Near-Optimal Routing Lookups with Bounded Worst Case
Performance

Pankaj Gupta Balaji Prabhakar Stephen Boyd
Departments of Electrical Engineering and Computer Science
Stanford University, CA 94305.
pankaj@stanford.edu, balaji@isl.stanford.edu, boyd@stanford.edu

Abstract—The problem of route address lookup has received much at- This paper also assumes that the frequency with which pre-
tention recently and several algorithms and data structures for performing fixes are accessed is known. Given this. the aim is to design a
address lookups at high speeds have been proposed. In this paper we con- . P ' .
sider one such data structure — a binary search tree built on the intervals rOUt'ng lookup scheme for _mm_'m'?m_g the avergge lookup time.
created by the routing table prefixes. We wish to exploit the difference in 1N this respect our formulation is similar to that in [3]. However,
the probabilities with which the various leaves of the tree (where the inter- since our data structure is different (we use a binary search tree

vals are stored) are accessed by incoming packets in order to speedup thejnstaaq of a radix trie), our methods and the constraints imposed
lookup process. More precisely, we seek an answer to the question “How

can the search tree be drawn so as to minimize the average packet lookup UPON us are diffe_ren_t- qu example, redrawing a trie typigal[y
time while keeping the worst-case lookup time within a fixed bound?” We entails compressing it by increasing the degree of some of its in-

use ideas from information theory to derive efficient algorithms for comput- ternal nodes. This can alter its space consumption. In contrast
ing near-optimal routing lookup trees. Finally, we consider the practicality it is possible to redraw a binarv search tree without chanaina the
of our algorithms through analysis and simulation. p y A ging '
Keywords—Routing lookups, Prefix matching, Optimality, Fast routing. famount of spac_e qonsumed by 't_ and hence space consumption
is not a constraint in our formulation.
But the use of a binary tree data structure brings up a differ-
. INTRODUCTION ent problem: Observe that it is now possible for the worst-case

The explosive growth of the Internet has placed huge oq,epth of the binary tree to b_e_very Igrge depending on t_h_e distri-
mands on its infrastructure. While advances in optical technof$tion of the access probabilitesThis can lead to prohibitively
gies such as DWDM have increased link speeds to beyond t3f3g lookup times for some prefixes. Itis therefore important to
of gigabits per second, Internet backbone routers — the procgg¥istrain the maximum depth of the binary tree to some small
ing nodes interconnecting these links, have been lagging behiRtgspecified number.

One main reason for this is the relatively complex packet pro-We approach the problem of finding good depth-constrained
cessing required at a router — for every incoming packet, tRéary search trees using information theoretic ideas and convex
router has to lookup a forwarding table (also called a routing t@Ptimization techniques. To this end, we set up the problem as
ble) to determine the packet's next hop destination. This proc@saverage lookup time minimization problem subject to a max-
of looking up a packet’s next hop is aggravated with a steady jmum lookup time constraint. There exists an algorithm to solve
crease in routing table sizes [1]. As a result, the routing lookps Problem due to Larmore and Przytycka [10] with a prepro-
problem has received considerable attention, both in acade&f&sing time complexity ab(n.D logn), wheren is the number
and in the industry. of prefixes andD is the worst case number of memory accesses

The adoption of classless inter-domain routing (CIDR) [2] if!lowed. Despite its optimality the algorithmis complicated and
1993 means that a router now performs a “longest prefix matcfficult to _|mplemen_t. _The algorithm obtained in this paper is
to determine the next hop of a packet. A router maintains a seft§frly optimal (to within two memory accesses) and has a pre-
destination address prefixes in a routing table. Given a pack¥cessing time complexity @?(n logn). More importantly, it
the lookup operation consists of finding the longest prefix in the€asy to implement.
routing table that matches the first few bits of the destinationA useful by-product of our approach is that the resulting data
address of the packet. Several solutions including innovatigucture is easily parallelizable. That is, if several processing
data structures and algorithms for solving this problem have #19ines were available to carry out the lookup operation, then
peared in the recent literature (see, for example, [3], [4], [8}ach engine will be sharing the total load almost equally. This
[6], [7], [8]). The early work [4], [5], [6], [7], [8] focused on the l0ad balancing feature when used in parallel hardware designs
development of data structures and algorithms for minimizirf§duces the average lookup time by a multiplicative factor.
the lookup time given a routing table and some memory spacdn this paper the routing lookup problem motivates us to find
constraints. For example, the work of Srinivasan and Varghe#od depth-constrained binary search trees (also called alpha-
[8] aims to minimize the worst-case lookup time of a pack&etic trees). Finding good depth-constrained alphabetic and
given memory space constraints. Also given space constraifityffman trees are problems of independentinterest, e.g. in com-
a more recent paper by Cheung and McCanne [3] considers ftéationally efficient compression. The general approach of this
frequency with which a certain prefix is accessed to improve tR@per, although developed for alphabetic trees, turns out to be

average time taken to look up an address. Both these papers
9 P bap [:?]I‘here are about 65000 prefixes in a large routing table today [9]. This can

[8] c_or_13|d_er a trie data structure (or its variant) while doing th@ad to a binary search tree with a maximum depth of several hundreds or thou-
minimization. sands.

Prefix | StartPoint| EndPoint
P | ¥ 0000 1111
P, | 00* 0000 0011
Py | 1% 1000 1111
P, | 1101 1101 1101
P5 | 001* 0010 0011

TABLE |
An example routing table with 4-bit prefixes and endpoints of their induced
intervals on the number lin®000, 1111].

equally applicable for finding depth-constrained Huffman trees, - PL ‘ ‘ ‘
and compares favorably to recent work on this topic (see, fOor o oo oo oo oo o1 omo o 100 w0 100 10 w0 1 mo 1
example, Schieber [11] and Mildiu and Laber [12]).

The paper is organized as follows: Section 2 describes thig. 1. The binary search tree corresponding to the routing table in Table I.
problem of routing lookups and its relationship with Informa-
tion Theory. Section 3 sets up the optimization problem and .)
describes our proposed solution. Section 4 provides simulati¥§gighted length of a binary tree whose leaves are weighted by
results of the proposed algorithms on some large publicly avdlie probabilities associated with the intervals represented by the

able routing tables and a large packet trace. And Section 5 clifves. The minimization is to be carried over all possible bi-
cludes. nary trees with the given intervals and corresponding weights at

the leaves.
Il. ROUTING LOOKUPS In the language of Information Theory, the problem stated

A routing table consists of a series of tuples of the forr%bove translates to: Findrainimum average length alphabetic

(prefix, nextHop, where prefix represents the aggregation of ode (ortree)for anm-letter alphabgt (wher_e each Iettgr corre-
severa] 32-bit destination IP addresses aedtHopis the IP sponds to an interval). An alphabetic code is one in whichithe

. : . letters are ordered lexicographically on the leaves of the result-
address of the corresponding next hop router. Given an incom- - : o
. , L . Ing binary tree. That is, if the lettet appears before the letter
Ing .packets destlnat}on address, the rogyng lookup problgm in the alphabet then the code word associated with the letter
to f|nd_ the Ion_gest (|.e.. the mqst speplflc) of al[the p_ref|>_<e2 has a smaller binary value than the code word associated with
matching the first few bits of the incoming packet’s destlnatlop1 A

the letterB. For the example in Figure 1, the code word asso-

adg;ecshs. refix can be viewed as an interval on the number Iiciated with Interval 11 i9900 and that associated with Interval
P is 101, where a bit in the codeword (resp.1) for the left

[0,232), referred to here as thE number line Lampson, Srini- resp. right) branch at the corresponding node
vasan and Varghese [6] propose a data structure in which the éngp' g P 9 '

points of this interval, sorted in increasing order after eIiminaé—rosai?”(;)éznllleei';c;hle/g]t(lagglit/grzogggli /ngricsiiscstﬁgalt&en
ing duplicates to givé P, P», ... , P, }, are stored in the exter- S ' '

th)g optimal alphabetic tree corresponding to these probabilities

nal nodes (leaves) of a binary tree and the corresponding n . . ST .
hop addresses are precomputed for each of the disjoint basic&r{-we'ghts) Is shown in Figure 2(a). The codeword for I1 is

tervals,[P;, P;+1). The internal nodes contain suitably choseﬂOWO and that of I5 is1 1110.
values to guide the search process to one of their two children.
An example of a routing table with 4-bit prefixes is shown in
Table I. The corresponding subdivision of the IP number line The average length of a general prefix code for a given set
and an example binary search tree is shown in Figure 1. Clead§/probabilities can be minimized using the well-known Huff-
with n prefixes, there are no more than= 2n such endpoints man coding algorithm [13]. However, a Huffman solution is not
and thus the resulting binary search tree has a size which is firaranteed to maintain the alphabetic order of the input data set.
ear in the number of routing table prefixes. This causes implementational problems as simple comparison
While this binary tree structure is very good if all intervalsjueries are not possible at internal nodes to guide the search.
are accessed uniformly, the search time can be improved cbrstead, at an internal node of a Huffman tree, one needs to ask
siderably by making use of the frequency with which a certafor memberships in arbitrary subsets of the alphabet to proceed
routing table entry is accessed. We note that today’s routéesthe next level. Because this is as hard as the original search
already maintain such per-prefix statistics. Hence, minimizipgoblem itself, it is not feasible to use a Huffman solution.
routing lookup times by making use of this information comes Apart from the alphabetic constraint, it is necessary to bound
at no extra data collection cost. Given this, a natural questiorthe maximum code word length (or the maximum depth of the
ask is “What is the best tree data structure given the frequeni®e) to make the solution useful in practice. This is because an
of access of prefix intervals?” Viewing it this way, the probeptimal alphabetic tree fot letters can have a maximum depth
lem is readily recognized to be one of minimizing the averagd n — 1, see for instance, Figure 2(a) (the root is assumed to

Ill. ALGORITHMS

depth constrained alphabetic tre@swill be bigger thanH (p)
more often than nét Finding fast algorithms for computing
optimal depth constrained binary trees (without the alphabetic
constraint) is known to be a hard problem and good approxi-
mate solutions are appearing only now [18], [12], [19], almost
40 years after the original Huffman algorithm. Imposing the al-
phabetic constraint renders the problem even harder [20], [21],
[22], [23]. Larmore and Przytycka [10] have proposed an op-
timum algorithm which runs in tim&(nD logn) and finds a
depth constrained alphabetic tree. However, their algorithm is
very complicated to implement.

In light of this, we attempt to find a practical and prov-
ably good solution to the problem of computing optimal depth-
constrained alphabetic trees. A good approximate solution to
the routing lookup problem is of value because: (1) It is much
simpler to find than an optimum solution. It is also much sim-
pler to implement. (2) As the probabilities associated with the
Fig. 2. Optimal alphabetic tree corresponding to the tree in Figure 1 with leaintervals induced by routing prefixes change frequently and are

probabilities as shown: (a) unconstrained depth, (b) depth constrained todot known exactly, it does not seem to make much sense to solve
the problem exactly for an optimum solution. (3) Our approx-

be at depth 0). This is unacceptable in practice where the tyfiate solution can be theoretically proved to be requiring no
ical value ofn is around 65000, since the access of a deep |€BPre than two extra comparisons per lookup when compared to
can cause the router to slow down considerably. Further, df¢ optimum solution. In practice, the discrepancy is very often
change in the network topology or in the distribution of inconfound to be less than two.

ing packet addresses can lead to a large increase in the access

frequency of a deep leaf. It is therefore very desirable to havéa Algorithm MINDPQ

small upper bound on the maximum depth of the alphabetic treeyss first state two results from [17] as lemmas that we will

An upper bound on the worst case lookup time also simplifigge o develop our algorithm. The first lemma states a necessary
the hardware design of a router. Thus, well-known algorithmg,q syfficient condition for the existence of an alphabetic code
for finding an optimal alphabetic tree such as those in [14], [13}th specified code word lengths, and the second prescribes a
[16] which do notincorporate a maximum depth constraint Cafsethod for constructing good, near-optimal trees which are not
not be used in our setting. depth-constrained.

To unglerstand this'las.t point bejtter, qonsider the alphabetiq oy, 1:(The Characteristic Inequality): There exists an
tree of Figure 2(a) which is optimal if the intervadsthroughl6 a}lphabetic code with code word lengthig} if and only if

shown in the binary tree of Figure 1 are accessed with probab(lgll— < 1wheresy (L) = c(sp_1 (L), 2-)+2-"+ andcis defined

ties{1/2,1/4,1/8,1/16,1/32,1/32}, respectively. For these by e(a,b) = [a/b]b.

;l)r02baglllt1|ez, tge fV; rage llo;)gup5t|r{1e3559357 g 1(eg;al t?]I.I ~ Proof: Foracomplete proof, see [17]. The basic idea is to con-

th/e rT1ax'im/un:rde' té is+5 -If \/Ne |Jrrn (;sc/a o rJrr1ax'im/um),d\g t'hecoﬁt_ruct acanonicalcoding tree, a tree in which the codewords are
P ' P P hosen lexicographically using the lengtfis}. For instance,

straint of 4, then we need to redraw the tree and obtain anotﬁﬁépose that; = 4 for somei, and in drawing the canonical

it;ier}e?s:g?;\lg in Figure 2(b) where the average lookup time rt‘l”"ee we find the codeword corresponding to the |ezIt§3’ be
In general We are interested in the following minimizatioROIO' Iiy1 =4, then the codeword for the letter- 1 wil b.e
problem: ’ chosen to b®011; if /;;.1 = 3, the codeword for letter + 1 is
) chosento b810; and ifl; 11 = 5, the codeword for letter+ 1 is
minimize C = Eﬁj li-p; st l;<DVi (1) chosento be0110. Clearly, the resulting tree will be alphabetic
{t:} and Yeung's result verifies that this is possible if and only if the
for n intervals with access probabilitigs, I; being the number characteristic inequality defined above is satisfied by the lengths
of comparisons required to lookup a packet in tHeinterval. {l:}.0
From the pre\/ious discussion, we also require that/ feeob- The nextlemma (also from [17]) considers the construction of
tained as a result of solving the above minimization proble@90d, near-optimal codes. (Note that it does not produce alpha-
give rise to an alphabetic tree. Yeung [17] gives a necessary Hedic trees with prescribed maximum depths. That is the subject
sufficient condition that the’s must satisfy in order for the re- of this paper.)
sulting tree to be alphabetic. This condition is stated below asLemma 2: The minimum average lengthy,,;,,, of an alpha-
Lemma 1. betic code om letters, where the*" letter occurs with prob-
The smallest possible value 6fis the entropyH (p), of the ability p; satisfies: H(p) < Cimin < H(p) +2 — p1 — pa-

set of probabilitiep; }, whereH (p) = — 3" p; log p;.>And for

3The lower bound of entropy is achieved in general when there are no alpha-
2 All logarithms in this paper are to the base 2. betic or maximum depth constraints.

Therefore, there exists an alphabetic treexdetters with aver- linear inequalities. Minimizing convex cost functions with lin-
age code length within 2 bits of the entropy of the probabilityar constraints is a standard problem in optimization theory and
distribution of the letters. is easily solved by using Lagrange multiplier methods (see, for
Proof: The lower bound,H (p), is obvious. For the upper example, Section 3.4 of Bertsekas [25]).

bound, the code length of thekt” letter occurring with proba- Accordingly, define

bility py. is chosen to be:

[—log pr | k=1 LlgXNpw) = D pilogpi/a) +
— 10g8 Pk =1,n
lk:{ Clogml L 2shsn ot S NQ—a) +pud g —1)

The pI’OOf in [17] verifies that these Iengths satisfy the CharaC-Setting the partia| derivatives with respectgoto zero atqz*

teristic inequality, and shows that a canonical coding tree cafe get

structed with these lengths has an average depth satisfying the

upper bound3 oL _
We now return to our original problem of finding optimal dq;

depth-constrained alphabetic trees. Since the given set of prob- _

abilities {p;} might be such thap,,;, = miny p, < 2-2, a Putting this back inC(g, A, 1), we get the dual

direct application of Lemma 2 could yield a tree where the max- _

imum depth is bigger thaf. To work around this problem, we GO\ m) = (pilog(p — Ai) + XiQ) + (1 — p)

transform the given probabilitiey, } into another set of prob- i

abilities {qx} such that,,;, = miny, ¢, > 2~. This allows us L _ i o

to apply the following variant of the scheme in Lemma 2 to oB¥OW MinimizingG(, 1) subject to; > 0 andy > A; Vi gives

tain a near-optimal depth-constrained alphabetic tree with leaf aG

* Di
0=>¢q = 5
Ly ()

Di

probabilities{ gy }. 9, = 0= = 1
Given a probability vectofq; } such thatg,,;, > 2~ 2, we H T BT
construct a canonical alphabetic coding tree with the codeword oG 0Vi _ b
length assignment to thg" letter given by: o > @= =\
T { min([—loggx], D) k=1,n o) which combined with the constraint thag > 0 gives us\} =
k71 min([—loggqr] +1,D) 2<k<n-1 max(0, 4 — p;/Q). Substituting this in Equation (5), we get

Each codeword is clearly at moBt bits long and the tree thus g = max(p; /1, Q) (6)
generated has a maximum depthiaf It remains to be shown
that these codeword lengths yield an alphabetic tree. By Lemmdo finish, we need to solve Equation (6) for= p* under
1 it suffices to show that thél;} satisfy the characteristic in- the constraint thad~'—{" ¢f = 1. {¢}} will then be the de-
equality. We defer this verification to the Appendix. sired transformed probability distribution. It turns out that we
Proceeding, if the codeword lengths are giver{ iy}, the re- can find a closed form expression fot, using which we can
sulting alphabetic tree has an average length @fp,;. Now, solve Equation (6) by a®(n logn) time andO(n) space algo-
rithm. The algorithm first sorts the original probabilitigs } to
Zpkl}; < Zpk log L +2 get{p;} such thap, is the largest ang, the smallest probabil-
P’ P’ qk ity. Call the transformed (sorted) probability distributidg }.
Then the algorithm solves for* such thatF(x*) = 0 where

P
> pilog = > pilogpy +2
k (L

= D(pllg) + H(p) +2, (3) Fp) = Y ¢ -1
i=1
whereD(p||q) is the “relative entropy” between the distributions i=k, .
pandg andH (p) is the entropy of the distributiop. In order to - Z bi +(n—k,)Q -1 (7)
minimize), prl;;, we must therefore choode;} = {¢;} so = M

as to minimizeD(p||q).
where the second equality follows from Equation 6, &pds

A.1 The minimization problem the number of letters with probability greater tha®. Figure 3
We are thus led to the following optimization problem: shows the relationship betwegrandk,,. For all letters to the
left of 1 in Figure 3,¢; = @ and for othersg} = p;/p.
minimize DPQ = D(p||q) = >, pilog(pi/a) Lemma 3: F(u) is a monotonically decreasing functionaf
subjectto Y .q; =1 andg; > Q=2 P Vi (4) Proof: First, itis easy to see that jf increases in the interval

[pr31/Q,pr/Q), i.e. such thak, does not changeF(u) de-
Observe that the cost functidp(p||q) is convex in(p, q) (see creases monotonically. Similarly, if increases fromp,./Q — €
Page 30 of Cover and Thomas [24]). Further, the constraint se,. /@ + € so thatk, decreases by 1, it is easy to verify that
is convex and compact. In fact, the constraint set is defined BYu) decreasesl

H >'—! pi. The root node of this subtree is said to represent the
probabilities{p; }{=t. Thus, the root node of an alphabetic tree
has weight 1 and represents the probability distribufier i=7.

| In the normal weight balancing heuristic of Horibe [26], one

\ constructs a tree such that the weight of the root node is split

P p P P p P into two parts representing the weights of its two children in the
_n o nl Tky+Tky 2 1 most balanced manner possible. The weights of the two children
Q Q Q Q Q Q nodes are then split recursively in a similar manner. In general,
. . i at an internal node representing the probabilifies. . . p; }, we
Fig. 3. Sh th t dk
9 owing the position of and, take the left and right children as representing the probabilities
{pr...ps} and{ps41...p:} if sis such that

Lemma 3 implies that we can do a binary search for find-

i=s i=t
ing a suitable value of such thaty € [p./Q,p.—1/Q) and _ o ,
Fp,/Q) > 0and F(pr_1/Q) < 0. This will take us only Al 1) ;p’ Z.;lp’ yrEe<t
O(logn) time. Once we know thap belongs to this half- i i
closed interval, we know the exact value bf = K and — min Zpi _ Z s
we can then directly solve fog* using Equation (7) to get Vuir<u<t | — Mt

= (=K p)/(1 = (n — K)Q). Putting this value ofu* . . .
in Equation (6) will then give us the transformed set of probdhis “top-down” algorithm clearly produces an alphabetic tree.
bilities {g*}. 4 Given such{q;}, the algorithm then constructs”S an example, the weight-balanced tree corresponding to Fig-

a canonical alphabetic coding tree as in [17] with the codewdff 1 iS the tree shown in Figure 2(a) for the shown probabilities.
lengths; as chosen in Equation (2). This tree then clearly h&toribe proves that the average depth of such a weight-balanced
a maximum depth of no more thah, and its average weightedtr?e is greater than the entropy of the underlying probablhlty dis-
length is worse than the optimum algorithm by no more thant#oution {p;} by no more thar — (n + 2)pimin, Wherepmin is
bits. To see this, let us refer to the code lengths in the optimdﬂim'n'r?#m problablhty "r]nthbe Id'Str_'bU“r?”- < g
tree as{l?”"}. ThenC,,, — L= Divll2-L"Y gain this simple weight balancing heuristic can produce a
As wes{hgve} choseq® ﬁ; beZS:LfCIEIktllf]aD(p|(|2q72‘)+< g&”q) fczr tree which has an unbounded maximum depth. For instance, a
— H P H . _ 9—(n—1 L 9—1

all probability distributionsy, it follows from Equation (3) that (Pi|str|but|on{pl} such thatpn = 27" andp; = 2. Vi<
Conindns < Copt + 2. We have thus proved the following main’ < n —1, will produce a highly skewed tree of maximum depth
theorem of the paper: (n — 1). Figure 2(a) is an instance of a tree on such a distribu-

' tion and so is highly skewed. Here is a simple modification we

Theorem 1:Given a set ofn probabilities{p;} in a speci- . o
fied order, an alphabetic tree with a depth constréintan be propose to respect the depth constraint — we follow Horibe’s
' weight balancing heuristic constructing the tree in the normal

constructed ir0(n log n) time andO(n) space such that the av- -down weight balancing manner until we reach a node such
erage codeword length is at most 2 bits away from the optimt{ﬁ\?1

depth-constrained alphabetic tree. Further, if the probabilitiest if we were to split the weight of the node further in the

are given in sorted order, such a tree can be constructed in lin Ist balanced manner, the de.pth.cpnstramt would be violated.
time. Instead, we split the node maintaining as much balance as we

can while respecting the depth constraint. If this happens at

a node at depthl representing the probabiliti€p,. ... p:} we

take the left and right children as representing the probabilities
In this subsection, we present a heuristic algorithm to genép,. ... p,} and{p,; ...p;} if s is such that

ate near-optimal depth constrained alphabetic trees. This heuris-

B. Depth-Constrained Weight Balanced Tree (DCWBT)

tic is similar to the weight balancing heuristic proposed by =5 =t

Horibe [26] with the modification that the maximum depth con- Alrt) = Zpi - Z pij, a<s<b
straint is never violated. The trees generated by this heuristic = i=stl ,
algorithm have been observed to have lower average weighted . iy =t
length than those generated by algorithm MINDPQ. Also, im- T Vuasu<h Zpi - ';11%

plementation of this algorithm turns out to be even simpler. De-
spite its simplicity, it is unfortunately hard to prove any optimal; nareq — +— 90241 andp — r+2D-d-1 Therefore, the idea
ity properties of this algorithm. , _ is to use the weight balancing heuristic as far down into the tree
~ We proceed to describe the normal weight balancing heuriss hossible. Intuitively, any node where we are unable to use
tic and t.hen descrllbe the modification needed to incorporate {hg heuristic is expected to be very deep down in the tree. This
constraint of maximum depth. In a tree, suppose the leaves)pfyid mean that the total weight of this node is small enough
a particular subtree correspond to letters numbertiought o4 that approximating the weight balancing heuristic does not
— we say that the weight of the subtree as well as of its rootdg,se any substantial effect to the average path length. For in-
. _ o , i—r, . stance, Figure 4 shows the depth-constrained weight balanced
Note that we will have to spend(n) time in the calculation ob_," i ree for a maximum depth constraint of 4 for the tree in Figure
anyway, so if we want we can simply implement a linear search instead oF g p g
binary search to find the interv@, /Q, pr—1/Q). 1(a).

been violated here engines, we can get twice the lookup rate that is possible with

one engine. Such an architecture is attractive in parallelizable

- designs. This “near-perfect load-balancing” thus helps achieve
linear speedup with the number of lookup engines. This is a nice
scalability property — for instance, if the routing tables were to

increase 8 times in size, the same lookup rate could be achieved

@ by having 8 subtrees, each being traversed by a separate lookup

engine, as shown in Figure 5.

tree constructed by the MINDPQ algorithm, the two subtrees of

an internal node are almost equally balanced. This implies that
such atree data structure can be efficiently parallelized. Suppose

that we had two separate lookup engines for traversing a binary

tree. Then we can assign the left-subtree of the root node to
one of these engines and the right-subtree to the other engine.

1/2 . .
, Since, the work load is expected to be balanced among the two
/\/ Depth constraint would have

12
va

‘ 3 ‘ 4 H 5 ‘ ‘ 6 ‘ IV. SIMULATION RESULTS

|

8 vie U3 32 A plot at the CAIDA web site [27] shows that the amount
Fig. 4. Weight balanced tree for Figure 1 with a depth constraint of 4. of traffic per prefix length is very non-uniformly distributed.
This provides some real-life evidence of the possible benefits
to be gained by optimizing the routing table lookup data struc-
ture based on the access frequency of the table entries. For the
purpose of detailed simulation to further demonstrate this claim,
we took two large default-free routing tables publicly available
at IPMA [9] and another smaller table at VBNS [28].

To make an accurate evaluation of the advantages of the opti-
mization algorithms proposed in this paper, a knowledge of the
access probabilities of the routing table entries is crucial. How-

v ever, there are no publicly available packet traffic traces with
unencrypted destination addresses that access these tables. For-
vs s vs us vs 18 ve us tunately, we were able to find one trace of about 2.14 million
packet destination addresses at NLANR [29] — this trace has
been taken frontix-Westand thus does not access the same
routing tables as obtained from IPMA. Still, as the default-free

As mentioned above, we have been unable to come up wigwting tables should not be too different from each other, the
a provably good bound on the distance of this heuristic fronse of this trace should give us valuable insights into the advan-
the optimum solution, but its conceptual and implementatiortalges of the proposed algorithms. In addition, we also consider
simplicity along with the simulation results (see next sectioifye “uniform” distribution in our simulations, where the proba-
suggest its usefulness. bility of accessing a particular prefix is proportional to its size,

Lemma 4:A depth constrained weight balanced tree (DCWB¥) an 8-bit long prefix has a probability of access twice that of
for n leaves can be constructed @h(nlogn) time andO(n) @ 9-bitlong prefix.
space. Table 1l shows the sizes of the three routing tables consid-
Proof: Atan internal node, the signed difference in the weighgyed in our simulation, along with the entropy values of the uni-
between its two subtrees is a monotonically increasing functiifm probability distribution and the probability distribution ob-
of the difference in the number of nodes in the left and rigfi@ined from the trace. Also shown is the number of memory
subtrees. Thus a suitable split may be found by binary seaRgfesses required in an unoptimized binary search, which sim-
in O(log n) time at every internal node Since there are — 1 Ply is [log(#Intervals)].
internal nodes in a binary tree withleaves, the total time com- In Figures 6 and 7, we plot the average lookup query time
plexity is O(nlogn). The space complexity is the complexit(measured in terms of the number of memory accesses) versus

Fig. 5. Showing 8-way parallelism in the constructed alphabetic tree.

of storing the binary tree and is thus linézar. the maximum depth constraint value for the two different prob-
ability distributions. These figures show that as the maximum
C. Load Balancing depth constraint is relaxed frofilog, n] to higher values, the

average lookup time quickly approaches the entropy of the cor-

easy to see that the two children subtrees of any internal nodergtseoondlng distribution (see Table Il). An interesting observa-

. . . 100 from the plots is that the simple weight-balancing heuristic
nearly as weight-balanced as possible. Even in the alphab%f?gWBT almgst always performs betterg than the negar—optimal

5Note that we may need access¥9.=% p;,V1 < r,s < n. This can be MINDPQ algorithm, especially at higher values of maximum
obtained by precomputing ‘=5 p;,¥1 < s < n in linear time and space. depth constraint.

From the manner in which the DCWBT is constructed, it i

Routing # Prefixes| # Intervals| Entropy | Entropy| Unoptsrch
Table (Uniform) | (Trace)

VBNS [28] 1307 2243 4.41 6.63 12
MAE _WEST [9] 24681 39277 6.61 7.89 16
MAE _EAST [9] 43435 65330 6.89 8.02 16

TABLE Il

Routing tables considered in simulations. Ungpth is the number of memory accesses required in a naive, unoptimized binary search tree

VBNS_DCWBT ——

15 \ VBNS DPQ - |
\ MAE_WEST_DPQ

14 LI AE_EAST DCWBT --m-—

! AE_EAST_DPQ ---o--

T T
ObservedTrace Distribution ~ +
Equal Distribution -------

~ 0.1

+ + +
o

et
+
A
**++
L

.
P
N R L T
Tt %r oy 4»%

©
o

Average Tree Depth
e
S
Probability
o
o
3
2

¥l

0.0001 &

~
W
oo
b
¢
2

6 1e-05

le-06 ‘

4 "
12 14 16 18 26 28 30 32 0 10000 20000 30000 ' 40000 50000 60000 70000
Interval#

20 22 24
Maximum Tree Depth

Fig. 6. Showing how the average lookup time decreases when the worst cB&e 8. Showing the probability distribution as derived from the packet trace
depth constraint is relaxed, for the “uniform” probability distribution_¥X on the the MAEEAST routing table. Note that the “Equal” Distribution
in the legend means that the plot relates to algorithm Y when applied to the corresponds to a horizontal line at y=1.5e-5.
routing table X.

- for the smaller VBNS routing table are only 0.033 and 0.011

i i E{éﬁ%ﬁi@% “e] seconds for the MINDPQ and DCWBT algorithms respectively.

. ¥ T Computation of a new tree could be needed because of two
_w reasons: (1) change in the routing table, or (2) change in the ac-
2 . GRIAY cess pattern of the routing table entries. The average frequency
; L of routing updates in the Internet today is of the order of a few
g ; N ‘ updates per second, even though the peak value can be up to

B Ve a few hundred updates per second. We can simply batch sev-

° x DBl g g eral updates to the routing table and run the tree computation

NN R i algorithm periodically. Changes in the routing table structure

e B N can therefore be easily managed. The change in access pat-

K T et BB W@ terns is harder to predict, but there is no reason to believe that it

should happen at a very high rate. Indeed, if it does, there is no
Fig-d7- tﬁhovxint? hnci"‘_’ ”r‘el aveéa?er'?h(’kulﬁr’ i;mﬁ- I_decé_e?rs_gstheg trhe ;V%fSttﬁB%efit to optimizing the tree anyway. In reality, we expect the
fwb million packet trace available ffom NLANRYin the legend means 01oPal access pattern to not change a lot while a small change in
that the plot relates to algorithm Y when applied to the routing table X. the probability distribution is expected over shorter time scales.
Hence, an obvious way for updating the tree would be to keep
track of the current average lookup time as measured by the last
few packet lookups in the router and do a new tree computation
Because the routing tables and the prefix access patternsvégnever this differs from the tree’s average weighted length
not static, the data-structure build time is an important consigvhich is the expected value of the average lookup time if the
eration. This is the amount of time required to compute tiR#ckets were obeying the probability distribution) by more than
optimized tree data structure. Our simulations show that ev@me settable threshold amount. The tree could also be recom-
for the biggest routing table at MAEAST, the MINDPQ algo- Puted at fixed intervals regardless of the changes. In summary,
rithm takes about 0.96 seconds to compute a new tree, while Y believe that the tree build times are small enough to make
DCWBT algorithm takes about 0.40 secofidghe build times the algorithms of practical use.

6)) i))) __To investigate tree reconfigurability in more detail, we simu-
These simulations were carried out by implementing the algorithms in

and running the simulation as a user-level process under Linux on a 333M@ed _the paCkeF trace with the MAEAST routing ta.ble.' For
Pentium-II processor with 96MB of memory. simplicity, we divided the 2.14 million packet destination ad-

A. Tree Reconfigurability

Uriform Distrbaion _+ PktNum | luWst | luAvg | luSd | Entropy | WtLen

. 0-0.5M 16 1594 | 0.54| 15.99 | 15.99
0.5-1.0M 22 9.26 | 4.09| 7.88 9.07
1.0-1.5M 22 9.24 | 411 7.88 9.11
1.5-2.0M 22 9.55 | 429 | 7.89 9.37
| 2.0-2.14M| 22 9.38 | 4.14| 7.92 9.31

0.001 §

Probability

i TABLE Il
Statistics for the MINDPQ tree constructed at the end of every 0.5 million
E packets in the 2.14 million packet trace for the MERST routing table. The
maximum lookup time is constrained to be 22 memory accesses. All
16'060[e e e — 00 times/lengths are specified in terms of the number of memory accesses to reach
ervlr the leaf of the tree storing the interval. luWst is the worst case lookup time,
Fig. 9. Showing the “uniform” probability distribution as derived from the 'UAVg is the average look up time and luSd is the standard deviation. WtLen is

MAE_EAST routing table. In this distribution, the probability of accessing the average weighted length of the tree.
an interval is proportional to its length.

0.0001

1e-05

dresses in the trace into groups, each group consisting of 0.8MThus even for very large values of say2'6 = 64K, the
packets. We fed the addresses one at a time to the simulatiomplexity of these algorithms is no worse than approximately
and simulated the effects of updating the tree after seeing the Kst.

packet in every group. We started out with the “equal” distribu-

tion, i.e. every tree leaf, which corresponds to a prefix interval, V. CONCLUSIONS

is equ_qlly Iikely to _be accessed by an incoming packet. Thus-l-his paper proposed two near-optimal algorithms for doing
our initial tree is simply the complete tree of defig, n]. roate lookups using a binary search tree data structure with a

The simulation showed that once thg first tree update (at the % straint on the maximum depth. The complexity, performance
of the last packet of the first group) is done, the average lookip o ntimality properties of the algorithms were explored. Sim-

time decreases significantly and the other subsequent tree Wi nerformed on data taken from routing tables in the back-
dates do not considerably alter this lookup time. In other words, o of the Internet show that the algorithms provide a signifi-
the access pattern changes only slightly across groups. Flg%[ﬁt gain in performance.
8 shows the probability distribution derived from the trace, an
also plots the “equal” distribution (which is just a straight line REFERENCES
parallel to the x-axis). Also shown for comparison is the “uncs—

2

P Lo . s . 1] “BGP Table,” http://telstra.net/ops/bgptable.html.
form” distribution in Figure 9. We found the distribution derive] Y. Rekhter and T. Li, “An Architecture for IP Address Allocation with

from the trace to be relatively unchanging from one group to an- CIDR,” RFC 1518, 1993.

other, and therefore only one of the groups is shown in Figurel8, G. Cheung and S. McCanne, “Optimal Routing Table Design for IP Ad-

. . - . dress Lookups under Memory Constraints, Proceedings of INFOCO
This is also borne out in the tree statistics for the MINDPQ trees 5, 1999_Up ! Y ' 9 M

computed for every group as shown in Table Il for (an arbitrag@] A. Brodnik, S. Carlsson, M. Degermark, and S. Pink, “Small forwarding
in chosen) maximum Iookup time constraint of 22 memory ac- tables for fast routing lookups,” iRroceedings of ACM SIGCOMN#ar.

; 1997, pp. 3-13.
cesses. The table shows how computing a new tree at the en,]ofpl Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at

the first group brings down the average lookup time from 15.94 memory access speeds,” Roceedings of INFOCOML998, pp. 1240

to 9.26 memory accesses providing a nearly 42% improvement 1247.

. .. . 6] B.Lampson, V. Srinivasan, and G. Varghese, “IP Lookups using Multiway
in the lookup rate. This improvement is expected to be grea&e]r and Multicolumn Search,” iProceedings of INFOCOML998, pp. 1248—

if the depth constraint were to be relaxed further. 1256.

o 7] S. Nilsson and G. Karlsson, “IP-Address Lookup Using LC-Trie3p
While it is not possible to make a direct comparison with th[e appear in IEEE Journal on Selected Areas in Communicafit889.

other proposed schemes [3] [8] for optimizing the routing tablg] V. Srinivasan and G. Varghese, “Faster IP Lookups using Controlled Prefix
data structures because of the different nature of problems beigrfg Expansion,” inACM Sigmetrics1998.
0]

ved: k . fth lexity of “IPMA Project,” http://www.merit.edu/ipma.
solved; we can make a comparison o € complexity of co L. L. Larmore and T. M. Przytycka, “A fast algorithm for optimum height-

putation of the “optimal” data structures. The complexity of the limited alphabetic binary trees3IAM Journal on Computingol. 23, no.
data structure in [8] is stated to & HnB) whereH = 32, 6, pp. 12831312, Dec. 1994.

. . 11] B. Schieber, “Computing a minimum-weight k-link path in graphs with
n = number of prefixesB = constant believed to be around the concave mong e property,” Rroc. 6th ACM IEEE Symposium on

3 [8]. This is thus arounéi6n.. The complexity of the algorithm Discrete AlgorithmsJan. 1995, pp. 405-411.
in [3] is stated to b@(HnB) where B is a constant around [12] R. L. Milidiu and E. S. Laber, “Warm-up algorithm: A lagrangean con-

. . struction of length restricted huffman codes,” , no. 15, Jan. 1996.
10, which makes it abo20n. In contrast, both the MINDPQ [13] D. A. Huffman, “A method for the construction of minimum redundancy

and the DCWBT algorithms are of complexi€)(n logn) for codes,”Proc. Inst. Radio Engineersol. 40, no. 10, pp. 1098-1101, Sept.
n prefixes which, strictly speaking, is worse t . How- 1952.

P includi h y sp . 9 lculati r@h@n | . hl[rl14 A. M. Garsia and M. L. Waschs, “A new algorithm for minimal binary
ever, Inclu mg the constants In C.a culations, these algorit search trees,SIAM Journal on Computingrol. 6, pp. 622—-642, 1977.
have complexityCn logn, whereC' is a constant no more than[15] T. C. Hu, Combinatorial Algorithms Addison-Wesley, 1982.

[16] T.C.Hu and A. C. Tucker, “Optimal computer search trees and variable Therefore,s,,_; < Ezz‘_l gi=1—¢qg, <1—27"_ And
length alphabetic codes3IAM Journal on Applied Mathematicgol. 21, — 92—l 92=ln) < (1 — 2=In 9—In 92=ln —
pp. 514-532, 1971. Sn +e(sn-1,27") < o 27" +

[17] R. W. Yeung, “Alphabetic codes revisited|EEE Transactions on Infor- 1 =2 f» 427!~ = 1. This completes the proof that these lengths
mation Theoryvol. 37, no. 3, pp. 564-572, 1991, satisfy the characteristic inequality.

[18] R. L. Mildiu and E. S. Laber, “Improved bounds on the inefficiency of
length-restricted prefix codesjnpublished

[19] R. L. Milidiu, A. A. Pessoa, and E. S. Laber, “Efficient implementation
of the WARM-UP algorithm for the construction of length-restricted pre-
fix codes,” inProceedings of the ALENE®altimore, Maryland, USA,
January 1999, vol. 1619 dfecture Notes in Computer Scien&pringer.

[20] M. R. Garey, “Optimal binary search trees with restricted maximal depth,”
SIAM Journal on Computingrol. 3, pp. 101-110, 1974.

[21] E. N. Gilbert, “Codes based on inaccurate source probabilitiédsSFE
Transactions on Information Theqryol. 17, pp. 304-314, 1971.

[22] A. Itai, “Optimal alphabetic trees,SIAM Journal on Computingsol. 5,
pp. 9-18, 1976.

[23] R. L. Wessner, “Optimal alphabetic search trees with restricted maximal
height,” Information Processing Lettersol. 4, pp. 90-94, 1976.

[24] T. M. Cover and J. A. ThomasElements of Information Thegrywiley
Series in Telecommunications, 1995.

[25] D. P. BertsekasNonlinear ProgrammingAthena Scientific, 1995.

[26] Y. Horibe, “An improved bound for weight-balanced trediiformation
and Contro| vol. 34, pp. 148-151, 1977.

[27] KC Claffy, “Caida Internet Measurement Presentation,”
http://www.caida.org/Presentations/S0a9905/mgp00026.html.

[28] “All vBNS routes snapshot,” http://www.vbns.net/route/Allsnap.rt.html.

[29] “NLANR Network Analysis Infrastructure,” http://moat.nlanr.net.

APPENDIX

Lemma 5: For a depth constrained alphabetic tree with max-
imum depthD, the lengths of: letters when chosen as follows
satisfy the characteristic inequality of Lemma 1, ig, < 1
wheres;, = c(sg_1,27'*) + 27", s = 0 andc is defined by
c(a,b) = [a/b]b; when the code length, of the k" letter oc-
curring with probabilityg;, (g, > 2= Vk) is given by:

= min([—loggqx], D) k=1,n
"7 min([—logg] +1,D) 2<k<n—1

Proof: We first prove by induction that

si<Y g VI<i<n-1
k=1

For the base case; = 27" < ¢, by the definition ofl,. For
the induction step, assume the hypothesis is true forl. By
definition,s; = 27 'i +¢(s;_1,27"). Now there are two possible
cases:

1. [—~loggq] + 1 < D, and therefor@ (i~ < ¢;. Using the
factthat[a/b] < a/b+1o0rc(a,b) < a+bfor all nonzero real
numberse andb, we get thats; < 2% 4+ s;_; + 2%, Now
using the inductive hypothesis, we get

k=i—1 k=i—1 k=

=i
s <2V N g <ai+ D> w=Y a
k=1 k=1 k=1

2. [-logg;] + 1 > D. This implies that; = D and hence
¢ > 27'. Also, ass; is an integral multiple o2~ Vj,
c(si 1,27 =851 < 22;11 qr and thus

k=i—1 k=1

si=27" +e(sii,27) <ait D a =Y a
k=1 k=1

