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Abstract

Single Machine Scheduling Problems with Release Dates (SMSP) concern the
optimal allocation of a set of jobs on a single machine, that cannot process more
than one job at a time. Each job is ready for processing at a release date and it
has to be processed without interruption. The goal is to minimize the total weighted
completion time of the jobs.

In this paper the time-indexed formulation is considered and a new lagrangian
heuristic is proposed, based on the observation that lagrangian relaxation of job con-
straints leads to a Weighted Stable Set problem on an Interval Graph. The problem
is polinomially solvable by a dynamic programming algorithm.

Computational experience is reported, showing that instances up to 400 jobs and
maximum processing time 50 (around 5 millions variables) are solved in less than 40
minutes on a Personal Computer, yielding duality gaps never exceeding 3.0%. We
also test a set of hard instances, built to produce bad performances, where we yield
duality gaps less than 5%.

Keywords: Scheduling, Lagrangian Relaxation, Interval Graphs.



1 Introduction

Let J = {1, 2, . . . , n} be a set of jobs to be scheduled on a single machine that can
handle at most one job at a time. Each job j ∈ J requires uninterrupted processing
on the machine for a period of length pj and it is ready for processing at the release
date rj. Both pj and rj are assumed to be integral. Let wj be a weight associated
with job j and let Cj denote its completion time. The Single Machine Scheduling
Problem with Release Dates (SMSP) consists of finding a non-preemptive schedule
minimizing the total weighted completion time

∑
j wjCj.

In scheduling theory this is a basic problem and it is denoted as 1|rj|
∑

wjCj.
Lenstra, Rinnooy Kan and Brucker [17] proved that 1|rj|

∑
wjCj is NP-hard even if

wj = 1 for all j. Another, more difficult [27], variant of the problem is 1|rj|
∑

wjFj,
where Fj = Cj − rj.

Dyer and Wolsey [9] examined several formulations of SMSP , proving that the
time-indexed formulation, introduced by Sousa and Wolsey [25], is the strongest. It
is based on time-discretization over a time horizon T and has a binary variable xjt to
say that job j ∈ J is completed at time t (xjt = 1).

Crama and Spieksma [8] studied the polyhedral structure of the feasible solutions
of the time-indexed formulation, when all processing times are equal. Van den Akker,
van Hoesel and Savelsbergh [1] characterized all facet-defining inequalities with inte-
gral coefficients and right-hand-side 1 or 2.

Waterer, Johnson and Savelsbergh [29] established the equivalence between
SMSP and the Stable Set problem to derive polyhedral results.

For a more general study of polyhedral approaches to machine scheduling problems
we refer the reader to the pioneering paper of Balas [4] and to the comprehensive
surveys by Queyranne [21] and Queyranne and Schulz [22].

Belouadah, Posner and Potts [5] proposed a Branch-and-Bound algorithm based
on a combinatorial lower bound.

Van den Akker, van Hoesel and Savelsbergh [1] proposed a Branch-and-Cut algo-
rithm. In spite of the good quality of lower bounds, they cannot solve instances with
more than 30 jobs and maximum processing time pmax = 10, due to the huge size of
the time-indexed formulation.

To alleviate these difficulties, van den Akker, Hurkens and Savelsbergh [2] pro-
posed a Branch-and-Price algorithm based on Dantzing-Wolfe decomposition, solving
instances with 30 jobs and pmax = 100.

Approximation algorithms for SMSP build a feasible schedule from the fractional
solution of the LP-relaxation [?]. Surveys of these approaches are given in Schulz [24],
Goemans [11], Goemans, Queyranne, Schulz, Skutella and Wang [12], Hall [14], Hall,
Schulz, Shmoys and Wein [15].

Savelsbergh, Uma and Wein [23] and Uma [26] report computational experience
with approximation algorithms for 1|rj|

∑
wjFj on 100 jobs instances.

A lagrangian heuristic based on the weaker completion time formulation of SMSP

has been proposed by van de Velde [28]. Mohring, Schulz, Stark and Uetz [19] [20] pre-
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sented a lagrangian heuristic for the time-indexed formulation of the Project Schedul-
ing Problem with Precendence Contraints, where the relaxed problem is a Weighted
Stable Set Problem on a comparability graph, solved by min-cut computations. A
Tabu Search and a Genetic Algorithm have been developed, respectively, by Laguna,
Barnes and Glover [16] and by Chen, Elizandro, Liu and Miller [7].

In this paper we present a lagrangian heuristic for SMSP, based on the time-
indexed formulation, which yields near-optimal solutions for large-scale instances.

The remainder of the paper is organized as follows. In section 2 we review the
time-indexed formulation for SMSP. In section 3 we observe that lagrangian relaxation
of the job constraints in the time-indexed formulation leads to a Weighted Stable Set
problem on a graph G(V,E) showing a special structure. We show that G is an
Interval Graph [13] [10] and the polynomial algorithm described in Mannino and
Oriolo [18] is adopted to determine the optimal solution of the relaxed problem (in
[2] it is noted that capacity constraints define an Interval Matrix, which is known to
be unimodular).

Since the integrality property holds for the relaxed problem, the maximum of the
lagrangian relaxation coincides with the value of the LP relaxation. The lagrangian
realxation is maximized through subgradient optimization. By some enhancements,
we yield convergence to fairly good lower bounds, close (≤ 0.3%) to the value of the
LP-relaxation, in less than 250 iterations.

In section ?? we describe the upper bound heuristic which attempts to build a
feasible solution by exploting the solution of the lagrangian relaxation.

In section 5, computational experience is reported, showing that the algorithm
yields duality gaps never exceeding 3% for instances up to 400 jobs and maximum
processing time 50 (about 5 millions variables), in less than 40 minutes on a Personal
Computer. We also test a set of hard instances, built to produce bad lower bounds for
the time-indexed formulation, where the algorithm yields duality gaps never exceeding
5%.

2 Time-indexed formulation

Let xjt be a boolean variable which is 1 if job j is completed at time t, 0 otherwise.
Let cjt = wjt be the cost of completing job j at time t.

Let T denote the time horizon. We set T =
∑
j∈J

pj+max
j∈J

rj to ensure feasibility. Let

[t1, t2] denote the time interval between t1 and t2. For any j ∈ J and t ∈ [rj+pj−1, T ],
let γ(j, t) = max(rj + pj − 1, t− pj + 1). The time-indexed formulation of SMSP is:

minimize
∑

j∈J

∑

t∈[rj+pj−1,T ]

cjtxjt

st
∑

t∈[rj+pj−1,T ]

xjt = 1, j ∈ J (1)
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∑

j∈J

∑

s∈[γ(j,t),t]

xjs ≤ 1, t ∈ [1, T ] (2)

xjt ∈ {0, 1}, j ∈ J, t ∈ [rj + pj − 1, T ]

Job constraints (1) force each job to be processed. Capacity constraints (2) force
the machine to process at most one job at a time.

Time-indexed formulation provides good quality lower bounds [1], at the cost of a
huge number of variables and constraints: about 1 millions variables for an instance
with 100 jobs and average processing time 10.

3 Lagrangian Relaxation

The lagrangian function Θ(λ) obtained by relaxing job constraints (1) is:

Θ(λ) = min
∑

j∈J

∑

t∈[rj+pj−1,T ]

(cjt − λj)xjt +
∑

j∈J

λj

st
∑

j∈J

∑

s∈[γ(j,t),t]

xjs ≤ 1, t ∈ [1, T ]

xjt ∈ {0, 1}, j ∈ J, t ∈ [rj + pj − 1, T ]

We associate with Θ(λ) the intersection graph G(V, E), having a node jt, with cost
cjt−λj, for each variable xjt in the formulation, i.e. V = {jt : j ∈ J, t ∈ [rj+pj−1, T ]}.
Let is and jt be two nodes of V . The edge (is, jt) belongs to E if the variables xis

and xjt appear in the same machine constraint (2), i.e. (is, jt) ∈ E if either (i) s > t

and t > s − pi + 1 or (ii) t > s and s > t − pj + 1.
The intersection graph G has a special structure, as noted in [2]. By associating

the interval [t−pj +1, t] with each node jt, we have that two nodes of V are adjacent
if and only if their corresponding intervals intersect. It follows that the intersection
graph G is an interval graph [13] and, for a given set λ̄ of multipliers, Θ(λ̄) is equivalent
to a Weighted Stable Set Problem on the Interval Graph G. Let X(λ̄) denote the
solution of such problem. In what follows we will refer to the X(λ) as the lagrangean
solutions.

3.1 Computing Θ(λ)

For an interval graph [10] [18] there always exists an ordering {v1, v2, . . . , vn} of V

with the following property:

Property 3.1 Let 1 ≤ q < r < s ≤ |V |. If (vq, vs) ∈ E, then (vr, vs) ∈ E.

Given an ordering of V satisfying property (3.1), the Weighted Stable Set Problem
on G is polynomially solvable by a dynamic programming algorithm.
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Let k ≤ |V | and let αW (k) denote the maximum weighted stable set for the
subgraph induced by the nodes {v1, v2, . . . , vk}. Let c(i) be the cost of the node i

and let δ(i) be the largest index of a node prior to i which is not adjacent to i. The
dynamic programming algorithm is defined by the following recursion:

αW (i) = max(αW (i − 1), αW (δ(i)) + c(i)) (3)

To compute Θ(λ) by the recursion (3), we only need to exhibit an ordering of V

satisfying property 3.1.
We define an ordering {j1, j2, . . . , j|J |} of the jobs and then we order the nodes of

V as

{j1, 1, j2, 1, . . . , j|J |, 1, j1, 2, j2, 2, . . . , j|J |, 2, . . . , j1, t, j2, t, . . . , j|J |, t, . . . , j1, T, j2, T, . . . , j|J |, T}

We prove that this ordering satisfies property 3.1.

Lemma 3.1 Let 1 ≤ q < r < s ≤ |V | and let jqtq, jrtr, jsts be, respectively, the nodes
whose indices are q, r, s. If (jqtq, jsts) ∈ E, then (jrtr, jsts) ∈ E.

Proof. If (jqtq, jsts) ∈ E, then tq ∈ [γ(js, ts), ts]. Since q < r < s we have
tq ≤ tr ≤ ts and tr ∈ [γ(js, ts), ts]. It follows that (jrtr, jsts) ∈ E. ✷

3.2 Subgradient Optimization

The lagrangian function Θ(λ) is maximized through the subgradient method, which
recursively updates multipliers according to the formula:

λk+1 = λk + sg (4)

where s is the step-size and g is the subgradient. For SMSP, the generic jth component
of the subgradient is:

gj =
∑

t∈[rj+pj−1,T ]

xjt − 1 (5)

The step-size s is computed as:

s = ϕ
ZUB − Θ(λ∗)

‖g‖2
(6)

where ZUB is an upper bound to the optimal value of Θ(λ), Θ(λ∗) is the best value
of Θ(λ) found so far and ϕ is a parameter modified according to some rules.

In our computational experience we initialize ZUB by a greedy algorithm. Parame-
ter ϕ is usually initialized to 2 and it is halved after the lower bound has not improved
for a given number (say 20÷30) of iterations. For SMSP we adopted a more effective
updating strategy: we divide ϕ by 1.01 at every iteration, independently from the
behavior of Θ(λ).

Moreover we used subgradient deflection [6] to improve convergence. At the
generic iteration k, we compute the direction dk as:
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dk =
gk + 0.3dk−1 + 0.1dk−2

1.4
(7)

where gk is the current subgradient vector at the generic iteration k, and dk−1 and
dk−2 are the directions used in the last two iterations.

With these settings, the subgradient method converges in less than 250 iterations
to fairly good lower bounds, very close (less than 0.3%) to the LP-relaxation of
the time-indexed formulation as shown in Table 1 for a set of 100 job instances of
1|rj|

∑
wjCj.

name njob pmax LgLB LPLB

T100-10-1 100 10 193200.9 193787.3
T100-20-1 100 20 420310.1 421543.3
T100-30-1 100 30 519683.7 521673.1
T100-40-1 100 40 687569.1 689853.7

Table 1: Lagrangian and LP lower bounds for 100 job instances of 1|rj|
∑

wjCj.

4 The upper bound heuristic

We compute upper bounds for SMSP by completing the lagrangian solutions X(λ)
associated with the optimal (or near-optimal) lagrangian multipliers to make them
feasible. The approach has revealed very effective and robust for large instances too.

With each solution X(λ) we associate the ordered list of jobs J(λ), containing a
job h for each xht = 1, where h ≺ k if xhth = 1, xktk = 1 and tk > th.

Since the job constraints (1) are relaxed, the same job may appear in J(λ) more
than once. We refer to such jobs as the repeated jobs. On the other hand it is possible
that some jobs do not belong to J(λ). We refer to such jobs as the missing jobs. The
solution X(λ) is feasible if it contains neither repeated nor missing jobs.

We say that λ is near-optimal if θ(λ) is close to its maximum. Preliminary com-
putational experience showed that the following properties hold for J(λ), when λ is
near-optimal:

a) repeated jobs rarely occur;

b) the number of missing jobs is about 10 ÷ 15% of the total number of jobs;

c) The jobs in J(λ) are in the same order as in the optimal solution.

Example 1 We show a lagrangian solution X(λ) and the associated list J(λ) for a
20 job instance.

X(λ) : x0,36 = 1 x1,98 = 1 x3,22 = 1 x4,46 = 1 x5,82 = 1
x7,108 = 1 x8,10 = 1 x9,64 = 1 x9,72 = 1 x10,56 = 1
x11,30 = 1 x12,26 = 1 x12,40 = 1 x15,45 = 1 x17,12 = 1
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x18,35 = 1 x19,92 = 1

J(λ) = {8, 17, 3, 12, 11, 18, 0, 12, 15, 4, 10, 9, 9, 5, 19, 1, 7}

In J(λ), jobs 9 and 12 are repeated jobs, while jobs 2, 6, 13, 14, 16 are missing jobs.
The optimal solution for the same instance is:

Xopt : x0,36 = 1 x1,100 = 1 x2,26 = 1 x3,22 = 1 x4,46 = 1
x5,79 = 1 x6,57 = 1 x7,110 = 1 x8,10 = 1 x9,69 = 1 x10,56 = 1
x11,30 = 1 x12,40 = 1 x13,84 = 1 x14,61 = 1 x15,45 = 1 x16,81 = 1
x17,12 = 1 x18,35 = 1 x19,94 = 1

Jopt = {8, 17, 3, 2, 11, 18, 0, 12, 15, 4, 10, 6, 14, 9, 5, 16, 13, 19, 1, 7} ✷

Given a near-optimal λ, the heuristic aims at making the lagrangian solution X(λ)
feasible by removing repeated jobs and then inserting each missing job at the ‘right
place’. For each missing job j we define a confidence interval [h(j), k(j)], where h(j)
and k(j) are two jobs in J(λ). To define h(j) and k(j), we look at another near-
optimal set of multipliers µ, whose list J(µ) contains the missing job j: h(j) and k(j)
are respectively the jobs that precede and follow j in J(λ) ∩ J(µ).

The rationale of this choice is property c): we guess that the jobs in J(λ) and J(µ)
are in the same order as in the optimal solution and that J(µ) can suggest where the
missing job should be placed in an optimal sequence.

We construct a feasible solution by inserting each missing job in an average point
of [h(j), k(j)]. The feasible solution is then improved by running a simple interchange
algorithm over each confidence interval.

For the sake of clarity below we summarize the main steps of the heuristic:

i) Let λ be a near-optimal set of lagrangian multipliers and let X(λ) and J(λ)
define the lagrangian solution.

ii) For each repeated job j in J(λ), we delete all its occurrences but the latest.

iii) For each missing job j, we look at another near-optimal set of lagrangian multi-
pliers µ to define the confidence interval [h(j), k(j)]. We add the job j to J(λ),
by placing j in an average point of [h(j), k(j)].

vi) The current solution is improved by running a simple interchange algorithm
over each confidence interval.

Example 2 For the same instance of example 1, let µ1 and µ2 be two other sets
of near-optimal lagrangian multipliers and let J(µ1) and J(µ2) be, respectively, the
ordered lists associated with X(µ1) and X(µ2).

J(λ) = {8, 17, 3, 12, 11, 18, 0, 15, 4, 10, 9, 5, 19, 1, 7}
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J(µ1) = {8, 17, 3, 2, 12, 11, 18, 0, 15, 4, 14, 9, 5, 16, 19, 1, 7}

J(µ2) = {8, 17, 3, 12, 11, 18, 0, 15, 4, 6, 14, 9, 5, 16, 13, 19, 1, 7}

For each missing job in J(λ), J(µ1) and J(µ2) provide the following confidence
intervals:

2 → [3, 12]; 6 → [4, 9]; 13 → [5, 19]; 14 → [6, 9]; 16 → [5, 13].

To get a feasible solution Jfeas, we complete J(λ) by inserting each missing job in
an average point of its confidence interval:

Jfeas = {8, 17, 3, 11, 2, 18, 0, 12, 15, 4, 10, 14, 6, 9, 5, 16, 13, 19, 1, 7}

✷

The heuristic can be applied iteratively, choosing different sets of near-optimal
multipliers λ and µ. It runs fast and results very effective in computing high quality
upper bounds for large scale instances as from computational results reported in the
next section.

5 Computational Experience

The algorithm has been tested on a rich set of instances. The test bed consists of
two classes of instances, named, respectively, Optimal and Hard and generated as in
Savelsbergh, Uma and Wein [23] and Uma [26].

Optimal instances have been randomly generated according to the following pro-
cedure:

a) weights wj are generated from U[1,20], i.e. they are uniformly distributed in
the interval [1,20].

b) release dates rj are generated from U[0, 1
2

n∑
j=1

pj], where n is the number of jobs.

c) processing times pj are generated from U[1,pmax].

The Hard test bed was designed to produce bad lower bounds from the time-
indexed formulation. These instances have few very large jobs and a large number of
tiny jobs that are released regularly at small intervals. The generation procedure of
the Hard instances is obtained by replacing the step c) with the following:

c’) Processing times pj may assume only the values 1 or 50. Size 1 is generated on
average 9 times more frequently than the other.
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Optimal instances are organized into 5 groups, each containing problems with the
same number of jobs. The sizes (number of jobs) here considered are 75, 100, 200,
300 and 400. Each groups contains 25 instances, 5 for each choice of pmax ( = 10, 20,
30, 40, 50).

Hard instances are organized into 5 groups containing respectively instances of 5,
100, 200, 300 and 400 jobs. Each class contains 5 instances.

The code has been written on Visual C++ 6.0. All the computations were carried
out on a Compaq PC (Pentium IV-1.8 Ghz CPU, 256Mb RAM).

The outcomes for the Optimal instances of 1|rj|
∑

wjCj are reported in tables 2-6.
Tables 7-10 report on Optimal instances of 1|rj|

∑
wjFj.

In each table, columns Name, njob, pmax and nvar show, respectively, the name
of the instance, the number of jobs, the maximum processing time and the number
of variables in the time-indexed formulation. Columns LB, UB and Time report,
respectively, the lagrangian lower bound, the upper bound and the total CPU time.
Column %gap shows the duality gap, computed as UB−LB

UB
· 100.

For 75 job instances of 1|rj|
∑

wjCj, we also report computational experience with
a MIP solver. Columns 2% Opt and Cplex time of Table 2, report, respectively, on
the value of a feasible solution providing a gap ≤ 2% and on the (much larger) time
spent by the Cplex 7.0 to find it.

For larger instances, the lagrangian heuristic determines good upper bounds, pro-
viding duality gaps never exceeding 3.0% in few minutes for 100, 200 and 300 instances
and in less than 40 minutes for 400 job instances, whose time-indexed formulation
contains a huge number of variables (more then 5 millions when pmax = 50) and
constraints.

Instances of 1|rj|
∑

wjFj have revealed more difficult and some tuning of our
heuristic was necessary. Particularly we had to slow down the convergence of the
subgradient method, by setting the reduction parameter of ϕ (see section 3.2) to
1.007 instead of 1.01.

The outcomes for the Hard instances are reported in tables 11 and 12. We note
that the duality gap is larger than for the Optimal instances. This can be easily
explained by observing (Table 11) that for these instances the quality of the lower
bound yielded from the time-indexed formulation, reported in the column LP-LB, is
poor. Nevertheless the lagrangian heuristic confirms to be robust, since the upper
bound is very close (less than 1%) to the value of the optimal solution computed by
Cplex 7.0, reported in the column Opt.

Acknowledgements The authors wish to thank C. Mannino, P. Nobili, G. Ori-
olo, A. Sassano, A. S. Schultz and R.N. Uma, for the helpful discussions and the
many suggestions provided.
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Name njob pmax nvar LB UB %gap Time 2% opt Cplex
(Secs.) solution Time

C75-10-1 75 10 38336 116642.6 117339 0.5 2.0 117834 62.7
C75-10-2 75 10 40198 135056.5 137767 1.9 2.2 136457 299.9
C75-10-3 75 10 39723 133982.6 136571 1.9 2.1 137431 233.8
C75-10-4 75 10 36793 100083.5 101264 1.2 1.9 101101 158.3
C75-10-5 75 10 37964 110965.1 112472 1.3 2.0 112377 80.6
C75-20-1 75 20 69399 196545.1 199650 1.5 3.9 202170 > 2h

C75-20-2 75 20 77211 195896.6 198107 1.1 4.3 199036 1797.0
C75-20-3 75 20 64071 198076.0 201480 1.7 3.4 202960 1611.2
C75-20-4 75 20 68103 204039.8 206778 1.3 3.7 207560 1409.0
C75-20-5 75 20 79545 234250.8 237256 1.3 4.5 240269 3707.3
C75-30-1 75 30 99944 304541.6 309161 1.5 5.9 311284 4585.9
C75-30-2 75 30 106656 278421.3 283839 1.9 6.2 282531 5223.9
C75-30-3 75 30 104294 319551.3 322629 0.9 6.2 329943 > 2h

C75-30-4 75 30 104189 333039.6 338724 1.7 6.3 341159 6656.6
C75-30-5 75 30 102589 309565.2 316844 2.3 6.0 316323 4581.0
C75-40-1 75 40 147965 458579.4 464781 1.3 12.1 481204 > 2h

C75-40-2 75 40 144998 423853.4 429932 1.4 11.9 454237 > 2h

C75-40-3 75 40 144560 417154.4 425284 1.9 11.8 456559 > 2h

C75-40-4 75 40 149933 428511.3 435912 1.7 12.5 461271 > 2h

C75-40-5 75 40 163552 486133.0 494008 1.6 14.0 521586 > 2h

C75-50-1 75 50 171354 493840.1 500354 1.3 14.7 543857 > 2h

C75-50-2 75 50 170834 446598.1 458285 2.5 14.8 475395 > 2h

C75-50-3 75 50 167715 504205.0 514102 1.9 14.6 547678 > 2h

C75-50-4 75 50 165438 464884.3 472390 1.6 14.0 475878 5235.6
C75-50-5 75 50 178542 499036.1 502321 0.6 15.5 531653 > 2h

Table 2: Computational results for 75 jobs instances of 1|rj|
∑

wjCj.

9



Name njob pmax nvar LB UB %gap Time
(secs.)

C100-10-1 100 10 65912 193200.9 195902 1.4 3.8
C100-10-2 100 10 66126 170381.5 171923 0.9 3.9
C100-10-3 100 10 65277 192425.2 194604 1.1 3.8
C100-10-4 100 10 67272 177019.2 180762 2.0 4.0
C100-10-5 100 10 67786 193625.3 197089 1.7 4.1
C100-20-1 100 20 144766 420310.1 427623 1.7 10.8
C100-20-2 100 20 134940 335842.6 341252 1.6 10.0
C100-20-3 100 20 120217 328905.4 334140 1.6 7.2
C100-20-4 100 20 125402 355407.2 358789 0.9 7.1
C100-20-5 100 20 129343 394619.7 399516 1.2 8.0
C100-30-1 100 30 177646 519683.7 525799 1.2 14.7
C100-30-2 100 30 188813 485017.5 492452 1.5 15.6
C100-30-3 100 30 179593 586454.5 593065 1.1 14.3
C100-30-4 100 30 190397 576560.6 582335 1.0 15.5
C100-30-5 100 30 172976 495414.1 505649 2.0 13.7
C100-40-1 100 40 244558 687569.1 693168 0.8 22.2
C100-40-2 100 40 256782 711983.3 721082 1.3 29.4
C100-40-3 100 40 261111 797587.5 810334 1.6 33.2
C100-40-4 100 40 236137 696253.0 704904 1.2 21.8
C100-40-5 100 40 273688 782086.6 790894 1.1 26.8
C100-50-1 100 50 330298 866766.7 875000 0.9 34.1
C100-50-2 100 50 298382 845719.6 853757 0.9 30.2
C100-50-3 100 50 299436 876562.3 889010 1.4 31.3
C100-50-4 100 50 313384 880726.2 889420 1.0 32.1
C100-50-5 100 50 309648 925780.9 934973 1.0 32.4

Table 3: Computational results for 100 jobs instances of 1|rj|
∑

wjCj.
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Name njob pmax nvar LB UB %gap Time
(secs.)

C200-10-1 200 10 270059 815001.6 827647 1.5 25.3
C200-10-2 200 10 267779 670085.3 678000 1.2 24.8
C200-10-3 200 10 271942 788518.8 797685 1.1 25.0
C200-10-4 200 10 263524 767919.8 781129 1.7 24.7
C200-10-5 200 10 275281 832218.6 840551 1.0 25.8
C200-20-1 200 20 525831 1506960.2 1527049 1.3 56.9
C200-20-2 200 20 520177 1478141.8 1507545 1.9 70.6
C200-20-3 200 20 534017 1535736.0 1558048 1.4 59.3
C200-20-4 200 20 520378 1466519.6 1489647 1.5 68.8
C200-20-5 200 20 533860 1595767.5 1623766 1.7 60.3
C200-30-1 200 30 778549 2321087.5 2353473 1.4 94.8
C200-30-2 200 30 794810 2179889.7 2207102 1.2 90.8
C200-30-3 200 30 764702 2156658.5 2183207 1.2 94.7
C200-30-4 200 30 807128 2232284.0 2257727 1.1 91.7
C200-30-5 200 30 715703 2037465.1 2078095 1.9 87.2
C200-40-1 200 40 1023077 2731490.0 2767215 1.3 144.7
C200-40-2 200 40 997686 2767169.4 2791934 0.9 144.3
C200-40-3 200 40 1032327 3130026.3 3164059 1.1 183.6
C200-40-4 200 40 963478 2675135.6 2705708 1.1 131.3
C200-40-5 200 40 1090136 3308648.5 3352171 1.3 162.0
C200-50-1 200 50 1243144 3539340.0 3628072 2.4 207.6
C200-50-2 200 50 1212412 3275700.5 3319334 1.3 189.8
C200-50-3 200 50 1197664 3541586.5 3580832 1.1 188.8
C200-50-4 200 50 1248578 3801306.2 3852853 1.3 199.1
C200-50-5 200 50 1307123 3854348.0 3878774 0.6 271.1

Table 4: Computational results for 200 jobs instances of 1|rj|
∑

wjCj.
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Name njob pmax nvar LB UB %gap Time
(secs.)

C300-10-1 300 10 623083 1762715.7 1797535 1.9 97.3
C300-10-2 300 10 632886 1674060.9 1714605 2.3 105.1
C300-10-3 300 10 610751 1762244.9 1782216 1.1 98.7
C300-10-4 300 10 613112 1741343.1 1759408 1.0 101.9
C300-10-5 300 10 604353 1717539.4 1738848 1.2 99.7
C300-20-1 300 20 1200015 3169347.0 3182170 0.4 236.3
C300-20-2 300 20 1175600 3171612.2 3220311 1.5 247.0
C300-20-3 300 20 1162851 3348573.0 3370011 0.6 229.1
C300-20-4 300 20 1205640 3413916.5 3479448 1.9 236.5
C300-20-5 300 20 1237302 3468219.5 3489938 0.6 247.9
C300-30-1 300 30 1729934 4589222.0 4611495 0.5 386.1
C300-30-2 300 30 1791122 4485549.5 4506724 0.5 415.4
C300-30-3 300 30 1687186 4863097.2 4897029 0.7 383.4
C300-30-4 300 30 1852356 5112082.0 5175200 1.2 398.0
C300-30-5 300 30 1666116 4662721.7 4718405 1.2 367.6
C300-40-1 300 40 2323837 6067478.5 6101276 0.6 595.5
C300-40-2 300 40 2199066 5955684.0 6016862 1.0 548.8
C300-40-3 300 40 2271975 6777814.5 6832438 0.8 579.4
C300-40-4 300 40 2198457 6325858.2 6372482 0.7 544.3
C300-40-5 300 40 2468196 7064772.7 7170863 1.5 640.1
C300-50-1 300 50 2781100 7445458.5 7488298 0.6 785.0
C300-50-2 300 50 2675234 7041566.0 7091399 0.7 743.0
C300-50-3 300 50 2721201 7797337.5 7832145 0.4 762.8
C300-50-4 300 50 2938508 8272626.3 8320644 0.6 848.5
C300-50-5 300 50 2900708 8329975.5 8458770 1.5 817.2

Table 5: Computational results for 300 jobs instances of 1|rj|
∑

wjCj.
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Name njob pmax nvar LB UB %gap Time
(secs.)

C400-10-1 400 10 1098928 3031806.5 3044833 0.4 356.9
C400-10-2 400 10 1115627 2935076.2 2955324 0.3 345.2
C400-10-3 400 10 1079357 3181475.0 3189590 0.7 335.5
C400-10-4 400 10 1058930 2966744.9 2990206 0.8 322.1
C400-10-5 400 10 1093093 3056246.3 3087706 1.0 335.2
C400-20-1 400 20 2130248 5483277.4 5518855 0.6 722.9
C400-20-2 400 20 2107822 5497677.0 5531278 0.6 720.0
C400-20-3 400 20 2025556 6145341.7 6196956 0.8 686.3
C400-20-4 400 20 2121485 5981877.0 6029928 0.8 709.8
C400-20-5 400 20 2191540 6204123.5 6250196 0.5 752.6
C400-30-1 400 30 3040103 8129443.5 8175090 0.6 1126.4
C400-30-2 400 30 3113615 8406462.3 8493771 1.0 1162.0
C400-30-3 400 30 3017134 8634068.0 8710052 0.9 1161.1
C400-30-4 400 30 3248272 9011942.1 9087800 0.8 1230.2
C400-30-5 400 30 3050667 8382790.7 8449171 0.8 1154.5
C400-40-1 400 40 4007653 10833100.0 10984530 1.4 1646.7
C400-40-2 400 40 4008190 10235532.8 10379527 1.4 1626.0
C400-40-3 400 40 4017958 11702906.5 11777593 0.6 1633.1
C400-40-4 400 40 4002446 11452290.0 11519206 0.6 1663.8
C400-40-5 400 40 4317774 12004060.2 12178142 1.4 1902.2
C400-50-1 400 50 5064133 13244034.5 13330132 0.6 2273.4
C400-50-2 400 50 4879554 13546556.0 13640912 0.7 2190.5
C400-50-3 400 50 5041728 14696984.2 14826365 0.9 2288.4
C400-50-4 400 50 5162462 14576275.0 14638736 0.4 2331.9
C400-50-5 400 50 5270004 14904749.7 15038486 0.9 2418.5

Table 6: Computational results for 400 jobs instances of 1|rj|
∑

wjCj.
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Name njob pmax nvar LB UB %gap Time
(secs.)

F100-10-1 100 10 65912 58184.2 59315 1.9 15.4
F100-10-2 100 10 66126 46667.3 47395 1.5 15.5
F100-10-3 100 10 65277 58214.7 59377 1.9 15.5
F100-10-4 100 10 67272 45894.5 47002 2.3 16.0
F100-10-5 100 10 67786 50652.8 51779 2.2 16.5
F100-20-1 100 20 144766 138086.8 140789 1.9 40.1
F100-20-2 100 20 134940 98757.3 101120 2.3 40.3
F100-20-3 100 20 120217 109327.8 112026 2.4 31.4
F100-20-4 100 20 125402 86022.7 88047 2.3 31.1
F100-20-5 100 20 129343 121782.7 124187 1.9 33.2
F100-30-1 100 30 177646 146363.4 149482 2.1 56.2
F100-30-2 100 30 188813 97744.6 100570 2.8 59.1
F100-30-3 100 30 179593 142768.2 145783 2.1 55.7
F100-30-4 100 30 190397 169527.7 172400 1.6 63.0
F100-30-5 100 30 172976 130767.7 133407 1.9 52.7
F100-40-1 100 40 244558 196842.5 200190 1.7 76.3
F100-40-2 100 40 256782 192098.4 196613 2.3 89.5
F100-40-3 100 40 261111 255530.8 260650 1.9 85.1
F100-40-4 100 40 236137 196190.8 200709 2.2 75.6
F100-40-5 100 40 273688 275613.2 280977 1.9 89.7
F100-50-1 100 50 330298 265584.0 271713 2.2 106.6
F100-50-2 100 50 298382 182484.5 187300 2.6 96.1
F100-50-3 100 50 299436 281166.8 287825 2.3 95.6
F100-50-4 100 50 313384 288180.3 291992 1.3 105.7
F100-50-5 100 50 309648 257234.5 261233 1.5 101.4

Table 7: Computational results for 100 jobs instances of 1|rj|
∑

wjFj.
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Name njob pmax nvar LB UB %gap Time
(secs.)

F200-10-1 200 10 270059 225659.1 229096 1.5 85.0
F200-10-2 200 10 267779 175351.4 179183 2.1 82.1
F200-10-3 200 10 271942 223569.2 228025 1.9 84.3
F200-10-4 200 10 263524 196818.9 201195 2.2 81.3
F200-10-5 200 10 275281 221918.7 226901 2.2 84.8
F200-20-1 200 20 525831 415004.9 422654 1.8 175.7
F200-20-2 200 20 520177 436679.6 441844 1.2 188.5
F200-20-3 200 20 534017 465683.3 476421 2.2 177.6
F200-20-4 200 20 520378 385356.8 392069 1.7 184.2
F200-20-5 200 20 533860 466986.8 477233 2.1 170.7
F200-30-1 200 30 778549 625748.8 635919 1.6 271.9
F200-30-2 200 30 794810 608514.5 624915 2.6 255.8
F200-30-3 200 30 764702 633726.0 649419 2.4 244.3
F200-30-4 200 30 807128 543021.3 557199 2.5 267.6
F200-30-5 200 30 715703 560528.8 574842 2.5 235.9
F200-40-1 200 40 1023077 765913.5 777847 1.5 364.2
F200-40-2 200 40 997686 682824.8 698609 2.2 352.4
F200-40-3 200 40 1032327 875236.1 893145 2.0 363.9
F200-40-4 200 40 963478 794030.5 809643 1.9 349.4
F200-40-5 200 40 1090136 900544.7 918434 1.9 371.9
F200-50-1 200 50 1243144 844417.0 859293 1.7 488.5
F200-50-2 200 50 1212412 791763.1 814834 2.8 493.4
F200-50-3 200 50 1197664 936089.2 960325 2.5 501.1
F200-50-4 200 50 1248578 1094760.7 1113143 1.6 477.6
F200-50-5 200 50 1307123 1163152.2 1177507 1.2 516.4

Table 8: Computational results for 200 jobs instances of 1|rj|
∑

wjFj.
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Name njob pmax nvar LB UB %gap Time
(secs.)

F300-10-1 300 10 623083 452680.2 460465 1.7 209.4
F300-10-2 300 10 632886 429288.5 438663 2.1 205.4
F300-10-3 300 10 610751 526857.2 539279 2.3 204.2
F300-10-4 300 10 613112 397427.7 405825 2.1 206.2
F300-10-5 300 10 604353 475918.0 484166 1.7 205.8
F300-20-1 300 20 1200015 910168.7 921859 1.2 430.9
F300-20-2 300 20 1175600 868733.3 890512 2.4 418.7
F300-20-3 300 20 1162851 880516.8 903580 2.5 394.1
F300-20-4 300 20 1205640 998567.5 1016669 1.8 413.5
F300-20-5 300 20 1237302 1061925.0 1082689 1.9 440.1
F300-30-1 300 30 1729934 1349564.7 1373277 1.7 633.9
F300-30-2 300 30 1791122 1253441.0 1277197 1.8 628.2
F300-30-3 300 30 1687186 1278834.7 1309558 2.3 627.8
F300-30-4 300 30 1852356 1536144.5 1559613 1.5 650.9
F300-30-5 300 30 1666116 1295319.2 1328195 2.4 626.2
F300-40-1 300 40 2323837 1692304.5 1735108 2.5 941.8
F300-40-2 300 40 2199066 1419792.0 1454080 2.3 864.7
F300-40-3 300 40 2271975 1704247.7 1748053 2.5 909.5
F300-40-4 300 40 2198457 1671591.7 1713367 2.4 874.3
F300-40-5 300 40 2468196 2130808.0 2175553 2.0 994.0
F300-50-1 300 50 2781100 1981381.0 2029958 2.4 1209.3
F300-50-2 300 50 2675234 1584205.8 1626232 2.6 1263.6
F300-50-3 300 50 2721201 2029880.5 2082966 2.5 1302.0
F300-50-4 300 50 2938508 2182288.7 2232831 2.3 1291.6
F300-50-5 300 50 2900708 2272852.0 2312720 1.7 1243.9

Table 9: Computational results for 300 jobs instances of 1|rj|
∑

wjFj.
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Name njob pmax nvar LB UB %gap Time
(secs.)

F400-10-1 400 10 1098928 793732.0 814387 2.5 385.3
F400-10-2 400 10 1115627 703552.1 719594 2.2 381.5
F400-10-3 400 10 1079357 824805.5 839226 1.7 379.1
F400-10-4 400 10 1058930 742532.3 758006 2.0 360.4
F400-10-5 400 10 1093093 751402.1 769055 2.3 370.3
F400-20-1 400 20 2130248 1691062.5 1717227 1.5 812.8
F400-20-2 400 20 2107822 1561106.7 1598610 2.3 772.7
F400-20-3 400 20 2025556 1552715.0 1584486 2.0 739.0
F400-20-4 400 20 2121485 1700282.7 1732716 1.9 783.1
F400-20-5 400 20 2191540 1675038.3 1712906 2.2 842.9
F400-30-1 400 30 3040103 2216747.9 2266577 2.2 1217.1
F400-30-2 400 30 3113615 2070670.5 2118536 2.2 1278.8
F400-30-3 400 30 3017134 2263365.5 2317435 2.3 1216.4
F400-30-4 400 30 3248272 2698355.7 2738466 1.5 1350.3
F400-30-5 400 30 3050667 2455580.0 2505861 2.0 1254.3
F400-40-1 400 40 4007653 2662386.8 2719678 2.1 1774.0
F400-40-2 400 40 4008190 2683765.0 2745439 2.2 1754.5
F400-40-3 400 40 4017958 3275855.7 3349425 2.1 1783.4
F400-40-4 400 40 4002446 2921514.0 2996636 2.5 1773.1
F400-40-5 400 40 4317774 3500427.8 3575182 2.1 1956.0
F400-50-1 400 50 5064133 3692456.5 3768805 2.0 2458.5
F400-50-2 400 50 4879554 3259512.0 3319666 1.8 2535.1
F400-50-3 400 50 5041728 3973331.7 4062679 2.2 2677.4
F400-50-4 400 50 5162462 3806510.2 3901621 2.4 2733.3
F400-50-5 400 50 5270004 4062836.0 4168188 2.5 2721.1

Table 10: Computational results for 400 jobs instances of 1|rj|
∑

wjFj
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Name njob nvar LB UB %gap Time LP-LB Opt Cplex
(secs.) Time

H75-1 75 31887 77097.1 78215 1.4 6.6 77097.5 78016 10.9
H75-2 75 44387 117417.0 120296 2.4 7.6 117417.2 119305 19.4
H75-3 75 34935 99854.9 102348 2.4 6.3 99855.3 101342 26.2
H75-4 75 48936 135222.6 142281 4.9 7.1 135222.9 142125 3423.2
H75-5 75 35880 97254.4 100850 3.6 6.5 97255.8 99011 29.1

Table 11: Computational results for hard instances of 1|rj|
∑

wjCj.

Name njob pmax nvar LB UB %gap Time
(secs.)

H100-1 100 50 47756 108502.4 108856 0.3 9.8
H100-2 100 50 90993 234642.9 244287 3.9 20.1
H100-3 100 50 83940 203180.3 212421 4.3 18.5
H100-4 100 50 72728 163159.7 168921 3.4 15.6
H100-5 100 50 113772 299870.0 308238 2.7 26.1
H200-1 200 50 220471 448173.5 456466 1.8 56.0
H200-2 200 50 280532 610283.8 629618 3.0 71.8
H200-3 200 50 314190 765021.2 798307 4.1 84.6
H200-4 200 50 279469 672410.5 689469 2.5 75.3
H200-5 200 50 266985 616976.3 631387 2.3 72.5
H300-1 300 50 581890 1278915.6 1345798 4.9 157.3
H300-2 300 50 629712 1493301.5 1554953 3.9 178.7
H300-3 300 50 879334 1999378.8 2088324 4.2 227.6
H300-4 300 50 578156 1328882.1 1375906 3.4 166.7
H300-5 300 50 869699 1930130.7 2001966 3.6 221.5
H400-1 400 50 1089906 2392531.0 2514889 4.8 325.3
H400-2 400 50 1525775 3496497.7 3654330 4.3 489.9
H400-3 400 50 1299314 2861252.2 2968565 3.6 498.3
H400-4 400 50 1583552 3620487.5 3733772 3.0 521.0
H400-5 400 50 1146905 2575363.2 2651500 2.8 337.1

Table 12: Computational results for hard instances of 1|rj|
∑

wjCj.
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