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ABSTRACT
We give an algorithm for �nding a Fourier representation R
of B terms for a given discrete signal A of length N , such
that kA �Rk22 is within the factor (1 + �) of best possible
kA � Roptk22. Our algorithm can access A by reading its
values on a sample set T � [0; N), chosen randomly from
a (non-product) distribution of our choice, independent of
A. That is, we sample non-adaptively. The total time cost
of the algorithm is polynomial in B log(N) log(M)=� (where
M is the ratio of largest to smallest numerical quantity en-
countered), which implies a similar bound for the number of
samples.

1. INTRODUCTION
A Discrete Fourier Transform decomposes a signal into

its trigonometric components, which vibrate at various fre-
quencies. Formally, let A = (A(0); : : : ;A(N � 1)) be a
discrete signal of length N . We let  !(t) denote the !'th

Fourier basis function 1p
N
e2�i!t=N . Then the !'th Fourier

coe�cient bA(!) of A is the inner product hA;  !i of A
with  !, bA(!) = 1p

N

P
tA(t)e�2�i!t=N . Fourier analysis,

which consists of studying the Fourier coe�cients of func-
tions, is a proli�c area of mathematical research by itself,
with applications to lossy compression, signal and speech
processing, fast computation of convolutions, solving par-
tial di�erential equations, and others too numerous to list.
The Fast Fourier Transform that computes all the N Fourier
coe�cients in O(N logN) operations is a cornerstone: it is
used for computing convolutions and elsewhere in compu-
tational algebra. Often, however, Fourier analysis involves
�ltering out noise (the Fourier coe�cients corresponding to
unwanted frequencies can be eliminated) or detecting an
underlying signal (Fourier coe�cients that are smaller|in
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absolute value|than some speci�ed tolerance can be dis-
carded). This �ltering is done because the large coe�cients
capture the major time-invariant wave-like features of the
signal. The large coe�cients are useful in data compression,
feature extraction, �nding approximate periods and other
data mining tasks. Thus the problem of �nding a small set
of the largest Fourier coe�cients of a signal that capture
most of the signal trends is a fundamental task in Fourier
analysis and its applications. We address the question of
how these coe�cients can be estimated fast and accurately.
Suppose we are given an upper bound M on the ratio

of largest to smallest numerical quantity encountered. Our
main result in this paper is an algorithm that samples at
most poly(B log(N) log(M)=�) positions of the signal and
outputs a Fourier representation R of B terms such that
kA � Rk22 is within the factor (1 + �) of the best possible
error kA�Roptk22. In fact, the sampled positions are inde-
pendent of the signal. The total computation time is also
poly(B log(N) log(M)=�). Even though the number of sam-
pled positions is signi�cantly sublinear in N , the outcome
is nearly the best choice of B Fourier coe�cients. This is
the �rst known result that accurately estimates Fourier rep-
resentations compactly (in polylogarithmic \space" or sam-
ples) and rapidly (in polylogarithmic time without even hav-
ing to read the entire input). This is possible because the
basis functions have wide support. Our result should be
compared with what is not possible in this model. No algo-
rithm can even estimate the average of the signal values, or,
therefore, any nontrivial norm in similar bounds using o(N)
samples. In particular, no algorithm can estimate kAk2
accurately within the sampling complexity above. This in
turn means we can not estimate kA � Rk22, the quality of
our output representation. Nevertheless, our analysis proves
that our algorithm based on samples is provably accurate to
within 1+ � in providing the best B-term Fourier coe�cient
representation of a signal. We expect our algorithm to �nd
many uses in computational Fourier analysis.
Mathematically speaking, we are recovering a signal from

sample values of that function but using a particular type
of signal recovery. We ask to recover A from the class of
B-term trigonometric polynomials. This recovery R is not
the optimal representation Ropt from among all possible but
we can guarantee that if the optimal `2 error is � 6= 0, then
the error of our recovery is within a factor (1 + �); i.e.,
kA�Rk22 � (1+�)�. (Up to precision issues, we also recover
A exactly if A consists exactly of B frequencies.) Our work
is related to mathematical ideas that have been around for
decades, as well as recent results in theoretical computer sci-
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ence. In what follows, we will place our work in the context
of topics from signal processing, mathematical uncertainty
principles and learning theory, among other areas.

Signal Processing. There are many signal processing re-
sults pertaining to signal recovery from \sampled" values
of a function. We restrict ourselves to the \classical" re-
sult: the Shannon sampling theorem [14]. It says that you
can exactly reconstruct a continuous-time function F from
its sampled values, provided the nonzero Fourier coe�cients
all lie within the interval [��=T; �=T ] and the samples are
taken at regular spaced points in time, each separated by
T . If the largest frequency that F contains is 1=2T , then we
are sampling F at the Nyquist frequency (and hence fewer
samples would be insu�cient to reconstruct F exactly). The
reconstruction procedure in the Shannon sampling theorem
is very di�erent from our setting. The representation is a
linear combination of translates of one basis function with
sample values as weights and it is exact, as opposed to ap-
proximate reconstruction using trigonometric polynomials
that we do here. There are many other interpolation and/or
signal recovery algorithms that use sample values or simple
functions of sample values as coe�cients in a linear recon-
struction procedure with di�erent building block functions.

Mathematics and Classical Uncertainty Principles.

Let A be a sequence of length N and let bA be its discrete
Fourier transform. Let Nt and Nw = B be the number of
nonzero values in A and bA respectively. The discrete time
uncertainty principle says

Theorem 1. (Donoho and Stark [5]) For all A, NtNw �

(N).

This implies that any approximation to a signal cannot be
simultaneously sparse in both time and frequency. Thus we
cannot hope to construct a representation for A that con-
sists of B frequencies and B spikes if B2 < N . This is in
contrast to other types of representations (e.g., histograms
and singular value decompositions), in which one can pro-
duce compact representations that are sparse in time as well.

Algorithmic Version of Uncertainty Principle. Sup-
pose that we wish to reconstruct a signal A but we observe
A(t) only on some index set T . In addition, we know thatA
is synthesized using only B frequencies. The (contrapositive
of the) uncertainty principle tells us [5]:

For all B and all sample sets T , if A has only
B frequencies and jT j � N � O(N=B), then A
can be reconstructed from samples on T .

This result is tight over the entire range of jT j and B. For
any B that divides N , there are two di�erent functions,
each limited to B frequencies, that agree on some T of size
just less than (N � N=B)|these functions cannot be dis-
tinguished. By contrast, one of our results says (where each
sample in T is chosen uniformly and independently from

[0; N) and e
 suppresses factors of log(N) log(M)),

For all B and most sample sets T , if A has

only B frequencies and jT j � e
(B), then A can
be reconstructed from samples on T .

In some applications, the sample set T is adversarially forced.
When T can be chosen even randomly, however, and B �
N , our results give reconstruction from a sample set of size

perhaps exponentially smaller than what is guaranteed by
the uncertainty principle. Thus our results here imply that
the uncertainty bound is loose in this context, which may
be of independent interest.
The preceding discussion of the context of our work con-

cerns only the number of samples needed to reconstruct A,
and applies even when the reconstruction time is 
(N). We
note that a signi�cant contribution of our work is bounding
the time to construct a representation. (Indeed, in order to
bound the reconstruction time, our algorithm uses a sam-
ple set T that is larger than above and drawn from a dis-
tribution more complicated than the uniform distribution.)
Thus we regard our work as a (computational) time-bounded
strengthening of the uncertainty principle.

Theoretical Computer Science. There are several rel-
evant areas, and we will distinguish our work from related
work in each.
First, a relationship was established in [11] between Fourier

spectra and learnability. For the class of Boolean func-
tions, the discrete Boolean Fourier basis was de�ned based
on the parity of subsets of the input variables. This repre-
sentation was used to demonstrate learnability of functions.
In [10], authors presented a polynomial time algorithm to
�nd all the large coe�cients for this Fourier basis for given
Boolean functions. Our work here is related to [10]. Clearly
their Fourier basis is di�erent from ours (parity of subsets
vs trigonometric polynomials). Our basis is the classical
one used in convolutions and other well-known applications,
while the one in [11, 10] proves useful in learning theory con-
text (see [13] for a nice overview of the relationship between
their Fourier transforms and complexity theory). Our tech-
nique is related to [10] at the high level involving the test of
groups of coe�cients in order to isolate the large ones, but
the technical details are vastly di�erent.
Our work can be regarded as a recovery of coe�cients

in the complex polynomial p(z) =
P

!
bA(!)z!, from sam-

ples of p among those equally spaced along the unit circle,

A(t) = p
�
e2�it=N

�
. Indeed, if only B coe�cients are non-

zero, we recover p exactly. In general, however, our result
also provides some incomplete and approximate recovery of
p, good in the `2 sense, provided p is close in the `2 sense to
a sparse polynomial. While there has been work in sparse
polynomial recovery over �nite �elds, especially for polyno-
mials of bounded degree [3] (in which, if the polynomial is
noisy, the noise bound is the Hamming norm), there has
been work in exact polynomial recovery over characteristic
zero (especially in the multivariate case) [9], and there has
been work [2] in approximate recovery, over characteristic
zero under `1 norm, of individual coe�cients (but not re-
covery of representations) we are not aware of previous work
in approximate polynomial reconstruction over the complex
numbers with the bounds we give.
Next, there has been recent work on approximating matri-

ces by low rank ones. In particular, in [6], the authors �nd
a matrix D� from a given matrix A in time polynomial in k
such that kA � D�kF � maxrank(D)�k kA � DkF + �kAkF ;
here k � kF is the Frobenius norm which is the sum of the
squares of matrix entries. This work is related to ours since
the authors �nd the k signi�cant singular values; however,
the two contexts and techniques are very di�erent. In par-
ticular, their work involves weighted sampling of entries in
A which can be implemented by scanning A once in linear
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time. They do not face the challenge of estimating norms
or inner products or group testing to �nd the largest coe�-
cients as we do here. See [1] for further work, but no direct
relevance to our work exists.
Finally, our work here is related to our earlier work on

�nding B signi�cant wavelet coe�cients or B-bucket his-
tograms that are piecewise constant representation of the
signal. Both seek a (1+ �) approximation to the best size-B
representation (B histogram buckets, B wavelet terms, or B
Fourier terms). Both use the same high-level strategy: Iden-
tify big basis functions by randomized group testing, esti-
mate coe�cient values, and subtract from the residual under
an overall classic greedy pursuit algorithm. However, there
the results themselves di�er greatly on most technical issues.
The algorithm of [7] works in the streaming model and looks
at the entire signal as it necessarily must because sampling
will not provide the result there as the basis functions have
narrow support. It uses very large-support randomized lin-
ear projections a la Johnson and Lindenstrauss [8]. By con-
trast, we use only samples. The main obstacle in this paper
is that we cannot even reliably estimate norms by sampling;
by contrast, in [7] norm estimation is easy. As a result, our
work here requires signi�cantly di�erent technical machin-
ery as will be evident from the rest of this paper.

Organization. The paper is organized as follows. In Sec-
tion 3, we give an ideal version of our algorithm, that is
infeasible in the sampling model. We thereby give the over-
all structure of the algorithm that we later introduce and
we give names for the various parts. In Section 4, we re-
visit each element of the ideal algorithm, modifying it if
necessary, then implementing it in the sampling model. In
Section 5, we show how to estimate kA�Rk22, given kAk22
by oracle.

2. NOTATION AND PRELIMINARIES
Let A = (A(0); : : : ;A(N � 1)) be a signal indexed by t,

regarded as an integer mod N . We denote by  !(t) the !'th

Fourier basis function 1p
N
e2�i!t=N . Then bA(!) = hA;  !i =

1p
N

P
tA(t)e�2�i!t=N is the !'th Fourier coe�cient of A.

(Note that hA;Bi =PtA(t)b(t), where b(t) is the complex

conjugate of b(t).) The vector bA is the spectrum of A. The
basis functions in the time domain are denoted �t, so �t(s) is

1 if s = t and 0 otherwise. We say that bA(!) is bigger thanbA(!0) if jbA(!)j > jbA(!0)j. The energy of A is kAk22. We

also refer to jbA(!)j2 as the energy of the Fourier coe�cientbA(!) (or the energy of !) and, similarly, the energy of a
set of Fourier coe�cients is the sum of the squares of their
magnitudes.
We write F ?G to denote the convolution, (F ?G)(t) =P
s F(s)G(t � s). It follows that\F ?G = bF bG. Parse-

val's equality says that
P

t jF(t)j2 =
P

! jbF(!)j2. We have

cos(x) = (eix + e�ix)=2. We denote by �S the signal that
equals 1 on S and zero elsewhere. The index to �S may be
time or frequency; this is made clear from context. For more
background on Fourier analysis, see [15].
For small real � > 0, we will write ex = (1 � �)x to mean
jex� xj � �jxj, where jxj is the complex absolute value. It is
not necessary that the complex-valued ex be a real multiple
of the complex-valued x.
We have the following access to A. We toss coins, then,

based on the coins, compute a set T � [0; N) of indices, and
learn A(t) for t 2 T . Thus, for example, we could pick t
at random and then learn A(t);A(t+ 1), and A(t+ 2), so
that the samples are dependent, but we cannot adapt our
choice of sample to the values seen. Our goal is to bound
the time used by the algorithm, which implies a bound on
the number of samples made.
If A contains large or precise entries, we will need extra

time and space (polynomial in the input size) just to read
and process input samples. Similarly, if A is exactly or very
nearly representable by B coe�cients, we will need time and
space to perform computations precise enough to capture A
as well as we claim or as well as desired (in the case of an
exact superposition).
Let � denote a small number such that, if kA�Rk22 � �,

then we consider the signal to have been recovered. (Hence-
forth, assume � = 1.) Let M be a crude upper bound on
kAk22. (Note that kAk2 � kAk1, the maximum size of
input values.) We assume that we know M . Note that
most arithmetic on integers up to M require log(M) bit op-
erations; but, even if we assume that common arithmetic
on numbers can be peformed in constant time (as we do
here), some of our algorithms will have cost depending on
M , since some of our algorithms perform log(M) arithmetic
operations.

Let c(N) � 2N
o(1)

be any increasing function. Then any
sampling algorithm that, given a vector F of length N , dis-
tinguishes kFk22 � 1 from kFk22 � c(N), makes log(M)N1�o(1)

samples. This is because suppose F = c(N)�t, for randomly
chosen t. It is easy to see that an algorithm that distin-
guishes F from 0 makes 
(N) � log(M)N1�o(1) samples.
Our algorithms are randomized. That is, for all inputs A

and 3=4 of the random choices of our algorithm, the algo-
rithm succeeds. The success probability 3=4 (\signi�cant")
can be boosted to as close to 1 as desired (\high") using
standard inexpensive techniques, not discussed further.

3. AN IDEAL ALGORITHM
In this section we present an idealized greedy pursuit

(IGP) algorithm for �nding a near-optimal Fourier repre-
sentation. (See, e.g., [12] for similar algorithms.) While
IGP is not feasible in the sampling model, it can be modi-
�ed appropriately. These modi�cations form the bulk of our
technical contribution and will be discussed in the next sec-
tion. The main components of IGP are, however, crucial for
the feasible algorithm and it is illustrative to specify them
precisely. The three main components of IGP are:

� Identi�cation of all frequencies ! that contribute sig-

ni�cantly to the signal's energy (jbA(!)j2 is large);

� Estimation of bA(!) when jbA(!)j is large (call this es-
timate

ebA(!));

� Iteration on the residual signal A � eba(!) ! (i.e., we

add the representation for A� ebA(!) ! to
ebA(!) !).

In the ideal setting, this algorithm is easily seen to �nd, in
B steps, the representation consisting of the B terms with
largest-magnitude coe�cients, which is optimal.
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3.1 Ideal Greedy Pursuit
In the ideal setting, the estimation step is exact and the

iteration step is simply greedy pursuit. That is, we assume
that, once we have identi�ed a signi�cant frequency !0, we

have some technique to compute bA(!0) exactly. Because
the Fourier basis f !g is an orthonormal one, the best B-
term representation for A is the best 1-term representationbA(!0) !0 , plus the best (B � 1)-term representation for

A � bA(!0) !0 (in which !0 is absent). We greedily addbA(!0) !0 to a growing representation R and iterate on A�bA(!0) !0 .
While the estimation and iteration steps have direct analogs

in the sampling model, the identi�cation step does not. We
now consider more closely two components of identi�cation,
namely group testing and isolation, that have direct analogs.
Group Testing. We assume initially that A consists of

one pure frequency !0 plus orthogonal terms of insigni�cant

energy; that is, A = bA(!0) !0 + � with h !0 ; �i = 0 and
k�k22 � (0:25)kAk22. Our goal is to identify !0. We will
make progress towards this goal by repeatedly halving a list
of candidates that always contains !0.

Consider the vector bA�[0;k) consisting of the �rst k Fourier
coe�cients of A, where k � N=2. Observe that, if !0 2
[0; k), then

bA�[0;k)2
2
� jbA(!0)j2 � (0:75)kbAk22, andbA�[k;N)

2
2
� k�k22 � (0:25)kbAk22 < bA�[0;k)2

2
: (1)

Thus, by grouping the �rst and second halves of the spec-
trum of A with two �lters �0 = �[0;k) and �1 = �[k;N) and
by testing whether the energy of the �rst half is greater than
or less than the energy of the second half, we cut roughly
in half the number of possibilities for !0. Note that we can

compute kbA�[0;k)k22 in the time domain as kA ? ��[0;k)k22,
where ��[0;k) is the inverse Fourier transform of �[0;k). (Even
in this infeasible ideal algorithm, we don't want to computebA directly.)
Suppose N is an odd prime and suppose, without loss of

generality, that 0 � !0 < N=2. We now adaptively cut
roughly in half the remaining possibilities for !0. To do
this, de�ne F(t) = A(t=2). It follows that the sequencebA(0); bA(1); bA(2); : : : ; bA(N=2� 1) is mapped into

fbF(0); bF(2); bF(4); : : : ; bF(� N)g;
and the other (low-energy) frequencies of bA in [N=2; N) are
mapped to the complementary set. We repeat the [0; N=2)
versus [N=2; N) test for the big frequencies of F, thus elim-
inating roughly half the positions for !0. Continuing this
way, we learn all of !0.
Isolation. The group-testing procedure is successful if A

consists predominantly of one pure tone. On the other hand,
if, for example, A comprises two pure frequencies, each with
1=3 the total energy, plus orthogonal noise at 1=3 the energy,
group testing will fail to �nd directly either frequency. From
a test that tells us that S1 � [0; N) contains some signi�cant
frequency and another test that tells us that S2 � [0; N)
contains a signi�cant frequency, we cannot conclude that
S1 \ S2 contains a big frequency. This is in contrast to
the situation of a single overwhelmingly energetic tone. We
proceed by isolating big Fourier coe�cients �rst then using
group testing to identify them precisely.
Assume that A consists of one or more pure tones plus

orthogonal noise but that the energy of the pure tones is no
longer overwhelming. That is, A =  + � with h ; �i = 0
and k k22 � �kAk22, but � is considerably less than 1/2. We

seek a frequency !0 such that jbA(!0)j2 � �kAk22.
From A, �rst construct a vector RA such that the spec-

trum of RA is a random permutation of the spectrum of A.
Now, consider the family of functions Fj , j = 0; : : : ; 1=�2,
obtained by �ltering RAwith the �lters �j = �[j�2N;(j+1)�2N)

in the frequency domain. Note that each bFj consists of (at
most) �2N non-zero coe�cients that form a random subset

of �2N coe�cients of bA. One can show that, with signi�cant
probability, each of the frequencies !i of A that contains en-
ergy at least �kAk22 is isolated to one Fji , and all frequencies
are isolated this way. Furthermore, we show that each such

coe�cient satis�es jbFji(!i)j2 � (0:75)kFjik22, so we can ap-
peal to the previous group testing procedure to identify !i
precisely.

3.2 Infeasible Aspects of IGP
There are several aspects of IGP that are infeasible in the

sampling model. In particular, a sampling algorithm can-
not estimate kAk22 or other norms well. For many aspects
of IGP, estimation of norms is part of a straightforward im-
plementation; fortunately, it is not necessary for all imple-
mentations. In addition, although a sampling algorithm can
produce a representation R that is near optimal, the algo-
rithm has no way to assess the error kA�Rk22.
The infeasible aspects are:

� We cannot compute bA(!) exactly, nor even with good
relative error. Besides estimation itself, this obsta-
cle also a�ects identi�cation (we can't always resolve
which coe�cient is largest) and iteration (frequency !

may appear in A� eba(!) !; ! may even dominate).

� We cannot compare
bA�[0;N2 )

2
2
with

bA�[N2 ;N)
2
2
di-

rectly, since a sampling algorithm cannot, in general,
estimate norms, even to within huge relative or addi-
tive error.

� The vector A?�� is too expensive to compute by sam-
pling, even approximately, since each point of A ? ��
depends signi�cantly on most points of A. (Our goal
is to sample just a few points of A.)1

� Constructing RA to have spectrum that is a truly ran-
dom permutation of A's spectrum is too expensive for
a sampling algorithm.

4. A FEASIBLE ALGORITHM
In the previous section, we listed four aspects of IGP that

are infeasible in the sampling model. In this section we
address those problems with speci�c technical modi�cations.

In Section 4.1, we show how to estimate bA(!) as
ebA(!), with

jbA(!) � ebA(!)j2 � �kAk22. In Section 4.2, we show that a
sampling algorithm can get upper and lower bounds on L2

norms, which are good enough to perform the analog of
the comparison of norms in (1). In Sections 4.3 and 4.4, we

1If N is even, then one can sample from A ? �even� by
making two samples from A|this is the basis of the FFT
algorithm. This construction, however, does not generalize.
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show how to perform identi�cation and isolation using time-
limited �lters suitable for a sampling algorithm (as opposed
to ��). There we use a pairwise-independent permutation
of the spectrum of A. Finally, in Section 4.5, we analyze
the resulting greedy pursuit algorithm.

4.1 Estimating Individual Fourier Coefficients

Lemma 2. There exists a sampling algorithm A with cost
O(log(M)=�) such that, for each frequency ! and each vector
A, and each � > 0, with high probability, the output of A on

input (A; !; �) is
ebA(!) with jebA(!)� bA(!)j2 � �kAk22.

Proof. Pick t uniformly at random and letA0 = NA(t)�t,

whereN is the length of the signal. Then we haveE[cA0(!)] =bA(!) and E[jcA0(!)j2] � kAk22. Thus, if we take an average

A00 of O(1=�) independent copies of A0 and compute cA00(!),
the result, X, has E[X] = bA(!) and E[jX � bA(!)j2] �
O
�
�kAk22

�
. The result follows by the Chebychev inequality.

We omit the details.

4.2 Estimating Norms
We turn now to estimating norms by sampling.

Lemma 3. There's a sampling algorithm, A, that takes a
bound M on kFk2, makes O(log log(M)) samples and runs
in time polynomial in log(M), such that, on input F (of

length N) with biggest Fourier coe�cient bF(!), A produces,
with high probability, a random output X such that

1. X � kFk22 (for any F).

2. If jbF(!)j2 � 0:95kFk22, then X � 0:5kFk22.
Intuitively, the proof is as follows. For random t 2 [0; N),
let Y = N jF(t)j2. Then E[Y ] = kFk22, and the average of
independent copies of Y would be a good estimate if the
variance of Y were small. The variance comes from spikes,
so let Z be a random variable that equals Y except that we
set Z = 0 if F has a large spike at t. Then 0 � E[Z] �
E[Y ] = kFk22, and Z has small variance. Thus we have the
�rst statement. Note that if F is a pure frequency  ! (which
has no spikes|in fact, j !j is constant), then Y is always
exactly equal to kFk22. If 95% of F is concentrated in a pure
frequency, then the energy of F contained in any spike is
small, so E[Z] � E[Y ] = kFk22, and, since the variance of Z
is small, Z is a good approximation with high probability.
The algorithm sets a ceiling above which all values of the

function are clipped as if they were spikes. The algorithm
then estimates the energy of the clipped function. The algo-
rithm gradually lowers the clipping ceiling until the energy
estimate is consistent with the ceiling value.

Proof. For each number c, de�ne KcF (\F clipped at
c") by

(Kcf)(t) =

�
F(t); jF(t)j � c=pN
0 otherwise.

Let � > 0 be a small number (independent of N and
M) that we will determine later. Perform the algorithm of
Figure 1.
First, the algorithm halts in O(log(M)) iterations, since

c = 1 is reached from an initial value of c = 2M=�, by

Figure 1: Approximation algorithm for kFk22. The
parameters � > 0 and k = k(�) are described in the
text.

c 2M=�
Do
f

Pick k random independent samples tj from [0; N)
X  avgjN jKcF(tj)j2
c c=(1 + �)

g while X < �2c2 and c � 1
Output X=(1 + �).

constant-fraction reductions. If the algorithm halts because
c < 1, then KcF is considered to be zero under our speci�ed
precision, so X = 0, and the Lemma holds. So, henceforth,
assume that, when the algorithm halts, X � �2c2.
It is easy to see that E[X] = kKcFk22 immediately after

X is set, as a loop invariant. Next,

E[jXj2] =
1

k

1

N

NX
t=0

N2jKcF(t)j4 = N

k

NX
t=0

jKcF(t)j4

� N

k
kKcfk21

NX
t=0

jKcF(t)j2 � 1

k
c2kKcFk2:

Thus X = kKcFk22�O
�

1p
k
ckKcFk2

�
with signi�cant prob-

ability.
As long as �2c2 � 2kKcFk22, and k � O(1=�2) is su�-

ciently large, X < �2c2 with signi�cant probability, so, if
c � 1, the algorithm will not halt. On the other hand, if
�2c2 � 4kKcFk22, the variance of X is at most

1

k
c2kKcFk22 � 4

�2k
kKcFk42 � �2kKcFk42;

provided k � 4=�4. It follows that

X = (1� �)kKcFk22 (2)

is a good approximation to kKcFk22. Thus, when the algo-
rithm halts, X=(1 + �) � kKcFk22 � kFk22. This gives the
�rst statement (and will also be used below).
Now, suppose F =  + �, where  = b ! is a pure fre-

quency, h ; �i = 0 and k�k22 � 0:05kFk22.
Consider a ceiling value c with k k22 < �c2 and let S = ft :
jF(t)j � c=pNg be the set of indices at which F is clipped.
We will now estimate the energy of  and � each restricted
to SC = [0; N) n S. Observe that, by Markov's inequality,
jSj � c2=N � kFk22, or jSj � NkFk22=c2 � N

0:95
k k22=c2 <

N(1:06)�. Thus, since j (t)j is constant for all t,
k �SCk22 = (1� jSj=N)k k22 � (1� 1:06�)k k22:

Also, k��SCk2 � k�k2. It follows, using the triangle inequal-
ity, that

kKcFk2 = kF�SCk2 � k �SCk2 � k��SCk2
�

p
1� 1:06�k k2 � k�k2

�
p
1� 1:06�

p
0:95kFk2 �

p
0:05kFk2

�
p
1� 1:06�(0:75)kFk2:
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Thus

kKcFk22 � (1� 1:06�)(0:75)2kFk22
� 0:52kFk22 ; (3)

for su�ciently small �.
Above we showed that, when the algorithm halts, X is

a good approximation to kKcFk22. That is, X=(1 + �) �
1��
1+�
kKcFk22. Thus, if the algorithm halts for �c2 > k k22,

X=(1 + �) � 1� �
1 + �

kKcFk22 � 0:52
1 � �
1 + �

kFk22 � 0:5kFk22;

for su�ciently small �.
Finally, suppose k k22 < �c2 � 4k k22. Since

�c2 � 4k k22 � 4kFk22 � 8kKcFk22 � 4

�
kKcFk22;

it follows by (2) thatX = (1��)kKcFk22. By (3), 0:52kFk22 �
kKcFk22, and, as above, it follows that X � 0:5kFk22. Thus

X � 0:5kFk22 � 0:5k k22 � 0:5�c2=4 � �2c2;
for su�ciently small �, and the algorithm terminates for c
satisfying k k22 < �c2 � 4k k22, if it hasn't already ter-
minated for larger c. (Note that, in the �rst iteration,
k k22 � kFk22 � M2 = �2c2=4 < �c2, so there are such
c.) In any case, the output satis�es X=(1 + �) � 0:5kFk22.
The number of iterations is at most log1+�(2M=�), to

reduce c from the initial value of 2M=� to 1, through reduc-
tions by the factor 1=(1 + �). The number k of samples at
each step depends only on � > 0, which is independent of N
and M . Finally, note that we can reuse the same sample for
each iteration. If we want the overall probability of success
to be at least 3=4, then the probability of failure at each
iteration needs to be at most O(�= log(M=�)), i.e., 1=4 di-
vided by the number of iterations. To achieve this, we need
O(log log(M)) samples.

The probability of success can be boosted from \signi�-
cant" (i.e., 3/4) to \high" (i.e., 1� p, for any desired p), by
taking a median of O(log(1=p)) repetitions and appealing to
the Cherno� bound, as usual.

4.3 Group Testing
Recall that, in the ideal algorithm, for identi�cation, we

used �lter functions de�ned in the frequency domain by
�[0;N2 )

and �[N2 ;N)
. In this section, we �rst de�ne imper-

fect �lter functions based on cosines that will be easier for
a sampling algorithm to use, then show how to use them.

Lemma 4. For 0 � k < 16, let bGk(!) = (1+cos(2�!=N�
2�k=16))=2. Then the inverse Fourier transform of bGk is

given by Gk(t) =
p
N
2
e2�ikt=16 for t = �1, Gk(0) =

p
N ,

and Gk(t) = 0 otherwise.

Thus Gk is a cosine of period N , shifted up and scaled to
take values between 0 and 1, and shifted to the right by
k=16 of a period. (See Figure 2.) For all k, (F ?Gk)(t) is a
linear combination of three values of F, and can be sampled
e�ciently by an algorithm that samples F.

De�nition 1. Denote by passk the set f! : j2�!=N �
2�k=16j � 2�=32g.

Figure 2: Filter functions bGk, for k = 0; 4, and 5.
The region pass0 is indicated by the gap. Each �lter
has period N and takes values between 0 and 1.
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Thus passk consists of the !'s within 1=32 of a period to

the maximum of bGk. Note that, for ! 2 passk,
bGk(!) �

(cos(2�=32) + 1)=2 � 0:99.
We turn now to group testing. In this section, we assume

F consists mainly of a single frequency:

De�nition 2. Let F denote the class of complex-valued
vectors F of length N , such that, for some ! and some com-
plex number b, F =  + �, where h ; �i = 0,  = b ! is a
pure frequency, and k k22 � (0:98)kFk22. For F 2 F , we say
that F is \98% pure."

Finally, we also need the following transform on F, that

scales and translates bF.
De�nition 3. De�ne R�;�F by R�;�F(t) = e2�i�t=NF(�t).

Thus \(R�;�F)(�! + �) = bF(!).
Lemma 5. There is a sampling algorithm, A, with time

and sample complexity log(M) logO(1)(N), such that, on in-
put a 98% pure vector F of length N , A identi�es the fre-
quency !0 of the biggest Fourier coe�cient of F.

Proof. Observe that, for some k, 0 � k < 16, !0 2 passk;
without loss of generality, assume k = 0. Now, consider the

function F ?G0. Since !
0 2 pass0, we have j\F ?G0(!

0)j �
0:99jbF(!0)j. Thus the pure frequency\F ?G0(!

0) !0 satis�es

j\F ?G0(!
0)j2 � (0:99)2k k22 � (0:99)2(0:98)kFk22

� (0:95)kbFk22 � (0:95)kbF bG0k22
= (0:95)kF ?G0k22:

It follows that, if we use Lemma 3 to estimate kF ?G0k22,
the estimate will be at least

(0:5)kF ?G0k22 � (0:5)j\F ?G0(!
0)j2

� (0:5)(0:99)2(0:98)kFk22 � (0:48)kFk22:
On the other hand, now consider f ?G4. Note that

j\F ?G4(!
0)j = jbF(!0)jcG4(!

0)

� jbF(!0)j(1 + cos(2�(1=32 � 4=16)))=2

� 0:6jbF(!0)j � 0:6kFk2;
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since cos(2�(!=N�4=16)))=2 increases on pass0 3 !0. Also,

k\F ?G4k22 � j\F ?G4(!
0)j2 � k�k22 � 0:02kFk22:

Thus kF ? G4k22 � (0:6)2kFk22 + 0:02kFk22 = 0:38kFk22 . It
follows that if we use Lemma 3 to estimate kF ?G4k22, the
result will be at most (0:38)kFk22 � (0:48)kFk22, which is
a lower bound for the estimate of kF ? G0k22. Similarly,
for all 4 � k � 12, if we use Lemma 3 to estimate kF ?
Gkk22, then, since Gk(!

0) � (1 + cos(2�(1=32 � 4=16)))=2,
the result will be less than the estimate of kF ? G0k22. In
general, if !0 2 passk0 for k

0 not necessarily 0, we can reliably
determine that ! 62 passk, for jk � k0j � 4, i.e., we can
rule out 9/16 of the possibilities opposite the region passk0
where !0 lies. Thus, for 0 � k0 < 16 and jk � k0j � 4, we
compare kF?Gk0k22 with kF?Gkk22. If there is some such k
with kF ?Gkk22 apparently larger than kF ?Gk0k22, then we
conclude !0 62 passk0 ; otherwise, possibly, !

0 2 passk0 . By
the above argument, we can always eliminate 9 consecutive
pass regions out of the 16, leaving a cyclic interval of length
at most 7N=16.
In the sequel, it will be convenient to express the situation

as follows. Let P denote a cyclic interval of odd size at
most 7N=16 + 1 that includes all possibilities for !0. Let
b1 denote the center of P . Then the spectrum of F1(t) =

e�2�ib1t=NF(t) is a shift of the spectrum of F by �b1. Thus
we know b1, we know that !0� b1 is the biggest frequency of
e2�ib1t=NF(t), and we know !0�b1 is in the range �(7N=32+
1) to +(7N=32 + 1). We will now seek !0 � b1.
Intuitively, we dilate the spectrum of F1 by 2, which can

be accomplished in the time domain by dilating F1 by 1=2.
Thus the interval of length just less than N=2 known to
contain !0 � b1 is dilated to the alternate positions in an
interval of length just less than N . We then rule out a
cyclic interval of length at least N=2 in the dilated spectrum,
leaving at most an interval of length N=2 in the dilated
spectrum. We now undo the dilation, getting an interval of
length just less than N=4, centered at some known b2, as the
possibilities for !0�b1. That is, we've learned the equivalent
of the second most signi�cant bit of !0. We repeat this to
learn the other bits of !0. A formal proof is technical, to
do arithmetic simultaneously over the integers and over the
integers mod N . We defer the details for the �nal version of
this paper.
We proceed as in the group testing procedure of IGP, ex-

cept we use cosines bGk instead of characteristic functions.

To learn the most signi�cant bit of !0 we use bGk instead
of �[0;N2 )

. We will use \band-pass" regions passk of Gk

with size N=16 and antipodal \band-reject" regions with

size 9N=16, so we have to use all 16 �lters bG together to
complete this test. To learn the second most signi�cant bit
of !0 after learning the most signi�cant (and assuming, with-
out loss of generality, �N=4 < !0 < +N=4), we dilate F by
2 and apply the 16 �lters again. Continuing this way, we
learn !0.

Note that our algorithm adapts to the signal values (for
example, the bj 's depend on the signal values). But the
choices of samples to the original signal do not depend on the
signal values. For example, to sample F1(t) = e�2�ib1t=NF(t)

at t, just sample F at t and then multiply by e�2�ib1t=N .
Above we assumed that N is prime, so that 2 is relatively

prime to N . We then used the transform R0;2j . In general,

we just need some number p to take the role of 2, such that p
is relatively prime to N and p � logO(1)(N). In particular, if
N is a power of 2, we could use p = 3. The necessary changes
to the above algorithm are straightforward, and omitted.
Finally, the prime number theorem states that the log(N)'th
prime is approximately log(N) log log(N). Since N is less
than the product of the �rst log(N) primes, some prime less
than log(N) log log(N) does not divide N . The least prime

p not dividing N can be found in time logO(1)(N) by linear
search. It follows that the above techniques hold for all N .

4.4 Isolation
Finally, we consider isolation of the signi�cant coe�cients,

the last part of identi�cation. That is, we are given a sig-
nal A =  + �, where  is a pure frequency  = b !0 ,
h ; �i = 0, and k k22 � �kAk22, where � > 0 may be much
less than 0:98|even much less than 1=2. Our goal is to out-
put a short list of frequencies that contains !0. To that end,
we construct a short sequence F0;F1; : : : of signals, such

that, for some j, jbFj(!
0)j2 � 0:98kFjk22. We can then use

the techniques of previous sections on each Fj to identify a
candidate for !0. The following �lter function will be used
for isolation. (See Figure 3.)

De�nition 4. (Fej�er kernel; see, e.g., [15].) For integer k,

de�ne Hk by Hk(t) =
p
N

2k+1
�[�k;k].

Figure 3: Filter function bHk based on Fej�er ker-
nel (wavy curve), together with envelope (monotone
curves) and pass region (at segment).
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The proofs of the following lemmas are immediate.

Lemma 6. We have the following.

1. For all k,

bHk(!) =
1

2k + 1

kX
t=�k

e�2�i!t=N

=

�
sin(�(2k+1)!=N)
(2k+1) sin(�!=N)

; ! 6= 0

1; ! = 0:

2. For all k and all !, j bHk(!)j � 1.

3. For all k and ! such that j!j � N
2(2k+1)

, we havebHk(!) � 2=�.

4. For all k, k bHkk22 = N
2k+1

.
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We now show how to use Hk, for appropriate k, to isolate
frequencies. Again we assume that N is prime, though the
techniques of this section can be modi�ed to work for all N .

Lemma 7. Suppose � and � are chosen randomly mod
N , with � invertible. Then ! 7! �! + � is a pairwise-
independent permutation. That is, if !1 6= !2 and !3 6= !4,
then !1 7! !3 and !2 7! !4 with probability 1

N
� 1
N�1

.

Note that\R�;�A(!) = bA(�! + �).

Lemma 8. Given signal A and number � we can create
2k + 1 new signals, F0; : : : ;F2k, such that:

� For each !0 such that jbA(!0)j2 � �kAk22, there exists

a j such that jbFj(!
0)j2 � 0:98kFjk22.

� Each Fj can be sampled by sampling non-adaptively
from A in O(k) places.

� k is small, i.e., k � O(1=�).

Proof. Pick � and � at random, with � invertible mod
N . Let k � O(1=�) be su�ciently large. Then consider the

signal Fj = (e2�ijt=(2k+1)Hk) ? R�;�A, for 0 � j < 2k + 1.

Semantically, bFj is formed by starting with bA, performing
a pairwise-independent permutation (in the frequency do-

main), then multiplying pointwise by a phase shift of bHk by
jN=(2k + 1).
One can sample a chosen point of R�;�A by sampling a

single chosen point from A. It follows that one can sam-
ple a chosen point from Fj = (e2�ijt=(2k+1)Hk) ? R�;�A by
sampling jsupp(Hk)j = 2k + 1 chosen points from A.
Fix j such that (j � 1=2)N=(2k + 1) � �!0 + � < (j +

1=2)N=(2k+1); wlog, j = 0. We show that jcF0(�!
0+�)j2 �

0:98kF0k22. First, observe that
jcF0(�!

0 + �)j2 � (2=�)2jbA(!0)j2 � (�=4)kbAk22;
since j bHk(�!

0 + �)j � (2=�). We now show that

kbF0�f�!0+�gCk22 � (�=200)kbAk22:
Fix some !0 6= !0, and consider the contribution of !0 tobF0�f�!0+�gC

2
2
. By pairwise independence, the contribu-

tion jbA(!0)j2, which appears as jdRA(�!0 + �)j2, appears
at a position �!0 + � chosen uniformly at random except
that it avoids �!0 + �. It then gets attenuated by the
factor jHk(�!0 + �)j2. By hypothesis, �!0 + � is in the
\pass" region of Hk, i.e., jHk(�!

0 + �)j2 is greater than
the average value, so the expected conditional attenutation

1
N�1

P
! 6=!0 jHk(�!+�)j2 applied to !0 is more severe than

the unconditional expected attenuation, i.e.,

1

N � 1

X
! 6=!0

jHk(�! + �)j2 � kHkk22
N

=
1

2k + 1
:

The expected attenuation hits all ! 6= !0 equally, and, sinceP
! 6=!0 jA(!)j2 � kAk22, we have

E�;�

�bF0�f�!0+�gC
2
2

���� � N
2(2k+1)

� �!0 + � < N
2(2k+1)

�
� kAk22

2k+1
:

Thus, By Markov's inequality with 2k + 1 = 800=�,

Pr�;�

�bFj�f�!0+�gC
2
2
> (�=200)kbAk22���� � N

2(2k+1)
� �!0 + � < N

2(2k+1)

�
� 1=4:

As usual, the success probability 3=4 can be boosted to
probability 1� p with cost factor O(log(1=p)). In this case,
repeat the experiment O(log(1=p)) times with independent
randomness, and take the union of all O(k log(1=p)) candi-
dates for !0. The probability that ! is not among them is
the product of the probabilities, (1=4)log(1=p) = p. We can
therefore make the probability that !0 is among the candi-
dates at least 1 � �=4. Since there are at most 1=� possible
!0's, the probability that all !0's are among the candidates
is at least 3=4. In turn, this probability can also be boosted,
if desired.

In case N is not prime, the above proof can be modi�ed
to work. First, choose � at random but relatively prime
to N , so that � is still invertible. The permutation ! 7!
�(!) = �! + � is not pairwise independent; for example,
if N is a power of 2, then 0 7! � and N=4 7! N=4 + �
or N=4 7! 3N=4 + �. For each q dividing N , we need to

sum the contribution to E�;�

�bFj�f�!0+�gC
2
2

�
due to !

with gcd(!0 � !;N) = q. As above, one can show that the
expected contribution due to all such ! 6= !0 is 1

2k+1
of the

total. By summing over q, the result follows. We omit the
details.

4.5 Adaptive Greedy Pursuit
Above we showed, for any � and B, given an A, we can

construct a short list of frequencies that contains all !0 such
that jbA(!0)j2 � �kAk22, for appropriate �. Using Lemma 2,
we can estimate the value of each corresponding coe�cient
to within �kAk2, additively. In this section, we show that
this su�ces for an adaptive greedy algorithm. This is our
main result.

Theorem 9. Fix a signal A. Let R0 denote a represen-
tation for A with at most B terms and set E = A � R0.
Suppose, for all representations R0 of at most B terms, we
can, with cost 1=�O(1),

� estimate bE(!) as ebE(!) with jbE(!)� ebE(!)j2 � �kEk22
� output a list of at most 1=�O(1) frequencies that con-

tains all frequencies ! such that jbE(!)j2 � �kEk22.
Then we can, on input B and �, with cost (B log(N) log(M)=�)O(1),
output a B-term representation R with sum-square-error
kA�Rk22 � (1 + �)kA�Roptk22, where Ropt is the B-term
representation for A with the least sum-square-error.

Proof. We use the greedy algorithm of Figure 4. This
is the classic greedy pursuit algorithm, except:

� When searching for a new coe�cient for our represen-
tation, we cannot �nd the biggest coe�cient, only a
near-biggest. Since (in this variant of greedy pursuit)
we have no facility to eject a wrongly-chosen coe�-
cient, we need to argue that each coe�cient we take is
acceptable.
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Figure 4: Greedy algorithm for Fourier approxima-
tion to signal A

S0  ; // set of � B basis vectors
R0  0 // representation

J  (B log(N) log(M=�)=�)O(1)

for( j  0; j < J ; j  j + 1)
f

� identify
�
A�R0; �

2B

�
if jS0j == B

� � \ S0
if � == ;

Output R0 and halt
LOOPING:

for(! 2 �)ec!  estimate
�
A�R0; !; �

3�24j2B2

�
!0  argmax!2�(ec!)
S0  S0 [ f!0g
R0  R0 + c!0 !0

g

� Because our estimates of coe�cients are not perfect,
our algorithm must revisit frequencies. So it cannot
be expected to halt after B steps. Furthermore, unlike
a classic algorithm that can measure its progress and
can halt when no further improvement is possible, our
algorithm in general continues even after no further
progress is possible. We need to show that potential
extraneous rounds of greedy pursuit performed by our
algorithm don't worsen the error by much.

Each of these is straightforward to check. For completeness,
we present the entire greedy pursuit algorithm.
The algorithm clearly halts, quickly, and outputs a rep-

resentation of at most B terms. We now argue that the
representation has su�ciently small error. Let � denote the
error of the best B-term representation (with optimal coef-
�cients).
We show that the following invariant is maintained:

� At line LOOPING, A has an approximate represen-

tation of B terms, with error at most
�
1 + �jS0j

2B

�
�,

extending S0.

By \extension" of S0, we mean a representation R00 over
frequencies in S00 � S0. An extension of S0 might be the
current representation R0 on S0 itself, might involve new
terms, or might have better approximations to the terms in
R0.
By hypothesis, the invariant is true the �rst time line

LOOPING is executed. Suppose execution is at Line LOOP-
ING at an arbitrary time, with the invariant holding. We
now show that if, at Line LOOPING, S0 is extendible, then
S0 [ f!0g is extendible. This is clearly true if !0 2 S0, so
we assume that !0 62 S0, so that �  � \ S0 had not been
executed, and !0 is the argmax of the originally identi�ed
set.
First, suppose � < 1

6B
kA � R0k22. Then, since some B-

term extension of R0 has error at most (1 + �)�, it follows

that the largest coe�cient has energy at least

(kA�R0k22 � (1 + �)�)=B � (kA�R0k22 � 2B�)=B

� 2kA�R0k22=(3B);
so appears on our list of candidates. Thus the frequency
!0 whose coe�cient appears largest by our estimation has
energy at least

2kA�R0k22
3B

� 2�

24j2B2
kA�R0k22

� 2kA�R0k22
3B

� 1

3B
kA�R0k22

� kA�R0k22
3B

> 2� � (1 + �)�;

for � < 1, so !0 is in any extension with error at most (1+�)�.
Now, suppose � � 1

6B
kA�R0k22. Let !� be the frequency

whose coe�cient is actually largest, so !� can go into any
optimal extension. We have

jc!0 j2 � jec!0 j2 � �

24j2B2
kA�R0k22

� jec!� j2 � �

24j2B2
kA�R0k22

� jc!� j2 � �

12j2B2
kA�R0k22

� jc!� j2 � �

2B
�:

Thus, if we choose !0 instead of !�, at worst, we displace
!� by !0 in an optimal extension. It follows that the error
of the best extension to S0 [f!0g is at most the error of the
best extension of S0 plus jc!� j2 � jc!0 j2, i.e., at most

�

�
1 +

�jS0j
2B

�
+ jc!� j2 � jc!0 j2 � �

�
1 +

�jS0j
2B

�
+

�

2B
�

� �

�
1 +

�jS0 [ fjgj
2B

�
:

It follows that the invariant is preserved. We now con-
sider the correctness of the output. First we show that, for
some iteration j0 < J , the representation is good enough;
next we argue that subsequent iterations cannot worsen the
representation by much. Thus, however we exit the loop,
the �nal representation has acceptable error.
Suppose kA � R0k22 > (1 + 7�=8)�. Then, since an ex-

tension has error at most (1 + �=2)�, it follows that some
optimal coe�cient c!� with jS0 [ f!�gj � B has energy at
least (3�=(8B))kA�R0k22 � (�=(4B))kA�R0k22, so is iden-
ti�ed. Thus

jc!0 j2 � jec!0 j2 � (�=(24j2B2))kA�R0k22
� jec!� j2 � (�=(24j2B2))kA�R0k22
� jc!� j2 � (�=(12j2B2))kA�R0k22
� (3�=(8B))kA�R0k22 � (�=(12j2B2))kA�R0k22
� (7�=(24B))kA�R0k22:

It follows that the new representation, R0+ec!0 !0 , has error

kA� (R0 + ec!0 !0)k22
= kA�R0k22 � jc!0 j2 + jec!0 � c!0 j2
� kA�R0k22 � (7�=(24B))kA�R0k22

+(�=(24j2B2))kA�R0k22
� (1� �=(4B))kA�R0k22:
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Figure 5: Assessing the quality of R.
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Thus, after O(B log(M)=�) iterations, the error of R0 has
been reduced from kAk22 by the factor

(1� �=(4B))O(B log(M)=�) � 1=M;

so we regard R0 as an exact recovery and every subsequent
sample will be zero to our speci�ed precision. It follows that,
for some j0 < J , after j0 iterations, kA�R0k22 � (1+7�=8)�.
Now consider the representation after the j0'th iteration.

The list of identi�ed coe�cients will still be short, but is oth-
erwise arbitrary. Thus we choose some arbitrary frequency
!0, estimate c!0 up to (�=(24j2B2))kA�R0k22 as ec!0 , and addec!0 !0 to our growing representation. It follows that the new
representation has error at most (1+�=(24j2B2))kA�R0k22.
Multiplying over all j < J , it follows that the �nal represen-
tation has error at most (1 + �)�.

5. ASSESSING THE ERROR
Unfortunately, a sampling-only algorithm has no way to

assess the error kA �Rk22 of the output representation R.
For example, if A = b�s is a spike in time at s, a sampling
algorithm will miss s altogether, and cannot estimate b, the
error of the output representation R = 0 (which is near-best
in this case). We now show that, if we happen to know a
good approximation to kAk22, then we can assess the quality,
at least roughly.

Lemma 10. Suppose R is a representation for A such
that kA � Rk22 � (1 + �)kA � Roptk22. Then kA �Rk22 =
kAk22 � kRk22 � 4

p
�kAk22.

Proof. Let R� denote the multiple of R that minimizes
kA �R�k22. Thus the A-R�-0 angle is a right angle. (See
Figure 5.) The statement follows easily from near-optimality
of R and the fact that R� is a B-term representation, using
the Pythagorean theorem. We omit the details.

6. CONCLUSION
We provide a sampling algorithm that yields, with high

probability, a B-term Fourier representationR for any input
signal A of length N , with the guarantee that kA�Rk22 is
within a factor (1 + �) of the best possible B-term Fourier
representation. The time used is at most poly(B log(N)kAk=�)
and these sample positions are independent of the signal.
The three main components of this algorithm are the iden-
ti�cation of signi�cant frequencies, the estimation of the
Fourier coe�cients corresponding to the signi�cant frequen-
cies, and iteration on the residual representation.
This algorithm may have applications in several major ar-

eas. In mathematics, our algorithm may have implications
for Uncertainty Principles, function approximation, and so-
lution to di�erential equations. In datamining and signal
processing, our algorithm can be used to �nd approximate

periods and for feature detection, particularly for speech
signals, e.g., to track formants. In computer science, our al-
gorithm has potential uses for approximate convolution and
noisy polynomial interpolation.
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