This lack of simple

analytical model to efficiently analyze real-time performance

excludes the use of scheduling-control co-design approaches

developed for CPU scheduling or wired networks.

As WirelessHART networks [1], [22] are becoming the

mainstream for wireless control systems in process industries,

recent works have focused on control and scheduling issues in

WirelessHART networks [2], [23]–[29]. However, these works

have addressed either scheduling [24]–[27], [29], routing [28],

delay analysis [2], or framework to model schedules [23], and

have not considered the scheduling-control co-design problems

such as rate selection. In contrast, we have developed the

co-design approach to determine near optimal sampling rates

of the feedback control loops which minimize their overall

control cost and ensure their real-time schedulability. To our

knowledge, this paper is the first to address scheduling-control

co-design for WirelessHART networks.

III. CONTROL NETWORK MODEL

We consider a wireless control system where feedback

control loops are closed over a WirelessHART network.

The WirelessHART standard [1], [22] has been specifically

designed to meet the critical needs for industrial process

monitoring and control. We consider a WirelessHART network

consisting of a set of field devices (sensors and actuators)

and one gateway. A WirelessHART network is characterized

by small size and a centralized network manager installed in

the gateway. The network manager determines the routes, and

schedule of transmissions. The controllers for feedback control

loops are installed in the gateway. The sensor devices deliver

their sensor data to the controllers, and the control messages

are then delivered to the actuators through the network.

Time is synchronized, and transmissions happen based on

TDMA. A time slot is 10ms long, and allows exactly one

transmission and its acknowledgement between a device pair.

In a dedicated slot, there is only one sender for each receiver.

In a shared slot, more than one sender can attempt to transmit

to the same receiver. The network uses 16 channels defined in

IEEE 802.15.4 and allows per time slot channel hopping. Each

transmission in a time slot happens on a different channel. A

device cannot both transmit and receive at the same time; nor

can it receive from more than one sender at the same time.

Two transmissions conflict when they involve a common node.

A directed list of paths that connect a source and destination

pair is defined as a routing graph. For communication between

a pair, transmissions are scheduled on the routing graph by

allocating one link for each en-route device starting from the

source, followed by allocating a second dedicated slot on the

same path to handle a retransmission, and then by allocating

a third shared slot on a separate path to handle another retry.

This conservative practice leaves a huge number of allocated

time slots unused since only one route is chosen based on

network conditions, thereby degrading the schedulability. To

address this, existing end-to-end delay analysis [2], [3] consid-

ers only collision-free schedule based on dedicated slots. Since

delay analysis is not the focus of this paper, we use existing

end-to-end delay bounds. If, in the future, any delay bound is

derived by considering shared time slots, that bound can be

applied to define the constraints in our co-design problem.

IV. CONTROL LOOP MODEL

The wireless control system consists of n feedback control

loops, each denoted by Fi, 1 ≤ i ≤ n. Associated with

each control loop are a sensor node and an actuator. In each

loop, the dynamics of the plant is described as a Linear Time

Invariant (LTI) system and can be written as

.
x(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

where x(t) is the plant state, u(t) is the controller output, y(t)
is the system output. A, B, C are constant matrix describing



the system dynamics. Although we assume LTI in this work,

the framework proposed can be extended to time-varying

and/or non-linear systems. For each loop, we consider the state

feedback controller:

u(t) = Lx(t)

where L is control gain designed by the control theory. The

quality of control (QoC) of each loop is measured by the

following performance index function [5]:

J(u) = lim
H→∞

∫ H

0

(
xT (t)Qx(t) + uT (t)Wu(t)

)
dt

Where Q and W are quadratic weight matrix representing the

importance of deviation of control objective x(t) and control

effort u(t)1. H is the time horizon during which the cost

function is calculated. A great value of J(u) thus indicates

either a great deviation of the desired state or a great control

effort to bring the state to its reference value. An optimal

control theory, such as Least Quadratic Regulator (LQR),

solves the optimization problem:

J∗(u) = minimize J(u)

to derive an optimal controller. Although J(u) is often related

to an optimal control problem, it can be used as a general con-

trol performance index not limited to some specific controller.

Considering the digital implementation of a control loop

Fi, the optimal control performance may deviate from its

continuous counterpart J∗
i respecting the sampling frequency

fi (Hz). Usually, there is complicated interaction between the

deviation and the sampling frequency. However, similar to [5],

the deviation with respect to the sampling frequency can be

approximated as follows

Ji = J∗
D,i − J∗

i = αie
−βifi (1)

where J∗
D,i is the optimal control performance of the digital

implementation, αi is the magnitude coefficient, and βi is the

decay rate.

Each control loop Fi maintains a minimum required fre-

quency of fmin
i Hz and a maximum allowable frequency of

fmax
i Hz. To maintain an acceptable control performance, the

end-to-end communication (sensor-controller-actuator) delay

for every sensor data and its associated control message must

remain within the sampling period Ti. For any control loop

Fi, we express its sampling period Ti in terms of time slots.

Since 1 slot=10ms, its sampling rate or frequency is

fi =
100

Ti
Hz

Transmissions are scheduled on m channels, and using

rate monotonic policy where a loop with higher rate has

higher priority, breaking ties arbitrarily. The set of control

loops F = {F1, F2, · · · , Fn} will always be assumed to

be ordered by priorities. Fh has higher priority than Fi if

and only if h < i. That is, each Fh, 1 ≤ h ≤ i − 1, is

1We assume the system converges to the origin.

a higher priority loop of Fi. In a fixed priority scheduling
policy, among all transmissions that can be scheduled in a

time slot, the one belonging to the highest priority control

loop is scheduled on an available channel first. The complete

schedule is divided into superframes. A superframe represents

transmissions in a series of time slots that repeat infinitely and

represent the communication pattern of a group of devices. In

rate monotonic scheduling, flows having the same period are

assigned in the superframe of length equal to their period. We

will use Ci to denote the number of transmissions (i.e., time

slots) required by Fi for end-to-end communication. The end-

to-end delay for Fi is denoted by Ri (time slots). The set of

control loops F is schedulable, if Ri ≤ Ti, ∀1 ≤ i ≤ n.

V. FORMULATION OF THE RATE SELECTION PROBLEM

In this section, we formulate the rate selection problem as

a constrained non-linear optimization problem. The objective

is to minimize the overall control cost of the feedback control

loops subject to their real-time schedulability constraints.

Based on the selected rates, the control loops are scheduled

using rate monotonic policy.
In order to capture the online interaction between control

algorithms and the scheduler, a number of issues must be

considered. It must be possible to dynamically adjust the con-

trol loop parameters, e.g., their rates, in order to compensate

for changes in the workload. It can also be advantageous

to view this parameter adjustment strategy in the scheduler

as a controller. Control design methods must also take the

schedulability constraints into account to guarantee real-time

communication through the network. Besides, it should be

possible to compensate for wireless deficiencies (e.g., lossy

links). Briefly, there are three main factors that affect coupling

between the control system and wireless network: (1) the rates

of the control loops, (2) the end-to-end delays, and (3) the

packet loss. As explained in Section III, a packet delivery in

WirelessHART networks achieves high degree of reliability

through route and spectrum diversity. As a consequence, the

probability of packet loss is very low [22]. Therefore, our co-

design approach focuses on rates and end-to-end delays.
We use the end-to-end delay bounds derived in [3] which

are an improved and extended analysis proposed in [2]. In fact,

the analysis in [3] has two ways to derive a delay bound: in

pseudo-polynomial time and in polynomial time. Note that

a pseudo-polynomial time bound makes the schedulability

constraints extremely expensive to check at every step of

optimization in the co-design, thereby making a non-linear

optimization approach almost impractical. Therefore, in this

section, we formulate the problem using the polynomial-time

delay bounds that are somewhat less precise than pseudo-

polynomial ones. In the polynomial time analysis, the worst

case end-to-end delay Ri of Fi is determined as follows

Ri =

⌊
1

m

i−1∑
h=1

Ωh
i

⌋
+

i−1∑
h=1

Θh
i + Ci (2)

Where m denotes the total number of channels; Ωh
i is the delay

that a higher priority loop Fh causes on Fi due to channel



contention, and is determined as follows

Ωh
i =min

(
Ti − Ci + 1,

⌊
Ti + Th − Ch

Th

⌋
Ch

+min
(
Ch, Ti + Th − Ch −

⌊
Ti + Th − Ch

Th

⌋
Th

))

And Θh
i is the delay that a higher priority loop Fh can cause on

Fi due to transmission conflict, and is determined as follows

Θh
i = Δh

i +
(⌊

Ti

Th

⌋
− 1

)
δhi +min

(
δhi , Ti −

⌊
Ti

Th

⌋
Th

)

where δhi denotes the maximum delay that a single trans-

mission of Fi can suffer from Fh, and Δh
i denotes the total

maximum delay that all transmissions of Fi can suffer from

Fh, 1 ≤ h < i, due to transmission conflict. These values

are calculated based on how the routes of Fi and Fh intersect

each other. For any given routes of Fi and Fh, δhi and Δh
i are

constant, and their derivation can be found in [2], [3].

We now define the performance index of the control system

that can describe how the control performance depends on

the rates and delays of the control loops. Note that, when the

controller is implemented, the system performance will deviate

from the ideal value of the performance measure attained using

continuous-time control, and the deviation will depend on

the sampling rate. As mentioned in Equation 1 like [5], we

quantify this deviation by defining the control cost for every

control loop Fi by a monotonic and convex function

Ji = αie
−βifi (3)

where αi is the magnitude co-efficient, βi is the decay rate,

fi (in Hz ) is the rate of Fi. Considering wi as the weight of

Fi, for a set of chosen rates f = {f1, f2, · · · , fn}, where fi
is the rate of Fi, the total control cost of the system stands

J(f) =

n∑
i=1

wiαie
−βifi (4)

Function J(f) describes how the control performance depends

on the rates (i.e., frequencies) and delays of the control loops.

Namely, the higher the rates, the better the performance.

However, a too high rate of some loop may cause congestion

in the network, resulting in a very low rate for some other loop,

thereby degrading the performance. Therefore, we choose the

total control cost J(f) as the performance index.

We can now formulate the scheduling-control co-design as a

non-linear constrained optimization problem, where our objec-

tive is to determine the optimal sampling rates that minimize

the total control cost. The co-design must guarantee that the

end-to-end delay Ri of every loop Fi is within its deadline

Ti. Besides, every control loop Fi must maintain its minimum

required rate of fmin
i Hz and the maximum allowable rate

of fmax
i Hz for an acceptable control performance. In the

scheduling-control co-design, our objective thus boils down

to finding rates f = {f1, f2, · · · , fn} so as to

minimize J(f)

subject to Ri ≤ Ti, ∀1 ≤ i ≤ n

fi ≥ fmin
i , ∀1 ≤ i ≤ n

fi ≤ fmax
i , ∀1 ≤ i ≤ n

(5)

where fi = 100/Ti Hz, and Ri is as defined in Equation 2,

∀1 ≤ i ≤ n.

VI. SUBGRADIENT METHOD FOR RATE SELECTION

Subgradient based methods are an established and standard

approach for nonlinear optimization. In this section, we de-

velop a subgradient based approach to determine the sampling

rates for control cost optimization in the scheduling-control

co-design formulated in the previous section.

In the optimization problem defined in 5 for co-design,

the objective function J(f) : R
n → R is convex while

the non-linear constraints Ri ≤ Ti, ∀1 ≤ i ≤ n, are

not convex. This optimization problem is challenging since

the constraints Ri ≤ Ti are not differentiable, making any

traditional gradient-based optimization unsuitable. To generate

approximate solutions to the primal problem defined in 5, we

consider approximate solutions to its dual problem. Here, the

dual problem is the one arising from Lagrangian relaxation of

the inequality constraints Ri ≤ Ti, and is given by

maximize L(f, λ)

subject to λ ≥ 0
(6)

where L(f, λ) is the Lagrangian dual function defined by

L(f, λ) = inf{J(f) +
n∑

i=1

λi(Ri − Ti)}

such that fmin
i ≤ fi ≤ fmax

i , ∀1 ≤ i ≤ n

Here λ ∈ R
n is the vector of Lagrange multipliers.
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Fig. 1. Surface of the dual function in 6

Figure 1 shows the surface of the dual problem in 6 for

changing the rates of 2 control loops (and keeping all other

loops’ rates unchanged) considering data flows of 12 control

loops simulated on our WSN testbed topology (shown in

Figure 4). The figure shows that L(f, λ) is highly nonlinear



in rates. This implies the difficulty of the problem. Besides,

the function L(f, λ) is not differentiable everywhere. There-

fore, traditional optimization approaches based on gradient

calculation cannot be applied directly to solve it. Hence, we

first adopt a subgradient optimization method to determine

the rates. Note that f belongs to a finite range. Steps of the

subgradient method are presented as Algorithm 1.

Algorithm 1: Subgradient Method for Rate Selection

Input: [fmin
i , fmax

i ], wi, αi, βi ∀Fi, 1 ≤ i ≤ n;
Output: fi, ∀Fi, and total control cost J ;
fi ← fmin

i , ∀Fi, 1 ≤ i ≤ n; /* validity check */
Assign priorities using rate monotonic policy;
if ∃Fi such that Ri > Ti then return unschedulable;
Step 0: Set time t = 0. Choose initial Lagrange multipliers λt = 0. Let
f t be the primal variables corresponding to Lagrange multipliers λt.

while stop condition not true do
Step 1: Determine the rate monotonic priorities of the loops under
current f . Solve the Lagrangian subproblem L(f, λ). That is, given
the dual variables λt, determine the primal variables f t as follows

f t ∈ argmin{J(f) +
n∑

i=1

λi(Ri − Ti)}

such that fmin ≤ f t ≤ fmax

This gives a subgradient st = Rt − T t at λt. If st = 0, then stop.
The algorithm has converged. Current λt gives the optimal value of
the dual, and current f t gives an approximated value of the primal.

Step 2: Compute the Lagrange multipliers for next time as follows

λt+1 = max{0, λt + γtst}
where γt is the step size.

Step 3: Update t = t+ 1 and go to Step 1.
end

Thus, the scheduling-control co-design defined in 5 can be

solved using any existing subgradient solver (e.g., SSMS [30]).

Both the speed of convergence and the quality of solution

largely depend on the step size selection. As a traditional

subgradient method, Algorithm 1 is guaranteed to converge

under any diminishing step size or dynamically adjusted step

size such as Polyak step size [31].

VII. GREEDY HEURISTIC FOR RATE SELECTION

While a subgradient method is a standard approach for non-

linear optimization, it can run very slowly for many practical

problems that have too many local extrema and are highly

non-linear. Due to a large number of local extrema and com-

plicated subgradient direction in our optimization problem, the

subgradient based method proposed in the previous section for

rate selection may turn out to be not quite efficient. Therefore,

in this section, we propose a simple intuitive greedy heuristic

that can scale very well. It runs in polynomial time.

The greedy heuristic starts by selecting a rate of fmin
i

for each control loop Fi. Note that, for valid rate ranges

[fmin
i , fmax

i ], the control loops should be schedulable when

each loop Fi selects a rate of fmin
i . Otherwise, the test

case is simply rejected since no rate selection exists that can

satisfy the schedulability constraints. For valid rate ranges,

Algorithm 2: Greedy Heuristic

Input: [fmin
i , fmax

i ], wi, αi, βi ∀Fi, 1 ≤ i ≤ n, and a step size μ;
Output: fi, ∀Fi, and total control cost J ;
fi ← fmin

i , ∀Fi, 1 ≤ i ≤ n; /* initialize rates */
Assign priorities using rate monotonic policy;
if ∃Fi such that Ri > Ti then return unschedulable;
while true do

max ← 0; /* maximum control cost decrease */
k ← null; /* index of the best control loop */
for each Fi, i = 1, 2, · · · , n such that fi can further increase do

Jold
i ← wiαie

−βifi ; /* current cost of Fi */
fi ← fi + μ; /* increase rate by μ */
Reassign priorities using rate monotonic policy;
if Rj ≤ Tj , ∀1 ≤ j ≤ n then /* if schedulable */

Jnew
i ← wiαie

−βifi ; /* new cost of Fi */
if Jold

i − Jnew
i ≥ max then

max ← Jold
i − Jnew

i ;
k ← i; /* Fk is the best candidate */

end
end
fi ← fi − μ; /* put back Fi’s rate */

end
if max=0 then /* no fi can further increase */

return current fi, ∀Fi, and total control cost J
end
fk ← fk + μ; /* increase rate of loop Fk */

end

the algorithm has the highest control cost in the beginning.

Therefore, it will keep decreasing the cost as long the loops

are schedulable. This is done by increasing the sampling rates

of the loops. The algorithm selects one control loop to increase

the rate in each step, and uses a step size of μ by which the

rate is increased. For loop Fi, the decrease in control cost due

to an increase in current rate fi by μ is determined as

wiαie
−βifi − wiαie

−βi(fi+μ)

In every step, the greedy heuristic increases the rate of

the control loop that decreases the control cost most while

satisfying the schedulability constraints of the loops. It keeps

increasing the rates in this way as long as some loop’s rate

can be increased while keeping all loops schedulable. When no

loop’s rate can be increased anymore, the algorithm terminates,

and returns the current control cost J , and the selected rates.

The pseudo code of the greedy heuristic method is presented

as Algorithm 2.

VIII. RATE SELECTION USING A PENALTY APPROACH

WITH SIMULATED ANNEALING

The greedy heuristic proposed in the previous section

can execute very fast and, in some cases, may significantly

minimize the control cost. But due to complicated nonlinear

constraints, in many cases, it can get stuck in local extrema

and, hence, its performance (in terms of control cost) may

not be guaranteed. Therefore, in this section, we explore a

global optimization framework based on simulated annealing

that can handle non-differentiability and escape local extrema.

In particular, we propose a method that extends the standard

simulated annealing through a penalty approach to address the

constraints for rate selection.



Simulated annealing (SA) is a global optimization frame-

work that is suitable for problems where gradient information

is not available. It uses a global parameter called temperature
to control the probability of accepting a new solution that

is worse than the current one. The temperature decreases

gradually as the algorithm gradually converges. SA is proven

to be able to achieve global optimality under certain theoretical

conditions. SA is particularly suitable for our problem since it

does not require differentiability of functions, and it employs

stochastic global exploration to escape from local minima.

However, while the original SA is designed for uncon-

strained optimization, our co-design problem is a constrained

optimization problem. To find a feasible solution using SA for

our co-design problem, we use a �1− penalty method [32]. In

this method, we introduce a new objective function

g = J(x) + pV (x),

where J is the control cost, V = max{0, Ri −Ti|i = 1 · · ·n}
is the violation of schedulability constraints, and p > 0 is the

penalty factor. The penalty method starts with a low penalty

0.25 and an initial temperature set to 1000*n, where n is the

number of control loops.

At each iteration, we use SA to minimize g under a fixed

p. If it cannot find a feasible solution with that setting, we

increase the penalty p and temperature and start over the SA

algorithm. Theoretically, such a penalty method can find the

constrained global optimal solution when the unconstrained

optimization is optimal and p is large enough. The new

penalty at the ith iteration is calculated by multiplying p
at the (i − 1)th iteration by four, and the new temperature

is calculated by multiplying the original temperature by the

iteration number i. This process is continued until we find

a feasible solution or the maximum number of iteration is

reached. The maximum number of iteration is currently set to

100. In all SA experiments, we set the final temperature and

total number of steps to be 0.01 and 200,000, respectively.

IX. RATE SELECTION THROUGH CONVEX OPTIMIZATION

The co-design problem in 5 does not have a closed form

solution. Since it is non-differentiable and non-convex, we

have adopted subgradient method and simulated annealing

to solve it. In this section, we derive a differentiable and

convex delay bound by relaxing the pseudo-polynomial time

delay bound proposed in [2], [3]. Then, we formulate the

rate selection problem as a convex optimization problem. The

advantage of such formulation is that it has a closed form

solution, and can be solved through a gradient descent method.

For each loop Fi, we derive a differentiable and convex

delay bound Rcvx
i as follows. Based on the pseudo-polynomial

time analysis in [2], [3], if loop Fi has an end-to-end delay

of x time slots, the channel contention delay Ωh
i that a higher

priority loop Fh can cause on Fi is bounded as follows

Ωh
i ≤

⌊
x

Th

⌋
Ch + Ch + (Ch − 1) ≤ x

Th
Ch + 2Ch − 1

Similarly, the transmission conflict delay Θh
i that a higher

priority loop Fh can cause on Fi is bounded as follows

Θh
i = Δh

i +
(⌊

x

Th

⌋
− 1

)
δhi +min

(
δhi , x−

⌊
x

Th

⌋
Th

)
≤ Δh

i +
( x

Th
− 1

)
δhi + δhi = Δh

i +
x

Th
δhi

Note that the above upper bounds of Θh
i and Ωh

i are both

differentiable and continuous. If a control loop Fi has an end-

to-end delay of x time slots, then using the above upper bounds

of Θh
i and Ωh

i , the end-to-end delay bound x can be written

similar to Equation 2 as follows

x =
1

m

i−1∑
h=1

( x

Th
Ch + 2Ch − 1

)
+

i−1∑
h=1

(
Δh

i +
x

Th
δhi

)
+ Ci

=
x

m

i−1∑
h=1

Ch

Th
+

1

m

i−1∑
h=1

(
2Ch − 1

)
+

i−1∑
h=1

Δh
i + x

i−1∑
h=1

δhi
Th

+ Ci

⇔ x

(
1− 1

m

i−1∑
h=1

Ch

Th
−

i−1∑
h=1

δhi
Th

)

=
1

m

i−1∑
h=1

(
2Ch − 1

)
+

i−1∑
h=1

Δh
i + Ci

Thus, x =

1
m

i−1∑
h=1

(
2Ch − 1

)
+

i−1∑
h=1

Δh
i + Ci

1− 1
m

i−1∑
h=1

Ch

Th
−

i−1∑
h=1

δhi
Th

= Rcvx
i (7)

Lemma 1: For any control loop Fi, the end-to-end delay

bound Rcvx
i derived in Equation 7 is convex in f .

Proof: Note that Rcvx
i is twice-differentiable. Hence Rcvx

i

is convex iff its Hessian matrix is positive semidefinite. Let the

constant (the numerator in Rcvx
i ): 1

m

i−1∑
h=1

(
2Ch−1

)
+

i−1∑
h=1

Δh
i +

Ci = Qi. Using Ti = 100/fi the denominator of Rcvx
i : 1 −

1
100m

i−1∑
h=1

fhCh− 1
100

i−1∑
h=1

fhδ
h
i = Zi. Letting Ch

100m +
δhi
100 = qh,

for h = 1, 2, · · · , i− 1, the gradient is given by

∇Rcvx
i (f1, f2, · · · , fi−1) =

⎛
⎜⎜⎜⎜⎝

Qi

Z2
i
q1

Qi

Z2
i
q2

...
Qi

Z2
i
qi−1

⎞
⎟⎟⎟⎟⎠

The Hessian matrix H is given by: H =⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2Qi

Z3
i
q21 2Qi

Z3
i
q1q2 2Qi

Z3
i
q1q3 · · · 2Qi

Z3
i
q1qi−1

2Qi

Z3
i
q2q1 2Qi

Z3
i
q22 2Qi

Z3
i
q2q3 · · · 2Qi

Z3
i
q2qi−1

2Qi

Z3
i
q3q1 2Qi

Z3
i
q3q2 2Qi

Z3
i
q23 · · · 2Qi

Z3
i
q3qi−1

...
...

...
...

...

2Qi

Z3
i
qi−1q1 2Qi

Z3
i
qi−1q2 2Qi

Z3
i
qi−1q3 · · · 2Qi

Z3
i
q2i−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦



Note that Qi

Zi
> 0, qh > 0, ∀h. Now the leading principal

minors of H:∣∣∣ 2Qi

Z3
i
q21

∣∣∣ > 0,

∣∣∣∣∣ 2Qi

Z3
i
q21 2Qi

Z3
i
q1q2

2Qi

Z3
i
q2q1 2Qi

Z3
i
q22

∣∣∣∣∣ = 0,

∣∣∣∣∣∣∣
2Qi

Z3
i
q21 2Qi

Z3
i
q1q2 2Qi

Z3
i
q1q3

2Qi

Z3
i
q2q1 2Qi

Z3
i
q22 2Qi

Z3
i
q2q3

2Qi

Z3
i
q3q1 2Qi

Z3
i
q3q2 2Qi

Z3
i
q23

∣∣∣∣∣∣∣ = 0, · · · , ∣∣ H
∣∣ = 0.

Thus all leading principle minors become non-negative. There-

fore, Hessian matrix H is positive semidefinite. Hence, Rcvx
i

is convex in f .
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Fig. 2. End-to-end delay bounds on testbed topology

Figure 2 shows how (pessimistic) the derived convex bound

Rcvx
i is for a test case on our WSN testbed topology (Figure 4).

The simulation generates data flows for 30 control loops in

the network and randomly assigns, for each loop, a harmonic

period that is also a multiple of 10ms (i.e., 1 time slot)

in a range [320ms, 5120ms]. The loops are assigned rate

monotonic priority, and are sorted along the X-axis from the

highest to the lowest priority. Using 12 channels, the delay

bounds Ri (Equation 2), Rcvx
i , and the delay bound based

on the pseudo-polynomial time analysis in [3] are shown in

the figure for each loop Fi. The loops are scheduled up to

their hyper-period, and for each loop, its maximum end-to-

end delay observed in simulations (marked by ‘simulation’)

is also shown. The figure indicates that Rcvx
i overestimates

the delay at most 2 times that estimated by the pseudo-

polynomial analysis. Rcvx
i is also highly competitive against

the polynomial time delay bound Ri. Since, neither Rcvx
i

nor Ri dominates the other, we study the results under both

bounds. The advantage with Rcvx
i is that we can get a closed

form solution through a gradient descent method.

Now we reformulate the optimization problem in 5 using

above expression of Rcvx
i as follows. Here, we have to select

rates f = {f1, f2, · · · , fn} so as to

minimize J(f)

subject to Rcvx
i ≤ Ti, ∀1 ≤ i ≤ n

fi ≥ fmin
i , ∀1 ≤ i ≤ n

fi ≤ fmax
i , ∀1 ≤ i ≤ n

(8)

where fi = 100/Ti Hz, and Rcvx
i is as defined in Equation 7,

∀1 ≤ i ≤ n.
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The above is a convex optimization problem, and has

closed-form solution. Figure 3 indicates the smoothness of the

function in Problem 8 for changing the rates of 2 control loops

(and keeping all other loops’ rates unchanged) considering

data flows of 12 control loops simulated on a testbed topology

(shown in Figure 4). To find a solution to the primal problem

with 0 duality gap, we consider solutions to its dual problem.

Here also, the dual problem is formed through Lagrangian

relaxation of inequality constraints Rcvx
i ≤ Ti, and is given by

maximize L(f, λ)

subject to λ ≥ 0

Where L(f, λ) is the Lagrangian dual function defined by

L(f, λ) = inf{J(f) +
n∑

i=1

λi(R
cvx
i − Ti)}

such that fmin
i ≤ fi ≤ fmax

i , ∀1 ≤ i ≤ n

Here λ ∈ R
n is the vector of Lagrange multipliers. In the dual,

L(f, λ) is differentiable and, hence, the classical approach of

maximizing the function would be the steepest descent method

that computes a sequence of iterations to update the multipliers

as follows

λt+1 = λt + γt∇L(f, λ)

Note that at every step, the priorities of the control loops

are updated according to rate monotonic policy based on new

updated rates to calculate Rcvx
i . In solving the dual function,

we follow the gradient at the current position, with a specified

step size γ, to reach points with a higher function value. Unlike

Algoritm 1, now we have unique subgradient (which is the

gradient) at the current position. In our case, this evaluates to

λt+1 = λt + γt(Rcvx − T )

Any traditional step size rule (either vanishing or dynamic)

can be applied to reach the closed-form solution in a gradient

descent way. Also, the solution can be found simply by using

any standard convex optimization tool such as CVX [33].

X. EVALUATION

In this section, we evaluate the proposed algorithms for

near optimal rate selection for feedback control loops in



Fig. 4. Testbed topology at transmission power of -5 dBm (the gateway is colored in blue)

wireless control systems. We evaluate the algorithms through

simulations based on the real topologies of a WSN testbed.

Our WSN testbed is deployed in two buildings (Bryan Hall

and Jolley Hall) of Washington University in St Louis [34].

The testbed consists of 74 TelosB motes each equipped with

Chipcon CC2420 radios compliant with the IEEE 802.15.4
standard (WirelessHART is also based on IEEE 802.15.4).

A. Simulation Setup

We simulate the networked control loops by generating data

flows in our testbed topologies. The topologies are determined

in the following way. Setting the same transmission power at

every node, a node broadcasts 50 packets while its neighbors

record the sequence numbers of the packets they receive.

After a node completes sending its 50 packets, the next

sending node is selected in a round-robin fashion. This cycle

is repeated giving each node 5 rounds to transmit 50 packets

in each round. Every link with a higher than 80% packet
reception ratio (PRR) is considered a reliable link to derive the

topology of the testbed. Figure 4 shows the network topology

(embedded on the floor plans of two buildings) when each

node’s transmission power is set to −5 dBm. We have tested

our algorithms using the topologies at 4 different transmission

power levels: 0 dBm, −1 dBm, −3 dBm, −5 dBm.

The number of channels is set to 12. In each topology, the

node with the highest number of neighbors is designated as

the gateway. A set of nodes is considered as sources (sensors),

while another set as destinations (actuators). We select the

same source and destination pairs in each topology. The most

reliable routes (based on PRR) are used for data flow between

source and destination pairs. Each data flow is associated with

a control loop. The weight of each control loop is set to

1. The decay rate (β) and magnitude coefficient (α) of the

loops have been assigned according to those used for bubble

control systems in [5]. The penalty based simulated annealing

has been implemented based on Python Simulated Annealing

Module [35]. All other algorithms have been implemented

in Matlab. The tests have been performed on a Mac OS X
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Fig. 5. Performance comparison on topology at transmission power 0 dBm

machine with 2.4 GHz Intel Core 2 Duo processor.

B. Performance Study

We evaluate all 4 algorithms in terms of achieved control
cost and execution time. Figure 5 shows the results for 30
control loops simulated on the testbed topology when every

node’s transmission power is set to 0 dBm. Figure 5(a)

indicates that the control cost in the simulated annealing (SA)

based penalty method is consistently a lot less than all other

methods. The control cost in the gradient method is very close

to that of SA for each number of loops. The control cost in

the gradient method is at most 1.12 times that of SA, and is a

lot less than the greedy heuristic and the subgradient method.

The greedy heuristic is always achieving control cost higher

than the gradient method, but less than the subgradient method



5 10 15 20 25 30
0

5

10

15

20

25

30

 C
o

n
tr

o
l C

o
st

 Number of Control Loops

 

 

 Greedy Heuristic
 Subgradient
 Gradient
 Simulated Annealing

(a) Control cost

5 10 15 20
0

500

1000

1500

2000

2500

3000

3500

 E
xe

cu
ti

o
n

 T
im

e 
(s

ec
o

n
d

s)

 Number of Control Loops

 

 

 Greedy Heuristic
 Subgradient
 Gradient
 Simulated Annealing

(b) Execution time

Fig. 6. Performance comparison on topology at transmission power -1 dBm

when number of loops is more than 5. The subgradient method

takes a long execution time, and we were not able to get its

results for more than 10 loops. For more than 20 loops, we

have also observed that the gradient method takes a longer

execution time (Figure 5(b)). The gradient method turns out to

be a better option for a moderate number loops. According to

Figure 5(b), the execution time of SA increases exponentially

with the number of loops, but always remains less than the

subgradient method. The greedy heuristic is a lot faster than

other methods due to its polynomial time complexity.

Figure 6 shows the results for 30 control loops on the testbed

topology with transmission power −1 dBm. Figure 6(a) indi-

cates that the control cost in SA is consistently a lot less than

all other methods. The control cost in the gradient method is

at most 1.2 times that of SA, and is a lot less than the greedy

heuristic and the subgradient method. The greedy heuristic is

always achieving control cost higher than the gradient method,

but less than the subgradient method. The subgradient method

takes a long execution time. According to Figure 6(b), its

time increases exponentially with the number of loops. The

gradient method runs faster than SA when the number of loops

is increased beyond 10 but does not become larger than 20.

Figures 7 and 8 show similar results for the testbed topologies

with transmission power −3 dBm and −5 dBm, respectively.

The results demonstrate that, among all methods, SA

achieves the least control cost while requiring the longest

execution time. The subgradient method turns out to be worse

than all other algorithms both in terms of execution time

and in terms of control cost. This is quite reasonable as

our optimization problem is highly nonlinear and there exist

a large number of local extrema. The subgradient direction

becomes highly complicated and therefore both its execution

time and control cost get worse. The greedy heuristic incurs
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Fig. 7. Performance comparison on topology at transmission power -3 dBm

control cost at most 2.67 times that of SA, while keeping the

execution time very low. The gradient based steepest descent

method incurs control cost at most 1.35 times that of SA,

while keeping the execution time less than SA in most cases.

Therefore, to get near optimal results at the cost of longer

execution time, SA turns out to be a prominent method. To get

results very quickly and for scalability with a moderate control

cost, the greedy heuristic turns out to be the best option. To

achieve moderate control cost (not as high as greedy and not

as low as SA) within a reasonable time (not as fast as greedy,

not as slow as SA), the gradient descent method appears to a

promising approach for a moderate number control loops.

XI. CONCLUSION

Recent industrial standards such as WirelessHART have

enabled real-world deployment of wireless control systems.

Due to limited bandwidth in wireless sensor-actuator networks,

it is important to optimize the control performance through a

wireless-control co-design approach. This paper addresses the

problem of determining the optimal sampling rates of feedback

control loops sharing a WirelessHART network. The objective

is to minimize the overall control cost while ensuring that

all data flows meet their end-to-end deadlines. The resulting

constrained optimization problem based on existing delay

bounds for data flows in WirelessHART networks is difficult

since it is non-differentiable, non-linear, and not in closed-

form. We propose four approaches to solve this challenging

problem: (1) a subgradient method, (2) a simulated annealing

(SA) based penalty method, (3) a polynomial-time greedy

heuristic method, and (4) a gradient descent method based

on a new delay bound that is convex and differentiable.

We then perform a simulation study of the different ap-

proaches based on real testbed topologies and simulated
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Fig. 8. Performance comparison on topology at transmission power -5 dBm

control systems. Interestingly, while subgradient methods are

commonly adopted to solve non-linear constrained optimiza-

tion problems, it leads to the highest control cost and signif-

icant computation times in solving our optimization problem.

We found that it is due to a large number of local minima and

high nonlinearity of our problem. SA consistently achieves the

minimum control cost while incurring the longest execution

time. Conversely, the greedy heuristic results in higher control

cost using the shortest execution time. Convex optimization

based on our new delay bound hits the balance between control

cost and execution time for a moderate number of control

loops. Our results represent a promising step towards wireless-

control co-design involving complex interactions between con-

trol performance and real-time communication.
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