## SCISPACE

formerly Typeset

〕Open access • Journal Article • DOI:10.1287/IJOC.1040.0069
Near-Optimal Solutions of Large-Scale Single-Machine Scheduling Problems

## —Source link $\square$

Pasquale Avella, Maurizio Boccia, Bernardo D'Auria
Institutions: University of Sannio, University of Salerno
Published on: 15 Apr 2005 - Informs Journal on Computing (INFORMS)
Topics: Job shop scheduling, Single-machine scheduling, Personal computer, Heuristic and Relaxation (approximation)

Related papers:

- Time-Indexed Formulations for Machine Scheduling Problems: Column Generation
- A time indexed formulation of non-preemptive single machine scheduling problems
- Formulating the single machine sequencing problem with release dates as a mixed integer program
- An exact algorithm for single-machine scheduling without machine idle time
- Lower bounds for the earliness-tardiness scheduling problem on parallel machines with distinct due dates

Share this paper: 9 in $\square$
View more about this paper here: https://typeset.io/papers/near-optimal-solutions-of-large-scale-single-machine11rrs76op1

# Near-Optimal Solutions of Large-Scale Single Machine Scheduling Problems 

Pasquale Avella<br>RCOST - Research Center on Software Technology<br>Università del Sannio<br>Corso Garibaldi, 107<br>82100 Benevento, Italy avella@unisannio.it<br>Maurizio Boccia, Bernardo D'Auria<br>Centro di Ricerca in Matematica Pura e Applicata<br>Università di Salerno<br>Via Ponte Don Melillo<br>84084 Fisciano (SA) - Italy<br>boccia@crmpa.unisa.it<br>dauria@diima.unisa.it

July 16, 2002


#### Abstract

Single Machine Scheduling Problems with Release Dates (SMSP) concern the optimal allocation of a set of jobs on a single machine, that cannot process more than one job at a time. Each job is ready for processing at a release date and it has to be processed without interruption. The goal is to minimize the total weighted completion time of the jobs.

In this paper the time-indexed formulation is considered and a new lagrangian heuristic is proposed, based on the observation that lagrangian relaxation of job constraints leads to a Weighted Stable Set problem on an Interval Graph. The problem is polinomially solvable by a dynamic programming algorithm.

Computational experience is reported, showing that instances up to 400 jobs and maximum processing time 50 (around 5 millions variables) are solved in less than 40 minutes on a Personal Computer, yielding duality gaps never exceeding $3.0 \%$. We also test a set of hard instances, built to produce bad performances, where we yield duality gaps less than $5 \%$.


Keywords: Scheduling, Lagrangian Relaxation, Interval Graphs.

## 1 Introduction

Let $J=\{1,2, \ldots, n\}$ be a set of jobs to be scheduled on a single machine that can handle at most one job at a time. Each job $j \in J$ requires uninterrupted processing on the machine for a period of length $p_{j}$ and it is ready for processing at the release date $r_{j}$. Both $p_{j}$ and $r_{j}$ are assumed to be integral. Let $w_{j}$ be a weight associated with job $j$ and let $C_{j}$ denote its completion time. The Single Machine Scheduling Problem with Release Dates (SMSP) consists of finding a non-preemptive schedule minimizing the total weighted completion time $\sum_{j} w_{j} C_{j}$.

In scheduling theory this is a basic problem and it is denoted as $1\left|r_{j}\right| \sum w_{j} C_{j}$. Lenstra, Rinnooy Kan and Brucker [17] proved that $1\left|r_{j}\right| \sum w_{j} C_{j}$ is NP-hard even if $w_{j}=1$ for all $j$. Another, more difficult [27], variant of the problem is $1\left|r_{j}\right| \sum w_{j} F_{j}$, where $F_{j}=C_{j}-r_{j}$.

Dyer and Wolsey [9] examined several formulations of $S M S P$, proving that the time-indexed formulation, introduced by Sousa and Wolsey [25], is the strongest. It is based on time-discretization over a time horizon $T$ and has a binary variable $x_{j t}$ to say that job $j \in J$ is completed at time $t\left(x_{j t}=1\right)$.

Crama and Spieksma [8] studied the polyhedral structure of the feasible solutions of the time-indexed formulation, when all processing times are equal. Van den Akker, van Hoesel and Savelsbergh [1] characterized all facet-defining inequalities with integral coefficients and right-hand-side 1 or 2.

Waterer, Johnson and Savelsbergh [29] established the equivalence between $S M S P$ and the Stable Set problem to derive polyhedral results.

For a more general study of polyhedral approaches to machine scheduling problems we refer the reader to the pioneering paper of Balas [4] and to the comprehensive surveys by Queyranne [21] and Queyranne and Schulz [22].

Belouadah, Posner and Potts [5] proposed a Branch-and-Bound algorithm based on a combinatorial lower bound.

Van den Akker, van Hoesel and Savelsbergh [1] proposed a Branch-and-Cut algorithm. In spite of the good quality of lower bounds, they cannot solve instances with more than 30 jobs and maximum processing time $p_{\max }=10$, due to the huge size of the time-indexed formulation.

To alleviate these difficulties, van den Akker, Hurkens and Savelsbergh [2] proposed a Branch-and-Price algorithm based on Dantzing-Wolfe decomposition, solving instances with 30 jobs and $p_{\max }=100$.

Approximation algorithms for $S M S P$ build a feasible schedule from the fractional solution of the LP-relaxation [?]. Surveys of these approaches are given in Schulz [24], Goemans [11], Goemans, Queyranne, Schulz, Skutella and Wang [12], Hall [14], Hall, Schulz, Shmoys and Wein [15].

Savelsbergh, Uma and Wein [23] and Uma [26] report computational experience with approximation algorithms for $1\left|r_{j}\right| \sum w_{j} F j$ on 100 jobs instances.

A lagrangian heuristic based on the weaker completion time formulation of SMSP has been proposed by van de Velde [28]. Mohring, Schulz, Stark and Uetz [19] [20] pre-
sented a lagrangian heuristic for the time-indexed formulation of the Project Scheduling Problem with Precendence Contraints, where the relaxed problem is a Weighted Stable Set Problem on a comparability graph, solved by min-cut computations. A Tabu Search and a Genetic Algorithm have been developed, respectively, by Laguna, Barnes and Glover [16] and by Chen, Elizandro, Liu and Miller [7].

In this paper we present a lagrangian heuristic for SMSP, based on the timeindexed formulation, which yields near-optimal solutions for large-scale instances.

The remainder of the paper is organized as follows. In section 2 we review the time-indexed formulation for SMSP. In section 3 we observe that lagrangian relaxation of the job constraints in the time-indexed formulation leads to a Weighted Stable Set problem on a graph $G(V, E)$ showing a special structure. We show that $G$ is an Interval Graph [13] [10] and the polynomial algorithm described in Mannino and Oriolo [18] is adopted to determine the optimal solution of the relaxed problem (in [2] it is noted that capacity constraints define an Interval Matrix, which is known to be unimodular).

Since the integrality property holds for the relaxed problem, the maximum of the lagrangian relaxation coincides with the value of the LP relaxation. The lagrangian realxation is maximized through subgradient optimization. By some enhancements, we yield convergence to fairly good lower bounds, close $(\leq 0.3 \%)$ to the value of the LP-relaxation, in less than 250 iterations.

In section ?? we describe the upper bound heuristic which attempts to build a feasible solution by exploting the solution of the lagrangian relaxation.

In section 5, computational experience is reported, showing that the algorithm yields duality gaps never exceeding $3 \%$ for instances up to 400 jobs and maximum processing time 50 (about 5 millions variables), in less than 40 minutes on a Personal Computer. We also test a set of hard instances, built to produce bad lower bounds for the time-indexed formulation, where the algorithm yields duality gaps never exceeding $5 \%$.

## 2 Time-indexed formulation

Let $x_{j t}$ be a boolean variable which is 1 if job $j$ is completed at time $t, 0$ otherwise. Let $c_{j t}=w_{j} t$ be the cost of completing job $j$ at time $t$.

Let $T$ denote the time horizon. We set $T=\sum_{j \in J} p_{j}+\max _{j \in J} r_{j}$ to ensure feasibility. Let [ $t_{1}, t_{2}$ ] denote the time interval between $t_{1}$ and $t_{2}$. For any $j \in J$ and $t \in\left[r_{j}+p_{j}-1, T\right]$, let $\gamma(j, t)=\max \left(r_{j}+p_{j}-1, t-p_{j}+1\right)$. The time-indexed formulation of SMSP is:

$$
\begin{align*}
& \operatorname{minimize} \sum_{j \in J} \sum_{t \in\left[r_{j}+p_{j}-1, T\right]} c_{j t} x_{j t} \\
& \text { st } \sum_{t \in\left[r_{j}+p_{j}-1, T\right]} x_{j t}=1, \quad j \in J
\end{align*}
$$

$$
\begin{align*}
& \sum_{j \in J} \sum_{s \in[\gamma(j, t), t]} x_{j s} \leq 1, \quad t \in[1, T]  \tag{2}\\
& x_{j t} \in\{0,1\}, \quad j \in J, t \in\left[r_{j}+p_{j}-1, T\right]
\end{align*}
$$

Job constraints (1) force each job to be processed. Capacity constraints (2) force the machine to process at most one job at a time.

Time-indexed formulation provides good quality lower bounds [1], at the cost of a huge number of variables and constraints: about 1 millions variables for an instance with 100 jobs and average processing time 10.

## 3 Lagrangian Relaxation

The lagrangian function $\Theta(\lambda)$ obtained by relaxing job constraints (1) is:

$$
\begin{aligned}
& \Theta(\lambda)=\min \sum_{j \in J} \sum_{t \in\left[r_{j}+p_{j}-1, T\right]}\left(c_{j t}-\lambda_{j}\right) x_{j t}+\sum_{j \in J} \lambda_{j} \\
& \text { st } \\
& \sum_{j \in J} \sum_{s \in[\gamma(j, t), t]} x_{j s} \leq 1, \quad t \in[1, T] \\
& x_{j t} \in\{0,1\}, \quad j \in J, t \in\left[r_{j}+p_{j}-1, T\right]
\end{aligned}
$$

We associate with $\Theta(\lambda)$ the intersection graph $G(V, E)$, having a node $j t$, with cost $c_{j t}-\lambda_{j}$, for each variable $x_{j t}$ in the formulation, i.e. $V=\left\{j t: j \in J, t \in\left[r_{j}+p_{j}-1, T\right]\right\}$. Let $i s$ and $j t$ be two nodes of $V$. The edge ( $i s, j t$ ) belongs to $E$ if the variables $x_{i s}$ and $x_{j t}$ appear in the same machine constraint (2), i.e. $(i s, j t) \in E$ if either (i) $s>t$ and $t>s-p_{i}+1$ or (ii) $t>s$ and $s>t-p_{j}+1$.

The intersection graph $G$ has a special structure, as noted in [2]. By associating the interval $\left[t-p_{j}+1, t\right]$ with each node $j t$, we have that two nodes of $V$ are adjacent if and only if their corresponding intervals intersect. It follows that the intersection graph $G$ is an interval graph [13] and, for a given set $\bar{\lambda}$ of multipliers, $\Theta(\bar{\lambda})$ is equivalent to a Weighted Stable Set Problem on the Interval Graph $G$. Let $X(\bar{\lambda})$ denote the solution of such problem. In what follows we will refer to the $X(\lambda)$ as the lagrangean solutions.

### 3.1 Computing $\Theta(\lambda)$

For an interval graph [10] [18] there always exists an ordering $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of $V$ with the following property:

Property 3.1 Let $1 \leq q<r<s \leq|V|$. If $\left(v_{q}, v_{s}\right) \in E$, then $\left(v_{r}, v_{s}\right) \in E$.
Given an ordering of $V$ satisfying property (3.1), the Weighted Stable Set Problem on $G$ is polynomially solvable by a dynamic programming algorithm.

Let $k \leq|V|$ and let $\alpha_{W}(k)$ denote the maximum weighted stable set for the subgraph induced by the nodes $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. Let $c(i)$ be the cost of the node $i$ and let $\delta(i)$ be the largest index of a node prior to $i$ which is not adjacent to $i$. The dynamic programming algorithm is defined by the following recursion:

$$
\begin{equation*}
\alpha_{W}(i)=\max \left(\alpha_{W}(i-1), \alpha_{W}(\delta(i))+c(i)\right) \tag{3}
\end{equation*}
$$

To compute $\Theta(\lambda)$ by the recursion (3), we only need to exhibit an ordering of $V$ satisfying property 3.1.

We define an ordering $\left\{j_{1}, j_{2}, \ldots, j_{|J|}\right\}$ of the jobs and then we order the nodes of $V$ as

$$
\left\{j_{1}, 1, j_{2}, 1, \ldots, j_{|J|}, 1, j_{1}, 2, j_{2}, 2, \ldots, j_{|J|}, 2, \ldots, j_{1}, t, j_{2}, t, \ldots, j_{|J|}, t, \ldots, j_{1}, T, j_{2}, T, \ldots, j_{|J|}, T\right\}
$$

We prove that this ordering satisfies property 3.1.
Lemma 3.1 Let $1 \leq q<r<s \leq|V|$ and let $j_{q} t_{q}, j_{r} t_{r}, j_{s} t_{s}$ be, respectively, the nodes whose indices are $q, r, s$. If $\left(j_{q} t_{q}, j_{s} t_{s}\right) \in E$, then $\left(j_{r} t_{r}, j_{s} t_{s}\right) \in E$.

Proof. If $\left(j_{q} t_{q}, j_{s} t_{s}\right) \in E$, then $t_{q} \in\left[\gamma\left(j_{s}, t_{s}\right), t_{s}\right]$. Since $q<r<s$ we have $t_{q} \leq t_{r} \leq t_{s}$ and $t_{r} \in\left[\gamma\left(j_{s}, t_{s}\right), t_{s}\right]$. It follows that $\left(j_{r} t_{r}, j_{s} t_{s}\right) \in E$.

### 3.2 Subgradient Optimization

The lagrangian function $\Theta(\lambda)$ is maximized through the subgradient method, which recursively updates multipliers according to the formula:

$$
\begin{equation*}
\lambda_{k+1}=\lambda_{k}+s g \tag{4}
\end{equation*}
$$

where $s$ is the step-size and $g$ is the subgradient. For SMSP, the generic $j^{\text {th }}$ component of the subgradient is:

$$
\begin{equation*}
g_{j}=\sum_{t \in\left[r_{j}+p_{j}-1, T\right]} x_{j t}-1 \tag{5}
\end{equation*}
$$

The step-size $s$ is computed as:

$$
\begin{equation*}
s=\varphi \frac{Z_{U B}-\Theta\left(\lambda^{*}\right)}{\|g\|^{2}} \tag{6}
\end{equation*}
$$

where $Z_{U B}$ is an upper bound to the optimal value of $\Theta(\lambda), \Theta\left(\lambda^{*}\right)$ is the best value of $\Theta(\lambda)$ found so far and $\varphi$ is a parameter modified according to some rules.

In our computational experience we initialize $Z_{U B}$ by a greedy algorithm. Parameter $\varphi$ is usually initialized to 2 and it is halved after the lower bound has not improved for a given number (say $20 \div 30$ ) of iterations. For $S M S P$ we adopted a more effective updating strategy: we divide $\varphi$ by 1.01 at every iteration, independently from the behavior of $\Theta(\lambda)$.

Moreover we used subgradient deflection [6] to improve convergence. At the generic iteration $k$, we compute the direction $d_{k}$ as:

$$
\begin{equation*}
d_{k}=\frac{g_{k}+0.3 d_{k-1}+0.1 d_{k-2}}{1.4} \tag{7}
\end{equation*}
$$

where $g_{k}$ is the current subgradient vector at the generic iteration $k$, and $d_{k-1}$ and $d_{k-2}$ are the directions used in the last two iterations.

With these settings, the subgradient method converges in less than 250 iterations to fairly good lower bounds, very close (less than $0.3 \%$ ) to the LP-relaxation of the time-indexed formulation as shown in Table 1 for a set of 100 job instances of $1\left|r_{j}\right| \sum w_{j} C_{j}$.

| name | njob | $p_{m} a x$ | LgLB | LPLB |
| :--- | ---: | ---: | ---: | ---: |
| T100-10-1 | 100 | 10 | 193200.9 | 193787.3 |
| T100-20-1 | 100 | 20 | 420310.1 | 421543.3 |
| T100-30-1 | 100 | 30 | 519683.7 | 521673.1 |
| T100-40-1 | 100 | 40 | 687569.1 | 689853.7 |

Table 1: Lagrangian and LP lower bounds for 100 job instances of $1\left|r_{j}\right| \sum w_{j} C_{j}$.

## 4 The upper bound heuristic

We compute upper bounds for $S M S P$ by completing the lagrangian solutions $X(\lambda)$ associated with the optimal (or near-optimal) lagrangian multipliers to make them feasible. The approach has revealed very effective and robust for large instances too.

With each solution $X(\lambda)$ we associate the ordered list of jobs $J(\lambda)$, containing a job $h$ for each $x_{h t}=1$, where $h \prec k$ if $x_{h t_{h}}=1, x_{k t_{k}}=1$ and $t_{k}>t_{h}$.

Since the job constraints (1) are relaxed, the same job may appear in $J(\lambda)$ more than once. We refer to such jobs as the repeated jobs. On the other hand it is possible that some jobs do not belong to $J(\lambda)$. We refer to such jobs as the missing jobs. The solution $X(\lambda)$ is feasible if it contains neither repeated nor missing jobs.

We say that $\lambda$ is near-optimal if $\theta(\lambda)$ is close to its maximum. Preliminary computational experience showed that the following properties hold for $J(\lambda)$, when $\lambda$ is near-optimal:
a) repeated jobs rarely occur;
b) the number of missing jobs is about $10 \div 15 \%$ of the total number of jobs;
c) The jobs in $J(\lambda)$ are in the same order as in the optimal solution.

Example 1 We show a lagrangian solution $X(\lambda)$ and the associated list $J(\lambda)$ for a 20 job instance.

$$
\begin{aligned}
& X(\lambda): \quad x_{0,36}=1 \quad x_{1,98}=1 \quad x_{3,22}=1 \quad x_{4,46}=1 \quad x_{5,82}=1 \\
& x_{7,108}=1 \quad x_{8,10}=1 \quad x_{9,64}=1 \quad x_{9,72}=1 \quad x_{10,56}=1 \\
& x_{11,30}=1 \quad x_{12,26}=1 \quad x_{12,40}=1 \quad x_{15,45}=1 \quad x_{17,12}=1
\end{aligned}
$$

$$
\begin{aligned}
x_{18,35} & =1 \quad x_{19,92}=1 \\
J(\lambda) & =\{8,17,3,12,11,18,0,12,15,4,10,9,9,5,19,1,7\}
\end{aligned}
$$

In $J(\lambda)$, jobs 9 and 12 are repeated jobs, while jobs 2, 6, 13, 14, 16 are missing jobs. The optimal solution for the same instance is:

$$
\begin{aligned}
& X_{\text {opt }}: \quad x_{0,36}=1 \quad x_{1,100}=1 \quad x_{2,26}=1 \quad x_{3,22}=1 \quad x_{4,46}=1 \\
& x_{5,79}=1 \quad x_{6,57}=1 \quad x_{7,110}=1 \quad x_{8,10}=1 \quad x_{9,69}=1 \quad x_{10,56}=1 \\
& x_{11,30}=1 \quad x_{12,40}=1 \quad x_{13,84}=1 \quad x_{14,61}=1 \quad x_{15,45}=1 \quad x_{16,81}=1 \\
& x_{17,12}=1 \quad x_{18,35}=1 \quad x_{19,94}=1 \\
& J_{\text {opt }}=\{8,17,3,2,11,18,0,12,15,4,10,6,14,9,5,16,13,19,1,7\}
\end{aligned}
$$

Given a near-optimal $\lambda$, the heuristic aims at making the lagrangian solution $X(\lambda)$ feasible by removing repeated jobs and then inserting each missing job at the 'right place'. For each missing job $j$ we define a confidence interval $[h(j), k(j)]$, where $h(j)$ and $k(j)$ are two jobs in $J(\lambda)$. To define $h(j)$ and $k(j)$, we look at another nearoptimal set of multipliers $\mu$, whose list $J(\mu)$ contains the missing job $j: h(j)$ and $k(j)$ are respectively the jobs that precede and follow $j$ in $J(\lambda) \cap J(\mu)$.

The rationale of this choice is property $c$ ): we guess that the jobs in $J(\lambda)$ and $J(\mu)$ are in the same order as in the optimal solution and that $J(\mu)$ can suggest where the missing job should be placed in an optimal sequence.

We construct a feasible solution by inserting each missing job in an average point of $[h(j), k(j)]$. The feasible solution is then improved by running a simple interchange algorithm over each confidence interval.

For the sake of clarity below we summarize the main steps of the heuristic:
i) Let $\lambda$ be a near-optimal set of lagrangian multipliers and let $X(\lambda)$ and $J(\lambda)$ define the lagrangian solution.
ii) For each repeated job $j$ in $J(\lambda)$, we delete all its occurrences but the latest.
iii) For each missing job $j$, we look at another near-optimal set of lagrangian multipliers $\mu$ to define the confidence interval $[h(j), k(j)]$. We add the job $j$ to $J(\lambda)$, by placing $j$ in an average point of $[h(j), k(j)]$.
vi) The current solution is improved by running a simple interchange algorithm over each confidence interval.

Example 2 For the same instance of example 1, let $\mu_{1}$ and $\mu_{2}$ be two other sets of near-optimal lagrangian multipliers and let $J\left(\mu_{1}\right)$ and $J\left(\mu_{2}\right)$ be, respectively, the ordered lists associated with $X\left(\mu_{1}\right)$ and $X\left(\mu_{2}\right)$.

$$
J(\lambda)=\{8,17,3,12,11,18,0,15,4,10,9,5,19,1,7\}
$$

$$
\begin{gathered}
J\left(\mu_{1}\right)=\{8,17,3,2,12,11,18,0,15,4,14,9,5,16,19,1,7\} \\
J\left(\mu_{2}\right)=\{8,17,3,12,11,18,0,15,4,6,14,9,5,16,13,19,1,7\}
\end{gathered}
$$

For each missing job in $J(\lambda), J\left(\mu_{1}\right)$ and $J\left(\mu_{2}\right)$ provide the following confidence intervals:

$$
2 \rightarrow[3,12] ; \quad 6 \rightarrow[4,9] ; \quad 13 \rightarrow[5,19] ; \quad 14 \rightarrow[6,9] ; \quad 16 \rightarrow[5,13] .
$$

To get a feasible solution $J_{\text {feas }}$, we complete $J(\lambda)$ by inserting each missing job in an average point of its confidence interval:

$$
J_{\text {feas }}=\{8,17,3,11,2,18,0,12,15,4,10,14,6,9,5,16,13,19,1,7\}
$$

The heuristic can be applied iteratively, choosing different sets of near-optimal multipliers $\lambda$ and $\mu$. It runs fast and results very effective in computing high quality upper bounds for large scale instances as from computational results reported in the next section.

## 5 Computational Experience

The algorithm has been tested on a rich set of instances. The test bed consists of two classes of instances, named, respectively, Optimal and Hard and generated as in Savelsbergh, Uma and Wein [23] and Uma [26].

Optimal instances have been randomly generated according to the following procedure:
a) weights $w_{j}$ are generated from $\mathrm{U}[1,20]$, i.e. they are uniformly distributed in the interval $[1,20]$.
b) release dates $r_{j}$ are generated from $\mathrm{U}\left[0, \frac{1}{2} \sum_{j=1}^{n} p_{j}\right]$, where $n$ is the number of jobs.
c) processing times $p_{j}$ are generated from $\mathrm{U}\left[1, p_{\max }\right]$.

The Hard test bed was designed to produce bad lower bounds from the timeindexed formulation. These instances have few very large jobs and a large number of tiny jobs that are released regularly at small intervals. The generation procedure of the Hard instances is obtained by replacing the step c) with the following:
c') Processing times $p_{j}$ may assume only the values 1 or 50 . Size 1 is generated on average 9 times more frequently than the other.

Optimal instances are organized into 5 groups, each containing problems with the same number of jobs. The sizes (number of jobs) here considered are 75, 100, 200, 300 and 400 . Each groups contains 25 instances, 5 for each choice of $p_{\max }(=10,20$, 30, 40, 50).

Hard instances are organized into 5 groups containing respectively instances of 5, 100, 200, 300 and 400 jobs. Each class contains 5 instances.

The code has been written on Visual $\mathrm{C}++6.0$. All the computations were carried out on a Compaq PC (Pentium IV-1.8 Ghz CPU, 256 Mb RAM).

The outcomes for the Optimal instances of $1\left|r_{j}\right| \sum w_{j} C_{j}$ are reported in tables 2-6. Tables 7-10 report on Optimal instances of $1\left|r_{j}\right| \sum w_{j} F_{j}$.

In each table, columns Name, njob, $p_{\max }$ and nvar show, respectively, the name of the instance, the number of jobs, the maximum processing time and the number of variables in the time-indexed formulation. Columns LB, UB and Time report, respectively, the lagrangian lower bound, the upper bound and the total CPU time. Column \%gap shows the duality gap, computed as $\frac{U B-L B}{U B} \cdot 100$.

For 75 job instances of $1\left|r_{j}\right| \sum w_{j} C_{j}$, we also report computational experience with a MIP solver. Columns 2\% Opt and Cplex time of Table 2, report, respectively, on the value of a feasible solution providing a gap $\leq 2 \%$ and on the (much larger) time spent by the Cplex 7.0 to find it.

For larger instances, the lagrangian heuristic determines good upper bounds, providing duality gaps never exceeding $3.0 \%$ in few minutes for 100,200 and 300 instances and in less than 40 minutes for 400 job instances, whose time-indexed formulation contains a huge number of variables (more then 5 millions when $p_{\max }=50$ ) and constraints.

Instances of $1\left|r_{j}\right| \sum w_{j} F_{j}$ have revealed more difficult and some tuning of our heuristic was necessary. Particularly we had to slow down the convergence of the subgradient method, by setting the reduction parameter of $\varphi$ (see section 3.2) to 1.007 instead of 1.01 .

The outcomes for the Hard instances are reported in tables 11 and 12. We note that the duality gap is larger than for the Optimal instances. This can be easily explained by observing (Table 11) that for these instances the quality of the lower bound yielded from the time-indexed formulation, reported in the column $L P-L B$, is poor. Nevertheless the lagrangian heuristic confirms to be robust, since the upper bound is very close (less than $1 \%$ ) to the value of the optimal solution computed by Cplex 7.0, reported in the column Opt.

Acknowledgements The authors wish to thank C. Mannino, P. Nobili, G. Oriolo, A. Sassano, A. S. Schultz and R.N. Uma, for the helpful discussions and the many suggestions provided.

| Name | njob | $p_{\max }$ | nvar | LB | UB | \%gap | Time <br> (Secs.) | $2 \%$ opt <br> solution | Cplex <br> Time |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C75-10-1 | 75 | 10 | 38336 | 116642.6 | 117339 | 0.5 | 2.0 | 117834 | 62.7 |
| C75-10-2 | 75 | 10 | 40198 | 135056.5 | 137767 | 1.9 | 2.2 | 136457 | 299.9 |
| C75-10-3 | 75 | 10 | 39723 | 133982.6 | 136571 | 1.9 | 2.1 | 137431 | 233.8 |
| C75-10-4 | 75 | 10 | 36793 | 100083.5 | 101264 | 1.2 | 1.9 | 101101 | 158.3 |
| C75-10-5 | 75 | 10 | 37964 | 110965.1 | 112472 | 1.3 | 2.0 | 112377 | 80.6 |
| C75-20-1 | 75 | 20 | 69399 | 196545.1 | 199650 | 1.5 | 3.9 | 202170 | $>2 h$ |
| C75-20-2 | 75 | 20 | 77211 | 195896.6 | 198107 | 1.1 | 4.3 | 199036 | 1797.0 |
| C75-20-3 | 75 | 20 | 64071 | 198076.0 | 201480 | 1.7 | 3.4 | 202960 | 1611.2 |
| C75-20-4 | 75 | 20 | 68103 | 204039.8 | 206778 | 1.3 | 3.7 | 207560 | 1409.0 |
| C75-20-5 | 75 | 20 | 79545 | 234250.8 | 237256 | 1.3 | 4.5 | 240269 | 3707.3 |
| C75-30-1 | 75 | 30 | 99944 | 304541.6 | 309161 | 1.5 | 5.9 | 311284 | 4585.9 |
| C75-30-2 | 75 | 30 | 106656 | 278421.3 | 283839 | 1.9 | 6.2 | 282531 | 5223.9 |
| C75-30-3 | 75 | 30 | 104294 | 319551.3 | 322629 | 0.9 | 6.2 | 329943 | $>2 h$ |
| C75-30-4 | 75 | 30 | 104189 | 333039.6 | 338724 | 1.7 | 6.3 | 341159 | 6656.6 |
| C75-30-5 | 75 | 30 | 102589 | 309565.2 | 316844 | 2.3 | 6.0 | 316323 | 4581.0 |
| C75-40-1 | 75 | 40 | 147965 | 458579.4 | 464781 | 1.3 | 12.1 | 481204 | $>2 h$ |
| C75-40-2 | 75 | 40 | 144998 | 423853.4 | 429932 | 1.4 | 11.9 | 454237 | $>2 h$ |
| C75-40-3 | 75 | 40 | 144560 | 417154.4 | 425284 | 1.9 | 11.8 | 456559 | $>2 h$ |
| C75-40-4 | 75 | 40 | 149933 | 428511.3 | 435912 | 1.7 | 12.5 | 461271 | $>2 h$ |
| C75-40-5 | 75 | 40 | 163552 | 486133.0 | 494008 | 1.6 | 14.0 | 521586 | $>2 h$ |
| C75-50-1 | 75 | 50 | 171354 | 493840.1 | 500354 | 1.3 | 14.7 | 543857 | $>2 h$ |
| C75-50-2 | 75 | 50 | 170834 | 446598.1 | 458285 | 2.5 | 14.8 | 475395 | $>2 h$ |
| C75-50-3 | 75 | 50 | 167715 | 504205.0 | 514102 | 1.9 | 14.6 | 547678 | $>2 h$ |
| C75-50-4 | 75 | 50 | 165438 | 464884.3 | 472390 | 1.6 | 14.0 | 475878 | 5235.6 |
| C75-50-5 | 75 | 50 | 178542 | 499036.1 | 502321 | 0.6 | 15.5 | 531653 | $>2 h$ |

Table 2: Computational results for 75 jobs instances of $1\left|r_{j}\right| \sum w_{j} C_{j}$.

| Name | njob | $p_{\max }$ | nvar | LB | UB | $\%$ gap | Time <br> (secs.) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C100-10-1 | 100 | 10 | 65912 | 193200.9 | 195902 | 1.4 | 3.8 |
| C100-10-2 | 100 | 10 | 66126 | 170381.5 | 171923 | 0.9 | 3.9 |
| C100-10-3 | 100 | 10 | 65277 | 192425.2 | 194604 | 1.1 | 3.8 |
| C100-10-4 | 100 | 10 | 67272 | 177019.2 | 180762 | 2.0 | 4.0 |
| C100-10-5 | 100 | 10 | 67786 | 193625.3 | 197089 | 1.7 | 4.1 |
| C100-20-1 | 100 | 20 | 144766 | 420310.1 | 427623 | 1.7 | 10.8 |
| C100-20-2 | 100 | 20 | 134940 | 335842.6 | 341252 | 1.6 | 10.0 |
| C100-20-3 | 100 | 20 | 120217 | 328905.4 | 334140 | 1.6 | 7.2 |
| C100-20-4 | 100 | 20 | 125402 | 355407.2 | 358789 | 0.9 | 7.1 |
| C100-20-5 | 100 | 20 | 129343 | 394619.7 | 399516 | 1.2 | 8.0 |
| C100-30-1 | 100 | 30 | 177646 | 519683.7 | 525799 | 1.2 | 14.7 |
| C100-30-2 | 100 | 30 | 188813 | 485017.5 | 492452 | 1.5 | 15.6 |
| C100-30-3 | 100 | 30 | 179593 | 586454.5 | 593065 | 1.1 | 14.3 |
| C100-30-4 | 100 | 30 | 190397 | 576560.6 | 582335 | 1.0 | 15.5 |
| C100-30-5 | 100 | 30 | 172976 | 495414.1 | 505649 | 2.0 | 13.7 |
| C100-40-1 | 100 | 40 | 244558 | 687569.1 | 693168 | 0.8 | 22.2 |
| C100-40-2 | 100 | 40 | 256782 | 711983.3 | 721082 | 1.3 | 29.4 |
| C100-40-3 | 100 | 40 | 261111 | 797587.5 | 810334 | 1.6 | 33.2 |
| C100-40-4 | 100 | 40 | 236137 | 696253.0 | 704904 | 1.2 | 21.8 |
| C100-40-5 | 100 | 40 | 273688 | 782086.6 | 790894 | 1.1 | 26.8 |
| C100-50-1 | 100 | 50 | 330298 | 866766.7 | 875000 | 0.9 | 34.1 |
| C100-50-2 | 100 | 50 | 298382 | 845719.6 | 853757 | 0.9 | 30.2 |
| C100-50-3 | 100 | 50 | 299436 | 876562.3 | 889010 | 1.4 | 31.3 |
| C100-50-4 | 100 | 50 | 313384 | 880726.2 | 889420 | 1.0 | 32.1 |
| C100-50-5 | 100 | 50 | 309648 | 925780.9 | 934973 | 1.0 | 32.4 |

Table 3: Computational results for 100 jobs instances of $1\left|r_{j}\right| \sum w_{j} C_{j}$.

| Name | njob | $p_{\max }$ | nvar | LB | UB | $\%$ gap | Time <br> (secs.) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C200-10-1 | 200 | 10 | 270059 | 815001.6 | 827647 | 1.5 | 25.3 |
| C200-10-2 | 200 | 10 | 267779 | 670085.3 | 678000 | 1.2 | 24.8 |
| C200-10-3 | 200 | 10 | 271942 | 788518.8 | 797685 | 1.1 | 25.0 |
| C200-10-4 | 200 | 10 | 263524 | 767919.8 | 781129 | 1.7 | 24.7 |
| C200-10-5 | 200 | 10 | 275281 | 832218.6 | 840551 | 1.0 | 25.8 |
| C200-20-1 | 200 | 20 | 525831 | 1506960.2 | 1527049 | 1.3 | 56.9 |
| C200-20-2 | 200 | 20 | 520177 | 1478141.8 | 1507545 | 1.9 | 70.6 |
| C200-20-3 | 200 | 20 | 534017 | 1535736.0 | 1558048 | 1.4 | 59.3 |
| C200-20-4 | 200 | 20 | 520378 | 1466519.6 | 1489647 | 1.5 | 68.8 |
| C200-20-5 | 200 | 20 | 533860 | 1595767.5 | 1623766 | 1.7 | 60.3 |
| C200-30-1 | 200 | 30 | 778549 | 2321087.5 | 2353473 | 1.4 | 94.8 |
| C200-30-2 | 200 | 30 | 794810 | 2179889.7 | 2207102 | 1.2 | 90.8 |
| C200-30-3 | 200 | 30 | 764702 | 2156658.5 | 2183207 | 1.2 | 94.7 |
| C200-30-4 | 200 | 30 | 807128 | 2232284.0 | 2257727 | 1.1 | 91.7 |
| C200-30-5 | 200 | 30 | 715703 | 2037465.1 | 2078095 | 1.9 | 87.2 |
| C200-40-1 | 200 | 40 | 1023077 | 2731490.0 | 2767215 | 1.3 | 144.7 |
| C200-40-2 | 200 | 40 | 997686 | 2767169.4 | 2791934 | 0.9 | 144.3 |
| C200-40-3 | 200 | 40 | 1032327 | 3130026.3 | 3164059 | 1.1 | 183.6 |
| C200-40-4 | 200 | 40 | 963478 | 2675135.6 | 2705708 | 1.1 | 131.3 |
| C200-40-5 | 200 | 40 | 1090136 | 3308648.5 | 3352171 | 1.3 | 162.0 |
| C200-50-1 | 200 | 50 | 1243144 | 3539340.0 | 3628072 | 2.4 | 207.6 |
| C200-50-2 | 200 | 50 | 1212412 | 3275700.5 | 3319334 | 1.3 | 189.8 |
| C200-50-3 | 200 | 50 | 1197664 | 3541586.5 | 3580832 | 1.1 | 188.8 |
| C200-50-4 | 200 | 50 | 1248578 | 3801306.2 | 3852853 | 1.3 | 199.1 |
| C200-50-5 | 200 | 50 | 1307123 | 3854348.0 | 3878774 | 0.6 | 271.1 |

Table 4: Computational results for 200 jobs instances of $1\left|r_{j}\right| \sum w_{j} C_{j}$.

| Name | njob | $p_{\max }$ | nvar | LB | UB | $\%$ gap | Time <br> (secs.) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C300-10-1 | 300 | 10 | 623083 | 1762715.7 | 1797535 | 1.9 | 97.3 |
| C300-10-2 | 300 | 10 | 632886 | 1674060.9 | 1714605 | 2.3 | 105.1 |
| C300-10-3 | 300 | 10 | 610751 | 1762244.9 | 1782216 | 1.1 | 98.7 |
| C300-10-4 | 300 | 10 | 613112 | 1741343.1 | 1759408 | 1.0 | 101.9 |
| C300-10-5 | 300 | 10 | 604353 | 1717539.4 | 1738848 | 1.2 | 99.7 |
| C300-20-1 | 300 | 20 | 1200015 | 3169347.0 | 3182170 | 0.4 | 236.3 |
| C300-20-2 | 300 | 20 | 1175600 | 3171612.2 | 3220311 | 1.5 | 247.0 |
| C300-20-3 | 300 | 20 | 1162851 | 3348573.0 | 3370011 | 0.6 | 229.1 |
| C300-20-4 | 300 | 20 | 1205640 | 3413916.5 | 3479448 | 1.9 | 236.5 |
| C300-20-5 | 300 | 20 | 1237302 | 3468219.5 | 3489938 | 0.6 | 247.9 |
| C300-30-1 | 300 | 30 | 1729934 | 4589222.0 | 4611495 | 0.5 | 386.1 |
| C300-30-2 | 300 | 30 | 1791122 | 4485549.5 | 4506724 | 0.5 | 415.4 |
| C300-30-3 | 300 | 30 | 1687186 | 4863097.2 | 4897029 | 0.7 | 383.4 |
| C300-30-4 | 300 | 30 | 1852356 | 5112082.0 | 5175200 | 1.2 | 398.0 |
| C300-30-5 | 300 | 30 | 1666116 | 4662721.7 | 4718405 | 1.2 | 367.6 |
| C300-40-1 | 300 | 40 | 2323837 | 6067478.5 | 6101276 | 0.6 | 595.5 |
| C300-40-2 | 300 | 40 | 2199066 | 5955684.0 | 6016862 | 1.0 | 548.8 |
| C300-40-3 | 300 | 40 | 2271975 | 6777814.5 | 6832438 | 0.8 | 579.4 |
| C300-40-4 | 300 | 40 | 2198457 | 6325858.2 | 6372482 | 0.7 | 544.3 |
| C300-40-5 | 300 | 40 | 2468196 | 7064772.7 | 7170863 | 1.5 | 640.1 |
| C300-50-1 | 300 | 50 | 2781100 | 7445458.5 | 7488298 | 0.6 | 785.0 |
| C300-50-2 | 300 | 50 | 2675234 | 7041566.0 | 7091399 | 0.7 | 743.0 |
| C300-50-3 | 300 | 50 | 2721201 | 7797337.5 | 7832145 | 0.4 | 762.8 |
| C300-50-4 | 300 | 50 | 2938508 | 8272626.3 | 8320644 | 0.6 | 848.5 |
| C300-50-5 | 300 | 50 | 2900708 | 8329975.5 | 8458770 | 1.5 | 817.2 |

Table 5: Computational results for 300 jobs instances of $1\left|r_{j}\right| \sum w_{j} C_{j}$.

| Name | njob | $p_{\max }$ | nvar | LB | UB | $\%$ gap | Time <br> (secs.) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C400-10-1 | 400 | 10 | 1098928 | 3031806.5 | 3044833 | 0.4 | 356.9 |
| C400-10-2 | 400 | 10 | 1115627 | 2935076.2 | 2955324 | 0.3 | 345.2 |
| C400-10-3 | 400 | 10 | 1079357 | 3181475.0 | 3189590 | 0.7 | 335.5 |
| C400-10-4 | 400 | 10 | 1058930 | 2966744.9 | 2990206 | 0.8 | 322.1 |
| C400-10-5 | 400 | 10 | 1093093 | 3056246.3 | 3087706 | 1.0 | 335.2 |
| C400-20-1 | 400 | 20 | 2130248 | 5483277.4 | 5518855 | 0.6 | 722.9 |
| C400-20-2 | 400 | 20 | 2107822 | 5497677.0 | 5531278 | 0.6 | 720.0 |
| C400-20-3 | 400 | 20 | 2025556 | 6145341.7 | 6196956 | 0.8 | 686.3 |
| C400-20-4 | 400 | 20 | 2121485 | 5981877.0 | 6029928 | 0.8 | 709.8 |
| C400-20-5 | 400 | 20 | 2191540 | 6204123.5 | 6250196 | 0.5 | 752.6 |
| C400-30-1 | 400 | 30 | 3040103 | 8129443.5 | 8175090 | 0.6 | 1126.4 |
| C400-30-2 | 400 | 30 | 3113615 | 8406462.3 | 8493771 | 1.0 | 1162.0 |
| C400-30-3 | 400 | 30 | 3017134 | 8634068.0 | 8710052 | 0.9 | 1161.1 |
| C400-30-4 | 400 | 30 | 3248272 | 9011942.1 | 9087800 | 0.8 | 1230.2 |
| C400-30-5 | 400 | 30 | 3050667 | 8382790.7 | 8449171 | 0.8 | 1154.5 |
| C400-40-1 | 400 | 40 | 4007653 | 10833100.0 | 10984530 | 1.4 | 1646.7 |
| C400-40-2 | 400 | 40 | 4008190 | 10235532.8 | 10379527 | 1.4 | 1626.0 |
| C400-40-3 | 400 | 40 | 4017958 | 11702906.5 | 11777593 | 0.6 | 1633.1 |
| C400-40-4 | 400 | 40 | 4002446 | 11452290.0 | 11519206 | 0.6 | 1663.8 |
| C400-40-5 | 400 | 40 | 4317774 | 12004060.2 | 12178142 | 1.4 | 1902.2 |
| C400-50-1 | 400 | 50 | 5064133 | 13244034.5 | 13330132 | 0.6 | 2273.4 |
| C400-50-2 | 400 | 50 | 4879554 | 13546556.0 | 13640912 | 0.7 | 2190.5 |
| C400-50-3 | 400 | 50 | 5041728 | 14696984.2 | 14826365 | 0.9 | 2288.4 |
| C400-50-4 | 400 | 50 | 5162462 | 14576275.0 | 14638736 | 0.4 | 2331.9 |
| C400-50-5 | 400 | 50 | 5270004 | 14904749.7 | 15038486 | 0.9 | 2418.5 |

Table 6: Computational results for 400 jobs instances of $1\left|r_{j}\right| \sum w_{j} C_{j}$.

| Name | njob | $p_{\max }$ | nvar | LB | UB | \%gap | Time <br> (secs.) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F100-10-1 | 100 | 10 | 65912 | 58184.2 | 59315 | 1.9 | 15.4 |
| F100-10-2 | 100 | 10 | 66126 | 46667.3 | 47395 | 1.5 | 15.5 |
| F100-10-3 | 100 | 10 | 65277 | 58214.7 | 59377 | 1.9 | 15.5 |
| F100-10-4 | 100 | 10 | 67272 | 45894.5 | 47002 | 2.3 | 16.0 |
| F100-10-5 | 100 | 10 | 67786 | 50652.8 | 51779 | 2.2 | 16.5 |
| F100-20-1 | 100 | 20 | 144766 | 138086.8 | 140789 | 1.9 | 40.1 |
| F100-20-2 | 100 | 20 | 134940 | 98757.3 | 101120 | 2.3 | 40.3 |
| F100-20-3 | 100 | 20 | 120217 | 109327.8 | 112026 | 2.4 | 31.4 |
| F100-20-4 | 100 | 20 | 125402 | 86022.7 | 88047 | 2.3 | 31.1 |
| F100-20-5 | 100 | 20 | 129343 | 121782.7 | 124187 | 1.9 | 33.2 |
| F100-30-1 | 100 | 30 | 177646 | 146363.4 | 149482 | 2.1 | 56.2 |
| F100-30-2 | 100 | 30 | 188813 | 97744.6 | 100570 | 2.8 | 59.1 |
| F100-30-3 | 100 | 30 | 179593 | 142768.2 | 145783 | 2.1 | 55.7 |
| F100-30-4 | 100 | 30 | 190397 | 169527.7 | 172400 | 1.6 | 63.0 |
| F100-30-5 | 100 | 30 | 172976 | 130767.7 | 133407 | 1.9 | 52.7 |
| F100-40-1 | 100 | 40 | 244558 | 196842.5 | 200190 | 1.7 | 76.3 |
| F100-40-2 | 100 | 40 | 256782 | 192098.4 | 196613 | 2.3 | 89.5 |
| F100-40-3 | 100 | 40 | 261111 | 255530.8 | 260650 | 1.9 | 85.1 |
| F100-40-4 | 100 | 40 | 236137 | 196190.8 | 200709 | 2.2 | 75.6 |
| F100-40-5 | 100 | 40 | 273688 | 275613.2 | 280977 | 1.9 | 89.7 |
| F100-50-1 | 100 | 50 | 330298 | 265584.0 | 271713 | 2.2 | 106.6 |
| F100-50-2 | 100 | 50 | 298382 | 182484.5 | 187300 | 2.6 | 96.1 |
| F100-50-3 | 100 | 50 | 299436 | 281166.8 | 287825 | 2.3 | 95.6 |
| F100-50-4 | 100 | 50 | 313384 | 288180.3 | 291992 | 1.3 | 105.7 |
| F100-50-5 | 100 | 50 | 309648 | 257234.5 | 261233 | 1.5 | 101.4 |

Table 7: Computational results for 100 jobs instances of $1\left|r_{j}\right| \sum w_{j} F_{j}$.

| Name | njob | $p_{\max }$ | nvar | LB | UB | $\%$ gap | Time <br> (secs.) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F200-10-1 | 200 | 10 | 270059 | 225659.1 | 229096 | 1.5 | 85.0 |
| F200-10-2 | 200 | 10 | 267779 | 175351.4 | 179183 | 2.1 | 82.1 |
| F200-10-3 | 200 | 10 | 271942 | 223569.2 | 228025 | 1.9 | 84.3 |
| F200-10-4 | 200 | 10 | 263524 | 196818.9 | 201195 | 2.2 | 81.3 |
| F200-10-5 | 200 | 10 | 275281 | 221918.7 | 226901 | 2.2 | 84.8 |
| F200-20-1 | 200 | 20 | 525831 | 415004.9 | 422654 | 1.8 | 175.7 |
| F200-20-2 | 200 | 20 | 520177 | 436679.6 | 441844 | 1.2 | 188.5 |
| F200-20-3 | 200 | 20 | 534017 | 465683.3 | 476421 | 2.2 | 177.6 |
| F200-20-4 | 200 | 20 | 520378 | 385356.8 | 392069 | 1.7 | 184.2 |
| F200-20-5 | 200 | 20 | 533860 | 466986.8 | 477233 | 2.1 | 170.7 |
| F200-30-1 | 200 | 30 | 778549 | 625748.8 | 635919 | 1.6 | 271.9 |
| F200-30-2 | 200 | 30 | 794810 | 608514.5 | 624915 | 2.6 | 255.8 |
| F200-30-3 | 200 | 30 | 764702 | 633726.0 | 649419 | 2.4 | 244.3 |
| F200-30-4 | 200 | 30 | 807128 | 543021.3 | 557199 | 2.5 | 267.6 |
| F200-30-5 | 200 | 30 | 715703 | 560528.8 | 574842 | 2.5 | 235.9 |
| F200-40-1 | 200 | 40 | 1023077 | 765913.5 | 777847 | 1.5 | 364.2 |
| F200-40-2 | 200 | 40 | 997686 | 682824.8 | 698609 | 2.2 | 352.4 |
| F200-40-3 | 200 | 40 | 1032327 | 875236.1 | 893145 | 2.0 | 363.9 |
| F200-40-4 | 200 | 40 | 963478 | 794030.5 | 809643 | 1.9 | 349.4 |
| F200-40-5 | 200 | 40 | 1090136 | 900544.7 | 918434 | 1.9 | 371.9 |
| F200-50-1 | 200 | 50 | 1243144 | 844417.0 | 859293 | 1.7 | 488.5 |
| F200-50-2 | 200 | 50 | 1212412 | 791763.1 | 814834 | 2.8 | 493.4 |
| F200-50-3 | 200 | 50 | 1197664 | 936089.2 | 960325 | 2.5 | 501.1 |
| F200-50-4 | 200 | 50 | 1248578 | 1094760.7 | 1113143 | 1.6 | 477.6 |
| F200-50-5 | 200 | 50 | 1307123 | 1163152.2 | 1177507 | 1.2 | 516.4 |

Table 8: Computational results for 200 jobs instances of $1\left|r_{j}\right| \sum w_{j} F_{j}$.

| Name | njob | $p_{\max }$ | nvar | LB | UB | $\%$ gap | Time <br> (secs.) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F300-10-1 | 300 | 10 | 623083 | 452680.2 | 460465 | 1.7 | 209.4 |
| F300-10-2 | 300 | 10 | 632886 | 429288.5 | 438663 | 2.1 | 205.4 |
| F300-10-3 | 300 | 10 | 610751 | 526857.2 | 539279 | 2.3 | 204.2 |
| F300-10-4 | 300 | 10 | 613112 | 397427.7 | 405825 | 2.1 | 206.2 |
| F300-10-5 | 300 | 10 | 604353 | 475918.0 | 484166 | 1.7 | 205.8 |
| F300-20-1 | 300 | 20 | 1200015 | 910168.7 | 921859 | 1.2 | 430.9 |
| F300-20-2 | 300 | 20 | 1175600 | 868733.3 | 890512 | 2.4 | 418.7 |
| F300-20-3 | 300 | 20 | 1162851 | 880516.8 | 903580 | 2.5 | 394.1 |
| F300-20-4 | 300 | 20 | 1205640 | 998567.5 | 1016669 | 1.8 | 413.5 |
| F300-20-5 | 300 | 20 | 1237302 | 1061925.0 | 1082689 | 1.9 | 440.1 |
| F300-30-1 | 300 | 30 | 1729934 | 1349564.7 | 1373277 | 1.7 | 633.9 |
| F300-30-2 | 300 | 30 | 1791122 | 1253441.0 | 1277197 | 1.8 | 628.2 |
| F300-30-3 | 300 | 30 | 1687186 | 1278834.7 | 1309558 | 2.3 | 627.8 |
| F300-30-4 | 300 | 30 | 1852356 | 1536144.5 | 1559613 | 1.5 | 650.9 |
| F300-30-5 | 300 | 30 | 1666116 | 1295319.2 | 1328195 | 2.4 | 626.2 |
| F300-40-1 | 300 | 40 | 2323837 | 1692304.5 | 1735108 | 2.5 | 941.8 |
| F300-40-2 | 300 | 40 | 2199066 | 1419792.0 | 1454080 | 2.3 | 864.7 |
| F300-40-3 | 300 | 40 | 2271975 | 1704247.7 | 1748053 | 2.5 | 909.5 |
| F300-40-4 | 300 | 40 | 2198457 | 1671591.7 | 1713367 | 2.4 | 874.3 |
| F300-40-5 | 300 | 40 | 2468196 | 2130808.0 | 2175553 | 2.0 | 994.0 |
| F300-50-1 | 300 | 50 | 2781100 | 1981381.0 | 2029958 | 2.4 | 1209.3 |
| F300-50-2 | 300 | 50 | 2675234 | 1584205.8 | 1626232 | 2.6 | 1263.6 |
| F300-50-3 | 300 | 50 | 2721201 | 2029880.5 | 2082966 | 2.5 | 1302.0 |
| F300-50-4 | 300 | 50 | 2938508 | 2182288.7 | 2232831 | 2.3 | 1291.6 |
| F300-50-5 | 300 | 50 | 2900708 | 2272852.0 | 2312720 | 1.7 | 1243.9 |

Table 9: Computational results for 300 jobs instances of $1\left|r_{j}\right| \sum w_{j} F_{j}$.

| Name | njob | $p_{\max }$ | nvar | LB | UB | $\%$ gap | Time <br> (secs.) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F400-10-1 | 400 | 10 | 1098928 | 793732.0 | 814387 | 2.5 | 385.3 |
| F400-10-2 | 400 | 10 | 1115627 | 703552.1 | 719594 | 2.2 | 381.5 |
| F400-10-3 | 400 | 10 | 1079357 | 824805.5 | 839226 | 1.7 | 379.1 |
| F400-10-4 | 400 | 10 | 1058930 | 742532.3 | 758006 | 2.0 | 360.4 |
| F400-10-5 | 400 | 10 | 1093093 | 751402.1 | 769055 | 2.3 | 370.3 |
| F400-20-1 | 400 | 20 | 2130248 | 1691062.5 | 1717227 | 1.5 | 812.8 |
| F400-20-2 | 400 | 20 | 2107822 | 1561106.7 | 1598610 | 2.3 | 772.7 |
| F400-20-3 | 400 | 20 | 2025556 | 1552715.0 | 1584486 | 2.0 | 739.0 |
| F400-20-4 | 400 | 20 | 2121485 | 1700282.7 | 1732716 | 1.9 | 783.1 |
| F400-20-5 | 400 | 20 | 2191540 | 1675038.3 | 1712906 | 2.2 | 842.9 |
| F400-30-1 | 400 | 30 | 3040103 | 2216747.9 | 2266577 | 2.2 | 1217.1 |
| F400-30-2 | 400 | 30 | 3113615 | 2070670.5 | 2118536 | 2.2 | 1278.8 |
| F400-30-3 | 400 | 30 | 3017134 | 2263365.5 | 2317435 | 2.3 | 1216.4 |
| F400-30-4 | 400 | 30 | 3248272 | 2698355.7 | 2738466 | 1.5 | 1350.3 |
| F400-30-5 | 400 | 30 | 3050667 | 2455580.0 | 2505861 | 2.0 | 1254.3 |
| F400-40-1 | 400 | 40 | 4007653 | 2662386.8 | 2719678 | 2.1 | 1774.0 |
| F400-40-2 | 400 | 40 | 4008190 | 2683765.0 | 2745439 | 2.2 | 1754.5 |
| F400-40-3 | 400 | 40 | 4017958 | 3275855.7 | 3349425 | 2.1 | 1783.4 |
| F400-40-4 | 400 | 40 | 4002446 | 2921514.0 | 2996636 | 2.5 | 1773.1 |
| F400-40-5 | 400 | 40 | 4317774 | 3500427.8 | 3575182 | 2.1 | 1956.0 |
| F400-50-1 | 400 | 50 | 5064133 | 3692456.5 | 3768805 | 2.0 | 2458.5 |
| F400-50-2 | 400 | 50 | 4879554 | 3259512.0 | 3319666 | 1.8 | 2535.1 |
| F400-50-3 | 400 | 50 | 5041728 | 3973331.7 | 4062679 | 2.2 | 2677.4 |
| F400-50-4 | 400 | 50 | 5162462 | 3806510.2 | 3901621 | 2.4 | 2733.3 |
| F400-50-5 | 400 | 50 | 5270004 | 4062836.0 | 4168188 | 2.5 | 2721.1 |

Table 10: Computational results for 400 jobs instances of $1\left|r_{j}\right| \sum w_{j} F_{j}$

| Name | njob | nvar | LB | UB | \%gap | Time <br> (secs.) | LP-LB | Opt | Cplex <br> Time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H75-1 | 75 | 31887 | 77097.1 | 78215 | 1.4 | 6.6 | 77097.5 | 78016 | 10.9 |
| H75-2 | 75 | 44387 | 117417.0 | 120296 | 2.4 | 7.6 | 117417.2 | 119305 | 19.4 |
| H75-3 | 75 | 34935 | 99854.9 | 102348 | 2.4 | 6.3 | 99855.3 | 101342 | 26.2 |
| H75-4 | 75 | 48936 | 135222.6 | 142281 | 4.9 | 7.1 | 135222.9 | 142125 | 3423.2 |
| H75-5 | 75 | 35880 | 97254.4 | 100850 | 3.6 | 6.5 | 97255.8 | 99011 | 29.1 |

Table 11: Computational results for hard instances of $1\left|r_{j}\right| \sum w_{j} C_{j}$.

| Name | njob | $p_{\max }$ | nvar | LB | UB | $\%$ gap | Time <br> (secs.) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H100-1 | 100 | 50 | 47756 | 108502.4 | 108856 | 0.3 | 9.8 |
| H100-2 | 100 | 50 | 90993 | 234642.9 | 244287 | 3.9 | 20.1 |
| H100-3 | 100 | 50 | 83940 | 203180.3 | 212421 | 4.3 | 18.5 |
| H100-4 | 100 | 50 | 72728 | 163159.7 | 168921 | 3.4 | 15.6 |
| H100-5 | 100 | 50 | 113772 | 299870.0 | 308238 | 2.7 | 26.1 |
| H200-1 | 200 | 50 | 220471 | 448173.5 | 456466 | 1.8 | 56.0 |
| H200-2 | 200 | 50 | 280532 | 610283.8 | 629618 | 3.0 | 71.8 |
| H200-3 | 200 | 50 | 314190 | 765021.2 | 798307 | 4.1 | 84.6 |
| H200-4 | 200 | 50 | 279469 | 672410.5 | 689469 | 2.5 | 75.3 |
| H200-5 | 200 | 50 | 266985 | 616976.3 | 631387 | 2.3 | 72.5 |
| H300-1 | 300 | 50 | 581890 | 1278915.6 | 1345798 | 4.9 | 157.3 |
| H300-2 | 300 | 50 | 629712 | 1493301.5 | 1554953 | 3.9 | 178.7 |
| H300-3 | 300 | 50 | 879334 | 1999378.8 | 2088324 | 4.2 | 227.6 |
| H300-4 | 300 | 50 | 578156 | 1328882.1 | 1375906 | 3.4 | 166.7 |
| H300-5 | 300 | 50 | 869699 | 1930130.7 | 2001966 | 3.6 | 221.5 |
| H400-1 | 400 | 50 | 1089906 | 2392531.0 | 2514889 | 4.8 | 325.3 |
| H400-2 | 400 | 50 | 1525775 | 3496497.7 | 3654330 | 4.3 | 489.9 |
| H400-3 | 400 | 50 | 1299314 | 2861252.2 | 2968565 | 3.6 | 498.3 |
| H400-4 | 400 | 50 | 1583552 | 3620487.5 | 3733772 | 3.0 | 521.0 |
| H400-5 | 400 | 50 | 1146905 | 2575363.2 | 2651500 | 2.8 | 337.1 |

Table 12: Computational results for hard instances of $1\left|r_{j}\right| \sum w_{j} C_{j}$.

## References

[1] J.M. van den Akker, C.P.M. van Hoesel and M.W.P. Savelsbergh, A polyhedral approach to single-machine scheduling problems, Mathematical Programming 85, 1999, 541-572.
[2] J.M. Ven den Akker, C.Q.J. Hurkens and M.W.P. Savelsbergh, A time-indexed formulation for single-machine scheduling problems: column generation, INFORMS Journal on Computing $12 / 2,2000,111-124$.
[3] R. Anbil and F. Barahona, The Volume Algorithm: Producing Primal Solutions With a Subgradient Method, Mathematical Programming 87, 2000, 385-399.
[4] E. Balas, On the facial structure of scheduling polyhedron, Mathematical Programming 24, 1985, 179-218.
[5] H. Belouadah, M.E. Posner and C.N. Potts, Scheduling with release dates on a single machine to minimize total weighted completion time, Discrete Applied Mathematics 36, 1992, 213-231.
[6] P.M. Camerini, L. Fratta, F. Maffioli, On improving relaxation methods by modified gradient techniques, Mathematical Programming Study 3, 1975, 26-34.
[7] H.C. Chen, D. Elizandro, Q. Liu and D.M. Miller, A Hybrid genetic algorithm for the simple machine scheduling problem, Journal of Heuristics, 1999, 437-454.
[8] Y. Crama and F.C.R Spieksma, Scheduling jobs of equal length: complexity, facet and computational results. E. Balas and J. Clausen (eds.) Procedeengs of the 4th International IPCO Conferenze, Denmark, Lecture Notes in Computer Science 920, Springer, Berlin, 1995, 277-291.
[9] M.E. Dyer and L.A. Wolsey, Formulating the single machine sequencing problem with release dates as a mixed integer program, Discrete Applied Mathematics 26, 1990, 255-270.
[10] P.C. Fishburn, Interval orders and interval graphs, Wiley, New York, 1985.
[11] M. Goemans, Improved approximation algorithm for scheduling with release dates, in procedeengs af the 8th ACM-SIAM Symposium on Discrete Algorithms, 1997, 591-598.
[12] M. Goemans, M. Queiranne, A. Schulz, M. Skutella and Y. Wang, Single machine scheduling with release dates, SIAM Journal on Discrete Mathematics 15, 2002, 165-192.
[13] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, 1980, Academic Press.
[14] L.A. Hall, Approximation algorithms for scheduling, in D.S. Hochbaum editor, Approximation algorithms for NP-hard Problems, PWS Publishing Company, 1997, 1-43.
[15] L.A. Hall, A.S. Schulz, D.B. Shmoys and J. Wein, Scheduling to minimize average completion time: off-line and on-line algorithms, Mathematics of Operations Research 22, 1997, 513-544.
[16] A.M. Laguna, A.J. Barnes and A.F. Glover, Tabu Search Methodology for a Single Machine Scheduling Problem, Journal of Int. Manufacturing 2, 1991, 63-74.
[17] J.K. Lenstra, A.H.G. Rinnooy Kan and P. Brucker, Complexity of machine scheduling problems, Annals of Discrete Mathematics 1, 1977, 343-362.
[18] C. Mannino, G. Oriolo, Solving stability problems on a superclass of interval graphs, Technical Report n. 155, Centro Vito Volterra.
[19] R.H. Mőhring, A. S. Schulz, F. Stork, and M. Uetz, Solving Project Scheduling Problems by Minimum Cut Computations, Extended abstract appeared in J. Nesetril (ed.): Algorithms ESA '99, Lecture Notes in Computer Science 1643, Springer, Berlin, 1999, 139-150.
[20] R.H. Möhring, A. S. Schulz, F. Stork, and M. Uetz, On Project Scheduling with Irregular Starting Time Costs, Operations Research Letters 28, 2001, 149-154.
[21] M. Queyranne, Structure of a simple scheduling polyhedron,Mathematical Programming, 1993, (58):262-285.
[22] M. Queyranne and A.S. Schulz, Polyhedral approaches to machine scheduling, technical report 408/1994, Technical University of Berlin, 1994.
[23] M.W.P. Savelsbergh, R.N. Uma and J. Wein, An Experimental Study of LP-Based Approximation Algorithm for Scheduling Problems, Proceedings of the 8th ACM-SIAM Symposium on Discrete Algorithms, January 1998.
[24] A.S. Schulz, Scheduling to Minimize Total Weighted Completion Time: Performance Guarantees of LP-Based Heuristics and Lower Bounds, in W.H. Cunningham, S.T. McCormick, and M. Queyranne (eds.): Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science 1084, Springer: Berlin, 1996, 301-315.
[25] J.P. De Sousa and L.A. Wolsey, A time-indexed formulation of non-preemptive single-machine scheduling problems, Mathematical Programming 54, 1992, 353-367.
[26] R.N. Uma, Theoretical and Experimental Perspectives on Hard Scheduling Problems, Ph.D. Thesis, Polytechnic University, New York, 2000.
[27] R.N. Uma, Personal communication.
[28] S.L. van de Velde, Dual decomposition of a single-machine scheduling problem, Mathematical Programming 69, 1995, 413-428
[29] H. Waterer, E.L. Johnson and M.W.P. Savelsbergh, The relation of time indexed formulation of single machine scheduling problems to the node packing problem, CORE Discussion Paper 9, 2002.

