
Near-Optimal Routing Lookups with Bounded Worst Case
Performance

Pankaj Gupta Balaji Prabhakar Stephen Boyd
Departments of Electrical Engineering and Computer Science

Stanford University, CA 94305.
pankaj@stanford.edu, balaji@isl.stanford.edu, boyd@stanford.edu

Abstract— The problem of route address lookup has received much at-
tention recently and several algorithms and data structures for performing
address lookups at high speeds have been proposed. In this paper we con-
sider one such data structure – a binary search tree built on the intervals
created by the routing table prefixes. We wish to exploit the difference in
the probabilities with which the various leaves of the tree (where the inter-
vals are stored) are accessed by incoming packets in order to speedup the
lookup process. More precisely, we seek an answer to the question “How
can the search tree be drawn so as to minimize the average packet lookup
time while keeping the worst-case lookup time within a fixed bound?” We
use ideas from information theory to derive efficient algorithms for comput-
ing near-optimal routing lookup trees. Finally, we consider the practicality
of our algorithms through analysis and simulation.

Keywords—Routing lookups, Prefix matching, Optimality, Fast routing.

I. I NTRODUCTION

The explosive growth of the Internet has placed huge de-
mands on its infrastructure. While advances in optical technolo-
gies such as DWDM have increased link speeds to beyond tens
of gigabits per second, Internet backbone routers – the process-
ing nodes interconnecting these links, have been lagging behind.
One main reason for this is the relatively complex packet pro-
cessing required at a router — for every incoming packet, the
router has to lookup a forwarding table (also called a routing ta-
ble) to determine the packet’s next hop destination. This process
of looking up a packet’s next hop is aggravated with a steady in-
crease in routing table sizes [1]. As a result, the routing lookup
problem has received considerable attention, both in academia
and in the industry.

The adoption of classless inter-domain routing (CIDR) [2] in
1993 means that a router now performs a “longest prefix match”
to determine the next hop of a packet. A router maintains a set of
destination address prefixes in a routing table. Given a packet,
the lookup operation consists of finding the longest prefix in the
routing table that matches the first few bits of the destination
address of the packet. Several solutions including innovative
data structures and algorithms for solving this problem have ap-
peared in the recent literature (see, for example, [3], [4], [5],
[6], [7], [8]). The early work [4], [5], [6], [7], [8] focused on the
development of data structures and algorithms for minimizing
the lookup time given a routing table and some memory space
constraints. For example, the work of Srinivasan and Varghese
[8] aims to minimize the worst-case lookup time of a packet
given memory space constraints. Also given space constraints,
a more recent paper by Cheung and McCanne [3] considers the
frequency with which a certain prefix is accessed to improve the
average time taken to look up an address. Both these papers [3],
[8] consider a trie data structure (or its variant) while doing the
minimization.

This paper also assumes that the frequency with which pre-
fixes are accessed is known. Given this, the aim is to design a
routing lookup scheme for minimizing the average lookup time.
In this respect our formulation is similar to that in [3]. However,
since our data structure is different (we use a binary search tree
instead of a radix trie), our methods and the constraints imposed
upon us are different. For example, redrawing a trie typically
entails compressing it by increasing the degree of some of its in-
ternal nodes. This can alter its space consumption. In contrast,
it is possible to redraw a binary search tree without changing the
amount of space consumed by it and hence space consumption
is not a constraint in our formulation.

But the use of a binary tree data structure brings up a differ-
ent problem: Observe that it is now possible for the worst-case
depth of the binary tree to be very large depending on the distri-
bution of the access probabilities1. This can lead to prohibitively
long lookup times for some prefixes. It is therefore important to
constrain the maximum depth of the binary tree to some small
prespecified number.

We approach the problem of finding good depth-constrained
binary search trees using information theoretic ideas and convex
optimization techniques. To this end, we set up the problem as
an average lookup time minimization problem subject to a max-
imum lookup time constraint. There exists an algorithm to solve
this problem due to Larmore and Przytycka [10] with a prepro-
cessing time complexity ofO(nD logn), wheren is the number
of prefixes andD is the worst case number of memory accesses
allowed. Despite its optimality the algorithm is complicated and
difficult to implement. The algorithm obtained in this paper is
nearly optimal (to within two memory accesses) and has a pre-
processing time complexity ofO(n logn). More importantly, it
is easy to implement.

A useful by-product of our approach is that the resulting data
structure is easily parallelizable. That is, if several processing
engines were available to carry out the lookup operation, then
each engine will be sharing the total load almost equally. This
load balancing feature when used in parallel hardware designs
reduces the average lookup time by a multiplicative factor.

In this paper the routing lookup problem motivates us to find
good depth-constrained binary search trees (also called alpha-
betic trees). Finding good depth-constrained alphabetic and
Huffman trees are problems of independent interest, e.g. in com-
putationally efficient compression. The general approach of this
paper, although developed for alphabetic trees, turns out to be

1There are about 65000 prefixes in a large routing table today [9]. This can
lead to a binary search tree with a maximum depth of several hundreds or thou-
sands.

Prefix StartPoint EndPoint
P1 * 0000 1111
P2 00* 0000 0011
P3 1* 1000 1111
P4 1101 1101 1101
P5 001* 0010 0011

TABLE I

An example routing table with 4-bit prefixes and endpoints of their induced

intervals on the number line[0000; 1111].

equally applicable for finding depth-constrained Huffman trees,
and compares favorably to recent work on this topic (see, for
example, Schieber [11] and Mildiu and Laber [12]).

The paper is organized as follows: Section 2 describes the
problem of routing lookups and its relationship with Informa-
tion Theory. Section 3 sets up the optimization problem and
describes our proposed solution. Section 4 provides simulation
results of the proposed algorithms on some large publicly avail-
able routing tables and a large packet trace. And Section 5 con-
cludes.

II. ROUTING LOOKUPS

A routing table consists of a series of tuples of the form
hprefix, nextHopi, whereprefix represents the aggregation of
several 32-bit destination IP addresses andnextHopis the IP
address of the corresponding next hop router. Given an incom-
ing packet’s destination address, the routing lookup problem is
to find the longest (i.e. the most specific) of all the prefixes
matching the first few bits of the incoming packet’s destination
address.

Each prefix can be viewed as an interval on the number line
[0; 232), referred to here as theIP number line. Lampson, Srini-
vasan and Varghese [6] propose a data structure in which the end
points of this interval, sorted in increasing order after eliminat-
ing duplicates to givefP1; P2; : : : ; Pmg, are stored in the exter-
nal nodes (leaves) of a binary tree and the corresponding next
hop addresses are precomputed for each of the disjoint basic in-
tervals,[Pi; Pi+1). The internal nodes contain suitably chosen
values to guide the search process to one of their two children.
An example of a routing table with 4-bit prefixes is shown in
Table I. The corresponding subdivision of the IP number line
and an example binary search tree is shown in Figure 1. Clearly,
with n prefixes, there are no more thanm = 2n such endpoints
and thus the resulting binary search tree has a size which is lin-
ear in the number of routing table prefixes.

While this binary tree structure is very good if all intervals
are accessed uniformly, the search time can be improved con-
siderably by making use of the frequency with which a certain
routing table entry is accessed. We note that today’s routers
already maintain such per-prefix statistics. Hence, minimizing
routing lookup times by making use of this information comes
at no extra data collection cost. Given this, a natural question to
ask is “What is the best tree data structure given the frequency
of access of prefix intervals?” Viewing it this way, the prob-
lem is readily recognized to be one of minimizing the average

<<

<

< <

<

0111

0011

0001

1101

1100

I1 I2 I4 I5

I3 I6

>

>

>

>

>

P1

P5

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1011 1100 1101 1110 11111010

I5 I6I1 I2 I3 I4

P2

P3

P4

Fig. 1. The binary search tree corresponding to the routing table in Table I.

weighted length of a binary tree whose leaves are weighted by
the probabilities associated with the intervals represented by the
leaves. The minimization is to be carried over all possible bi-
nary trees with the given intervals and corresponding weights at
the leaves.

In the language of Information Theory, the problem stated
above translates to: Find aminimum average length alphabetic
code (or tree)for anm-letter alphabet (where each letter corre-
sponds to an interval). An alphabetic code is one in which them

letters are ordered lexicographically on the leaves of the result-
ing binary tree. That is, if the letterA appears before the letter
B in the alphabet then the code word associated with the letter
A has a smaller binary value than the code word associated with
the letterB. For the example in Figure 1, the code word asso-
ciated with Interval I1 is000 and that associated with Interval
I5 is 101, where a bit in the codeword is0 (resp.1) for the left
(resp. right) branch at the corresponding node.

As an example, if the intervalsI1 throughI6 are accessed with
probabilities 1/2, 1/4, 1/8, 1/16, 1/32 and 1/32 respectively, then
the optimal alphabetic tree corresponding to these probabilities
(or weights) is shown in Figure 2(a). The codeword for I1 is
now0 and that of I5 is11110.

III. A LGORITHMS

The average length of a general prefix code for a given set
of probabilities can be minimized using the well-known Huff-
man coding algorithm [13]. However, a Huffman solution is not
guaranteed to maintain the alphabetic order of the input data set.
This causes implementational problems as simple comparison
queries are not possible at internal nodes to guide the search.
Instead, at an internal node of a Huffman tree, one needs to ask
for memberships in arbitrary subsets of the alphabet to proceed
to the next level. Because this is as hard as the original search
problem itself, it is not feasible to use a Huffman solution.

Apart from the alphabetic constraint, it is necessary to bound
the maximum code word length (or the maximum depth of the
tree) to make the solution useful in practice. This is because an
optimal alphabetic tree forn letters can have a maximum depth
of n � 1, see for instance, Figure 2(a) (the root is assumed to

I4

I6I5

1101
1/16

1/32 1/32

0001

I1 0011

0111

1100

I2

I3

1/2

1/4

1/8

0001

I1 0011

I2

1/2

1/4

I4 I6I3

1/8 1/16 1/32 1/32

1100

1101
0111

I5

(a) (b)

Fig. 2. Optimal alphabetic tree corresponding to the tree in Figure 1 with leaf
probabilities as shown: (a) unconstrained depth, (b) depth constrained to 4.

be at depth 0). This is unacceptable in practice where the typ-
ical value ofn is around 65000, since the access of a deep leaf
can cause the router to slow down considerably. Further, any
change in the network topology or in the distribution of incom-
ing packet addresses can lead to a large increase in the access
frequency of a deep leaf. It is therefore very desirable to have a
small upper bound on the maximum depth of the alphabetic tree.
An upper bound on the worst case lookup time also simplifies
the hardware design of a router. Thus, well-known algorithms
for finding an optimal alphabetic tree such as those in [14], [15],
[16] which do not incorporate a maximum depth constraint can-
not be used in our setting.

To understand this last point better, consider the alphabetic
tree of Figure 2(a) which is optimal if the intervalsI1 throughI6
shown in the binary tree of Figure 1 are accessed with probabili-
ties f1=2; 1=4; 1=8; 1=16; 1=32; 1=32g, respectively. For these
probabilities, the average lookup time is1:9375 (equal to1 �
1=2+ 2 � 1=4+ 3 � 1=8+ 4 � 1=16+ 5 � 1=32+ 5 � 1=32), while
the maximum depth is 5. If we impose a maximum depth con-
straint of 4, then we need to redraw the tree and obtain another
tree as shown in Figure 2(b) where the average lookup time has
increased to 2.

In general, we are interested in the following minimization
problem:

minimize
flig

C =
Pi=n

i=1 li � pi s.t. li � D 8i (1)

for n intervals with access probabilitiespi, li being the number
of comparisons required to lookup a packet in theith interval.
From the previous discussion, we also require that theli’s ob-
tained as a result of solving the above minimization problem
give rise to an alphabetic tree. Yeung [17] gives a necessary and
sufficient condition that theli’s must satisfy in order for the re-
sulting tree to be alphabetic. This condition is stated below as
Lemma 1.

The smallest possible value ofC is the entropy,H(p), of the
set of probabilitiesfpig, whereH(p) = �

P
pi log pi.2And for

2All logarithms in this paper are to the base 2.

depth constrained alphabetic treesC will be bigger thanH(p)
more often than not3. Finding fast algorithms for computing
optimal depth constrained binary trees (without the alphabetic
constraint) is known to be a hard problem and good approxi-
mate solutions are appearing only now [18], [12], [19], almost
40 years after the original Huffman algorithm. Imposing the al-
phabetic constraint renders the problem even harder [20], [21],
[22], [23]. Larmore and Przytycka [10] have proposed an op-
timum algorithm which runs in timeO(nD logn) and finds a
depth constrained alphabetic tree. However, their algorithm is
very complicated to implement.

In light of this, we attempt to find a practical and prov-
ably good solution to the problem of computing optimal depth-
constrained alphabetic trees. A good approximate solution to
the routing lookup problem is of value because: (1) It is much
simpler to find than an optimum solution. It is also much sim-
pler to implement. (2) As the probabilities associated with the
intervals induced by routing prefixes change frequently and are
not known exactly, it does not seem to make much sense to solve
the problem exactly for an optimum solution. (3) Our approx-
imate solution can be theoretically proved to be requiring no
more than two extra comparisons per lookup when compared to
the optimum solution. In practice, the discrepancy is very often
found to be less than two.

A. Algorithm MINDPQ

We first state two results from [17] as lemmas that we will
use to develop our algorithm. The first lemma states a necessary
and sufficient condition for the existence of an alphabetic code
with specified code word lengths, and the second prescribes a
method for constructing good, near-optimal trees which are not
depth-constrained.

Lemma 1: (The Characteristic Inequality): There exists an
alphabetic code with code word lengthsflkg if and only if
sn � 1wheresk(L) = c(sk�1(L); 2

�lk)+2�lk andc is defined
by c(a; b) = da=beb.
Proof: For a complete proof, see [17]. The basic idea is to con-
struct acanonicalcoding tree, a tree in which the codewords are
chosen lexicographically using the lengthsflig. For instance,
suppose thatli = 4 for somei, and in drawing the canonical
tree we find the codeword corresponding to the letteri to be
0010. If li+1 = 4, then the codeword for the letteri+ 1 will be
chosen to be0011; if li+1 = 3, the codeword for letteri + 1 is
chosen to be010; and if li+1 = 5, the codeword for letteri+1 is
chosen to be00110. Clearly, the resulting tree will be alphabetic
and Yeung’s result verifies that this is possible if and only if the
characteristic inequality defined above is satisfied by the lengths
flig.2

The next lemma (also from [17]) considers the construction of
good, near-optimal codes. (Note that it does not produce alpha-
betic trees with prescribed maximum depths. That is the subject
of this paper.)

Lemma 2:The minimum average length,Cmin, of an alpha-
betic code onn letters, where theith letter occurs with prob-
ability pi satisfies:H(p) � Cmin � H(p) + 2 � p1 � pn.

3The lower bound of entropy is achieved in general when there are no alpha-
betic or maximum depth constraints.

Therefore, there exists an alphabetic tree onn letters with aver-
age code length within 2 bits of the entropy of the probability
distribution of the letters.
Proof: The lower bound,H(p), is obvious. For the upper
bound, the code lengthlk of thekth letter occurring with proba-
bility pk is chosen to be:

lk =

�
d� log pke k = 1; n

d� log pke+ 1 2 � k � n� 1

The proof in [17] verifies that these lengths satisfy the charac-
teristic inequality, and shows that a canonical coding tree con-
structed with these lengths has an average depth satisfying the
upper bound.2

We now return to our original problem of finding optimal
depth-constrained alphabetic trees. Since the given set of prob-
abilities fpkg might be such thatpmin = mink pk < 2�D, a
direct application of Lemma 2 could yield a tree where the max-
imum depth is bigger thanD. To work around this problem, we
transform the given probabilitiesfpkg into another set of prob-
abilitiesfqkg such thatqmin = mink qk � 2�D. This allows us
to apply the following variant of the scheme in Lemma 2 to ob-
tain a near-optimal depth-constrained alphabetic tree with leaf
probabilitiesfqkg.

Given a probability vectorfqkg such thatqmin � 2�D, we
construct a canonical alphabetic coding tree with the codeword
length assignment to thekth letter given by:

l�k =

�
min(d� log qke; D) k = 1; n
min(d� log qke+ 1; D) 2 � k � n� 1

(2)

Each codeword is clearly at mostD bits long and the tree thus
generated has a maximum depth ofD. It remains to be shown
that these codeword lengths yield an alphabetic tree. By Lemma
1 it suffices to show that thefl�kg satisfy the characteristic in-
equality. We defer this verification to the Appendix.

Proceeding, if the codeword lengths are given byfl�
k
g, the re-

sulting alphabetic tree has an average length of
P

k
pkl

�
k
. Now,

X
k

pkl
�
k �

X
k

pk log
1

qk
+ 2

=
X
k

pk log
pk

qk
�
X
k

pk log pk + 2

= D(pjjq) +H(p) + 2; (3)

whereD(pjjq) is the “relative entropy” between the distributions
p andq andH(p) is the entropy of the distributionp. In order to
minimize

P
k
pkl

�
k, we must therefore choosefq�i g = fqig so

as to minimizeD(pjjq).

A.1 The minimization problem

We are thus led to the following optimization problem:

minimize DPQ = D(pjjq) =
P

i
pi log(pi=qi)

subject to
P

i
qi = 1 and qi � Q = 2�D 8i (4)

Observe that the cost functionD(pjjq) is convex in(p; q) (see
Page 30 of Cover and Thomas [24]). Further, the constraint set
is convex and compact. In fact, the constraint set is defined by

linear inequalities. Minimizing convex cost functions with lin-
ear constraints is a standard problem in optimization theory and
is easily solved by using Lagrange multiplier methods (see, for
example, Section 3.4 of Bertsekas [25]).

Accordingly, define

L(q; �; �) =
X

pi log(pi=qi) +X
�i(Q� qi) + �(

X
qi � 1)

Setting the partial derivatives with respect toqi to zero atq�i
we get

@L

@qi
= 0) q�i =

pi

�� �i
(5)

Putting this back inL(q; �; �), we get the dual

G(�; �) =
X
i

(pi log(�� �i) + �iQ) + (1� �)

Now minimizingG(�; �) subject to�i � 0 and� > �i 8i gives

@G

@�
= 0)

X
i

pi

�� �i
= 1

@G

@�i
= 0 8i) Q =

pi

�� �i

which combined with the constraint that�i � 0 gives us��i =

max(0; �� pi=Q). Substituting this in Equation (5), we get

q�i = max(pi=�;Q) (6)

To finish, we need to solve Equation (6) for� = �� under
the constraint that

Pi=n

i=1 q
�
i = 1. fq�i g will then be the de-

sired transformed probability distribution. It turns out that we
can find a closed form expression for��, using which we can
solve Equation (6) by anO(n logn) time andO(n) space algo-
rithm. The algorithm first sorts the original probabilitiesfpig to
getfp̂ig such thatp̂1 is the largest and̂pn the smallest probabil-
ity. Call the transformed (sorted) probability distributionfq̂�i g.
Then the algorithm solves for�� such thatF(��) = 0 where

F(�) =

i=nX
i=1

q̂�i � 1

=

i=k�X
i=1

p̂i

�
+ (n� k�)Q� 1 (7)

where the second equality follows from Equation 6, andk� is
the number of letters with probability greater than�Q. Figure 3
shows the relationship between� andk�. For all letters to the
left of � in Figure 3,q̂�i = Q and for others,̂q�i = p̂i=�.

Lemma 3:F(�) is a monotonically decreasing function of�.
Proof: First, it is easy to see that if� increases in the interval
[^pr+1=Q; p̂r=Q), i.e. such thatk� does not change,F(�) de-
creases monotonically. Similarly, if� increases from̂pr=Q� �

to p̂r=Q + � so thatk� decreases by 1, it is easy to verify that
F(�) decreases.2

p
n

Q

p

Q

p

Q

p

Q
n-1

µ

12p

Q
k µ

Q
k µ

p
+1

Fig. 3. Showing the position of� andk�

Lemma 3 implies that we can do a binary search for find-
ing a suitable value ofr such that� 2 [pr=Q; pr�1=Q) and
F(pr=Q) � 0 andF(pr�1=Q) < 0. This will take us only
O(logn) time. Once we know that� belongs to this half-
closed interval, we know the exact value ofk� = K and
we can then directly solve for�� using Equation (7) to get
�� = (

Pi=K

i=1 p̂i)=(1 � (n � K)Q). Putting this value of��

in Equation (6) will then give us the transformed set of proba-
bilities fq̂�i g. 4 Given such ^fqig, the algorithm then constructs
a canonical alphabetic coding tree as in [17] with the codeword
lengthsl�

k
as chosen in Equation (2). This tree then clearly has

a maximum depth of no more thanD, and its average weighted
length is worse than the optimum algorithm by no more than 2
bits. To see this, let us refer to the code lengths in the optimum
tree asflopt

k
g. ThenCopt =

P
k
pklk = H(p) + D(pjj2�l

opt

k).
As we have chosenq� to be such thatD(pjjq�) � D(pjjq) for
all probability distributionsq, it follows from Equation (3) that
Cmindpq � Copt + 2. We have thus proved the following main
theorem of the paper:

Theorem 1:Given a set ofn probabilitiesfpig in a speci-
fied order, an alphabetic tree with a depth constraintD can be
constructed inO(n logn) time andO(n) space such that the av-
erage codeword length is at most 2 bits away from the optimum
depth-constrained alphabetic tree. Further, if the probabilities
are given in sorted order, such a tree can be constructed in linear
time.

B. Depth-Constrained Weight Balanced Tree (DCWBT)

In this subsection, we present a heuristic algorithm to gener-
ate near-optimal depth constrained alphabetic trees. This heuris-
tic is similar to the weight balancing heuristic proposed by
Horibe [26] with the modification that the maximum depth con-
straint is never violated. The trees generated by this heuristic
algorithm have been observed to have lower average weighted
length than those generated by algorithm MINDPQ. Also, im-
plementation of this algorithm turns out to be even simpler. De-
spite its simplicity, it is unfortunately hard to prove any optimal-
ity properties of this algorithm.

We proceed to describe the normal weight balancing heuris-
tic and then describe the modification needed to incorporate the
constraint of maximum depth. In a tree, suppose the leaves of
a particular subtree correspond to letters numberedr throught
— we say that the weight of the subtree as well as of its root is

4Note that we will have to spendO(n) time in the calculation of
Pi=k�

i=1 p̂i
anyway, so if we want we can simply implement a linear search instead of a
binary search to find the interval[pr=Q; pr�1=Q).

Pi=t

i=r pi. The root node of this subtree is said to represent the
probabilitiesfpigi=ti=r. Thus, the root node of an alphabetic tree
has weight 1 and represents the probability distributionfpig

i=n
i=1 .

In the normal weight balancing heuristic of Horibe [26], one
constructs a tree such that the weight of the root node is split
into two parts representing the weights of its two children in the
most balanced manner possible. The weights of the two children
nodes are then split recursively in a similar manner. In general,
at an internal node representing the probabilitiesfpr : : : ptg, we
take the left and right children as representing the probabilities
fpr : : : psg andfps+1 : : : ptg if s is such that

�(r; t) =

�����
i=sX
i=r

pi �

i=tX
i=s+1

pi

����� ; r � s < t

= min
8u:r�u<t

�����
i=uX
i=r

pi �

i=tX
i=u+1

pi

�����
This “top-down” algorithm clearly produces an alphabetic tree.
As an example, the weight-balanced tree corresponding to Fig-
ure 1 is the tree shown in Figure 2(a) for the shown probabilities.
Horibe proves that the average depth of such a weight-balanced
tree is greater than the entropy of the underlying probability dis-
tributionfpig by no more than2� (n+ 2)pmin, wherepmin is
the minimum probability in the distribution.

Again this simple weight balancing heuristic can produce a
tree which has an unbounded maximum depth. For instance, a
distributionfpig such thatpn = 2�(n�1) andpi = 2�i 81 �

i � n�1, will produce a highly skewed tree of maximum depth
(n � 1). Figure 2(a) is an instance of a tree on such a distribu-
tion and so is highly skewed. Here is a simple modification we
propose to respect the depth constraint — we follow Horibe’s
weight balancing heuristic constructing the tree in the normal
top-down weight balancing manner until we reach a node such
that if we were to split the weight of the node further in the
most balanced manner, the depth constraint would be violated.
Instead, we split the node maintaining as much balance as we
can while respecting the depth constraint. If this happens at
a node at depthd representing the probabilitiesfpr : : : ptg we
take the left and right children as representing the probabilities
fpr : : : psg andfps+1 : : : ptg if s is such that

�(r; t) =

�����
i=sX
i=r

pi �

i=tX
i=s+1

pi

����� ; a � s < b

= min
8u:a�u<b

�����
i=uX
i=r

pi �

i=tX
i=u+1

pi

�����
wherea = t�2D�d�1 andb = r+2D�d�1. Therefore, the idea
is to use the weight balancing heuristic as far down into the tree
as possible. Intuitively, any node where we are unable to use
the heuristic is expected to be very deep down in the tree. This
would mean that the total weight of this node is small enough
so that approximating the weight balancing heuristic does not
cause any substantial effect to the average path length. For in-
stance, Figure 4 shows the depth-constrained weight balanced
tree for a maximum depth constraint of 4 for the tree in Figure
1(a).

0001

I1 0011

I2

1/2

1/4

0111

1100

1101

1/321/161/8

I3 I4 I5 I6

1/32

been violated here
Depth constraint would have

Fig. 4. Weight balanced tree for Figure 1 with a depth constraint of 4.

T1 T2 T3 T4 T5 T6 T7 T8

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Fig. 5. Showing 8-way parallelism in the constructed alphabetic tree.

As mentioned above, we have been unable to come up with
a provably good bound on the distance of this heuristic from
the optimum solution, but its conceptual and implementational
simplicity along with the simulation results (see next section)
suggest its usefulness.

Lemma 4:A depth constrained weight balanced tree (DCWBT)
for n leaves can be constructed inO(n log n) time andO(n)
space.
Proof: At an internal node, the signed difference in the weights
between its two subtrees is a monotonically increasing function
of the difference in the number of nodes in the left and right
subtrees. Thus a suitable split may be found by binary search
in O(logn) time at every internal node5. Since there aren � 1

internal nodes in a binary tree withn leaves, the total time com-
plexity isO(n logn). The space complexity is the complexity
of storing the binary tree and is thus linear.2

C. Load Balancing

From the manner in which the DCWBT is constructed, it is
easy to see that the two children subtrees of any internal node are
nearly as weight-balanced as possible. Even in the alphabetic

5Note that we may need access to
Pi=s

i=r pi;81 � r; s � n. This can be
obtained by precomputing

Pi=s
i=1 pi;81 � s � n in linear time and space.

tree constructed by the MINDPQ algorithm, the two subtrees of
an internal node are almost equally balanced. This implies that
such a tree data structure can be efficiently parallelized. Suppose
that we had two separate lookup engines for traversing a binary
tree. Then we can assign the left-subtree of the root node to
one of these engines and the right-subtree to the other engine.
Since, the work load is expected to be balanced among the two
engines, we can get twice the lookup rate that is possible with
one engine. Such an architecture is attractive in parallelizable
designs. This “near-perfect load-balancing” thus helps achieve
linear speedup with the number of lookup engines. This is a nice
scalability property — for instance, if the routing tables were to
increase 8 times in size, the same lookup rate could be achieved
by having 8 subtrees, each being traversed by a separate lookup
engine, as shown in Figure 5.

IV. SIMULATION RESULTS

A plot at the CAIDA web site [27] shows that the amount
of traffic per prefix length is very non-uniformly distributed.
This provides some real-life evidence of the possible benefits
to be gained by optimizing the routing table lookup data struc-
ture based on the access frequency of the table entries. For the
purpose of detailed simulation to further demonstrate this claim,
we took two large default-free routing tables publicly available
at IPMA [9] and another smaller table at VBNS [28].

To make an accurate evaluation of the advantages of the opti-
mization algorithms proposed in this paper, a knowledge of the
access probabilities of the routing table entries is crucial. How-
ever, there are no publicly available packet traffic traces with
unencrypted destination addresses that access these tables. For-
tunately, we were able to find one trace of about 2.14 million
packet destination addresses at NLANR [29] – this trace has
been taken fromFix-Westand thus does not access the same
routing tables as obtained from IPMA. Still, as the default-free
routing tables should not be too different from each other, the
use of this trace should give us valuable insights into the advan-
tages of the proposed algorithms. In addition, we also consider
the “uniform” distribution in our simulations, where the proba-
bility of accessing a particular prefix is proportional to its size,
i.e. an 8-bit long prefix has a probability of access twice that of
a 9-bit long prefix.

Table II shows the sizes of the three routing tables consid-
ered in our simulation, along with the entropy values of the uni-
form probability distribution and the probability distribution ob-
tained from the trace. Also shown is the number of memory
accesses required in an unoptimized binary search, which sim-
ply is dlog(#Intervals)e.

In Figures 6 and 7, we plot the average lookup query time
(measured in terms of the number of memory accesses) versus
the maximum depth constraint value for the two different prob-
ability distributions. These figures show that as the maximum
depth constraint is relaxed fromdlog2 ne to higher values, the
average lookup time quickly approaches the entropy of the cor-
responding distribution (see Table II). An interesting observa-
tion from the plots is that the simple weight-balancing heuristic
DCWBT almost always performs better than the near-optimal
MINDPQ algorithm, especially at higher values of maximum
depth constraint.

Routing # Prefixes # Intervals Entropy Entropy Unopt srch
Table (Uniform) (Trace)

VBNS [28] 1307 2243 4.41 6.63 12
MAE WEST [9] 24681 39277 6.61 7.89 16
MAE EAST [9] 43435 65330 6.89 8.02 16

TABLE II

Routing tables considered in simulations. Unoptsrch is the number of memory accesses required in a naive, unoptimized binary search tree

4

5

6

7

8

9

10

11

12

13

14

15

16

12 14 16 18 20 22 24 26 28 30 32

A
ve

ra
ge

 T
re

e
D

ep
th

Maximum Tree Depth

VBNS_DCWBT
VBNS_DPQ

MAE_WEST_DCWBT
MAE_WEST_DPQ

MAE_EAST_DCWBT
MAE_EAST_DPQ

Fig. 6. Showing how the average lookup time decreases when the worst case
depth constraint is relaxed, for the “uniform” probability distribution. XY
in the legend means that the plot relates to algorithm Y when applied to the
routing table X.

7

8

9

10

11

12

13

14

15

16

12 14 16 18 20 22 24 26 28 30 32

A
ve

ra
ge

 T
re

e
D

ep
th

Maximum Tree Depth

VBNS_DCWBT
VBNS_DPQ

MAE_WEST_DCWBT
MAE_WEST_DPQ

MAE_EAST_DCWBT
MAE_EAST_DPQ

Fig. 7. Showing how the average lookup time decreases when the worst case
depth constraint is relaxed, for the probability distribution derived by the
two million packet trace available from NLANR.XY in the legend means
that the plot relates to algorithm Y when applied to the routing table X.

A. Tree Reconfigurability

Because the routing tables and the prefix access patterns are
not static, the data-structure build time is an important consid-
eration. This is the amount of time required to compute the
optimized tree data structure. Our simulations show that even
for the biggest routing table at MAEEAST, the MINDPQ algo-
rithm takes about 0.96 seconds to compute a new tree, while the
DCWBT algorithm takes about 0.40 seconds.6 The build times

6These simulations were carried out by implementing the algorithms in C
and running the simulation as a user-level process under Linux on a 333MHz
Pentium-II processor with 96MB of memory.

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 10000 20000 30000 40000 50000 60000 70000
P

ro
ba

bi
lit

y

Interval#

ObservedTrace Distribution
Equal Distribution

Fig. 8. Showing the probability distribution as derived from the packet trace
on the the MAEEAST routing table. Note that the “Equal” Distribution
corresponds to a horizontal line at y=1.5e-5.

for the smaller VBNS routing table are only 0.033 and 0.011
seconds for the MINDPQ and DCWBT algorithms respectively.

Computation of a new tree could be needed because of two
reasons: (1) change in the routing table, or (2) change in the ac-
cess pattern of the routing table entries. The average frequency
of routing updates in the Internet today is of the order of a few
updates per second, even though the peak value can be up to
a few hundred updates per second. We can simply batch sev-
eral updates to the routing table and run the tree computation
algorithm periodically. Changes in the routing table structure
can therefore be easily managed. The change in access pat-
terns is harder to predict, but there is no reason to believe that it
should happen at a very high rate. Indeed, if it does, there is no
benefit to optimizing the tree anyway. In reality, we expect the
global access pattern to not change a lot while a small change in
the probability distribution is expected over shorter time scales.
Hence, an obvious way for updating the tree would be to keep
track of the current average lookup time as measured by the last
few packet lookups in the router and do a new tree computation
whenever this differs from the tree’s average weighted length
(which is the expected value of the average lookup time if the
packets were obeying the probability distribution) by more than
some settable threshold amount. The tree could also be recom-
puted at fixed intervals regardless of the changes. In summary,
we believe that the tree build times are small enough to make
the algorithms of practical use.

To investigate tree reconfigurability in more detail, we simu-
lated the packet trace with the MAEEAST routing table. For
simplicity, we divided the 2.14 million packet destination ad-

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 10000 20000 30000 40000 50000 60000 70000

P
ro

ba
bi

lit
y

Interval#

Uniform Distribution

Fig. 9. Showing the “uniform” probability distribution as derived from the
MAE EAST routing table. In this distribution, the probability of accessing
an interval is proportional to its length.

dresses in the trace into groups, each group consisting of 0.5M
packets. We fed the addresses one at a time to the simulation
and simulated the effects of updating the tree after seeing the last
packet in every group. We started out with the “equal” distribu-
tion, i.e. every tree leaf, which corresponds to a prefix interval,
is equally likely to be accessed by an incoming packet. Thus
our initial tree is simply the complete tree of depthdlog2 ne.
The simulation showed that once the first tree update (at the end
of the last packet of the first group) is done, the average lookup
time decreases significantly and the other subsequent tree up-
dates do not considerably alter this lookup time. In other words,
the access pattern changes only slightly across groups. Figure
8 shows the probability distribution derived from the trace, and
also plots the “equal” distribution (which is just a straight line
parallel to the x-axis). Also shown for comparison is the “uni-
form” distribution in Figure 9. We found the distribution derived
from the trace to be relatively unchanging from one group to an-
other, and therefore only one of the groups is shown in Figure 8.
This is also borne out in the tree statistics for the MINDPQ trees
computed for every group as shown in Table III for (an arbitrar-
ily chosen) maximum lookup time constraint of 22 memory ac-
cesses. The table shows how computing a new tree at the end of
the first group brings down the average lookup time from 15.94
to 9.26 memory accesses providing a nearly 42% improvement
in the lookup rate. This improvement is expected to be greater
if the depth constraint were to be relaxed further.

While it is not possible to make a direct comparison with the
other proposed schemes [3] [8] for optimizing the routing table
data structures because of the different nature of problems being
solved; we can make a comparison of the complexity of com-
putation of the “optimal” data structures. The complexity of the
data structure in [8] is stated to beO(HnB) whereH = 32,
n = number of prefixes,B = constant believed to be around
3 [8]. This is thus around96n. The complexity of the algorithm
in [3] is stated to beO(HnB) whereB is a constant around
10, which makes it about320n. In contrast, both the MINDPQ
and the DCWBT algorithms are of complexityO(n logn) for
n prefixes which, strictly speaking, is worse thanO(n). How-
ever, including the constants in calculations, these algorithms
have complexityCn logn, whereC is a constant no more than

PktNum luWst luAvg luSd Entropy WtLen
0-0.5M 16 15.94 0.54 15.99 15.99

0.5-1.0M 22 9.26 4.09 7.88 9.07
1.0-1.5M 22 9.24 4.11 7.88 9.11
1.5-2.0M 22 9.55 4.29 7.89 9.37
2.0-2.14M 22 9.38 4.14 7.92 9.31

TABLE III

Statistics for the MINDPQ tree constructed at the end of every 0.5 million

packets in the 2.14 million packet trace for the MAEEAST routing table. The

maximum lookup time is constrained to be 22 memory accesses. All

times/lengths are specified in terms of the number of memory accesses to reach

the leaf of the tree storing the interval. luWst is the worst case lookup time,

luAvg is the average look up time and luSd is the standard deviation. WtLen is

the average weighted length of the tree.

3. Thus even for very large values ofn, say216 = 64K, the
complexity of these algorithms is no worse than approximately
48n.

V. CONCLUSIONS

This paper proposed two near-optimal algorithms for doing
route lookups using a binary search tree data structure with a
constraint on the maximum depth. The complexity, performance
and optimality properties of the algorithms were explored. Sim-
ulations performed on data taken from routing tables in the back-
bone of the Internet show that the algorithms provide a signifi-
cant gain in performance.

REFERENCES

[1] “BGP Table,” http://telstra.net/ops/bgptable.html.
[2] Y. Rekhter and T. Li, “An Architecture for IP Address Allocation with

CIDR,” RFC 1518, 1993.
[3] G. Cheung and S. McCanne, “Optimal Routing Table Design for IP Ad-

dress Lookups under Memory Constraints,” inProceedings of INFOCOM,
Mar. 1999.

[4] A. Brodnik, S. Carlsson, M. Degermark, and S. Pink, “Small forwarding
tables for fast routing lookups,” inProceedings of ACM SIGCOMM, Mar.
1997, pp. 3–13.

[5] P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at
memory access speeds,” inProceedings of INFOCOM, 1998, pp. 1240–
1247.

[6] B. Lampson, V. Srinivasan, and G. Varghese, “IP Lookups using Multiway
and Multicolumn Search,” inProceedings of INFOCOM, 1998, pp. 1248–
1256.

[7] S. Nilsson and G. Karlsson, “IP-Address Lookup Using LC-Tries,”To
appear in IEEE Journal on Selected Areas in Communications, 1999.

[8] V. Srinivasan and G. Varghese, “Faster IP Lookups using Controlled Prefix
Expansion,” inACM Sigmetrics, 1998.

[9] “IPMA Project,” http://www.merit.edu/ipma.
[10] L. L. Larmore and T. M. Przytycka, “A fast algorithm for optimum height-

limited alphabetic binary trees,”SIAM Journal on Computing, vol. 23, no.
6, pp. 1283–1312, Dec. 1994.

[11] B. Schieber, “Computing a minimum-weight k-link path in graphs with
the concave mong e property,” inProc. 6th ACM IEEE Symposium on
Discrete Algorithms, Jan. 1995, pp. 405–411.

[12] R. L. Milidiu and E. S. Laber, “Warm-up algorithm: A lagrangean con-
struction of length restricted huffman codes,” , no. 15, Jan. 1996.

[13] D. A. Huffman, “A method for the construction of minimum redundancy
codes,”Proc. Inst. Radio Engineers, vol. 40, no. 10, pp. 1098–1101, Sept.
1952.

[14] A. M. Garsia and M. L. Waschs, “A new algorithm for minimal binary
search trees,”SIAM Journal on Computing, vol. 6, pp. 622–642, 1977.

[15] T. C. Hu, Combinatorial Algorithms, Addison-Wesley, 1982.

[16] T. C. Hu and A. C. Tucker, “Optimal computer search trees and variable
length alphabetic codes,”SIAM Journal on Applied Mathematics, vol. 21,
pp. 514–532, 1971.

[17] R. W. Yeung, “Alphabetic codes revisited,”IEEE Transactions on Infor-
mation Theory, vol. 37, no. 3, pp. 564–572, 1991.

[18] R. L. Mildiu and E. S. Laber, “Improved bounds on the inefficiency of
length-restricted prefix codes,”unpublished.

[19] R. L. Milidiu, A. A. Pessoa, and E. S. Laber, “Efficient implementation
of the WARM-UP algorithm for the construction of length-restricted pre-
fix codes,” inProceedings of the ALENEX, Baltimore, Maryland, USA,
January 1999, vol. 1619 ofLecture Notes in Computer Science, Springer.

[20] M. R. Garey, “Optimal binary search trees with restricted maximal depth,”
SIAM Journal on Computing, vol. 3, pp. 101–110, 1974.

[21] E. N. Gilbert, “Codes based on inaccurate source probabilities,”IEEE
Transactions on Information Theory, vol. 17, pp. 304–314, 1971.

[22] A. Itai, “Optimal alphabetic trees,”SIAM Journal on Computing, vol. 5,
pp. 9–18, 1976.

[23] R. L. Wessner, “Optimal alphabetic search trees with restricted maximal
height,” Information Processing Letters, vol. 4, pp. 90–94, 1976.

[24] T. M. Cover and J. A. Thomas,Elements of Information Theory, Wiley
Series in Telecommunications, 1995.

[25] D. P. Bertsekas,Nonlinear Programming, Athena Scientific, 1995.
[26] Y. Horibe, “An improved bound for weight-balanced tree,”Information

and Control, vol. 34, pp. 148–151, 1977.
[27] KC Claffy, “Caida Internet Measurement Presentation,”

http://www.caida.org/Presentations/Soa9905/mgp00026.html.
[28] “All vBNS routes snapshot,” http://www.vbns.net/route/Allsnap.rt.html.
[29] “NLANR Network Analysis Infrastructure,” http://moat.nlanr.net.

APPENDIX

Lemma 5:For a depth constrained alphabetic tree with max-
imum depthD, the lengths ofn letters when chosen as follows
satisfy the characteristic inequality of Lemma 1, i.e.sn � 1
wheresk = c(sk�1; 2

�lk) + 2�lk , s0 = 0 andc is defined by
c(a; b) = da=beb; when the code lengthlk of thekth letter oc-
curring with probabilityqk (qk � 2�D 8k) is given by:

lk =

�
min(d� log qke; D) k = 1; n

min(d� log qke+ 1; D) 2 � k � n� 1

Proof: We first prove by induction that

si �

iX
k=1

qk 81 � i � n� 1

For the base case,s1 = 2�l1 � q1 by the definition ofl1. For
the induction step, assume the hypothesis is true fori � 1. By
definition,si = 2�li+c(si�1; 2

�li). Now there are two possible
cases:
1. d� log qie+ 1 � D, and therefore2�(li�1) � qi. Using the
fact thatda=be < a=b+1 or c(a; b) < a+ b for all nonzero real
numbersa andb, we get thatsi � 2�li + si�1 + 2�li . Now
using the inductive hypothesis, we get

si � 2�(li�1) +

k=i�1X
k=1

qk � qi +

k=i�1X
k=1

qk =

k=iX
k=1

qk

2. d� log qie + 1 > D. This implies thatli = D and hence
qi � 2�li . Also, assj is an integral multiple of2�D 8j,
c(si�1; 2

�li) = si�1 �
Pi�1

k=1 qk and thus

si = 2�li + c(si�1; 2
�li) � qi +

k=i�1X
k=1

qk =

k=iX
k=1

qk

Therefore,sn�1 �
Pi=n�1

i=1 qi = 1 � qn � 1 � 2�ln . And
sn = 2�ln + c(sn�1; 2

�ln) � c(1 � 2�ln ; 2�ln) + 2�ln =

1�2�ln+2�ln = 1. This completes the proof that these lengths
satisfy the characteristic inequality.2

