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Abstract. We present a work-stealing algorithm for runtime scheduling of data-
parallel operations in the context of shared-memory architectures on data sets
with highly-irregular workloads that are not known a priori to the scheduler. This
scheduler can parallelize loops and operations expressible with a parallel reduce
or a parallel scan. The scheduler is based on the work-stealing tree data structure,
which allows workers to decide on the work division in a lock-free, workload-
driven manner and attempts to minimize the amount of communication between
them. A significant effort is given to showing that the algorithm has the least
possible amount of overhead.
We provide an extensive experimental evaluation, comparing the advantages and
shortcomings of different data-parallel schedulers in order to combine their strengths.
We show specific workload distribution patterns appearing in practice for which
different schedulers yield suboptimal speedup, explaining their drawbacks and
demonstrating how the work-stealing tree scheduler overcomes them. We thus
justify our design decisions experimentally, but also provide a theoretical back-
ground for our claims.

1 Introduction

In data-parallel programming models parallelism is not expressed as a set process in-
teractions but as a sequence of parallel operations on data sets. Programs are typically
composed from high-level data-parallel operations, and are declarative rather than im-
perative in nature, which is of particular interest when it comes to programming the
ever more present multicore systems. Solutions to many computational problems con-
tain elements which can be expressed in terms of data-parallel operations [12].

We show several examples of data-parallel programs in Figure 1. These programs
rely heavily on higher-order data-parallel operations such as map, reduce and filter,
which take a function argument – they are parametrized by a mapping function, a re-
duction operator or a filtering predicate, respectively. The first example in Figure 1
computes the variance of a set of measurements ms. It starts by computing the mean
value using the higher-order operation sum, and then maps each element of ms into a
set of squared distances from the mean value, the sum of which divided by the num-
ber of elements is the variance v. The amount of work executed for each measurement
value is equal, so we call this workload uniform. This need not be always so. The sec-
ond program computes all the prime numbers from 3 until N by calling a data-parallel
filter on the corresponding range. The filter uses a predicate that checks that no
number from 2 to

√
i divides i. The workload is not uniform nor independent of i and



the processors working on the end of the range need to do more work. This example
also demonstrates that data-parallelism can be nested – the forall can be done in
parallel as each element may require a lot of work. On the other hand, the reduce in
the third program that computes a sum of numbers from 0 to N requires a minimum
amount of work for each element. A good data-parallel scheduler must be efficient for
all the workloads – when executed with a single processor the reduce in the third
program must have the same running time as the while loop in the fourth program,
the data-parallelism of which is not immediately obvious due to its imperative style.

val sz = ms.size1

val a = ms.sum / sz2

val ds = ms map {3

x => (x - avg)^24

}5

val v = ds.sum / sz6

val r = 3 until N1

val ps = r filter {2

i =>3

2 to d
√
ie forall {4

d => i % d != 05

}6

}7

val r = 0 until N1

val sum = r reduce {2

(acc, i) =>3

acc + i4

}5

var sum = 01

var i = 02

while (i < N) {3

sum += i4

i += 15

}6

Fig. 1. Data parallel program examples

It has been a trend in many languages to provide data-parallel bulk operations on
collections [3] [4] [5] [17] [18]. Data-parallel operations are generic as shown in Fig-
ure 1 – for example, reduce takes a user-provided operator, such as number addi-
tion, string concatenation or matrix multiplication. The computational costs of these
generic parts, and hence the workload distribution, cannot always be determined stati-
cally, so efficient assignment of work to processors often relies on the runtime schedul-
ing. Scheduling in this case entails dividing the elements into batches on which the
processors work in isolation. Work-stealing [1] [8] [7] [15] [20] is one solution to this
problem. In this technique different processors occasionally steal batches from each
other to load balance the work – the goal is that no processor stays idle for too long.

In this paper we propose and describe a runtime scheduler for data-parallel op-
erations on shared-memory architectures that uses a variant of work-stealing to ensure
proper load-balancing. The scheduler relies on a novel data structure with lock-free syn-
chronization operations called the work-stealing tree. To show that the work-stealing
tree scheduler is optimal we focus on evaluating scheduler performance on uniform
workloads with a minimum amount of computation per element, irregular workloads
for which this amount varies and workloads with a very coarse granularity.

Our algorithm is based on the following assumptions. There are no fast, accurate
means to measure elapsed time with sub-microsecond precision, i.e. there is no way to
measure the running time. There is no static or runtime information about the cost of an
operation – when invoking a data-parallel operation we do not know how much com-
putation each element requires. There are no hardware-level interrupt handling mecha-
nisms at our disposal – the only way to interrupt a computation is to have the processor
check a condition. We assume OS threads as parallelism primitives, with no control over
the scheduler. We assume that the available synchronization primitives are monitors and
the CAS instruction. We assume the presence of automatic memory management.

The rest of the paper is organized as follows. Section 2 describes related work and
alternative schedulers we compare against. Section 3 describes the work-stealing tree
scheduler. In Section 4 we evaluate the scheduler for different workloads as well as tune
several of its parameters, and in Section 5 we conclude.



2 Related work

Per processor (henceforth, worker) work assignment done statically during compile
time or linking, to which we will refer to as static batching, was studied extensively
[13] [19]. Static batching cannot correctly predict workload distributions for any prob-
lem, as shown by the second program in Figure 1. Without knowing the numbers in the
set exactly, batches cannot be statically assigned to workers in an optimal way – some
workers may end up with more work than the others. Still, although cost analysis is not
the focus here, we advocate combining static analysis with runtime techniques.

To address the need for load balancing at runtime, work can be divided into a lot
of small batches. Only once each worker processes its batch, it requests a new batch
from a centralized queue. We will refer to this as fixed-size batching [14]. In fixed-
size batching the workload itself dictates the way how work is assigned to workers.
This is a major difference with respect to static batching. In general, in the absence
of information about the workload distribution, scheduling should be workload-driven.
A natural question arises – what is the ideal size for a batch? Ideally, a batch should
consist of a single element, but the cost of requesting work from a centralized queue
is prohibitively large for that. For example, replacing the increment i += 1 with an
atomic CAS can increase the running time of a while loop by nearly a magnitude
on modern architectures. The batch size has to be the least number of elements for
which the cost of accessing the queue is amortized by the actual work. There are two
issues with this technique. First, it is not scalable – as the number of workers increases,
so does contention on the work queue (Figure 6). This requires increasing batch sizes
further. Second, as the granularity approaches the batch size, the work division is not
fine-grained and the speedup is suboptimal (Figure 8, where size is less than 1024).

Guided self-scheduling [16] solves some granularity issues by dynamically choos-
ing the batch size based on the number of remaining elements. At any point, the batch
size is Ri/P , where Ri is the number of remaining elements and P is the number of
workers – the granularity becomes finer as there is less and less work. Note that the first-
arriving worker is assigned the largest batch of work. If this batch contains more work
than the rest of the loop due to irregularity, the speedup will not be linear. This is shown
in Figures 8-20, 9-35. Factoring [10] and trapezoidal self-scheduling [21] improve on
guided-self scheduling, but have the same issue with those workload distributions.

One way to overcome the contention issues inherent to the techniques above is to
use several work queues rather than a centralized queue. In this approach each processor
starts with some initial work on its queue and commonly steals from other queues when
it runs out of work – this is known as work-stealing, a technique applicable to both task-
and data-parallelism. One of the first uses of work-stealing dates to the Cilk language
[2] [8], in which processors relied on the fast and slow version of the code to steal stack
frames from each other. Recent developments in the X10 language are based on similar
techniques [20]. Work-stealing typically relies on the use of work-stealing queues [1]
[7] [8] [15] and deques [6], implementations ranging from blocking to lock-free. While
in the past data-parallel collections frameworks relied on using task-parallel schedulers
under the hood [11] [17] [18], to the best of our knowledge, the tree data structure was
not used for synchronization in work-stealing prior to this work, nor for data-parallel
operation scheduling.



3 Work-stealing tree scheduler

In this section we describe the work-stealing tree data structure and the scheduling
algorithm that the workers run. We first briefly discuss the aforementioned fixed-size
batching. We have mentioned that the contention on the centralized queue is one of it
drawbacks. We could replace the centralized queue with a queue for each worker and
use work-stealing. However, this seems overly eager – we do not want to create as many
work queues as there are workers for each parallel operation, as doing so may outweigh
the actually useful work. We should start with a single queue and create additional ones
on-demand. Furthermore, fixed-size batching seems appropriate for scheduling parallel
loops, but what about the reduce operation? If each worker stores its own intermediate
results separately, then the reduce may not be applicable to non-commutative oper-
ators (e.g. string concatenation). It seems reasonable to have the work-stealing data-
structure store the intermediate results, since it has the division order information.

With this in mind, we note that a tree seems particularly applicable. When created it
consists merely of a single node – a root representing the operation and all the elements
of the range. The worker invoking the parallel operation can work on the elements and
update its progress by writing to the node it owns. If it completes before any other
worker requests work, then the overhead of the operation is merely creating the root.
Conversely, if another worker arrives, it can steal some of the work by creating two
child nodes, splitting the elements and continuing work on one of them. This proceeds
recursively. Scheduling is thus workload-driven – nodes are created only when some
worker runs out of work meaning that another worker had too much work. Such a tree
can also store intermediate results in the nodes, serving as a reduction tree.

How can such a tree be used for synchronization and load-balancing? We assumed
that the parallelism primitives are OS threads. We can keep a pool of threads [15] that
are notified when a parallel operations is invoked – we call these workers. We first
describe the worker algorithm from a high-level perspective. Each worker starts by
calling the tail-recursive run method in Figure 2. It looks for a node in the tree that is
either not already owned or steals a node which some other worker works on by calling
findWork in line 3. This node is initially a leaf, but we call it a subtree. The worker
works on the subtree by calling descend in line 5, which calls workOn on the root of
the subtree to work on it until it is either completed or stolen. In the case of a steal, the
worker continues work on one of the children if it can own it in line 11. This is repeated
until findWork returns ⊥ (null), indicating that all the work is completed.

struct Ptr
child: Node

struct Node
left, right: Ptr
start, until: Int
progress: Int
owner: Owner

def run(): Unit =1

val leaf =2

findWork(root)3

if (leaf 6= ⊥)4

descend(leaf)5

run()6

def descend(leaf: Ptr): Unit =7

val nosteals = workOn(leaf)8

if (¬nosteals)9

val sub = READ(leaf.child).left10

if (tryOwn(READ(sub.child)))11

descend(subnode)12

Fig. 2. Work-stealing tree data-types and the scheduling algorithm

In Figure 2 we also present the work-stealing tree and its basic data-types. We use
the keyword struct to refer to a compound data-type – this can be a Java class or



a C structure. We define two compound data-types. Ptr is a reference to the tree –
it has only a single member child of type Node. Write access to child has to be
atomic and globally visible (in Java, this is ensured with the volatile keyword).
Node contains immutable references to the left and right subtree, initialized upon
instantiation. If these are set to ⊥ we consider the node a leaf. We initially focus on
parallelizing loops over ranges, so we encode the current state of iteration with three
integers. Members start and until are immutable and denote the initial range –
for the root of the tree this is the entire loop range. Member progress has atomic,
globally visible write access. It is initially set to start and is updated as elements are
processed. Finally, the owner field denotes the worker that is working on the node. It
is initially ⊥ and also has atomic write access. Example trees are shown in Figure 3.

Before we describe the operations and the motivation behind these data-types we
will define the states work-stealing tree can be in (see Figure 3), namely its invariants.
This is of particular importance for concurrent data structures which have non-blocking
operations. Work-stealing tree operations are lock-free, a well-known advantage [9],
which comes at the cost of little extra complexity in this case.
INV1 Whenever a new node reference Ptr p becomes reachable in the tree, it initially
points to a leaf Node n, such that n.owner = ⊥. Field n.progress is set to
n.start and n.until≥n.start. The subtree is in the AVAILABLE state and its
range is 〈n.start,n.until〉.
INV2 The set of transitions of n.owner is ⊥ → π 6= ⊥. No other field of n can be
written until n.owner 6= ⊥. After this happens, the subtree is in the OWNED state.
INV3 The set of transitions of n.progress in the OWNED state is p0 → p1 →
. . . → pk such that n.start = p0 < p1 < . . . < pk < n.until. If a worker π
writes a value from this set of transitions to n.progress, then n.owner = π.
INV4 If the worker n.owner writes the value n.until to n.progress, then that
is the last transition of n.progress. The subtree goes into the COMPLETED state.
INV5 If a worker ψ overwrites pi, such that n.start ≤ pi < n.until, with ps =
−pi − 1, then ψ 6= n.owner. This is the last transition of n.progress and the
subtree goes into the STOLEN state.
INV6 The field p.child can be overwritten only in the STOLEN state, in which case
its transition is n→ m, where m is a copy of n with m.left and m.right being fresh
leaves in the AVAILABLE state with ranges rl = 〈x0, x1〉 and rr = 〈x1, x2〉 such that
rl ∪ rr = 〈pi, n.until〉. The subtree goes into the EXPANDED state.

This seemingly complicated set of invariants can be summarized in a straightfor-
ward way. Upon owning a leaf, that worker processes elements from that leaf’s range
by incrementing the progress field until either it processes all elements or another
worker requests some work by invalidating progress, in which case the leaf is re-
placed by a subtree such that the remaining work is divided between the new leaves.

Now that we have formally defined a valid work-stealing tree, we provide an im-
plementation of the basic operations (Figure 4). These operations will be the building
blocks for the scheduling algorithm that balances the workload. A worker must attempt
to acquire ownership of a node before processing its elements by calling the method
tryOwn, which returns true if the claim is successful. After reading the owner field
in line 14 and establishing the AVAILABLE state, the worker attempts to atomically
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Fig. 3. Work-stealing subtree state diagram

push the node into the OWNED state with the CAS in line 15. This CAS can fail either
due to a faster worker claiming ownership or spuriously – a retry follows in both cases.

A worker that claimed ownership of a node repetitively calls tryAdvance, which
attempts to reserve a batch of size STEP by atomically incrementing the progress
field, eventually bringing the node into the COMPLETED state. If tryAdvance re-
turns a nonnegative number, the owner is obliged to process that many elements, whereas
a negative number is an indication that the node was stolen.

A worker searching for work must call trySteal if it finds a node in the OWNED
state. This method returns true if the node was successfully brought into the EX-
PANDED state by any worker, or false if the node ends up in the COMPLETED
state. Method trySteal consists of two steps. First, it attempts to push the node into
the STOLEN state with the CAS in line 35 after determining that the node read in line
29 is a leaf. This CAS can fail either due to a different steal, a successful tryAdvance
call or spuriously. Successful CAS in line 35 brings the node into the STOLEN state.
Irregardless of success or failure, trySteal is then called recursively. In the second
step, the expanded version of the node from Figure 3 is created by the newExpanded
method, the pseudocode of which is not shown here since it consists of isolated sin-
glethreaded code. The child field in Ptr is replaced with the expanded version atom-
ically with the CAS in line 39, bringing the node into the EXPANDED state.

def tryOwn(n: Node): Boolean =13

if (READ(n.owner) 6= ⊥) false14

else if (CAS(n.owner, ⊥, π)) true15

else tryOwn(n)16

17

def tryAdvance(n: Node, p: Int): Int =18

val q = min(p + STEP, n.until)19

if (¬CAS(n.progress, p, q)) -120

else q - p21

22

def isLeaf(n: Node): Boolean =23

n.left == ⊥24

25

def isEligible(n: Node): Boolean =26

n.until - READ(n.progress) > 127

def trySteal(ptr: Ptr): Boolean =28

val c_t0 = READ(ptr.child)29

if (¬isLeaf(c_t0)) true else30

val p_t1 = READ(c_t0.progress)31

if (p_t1 == c_t0.until) false32

else if (p_t1 ≥ 0)33

val negp = -p_t1 - 134

CAS(c_t0.progress, p_t1, negp)35

trySteal(ptr)36

else37

val c_exp = newExpanded(c_t0)38

if (CAS(ptr.child, c_t0, c_exp))39

true40

else trySteal(ptr)41

Fig. 4. Basic work-stealing tree operations

We now describe the scheduling algorithm that the workers execute by invoking
the run method. There are two basic modes of operation a worker alternates between.
First, it calls findWork, which returns a node in the AVAILABLE state (line 3). Then,



it calls descend to work on that node until it is stolen or completed, which calls
workOn to process the elements. If workOn returns false, then the node was stolen
and the worker tries to descend one of the subtrees rather than searching the entire
tree for work. This decreases the total number of findWork invocations. The method
workOn checks if the node is in the OWNED state (line 47), and then attempts to
atomically increase progress by calling tryAdvance. The worker is obliged to
process the elements after a successful advance, and does so by calling the kernel
method, which is nothing more than the while loop like the one in Figure 1. Generally,
kernel can be any kind of a workload. Finally, method findWork traverses the tree
left to right and whenever it finds a leaf node it tries to claim ownership. Otherwise, it
attempts to steal it until it finds that it is either COMPLETED or EXPANDED, returning
⊥ or descending deeper, respectively. Nodes with 1 or less elements left are skipped.

We explore alternative findWork implementations in section 4. For now, we state
but do not prove the following claim. If the method findWork does return ⊥, then all
the work in the tree was obtained by different workers that had called tryAdvance
except M < P loop elements distributed across M leaf nodes where P is the number
of workers. This follows from the fact that the tree grows monotonically.

def workOn(ptr: Ptr): Boolean =42

val node = READ(ptr.child)43

var batch = -144

do45

val p = READ(node.progress)46

if (p >= 0 ∧ p < node.until)47

batch = tryAdvance(node, p)48

if (batch 6= -1)49

kernel(p, p + batch)50

else batch = -151

while (batch 6= -1)52

if (READ(node.progress) ≥ 0)53

true54

else55

trySteal(ptr)56

false57

def findWork(ptr: Ptr): Node =58

val node = READ(ptr.child)59

if (isLeaf(node))60

if (tryOwn(node)) node61

else if (¬isEligible(node)) ⊥62

else if (¬trySteal(ptr))63

findWork(ptr)64

else65

val right = node.right66

if (tryOwn(READ(right.child)))67

READ(right.child)68

else findWork(ptr)69

else70

val leftsub = findWork(node.left)71

if (leftsub 6= ⊥) leftsub72

else findWork(node.right)73

Fig. 5. Scheduling algorithm

Note that workOn is similar to fixed-size batching – the only difference is that an
arrival of a worker invalidates the node here, whereas multiple workers simultaneously
call tryAdvance in fixed-size batching, synchronizing repetitively. The next section
starts by evaluating the impact this has on performance.

4 Evaluation

As hinted in the introduction, we want to evaluate how good our scheduler is for uniform
workloads with a low amount of work per element. The reasons for this are twofold –
first, we want to compare speedups against an optimal sequential program. Second,
such problems appear in practical applications. We thus ensure that the third and fourth
program from Figure 1 really have the same performance for a single processor. We
will call the while loop from Figure 1 the sequential baseline.



Parallelizing the baseline seems trivial. Assuming the workers start at roughly the
same time and have roughly the same speed, we can divide the range in equal parts
between them. However, an assumption from the introduction was that the workload
distribution is not known and the goal is to parallelize irregular workloads as well. In
fact, the workload may have a coarse granularity, consisting only of several elements.

For the reasons above, we verify that the scheduler abides the following criteria:
C1 There is no noticeable overhead when executing the baseline with a single worker.
C2 Speedup is optimal for both the baseline and typical irregular workloads.
C3 Speedup is optimal when the work granularity equals the parallelism level.

Workloads we choose correspond to those found in practice. Uniform workloads
are particularly common and correspond to numeric computations, text manipulation,
Monte Carlo methods and applications that involve basic linear algebra operations like
vector addition or matrix multiplication. In Figure 8 we denote this workload as UNI-
FORM. Triangular workloads are present in primality testing, multiplication with trian-
gular matrices and computing an adjoint convolution (TRIANGLE). In higher dimen-
sions computing a convolution consists of several nested loops and can have a poly-
nomial workload distribution (PARABOLA). Depending on how the problem is for-
mulated, the workload may be increasing or decreasing (INVTRIANGLE, HILL, VAL-
LEY). In combinatorial problems such as word segmentation, bin packing or computing
anagrams the problem subdivision can be such that the subproblems corresponding to
different elements differ exponentially – we model this with an exponentially increasing
workload EXP. In raytracing, PageRank or sparse matrix multiplication the workload
corresponds to some probability distribution, modelled with workloads GAUSSIAN
and RANDIF. Finally, in problems like Mandelbrot set computation or Barnes-Hut sim-
ulation we have large conglomeration of elements which require a lot of computation
while the rest require almost no work. We call this workload distribution STEP.

All the tests were performed on an Intel i7 3.4 GHz quad-core processor with hyper-
threading and Oracle JDK 1.7, using the server VM. Our implementation is written in
the Scala programming language, which uses the JVM as its backend. JVM programs
are commonly regarded as less efficient than programs written in C. To show that the
evaluation is comparative to a C implementation, we must evaluate the performance
of corresponding sequential C programs. The running time of the while loop from
Figure 1 is roughly 45ms for 150 million elements in both C (GNU C++ 4.2) and on
the JVM – if we get linear speedups then we can conclude that the scheduler is indeed
optimal. We can thus turn our attention to critera C1.

We stated already that the STEP value should ideally be 1 for load-balancing pur-
poses, but has to be more coarse-grained due to communication costs that could over-
whelm the baseline. In Figure 6A we plot the running time against the STEP size,
obtained by executing the baseline loop with a single worker. By finding the minimum
STEP value with no observable overhead, we seek to satisfy criteria C1. The minimum
STEP with no noticeable synchronization costs is around 50 elements – decreasing
STEP to 16 doubles the execution time and for value 1 the execution time is 36 times
larger (not shown for readability).

Having shown that the work-stealing tree is as good as fixed-size batching, we eval-
uate its effectiveness with multiple workers. Figure 6B shows that the minimum STEP
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for fixed-size batching increases for 2 workers, as we postulated earlier. Increasing
STEP decreases the frequency of synchronization and the communication costs with
it. In this case the 3x slowdown is caused by processors having to exchange owner-
ship of the progress field cache-line. The work-stealing tree does not suffer from
this problem, since it strives to keep processors isolated – the speedup is linear with 2
workers. However, with 4 processors the performance of the naive work-stealing tree
implementation is degraded (Figure 6C). While the reason is not immediately appar-
ent, note that for greater STEP values the speedup is once again linear. Inspecting the
number of elements processed in each node reveals that the uniform workload is not
evenly distributed among the topmost nodes – communication costs in those nodes are
higher due to false sharing. Even though the two processors work on different nodes,
they modify the same cache line, slowing down the CAS in line 20. Why this exactly
happens in the implementation that follows directly from the pseudocode is beyond the
scope of this paper, but it suffices to say that padding the node object with dummy fields
to adjust its size to the cache line solves this problem, as shown in Figures 6D,E.

The speedup is still not completely linear as the number of workers grows. Our
baseline does not access main memory and only touches cache lines in exclusive mode,
so this may be due to worker wakeup delay or scheduling costs in the work-stealing
tree. After checking that increasing the total amount of work does not change perfor-
mance, we focus on the latter. Inspecting the number of tree nodes created at different
parallelism levels in Figure 7B reveals that as the number of workers grows, the number
of nodes grows at a superlinear rate. Each node incurs a synchronization cost, so could
we decrease their total number?

Examining a particular work-stealing tree instance at the end of the operation re-
veals that different workers are battling for work in the left subtree until all the ele-
ments are depleted, whereas the right subtree remains unowned during this time. As
a result, the workers in any subtree steal from each other more often, hence creating
more nodes. The cause is the left-to-right tree traversal in findWork as defined in
Figure 5, a particularly bad stealing strategy we will call Predefined. As shown in Fig-
ure 7B, the average tree size for 8 workers nears 2500 nodes. So, lets try to change
the preference of a worker by changing the tree-traversal order in line 70 based on the
worker index i and the level l in the tree. The worker should go left-to-right if and
only if (i >> (l mod dlog2 P e)) mod 2 = 1 where P is the total number of workers.
This way, the first path from the root to a leaf up to depth log2 P is unique for each
worker. The choice of the subtree after a steal in lines 10 and 66 is also changed like
this – the detailed implementation of findWork for this and other strategies is shown



in the appendix. This strategy, which we call Assign, decreases the average tree size at
P = 8 to 134. Interestingly, we can do even better by doing this assignment only if the
node depth is below log2 P and randomizing the traversal order otherwise. We call this
strategy AssignTop – it decreases the average tree size at P = 8 to 77. Building on the
randomization idea, we introduce an additional strategy called RandomWalk where
the traversal order in findWork is completely randomized. However, this results in a
lower throughput and bigger tree sizes. Additionally randomizing the choice in lines 10
and 66 (RandomAll) is even less helpful, since the stealer and the victim clash more
often.
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The results of the five different strategies mentioned thus far lead to the following
observation. If a randomized strategy like RandomWalk or AssignTop works better
than a suboptimal strategy like Predefined then some of its random choices are bene-
ficial to the overall execution time and some are disadvantageous. So, there must exist
an even better strategy which only makes the choices that lead to a better execution
time. Rather than providing a theoretical background for such a strategy, we propose
a particular one which seems intuitive. Let workers traverse the entire tree and pick
a node with most work, only then attempting to own or steal it. We call this strategy
FindMax. Note that this cannot be easily implemented atomically, but a quiescently
consistent implementation may still serve as a decent heuristic. This strategy yields an
average tree size of 42 at P = 8, as well as a slightly better throughput – we conclude
by choosing it as our default strategy. Also, the diagrams in Figure 7 reveal the pos-
tulated inverse correlation between the tree size and total execution time, both for the
Intel i7-2600 and the Sun UltraSPARC T2 processor (where STEP is set to 600), which
is particularly noticeable for Assign when the total number of workers is not a power
of two. For some P RandomAll works slightly better than FindMax on UltraSPARC,
but both are much more efficient than static batching, which deteriorates heavily once
P exceeds the number of cores.

The results so far go a long way in justifying that C1 is fulfilled. We focus on the
C2 and C3 next by changing the workloads, namely the kernel function. Figures
8, 9 show a comparison of the work-stealing tree and the other schedulers on a range
of different workloads. Each workload pattern is illustrated prior to its respective dia-
grams, along with corresponding real-world examples. To avoid memory access effects
and additional layers of abstraction each workload is minimal and synthetic, but cor-
responds to a practical use-case. To test C3, in Figure 8-5,6 we decrease the number
of elements to 16 and increase the workload heavily. Fixed-size batching fails utterly
for these workloads – the total number of elements is on the order of or well below the
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Fig. 9. Comparison of different kernel functions II (throughput/s−1 vs. #workers)

estimated STEP. These workloads obviously require smaller STEP sizes to allow steal-
ing, but that would annul the baseline performance, and we cannot distinguish the two.
We address these seemingly incompatible requirements by modifying the work-stealing
tree in the following way. A mutable step field is added to Node, which is initially
1 and does not require atomic access. At the end of the while loop in the workOn
method the step is doubled unless greater than some value MAXSTEP. As a result,
workers start processing each node by cautiously checking if they can complete a bit
of work without being stolen from and then increase the step exponentially. This nat-
urally slows down the overall baseline execution, so we expect the MAXSTEP value to
be greater than the previously established STEP. Indeed, on the i7-2600, we had to set
MAXSTEP to 256 to maintain the baseline performance and at P = 8 even 1024. With
these modifications work-stealing tree yields linear speedup for all uniform workloads.

Triangular workloads such as those shown in Figures 8-8,9,10 show that static
batching can yield suboptimal speedup due to the uniform workload assumption. Fig-
ure 8-20 shows the inverse triangular workload and its negative effect on guided self-
scheduling – the first-arriving processor takes the largest batch of work, which inciden-
tally contains most work. We do not inverse the other increasing workloads, but stress
that it is neither helpful nor necessary to have batches above a certain size.
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Figure 9-28 shows an exponentially increasing workload, where the work associ-
ated with the last element equals the rest of the work – the best possible speedup is
2. Figures 9-30,32 show two examples where a probability distribution dictates the
workload, which occurs often in practice. Guided self-scheduling works well when the
distribution is relatively uniform, but fails to achieve optimal speedup when only a few
elements require more computation, for reasons mentioned earlier.

In the STEP distributions all elements except those in some range 〈n1, n2〉 are asso-
ciated with a very low amount of work. The range is set to 25% of the total number of
elements. When its absolute size is above MAXSTEP, as in Figure 9-34, most schedulers
do equally well. However, not all schedulers achieve optimal speedup as we decrease
the total number of elementsN and the range size goes below MAXSTEP. In Figure 9-35
we set n1 = 0 and n2 = 0.25N . Schedulers other than the work-stealing tree achieve
almost no speedup, each for the same reasons as before. However, in Figure 9-36, we
set n1 = 0.75N and n2 = N and discover that the work-stealing tree achieves a subop-
timal speedup. The reason is the exponential batch increase – the first worker acquires
a root node and quickly processes the cheap elements, having increased the batch size
to MAXSTEP by the time it reaches the expensive ones. The real work is thus claimed
by the first worker and the others are unable to acquire it. Assuming some batches are
smaller and some larger as already explained, this problem cannot be worked around
by a different batching order – there always exists a workload distribution such that
the expensive elements are in the largest batch. In this adversarial setting the existence
of a suboptimal work distribution for every batching order can only be overcome by
randomization. We omit the details due to reasons of space, but briefly explain how to
randomize batching in the appendix, showing how to improve the expected speedup.

Finally, we conclude this section by comparing the new scheduler with an existing
scheduler implementation used in the Scala Parallel Collections [17] in Figure 10. The
Scala Parallel Collections scheduler is an example of an adaptive data-parallel scheduler
relying a task-parallel scheduler under the hood ([15]). The batching order is chosen so
that the sizes increase exponentially. At any point, the largest batch (task) is eligible
for stealing – after a steal, the batch is divided in the same batching order. Due to
the overheads of preemptively creating batch tasks and scheduling them, Scala Parallel
Collections use a bound on the minimum batch size.

In Figure 10 we evaluate the performance of Scala Parallel Collections against the
new scheduler against two benchmark applications – triangular matrix multiplication
and Mandelbrot set computation. Triangular matrix multiplication has a linearly in-



creasing workload. Scala Parallel Collections scale as the number of processors in-
creases on both the i7 and the UltraSPARC machine, although they are slower by a
constant factor. However, in the Mandelbrot set benchmark where we render set in the
part of the plane ranging from (−2,−2) to (32, 32), they do not scale beyond P = 2
on the i7, and only start scaling after P = 16 on the UltraSPARC. The reason is that
the computationally expensive elements around the coordinates (0, 0) end up in a single
batch and work on them cannot be parallelized. The work-stealing tree offers a more
lightweight form of work-stealing with smaller batches and better load balancing.

5 Conclusion

We presented a scheduling algorithm for data-parallel operations that fulfills the speci-
fied criteria. Based on the experiments, we draw the following conclusions:
1. Minimum batch size on modern architectures needed to efficiently parallelize the se-
quential baseline typically ranges from a few dozen to several hundred elements.
2. There is no need to make batches larger than some architecture-specific size MAXSTEP,
which is independent of the problem size – in fact, the approach employed by guided
self-scheduling and factoring can be detrimental.
3. Batching can and should occur in isolation – by having workers communicate only
when they run out of work batching can be more fine-grained (Figure 6).
4. Certain workloads require single element batches, in which case batch size has to
be modified dynamically. Exponentially increasing batch size from 1 up to MAXSTEP
works well for different workloads (Figure 9).
5. When the dominant part of the workload is distributed across a range of elements
smaller than MAXSTEP, the worst-case speedup can be 1. Randomizing the batching
order can improve the average speedup.

We hinted that the work-stealing tree serves as a reduction tree, and we show the de-
tails in the appendix. We give some theoretical background to the conclusions from the
experiments in the appendix as well. In the paper, we focused on parallel loops, but ar-
rays, hash tables and trees are also eligible for parallel traversal [3] [17] [18]. The range
iterator state was encoded with a single integer, but the state of other data structure it-
erators, as well as batching and stealing, may be more complex. While the CAS-based
implementation of tryAdvance and trySteal ensures lock-freedom, CAS instruc-
tions in those methods can be replaced with short critical sections for more complicated
iterators – the work-stealing tree algorithm is potentially applicable to other data struc-
tures in a straightforward way.
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A Appendix

We provide the appendix section to further explain some of the concepts mentioned in the main
paper which did not fit there. The information here is provided for convenience and it should not
be necessary to read this section, but doing so may give useful insight.

A.1 Work-stealing reduction tree

As mentioned, the work-stealing tree is a particularly effective data-structure for a reduce oper-
ation. Parallel reduce is useful in the context of many other operations, such as finding the first
element with a given property, finding the greatest element with respect to some ordering, filtering
elements with a given property or computing an aggregate of all the elements (e.g. a sum).

There are two reasons why the work-stealing tree is amenable to implementing reductions.
First, it preserves the order in which the work is split between processors, which allows using
non-commutative operators for the reduce (e.g. computing the resulting transformation from a
series of affine transformations can be parallelized by multiplying a sequence of matrices – the
order is in this case important). Second, the reduce can largely be performed in parallel, due to
the structure of the tree.

The work-stealing tree reduce works similar to a software combining tree [9], but it can
proceed in a lock-free manner after all the node owners have completed their work, as we describe
next. The general idea is to save the aggregated result in each node and then push the result further
up the tree. Note that we did not save the return value of the kernel method in line 50 in Figure
5, making the scheduler applicable only to parallelizing for loops. Thus, we add a local variable
sum and update it each time after calling kernel. Once the node ends up in a COMPLETED or
EXPANDED state, we assign it the value of sum. Note that updating an invocation-specific shared
variable instead would not only break the commutativity, but also lead to the same bottleneck as
we saw before with fixed-size batching. We therefore add two new fields with atomic access to
Node, namely lresult and result. We also add a new field parent to Ptr. We expand
the set of abstract node states with two additional ones, namely PREPARED and PUSHED. The
expanded state diagram is shown in Figure 11.

Ptr

Node ps π ⊥ ⊥

Ptr

Node × ∅ × ×

Ptr

Node × ∅ × ×

EXPANDED

Ptr

Node u π ⊥ ⊥

COMPLETED

Ptr

Node × π rl P

PREPARED Ptr

Node × π rl r

PUSHED

prepareπ

prepareπ

pushψ

Fig. 11. Reduction state diagram

The parent field in Ptr is not shown in the diagram in Figure 11. The first two boxes in
Node denote the left and the right child, respectively, as before. We represent the iteration state
(progress) with a single box in Node. The iterator may either be stolen (ps) or completed (u),
but this is not important for the new states – we denote all such entries with ×. The fourth box
represents the owner, the fifth and the sixth fields lresult and result. Once the work on
the node is effectively completed, either due to a steal or a normal completion, the node owner



π has to write the value of the sum variable to lresult. After doing so, the owner announces
its completion by atomically writing a special value P to result, and by doing so pushes the
node into the PREPARED state – we say that the owner prepares the node. At this point the node
contains all the information necessary to participate in the reduction. The sufficient condition for
the reduction to start is that the node is a leaf or that the node is an inner node and both its children
are in the PUSHED state. The value lresult can then be combined with the result values of
both its children and written to the result field of the node. Upon writing to the result field,
the node goes into the PUSHED state. This push step can be done by any worker ψ and assuming
all the owners have prepared their nodes, the reduction is lock-free. Importantly, the worker that
succeeds in pushing the result must attempt to repeat the push step in the parent node. This way
the reduction proceeds upwards in the tree until reaching the root. Once some worker pushes the
result to the root of the tree, it notifies that the operation was completed, so that the thread that
invoked the operation can proceed, in case that the parallel operation is synchronous. Otherwise,
a future variable can be completed or a user callback invoked.

Before presenting the pseudocode, we formalize the notion of the states we described. In
addition to the ones mentioned earliear, we identify the following new invariants.
INV6 Field n.lresult is set to ⊥ when created. If a worker π overwrites the value ⊥ of the
field n.lresult then n.owner = π and the node n is either in the EXPANDED state or the
COMPLETED state. That is the last write to n.lresult.
INV7 Field n.result is set to ⊥ when created. If a worker π overwrites the value ⊥ of the
field n.result with P then n.owner = π, the node n was either in the EXPANDED state or
the COMPLETED state and the value of the field n.lresult is different than ⊥. We say that
the node goes into the PREPARED state.
INV8 If a worker ψ overwrites the value P of the field n.result then the node n was in the
PREPARED state and was either a leaf or its children were in the PUSHED state. We say that the
node goes into the PUSHED state.

We modify workOn so that instead of lines 53 through 57, it calls the method complete
passing it the sum argument and the reference to the subtree. The pseudocodes for complete
and an additional method pushUp are shown in Figure 12.

def complete(sum: T, tree: Ptr) =74

node = READ(tree.child)75

stolen = READ(node.progress) < 076

if (stolen)77

trySteal(tree)78

node = READ(tree.child)79

node.lresult = sum80

else81

node.lresult = sum82

while (READ(node.result) == ⊥)83

CAS(node.result, ⊥, P)84

pushUp(tree)85

¬stolen86

87

def pushUp(tree: Ptr): Unit =88

node = READ(three.child)89

res0 = READ(node.result)90

if (res0 == ⊥)91

// not yet in PREPARED state92

else if (res0 6= P)93

// already in PUSHED state94

else95

res = ⊥96

if (isLeaf(node)) res = lresult97

else98

left = READ(node.left.child)99

right = READ(node.right.child)100

rl = READ(left.result)101

rr = READ(right.result)102

if (rl 6= ⊥ ∧ rr 6= ⊥)103

res = lresult + rl + rr104

if (res 6= ⊥)105

if (CAS(node.result, res0, res))106

if (tree.parent 6= ⊥)107

pushUp(tree.parent)108

else tree.synchronized109

{ tree.notifyAll() }110

else pushUp(tree)111

Fig. 12. Reduction pseudocode

Upon completing the work, the owner checks whether the subtree was stolen. If so, it helps
expand the subtree (line 78), reads the new node and writes the sum into lresult. After that,



the owner pushes the node into the PREPARED state in line 84, retrying in the case of spurious
failures, and calls pushUp.

The method pushUp may be invoked by the owner of the node attempting to write to the
result field, or by another worker attempting to push the result up after having completed the
work on one of the child nodes. The lresult field may not be yet assigned (line 92) if the
owner has not completed the work – in this case the worker ceases to participate in the reduction
and relies on the owner or another worker to continue pushing the result up. The same applies if
the node is already in the PUSHED state (line 94). Otherwise, the lresult field can only be
combined with the result values from the children if both children are in the PUSHED state.
If the worker invoking pushUp notices that the children are not yet assigned the result, it will
cease to participate in the reduction. Otherwise, it will compute the tentative result (line 104) and
attempt to write it to result atomically with the CAS in line 106. A failed CAS triggers a retry,
otherwise pushUp is called recursively on the parent node. If the current node is the root, the
worker notifies any listeners that the final result is ready and the operations ends.

A.2 Work-stealing tree traversal strategies

We showed experimentally that changing the traversal order when searching for work can have
a considerable effect on the performance of the work-stealing tree scheduler. We described these
strategies briefly how, but did not present a precise, detailed pseudocode. In this section we show
different implementations of the findWork and descend methods that lead to different tree
traversal orders when stealing.

Assign. In this strategy a worker with index i invoking findWork picks a left-to-right traver-
sal order at some node at level l if and only if its bit at position l mod dlog2 P e is 1, that is:

(i >> (l mod dlog2 P e)) mod 2 = 1 (1)

The consequence of this is that when the workers descend in the tree the first time, they will
pick different paths, leading to fewer steals assuming that the workload distribution is relatively
uniform. If it is not uniform, then the workload itself should amortize the creation of extra nodes.
We give the pseudocode in Figure 13.

def assign.left(p: Ptr, i: Int) =112

val bit = i >> (p.level % log2(P))113

bit % 2 == 1114

115

def assign.choose(p: Ptr, i: Int) =116

if (left(p, i)) READ(p.child).left117

else READ(p.child).right118

119

def assign.descend(leaf: Ptr): Unit =120

val nosteals = workOn(leaf)121

if (¬nosteals)122

val sub =123

choose(leaf, thisWorker.index)124

if (tryOwn(READ(sub.child)))125

descend(subnode)126

def assign.findWork(ptr: Ptr): Node =127

val node = READ(ptr.child)128

if (isLeaf(node))129

if (tryOwn(node)) node130

else if (¬isEligible(node)) ⊥131

else if (¬trySteal(ptr)) findWork(ptr)132

else133

val ptr =134

choose(ptr, thisWorker.index)135

if (tryOwn(READ(ptr.child)))136

READ(ptr.child)137

else findWork(ptr)138

else if (left(ptr, thisWorker.index))139

val leftsub = findWork(node.left)140

if (leftsub 6= ⊥) leftsub141

else findWork(node.right)142

else143

val rightsub = findWork(node.right)144

if (rightsub 6= ⊥) rightsub145

else findWork(node.left)146

Fig. 13. Assign strategy



AssignTop. This strategy is similar to the previous one with the difference that the assignment
only works as before if the level of the tree is less than or equal to dlog2P e. Otherwise, a random
choice is applied in deciding whether traversal should be left-to-right or right-to-left. We show it
in Figure 14 where we only redefine the method left, and reuse the same choose, descend
and findWork.

def top.left(p: Ptr, idx: Int) =147

if (p.level ≤ log2(P))148

val bit = i >> (p.level % log2(P))149

bit % 2 == 1150

else151

coinToss()152

def randomall.left(p: Ptr, idx: Int) =153

coinToss()154

155

Fig. 14. AssignTop and RandomAll strategies

RandomAll. This strategy randomizes all the choices that the stealer and the victim make.
Both the tree traversal and the node chosen after the steal are thus changed in findWork. We
show it in Figure 14.

RandomWalk. Here we only change the tree traversal order that the stealer does when
searching for work and leave the rest of the choices fixed to victim picking the left node after
expansion and the stealer picking the right node. The code is shown in Figure 15.

def randomwalk.left(p: Ptr, i: Int) =156

val bit = i >> (p.level % log2(P))157

bit % 2 == 1158

159

def rwalk.choose(p: Ptr, i: Int) =160

if (left(p, i)) READ(p.child).left161

else READ(p.child).right162

163

def rwalk.descend(leaf: Ptr) =164

val nosteals = workOn(leaf)165

if (¬nosteals)166

val sub = READ(leaf.child).left167

if (tryOwn(READ(sub.child)))168

descend(subnode)169

def rwalk.findWork(ptr: Ptr) =170

val node = READ(ptr.child)171

if (isLeaf(node))172

if if (tryOwn(node)) node173

else if (¬isEligible(node)) ⊥174

else if (¬trySteal(ptr))175

findWork(ptr)176

else177

val r = node.right178

if (tryOwn(READ(r.child)))179

READ(r.child)180

else findWork(ptr)181

else if (left(ptr, thisWorker.index))182

val leftsub = findWork(node.left)183

if (leftsub 6= ⊥) leftsub184

else findWork(node.right)185

else186

val rightsub = findWork(node.right)187

if (rightsub 6= ⊥) rightsub188

else findWork(node.left)189

Fig. 15. RandomWalk strategy

FindMax. This strategy, unlike the previous ones, does not break tree traversal early as soon
as a viable node is found. Instead, it traverses the entire workstealing tree in left-to-right order and
returns a reference to a node with the most work. Only then it attempts to own or steal that node.
As noted before, this kind of search is not atomic, since some nodes may be stolen and expanded
in the meantime and processors advance through the nodes they own. However, we expect steals
to be rare events so in most cases this search should give an exact or a nearly exact estimate. The
decisions about which node the victim and the stealer take after expansion remain the same as in
the basic algorithm from Figure 5. We show the pseudocode for FindMax in Figure 16.



def findmax.search(p: Ptr): Ptr =190

if (isLeaf(p.child)) p191

else192

val lp = search(p.child.left)193

val rp = search(p.child.right)194

val l = READ(lp.child)195

val r = READ(rp.child)196

if (remains(l) > remains(r)) l197

else r198

199

def findmax.remains(n: Node) =200

n.until - READ(n.progress)201

def findmax.findWork(ptr: Ptr): Node =202

val maxp = search(tree)203

val max = READ(maxp.child)204

if (remains(max) > 0)205

if (tryOwn(max)) max206

else if (¬isEligible(max)) ⊥207

else if (trySteal(maxp))208

val subnode = READ(maxp.right.child)209

if (tryOwn(subnode)) subnode210

else findWork(ptr)211

else findWork(ptr)212

else ⊥213

Fig. 16. FindMax strategy

A.3 Speedup and optimality analysis

In Figure 9-36 we identified a workload distribution for which the work-stealing reduction tree
had a particularly bad performance. This coarse workload consisted of a major prefix of elements
which required a very small amount of computation followed by a minority of elements which
required a large amount of computation. We call it coarse because the number of elements was
on the order of magnitude of a certain value we called MAXSTEP.

To recap, the speedup was suboptimal due to the following. First, to achieve an optimal
speedup for at least the baseline, not all batches can have fewer elements than a certain number.
We have established this number for a particular architecture and environment, calling it STEP.
Second, to achieve an optimal speedup for ranges the size of which is below STEP·P, some of the
batches have to be smaller than the others. The technique we apply starts with a batch consisting
of a single element and increases the batch size exponentially up to MAXSTEP. Third, there is no
hardware interrupt mechanism available to interrupt a worker which is processing a large batch,
and software emulations which consist of checking a volatile variable within a loop are too slow
when executing the baseline. Fourth, the worker does not know the workload distribution and
cannot measure time. All this caused a single worker obtain the largest batch before the other
workers had a chance to steal some work for a particular workload distribution. Justifying these
claims requires a set of more formal definitions. We start by defining the context in which the
scheduler executes.

Definition 1 (Oblivious conditions). If a data-parallel scheduler is unable to obtain information
about the workload distribution, nor information about the amount of work it had previously
executed, we say that the data-parallel scheduler works in oblivious conditions.

Assume that a worker decides on some batching schedule c1, c2, . . . , ck where cj is the size
of the j-th batch and

∑k
j=1 cj = N , where N is the size of the range. No batch is empty, i.e.

cj 6= 0 for all j. In oblivious conditions the worker does not know if the workload resembles the
baseline mentioned earlier, so it must assume that it does and minimize the scheduling overhead.
The baseline is not only important from a theoretical perspective being one of the potentially
worst-case workload distribution, but also from a practical one – in many problems parallel loops
have a uniform workload. We now define what this baseline means more formally.

Definition 2 (The baseline constraint). Let the workload distribution be a function w(i) which
gives the amount of computation needed for range element i. We say that a data-parallel sched-
uler respects the baseline constraint if and only if the speedup sp with respect to a sequential loop
is arbitrarily close to linear when executing the workload distribution w(i) = w0, where w0 is
the minimum amount of work needed to execute a loop iteration.



Arbitrarily close here means that ε in sp = P
1+ε

can be made arbitrarily small.

The baseline constraint tells us that it may be necessary to divide the elements of the loop
into batches, depending on the scheduling (that is, communication) costs. As we have seen in the
experiments, while we should be able to make the ε value arbitrarily small, in practice it is small
enough when the scheduling overhead is no longer observable in the measurement. Also, we have
shown experimentally that the average batch size should be bigger than some value in oblivious
conditions, but we have used particular scheduler instances. Does this hold in general, for every
data-parallel scheduler? The answer is yes, as we show in the following lemma.

Lemma 1. If a data-parallel scheduler that works in oblivious conditions respects the baseline
constraint then the batching schedule c1, c2, . . . , ck is such that:∑k

j=1 cj

k
≥ S(ε) (2)

Proof. The lemma claims that in oblivious conditions the average batch size must be above some
value which depends on the previously defined ε, otherwise the scheduler will not respect the
baseline constraint.

The baseline constraint states that sp = P
1+ε

, where the speedup sp is defined as T0/Tp,
where T0 is the running time of a sequential loop and Tp is the running time of the scheduler
using P processors. Furthermore, T0 = T · P where T is the optimal parallel running time for
P processors, so it follows that ε · T = Tp − T . We can also write this as ε ·W = Wp −W .
This is due to the running time being proportionate to the total amount of executed work, whether
scheduling or useful work. The difference Wp −W is exactly the scheduling work Ws, so the
baseline constraint translates into the following inequality:

Ws ≤ ε ·W (3)

In other words, the scheduling work has to be some fraction of the useful work. Assuming
that there is a constant amount of scheduling work Wc per every batch, we have Ws = k ·Wc.
Lets denote the average work per element with w. We then have W = N · w. Combining these
relations we get N ≥ k · Wc

ε·w , or shorter N ≥ k · S(ε). Since N is equal to the sum of all batch
sizes, we derive the following constraint:∑k

j=1 cj

k
≥ Wc

ε · w (4)

In other words, the average batch size must be greater than some value S(ε) which depends
on how close we want to get to the optimal speedup. Note that this value is inversely proportion-
ate to the average amount of work per element w – the scheduler could decide more about the
batch sizes if it knew something about the average workload, and grows with the scheduling cost
per batch Wc – this is why it is especially important to make the workOn method efficient. We
already saw the inverse proportionality with ε in Figure 6. In part, this is why we had to make
MAXSTEP larger than the chosen STEP (we also had to increase it due to increasing the schedul-
ing work in workOn, namely, Wc). This is an additional constraint when choosing the batching
schedule.

With this additional constraint there always exists a workload distribution for a given batching
schedule such that the speedup is suboptimal, as we show next.

Lemma 2. Assume that S(ε) > 1, for the desired ε. For any fixed batching schedule c1, c2, . . . , ck
there exists a workload distribution such that the scheduler executing it in oblivious conditions
yields a suboptimal schedule.



Proof. First, assume that the scheduler does not respect the baseline constraint. The baseline
workload then yields a suboptimal speedup and the statement is trivially true because S(ε) > 1.

Otherwise, assume without the loss of generality that at some point in time a particular worker
ω is processing some batch cm the size of which is greater or equal to the size of the other batches.
This means the size of cm is greater than 1, from the assumption. Then we can choose a workload
distribution such that the workWm =

∑Nm+cm
i=Nm

w(i) needed to complete batch cm is arbitrarily
large, where Nm =

∑m−1
j=1 cj is the number of elements in the batching schedule coming before

the batch cm. For all the other elements we set w(i) to be some minimum value w0. We claim
that the obtained speedup is suboptimal. There is at least one different batching schedule with a
better speedup, and that is the schedule in which instead of batch cm there are two batches cm1

and cm2 such that cm1 consists of all the elements of cm except the last one and cm2 contains
the last element. In this batching schedule some other worker can work on cm2 while ω works
on cm1 . Hence, there exists a different batching schedule which leads to a better speedup, so the
initial batching schedule is not optimal.

We can ask ourselves what is the necessary condition for the speedup to be suboptimal.
We mentioned that the range size has to be on the same order of magnitude as S above, but
can we make this more precise? We could simplify this question by asking what is the necessary
condition for the worst-case speedup of 1 or less. Alas, we cannot find necessary conditions for all
schedulers because they do not exist – there are schedulers which do not need any preconditions in
order to consistently produce such a speedup (think of a sequential loop or, worse, a “scheduler”
that executes an infinite loop). Also, we already saw that a suboptimal speedup may be due to a
particularly bad workload distribution, so maybe we should consider only particular distributions,
or have some conditions on them. What we will be able to express are the necessary conditions
on the range size for the the existence of a scheduler which achieves a speedup greater than 1 on
any workload. Since the range size is the only information known to the scheduler in advance, it
can be used to affect its decisions in a particular implementation.

The worst-case speedups we saw occurred in scenarios where one worker (usually the in-
voker) started to work before all the other workers. To be able to express the desired conditions,
we model this delay with a value Td.

Lemma 3. Assume a data-parallel scheduler that respects the baseline constraint in oblivious
conditions. There exists some minimum range sizeN1 for which the scheduler can yield a speedup
greater than 1 for any workload distribution.

Proof. We first note that there is always a scheduler that can achieve the speedup 1, which is
merely a sequential loop. We then consider the case when the scheduler is parallelizing the base-
line workload. Assume now that there is no minimum range size N1 for which the claim is true.
Then for any range sizeN we must be able to find a range sizeN+K such that the scheduler still
cannot yield speedup 1 or less, for a chosen K. We choose N = f ·Td

w0
, where w0 is the amount

of work associated with each element in the baseline distribution and f is an architecture-specific
constant describing the computation speed. The chosen N is the number of elements that can be
processed during the worker wakeup delay Td. The workers that wake up after the first worker
ω processes N elements have no more work to do, so the speedup is 1. However, for range size
N + K there are K elements left that have not been processed. These K elements could have
been in the last batch of ω. The last batch in the batching schedule chosen by the scheduler may
include the N th element. Note that the only constraint on the batch size is the lower bound value
S(ε) from Lemma 1. So, if we choose K = 2S(ε) then either the last batch is smaller than K or
is greater than K. If it is smaller, then a worker different than ω will obtain and process the last
batch, hence the speedup will be greater than 1. If it is greater, then the worker ω will process the



last batch – the other workers that wake up will not be able to obtain the elements from that batch.
In that case there exists a better batching order which still respects the baseline constraint and that
is to divide the last batch into two equal parts, allowing the other workers to obtain some work
and yielding a speedup greater than 1. This contradicts the assumption that there is no minimum
range size N1 – we know that N1 is such that:

f · Td
w0

≤ N1 ≤
f · Td
w0

+ 2 · S(ε) (5)

Now, assume that the workload w(i) is not the baseline workload w0. For any workload we
know that w(i) ≥ w0 for every i. The batching order for a single worker has to be exactly the
same as before due to oblivious conditions. As a result the running time for the first worker ω
until it reaches the N th element can only be larger than that of the baseline. This means that the
other workers will wake up by the time ω reaches the N th element, and obtain work. Thus, the
speedup can be greater than 1, as before.

We have so far shown that we can decide on the average batch size if we know something
about the workload, namely, the average computational cost of an element. We have also shown
when we can expect the worst case speedup, potentially allowing us to take prevention measures.
Finally, we have shown that any data-parallel scheduler deciding on a fixed schedule in oblivious
conditions can yield a suboptimal speedup. Note the wording “fixed” here. It means that the
scheduler must make a definite decision about the batching order without any knowledge about
the workload, and must make the same decision every time – it must be deterministic. As hinted
before, the way to overcome an adversary that is repetitively picking the worst case workload is
to use randomization when producing the batching schedule. This is the topic of the next section.

A.4 Overcoming the worst-case speedup using randomization

Recall that the workload distribution that led to a bad speedup in our evaluation consisted of a
sequence of very cheap elements followed by a minority of elements which were computationally
very expensive. On the other hand, when we inverted the order of elements, the speedup became
linear. The exponential backoff approach is designed to start with smaller batches first in hopes
of hitting the part of the workload which contains most work as early as possible. This allow
other workers to steal larger pieces of the remaining work, hence allowing a more fine grained
batch subdivision. In this way the scheduling algorithm is workload-driven – it gives itself its
own feedback. In the absence of other information about the workload, the knowledge that some
worker is processing some part of the workload long enough that it can be stolen from is the best
sign that the workload is different than the baseline, and that the batch subdivision can circumvent
the baseline constraint. This heuristic worked in the example from figure 9-36 when the expensive
elements were reached first, but failed when they were reached in the last, largest batch, and we
know that there has to be a largest batch by Lemma 1 – a single worker must divide the range
into batches the mean size of which has a lower bound. In fact, no other deterministic scheduler
can yield an optimal speedup for all schedules, as shown by Lemma 2. For this reason we look
into randomized schedulers.

In particular, in the example from the evaluation we would like the scheduler to put the
smallest batches at the end of the range, but we have no way of knowing if the most expensive
elements are positioned somewhere else. With this in mind we randomize the batching order. The
baseline constraint still applies in oblivious conditions, so we have to pick different batch sizes
with respect to the constraints from Lemma 1. Lets pick exactly the same set of exponentially in-
creasing batches, but place consequent elements into different batches randomly. In other words,
we permute the elements of the range and then apply the previous scheme. We expect some of



the more expensive elements to be assigned to the smaller batches, giving other workers a higher
opportunity to steal a part of the work.

In evaluating the effectiveness of this randomized approach we will assume a particular dis-
tribution we found troublesome. We define it more formally.

Definition 3 (Step workload distribution). A step workload distribution is a function which
assigns a computational cost w(i) to each element i of the range of size N as follows:

w(i) =

{
we, i ∈ [i1, i2]

w0, i 6∈ [i1, i2]
(6)

where [i1, i2] is a subsequence of the range, w0 is the minimum cost of computation per
element and we � w0. If we ≥ f · Td, where f is the computation speed and Td is the worker
delay, then we additionally call the workload highly irregular. We call D = 2d = i2 − i1 the
span of the step distribution. If (N −D) · w0

f
≤ Td we also call the workload short.

We can now state the following lemma. We will refer to the randomized batching schedule
we have described before as the randomized permutation with an exponential backoff. Note
that we implicitly assume that the worker delay Td is significantly greater than the time Tc spent
scheduling a single batch (this was certainly true in our experimental evaluation).

Lemma 4. When parallelizing a workload with a highly irregular short step workload distribu-
tion the expected speedup inverse of a scheduler using randomized permutations with an expo-
nential backoff is:

〈s−1
p 〉 =

1

P
+ (1− 1

P
) · (2

k − 2d − 1)!

(2k − 1)!
·
k−1∑
i=0

2i
(2k − 2i − 1)!

(2k − 2i − 2d)!
(7)

where D = 2d � P is the span of the step workload distribution.

Proof. The speedup sp is defined as sp = T0
Tp

where T0 is the running time of the optimal sequen-
tial execution and Tp is the running time of the parallelized execution. We implicitly assume that
all processors have the same the same computation speed f . Since we � w0, the total amount of
work that a sequential loop executes is arbitrarily close to D ·we, so T0 = D

f
. When we analyze

the parallel execution, we will also ignore the work w0. We will call the elements with cost we
expensive.

We assumed that the workload distribution is highly irregular. This means that if the first
worker ω starts the work on an element from [i1, i2] at some time t0 then at the time t1 = t0+

we
f

some other worker must have already started working as well, because t1 − t0 ≥ Td. Also, we
have assumed that the workload distribution is short. This means that the first worker ω can
complete work on all the elements outside the interval [i1, i2] before another worker arrives.
Combining these observations, as soon as the first worker arrives at an expensive element, it is
possible for the other workers to parallelize the rest of the work.

We assume that after the other workers arrive there are enough elements left to efficiently
parallelize work on them. In fact, at this point the scheduler will typically change the initially
decided batching schedule – additionally arriving workers will steal and induce a more fine-
grained subdivision. Note, however, that the other workers cannot subdivide the batch on which
the current worker is currently working on – that one is no longer available to them. The only
batches with elements of cost we that they can still subdivide are the ones coming after the first
batch in which the first worker ω found an expensive element. We denote this batch with cω . The
batch cω may, however, contain additional expensive elements and the bigger the batch the more



probable this is. We will say that the total number of expensive elements in cω is X . Finally, note
that we assumed that D � P , so our expression will only be an approximation if D is very close
to P .

We thus arrive at the following expression for speedup:

sp =
D

X + D−X
P

(8)

Speedup depends on the value X . But since the initial batching schedule is random, the
speedup depends on the random variable and is itself random. For this reason we will look for its
expected value. We start by finding the expectation of the random variable X .

We will now solve a more general problem of placing balls to an ordered set of bins and apply
the solution to finding the expectation of X . There are k bins, numbered from 0 to k − 1. Let ci
denote the number of balls that fit into the ith bin. We randomly assign D balls to bins, so that
the number of balls in each bin i is less than or equal to ci. In other words, we randomly select D
slots from all the N =

∑k−1
i=0 ci slots in all the bins together. We then define the random variable

X to be the number of balls in the non-empty bin with the smallest index i. The formulated
problem corresponds to the previous one – the balls are the expensive elements and the bins are
the batches.

An alternative way to define X is as follows:

X =

k−1∑
i=0

{
number of balls in bin i if all the bins j < i are empty
0 otherwise

(9)

Applying the linearity property, the expectation 〈X〉 is then:

〈X〉 =
k−1∑
i=0

〈number of balls in bin i given that all the bins j < i are empty, and 0 otherwise〉

(10)
The expectation in the sum is conditional on the event that all the bins coming before i are

empty. We call the probability of this event pi. We define bi as the number of balls in any bin i.
From the properties of conditional expectation we than have:

〈X〉 =
k−1∑
i=0

pi · 〈bi〉 (11)

The number of balls in any bin is the sum of the balls in all the slots of that bin which spans
slots ni−1 through ni−1 + ci. The expected number of balls in a bin i is thus:

〈bi〉 =
ni−1+ci∑
i=ni−1

〈expected number of balls in a single slot〉 (12)

We denote the total capacity of all the bins j ≥ i as qi (so that q0 = N and qk−1 = 2k−1).
We assign balls to slots randomly with a uniform distribution – each slot has a probability D

qi
of

being selected. Note that the denominator is not N – we are calculating a conditional probability
for which all the slots before the ith bin are empty. The expected number of balls in a single slot
is thus D

qi
. It follows that:

〈bi〉 = ci ·
D

qi
(13)



Next, we compute the probability pi that all the bins before the bin i are empty. We do this
by counting the events in which this is true, namely, the number of ways to assign balls in bins
j ≥ i. We will pick combinations of D slots, one for each ball, from a set of qi slots. We do the
same to enumerate all the assignments of balls to bins, but with N = q0 slots, and obtain:

pi =

(
qi
D

)(
q0
D

) (14)

We assumed here that qi ≥ D, otherwise we cannot fill allD balls into bins. We could create
a constraint that the last batch is always larger than the number of balls. Instead, we simply define(
qi
D

)
= 0 if qi < D – there is no chance we can fit more than qi balls to qi slots. Combining these

relations, we get the following expression for 〈X〉:

〈X〉 = D · (q0 −D)!

q0!

k−1∑
i=0

ci ·
(qi − 1)!

(qi −D)!
(15)

We use this expression to compute the expected speedup inverse. By the linearity of expec-
tation:

〈s−1
p 〉 =

1

P
+

(
1− 1

P

)
· (q0 −D)!

q0!

k−1∑
i=0

ci ·
(qi − 1)!

(qi −D)!
(16)

This is a more general expression than the one in the claim. When we plug in the exponential
backoff batching schedule, i.e. ci = 2i and qi = 2k − 2i, the lemma follows.

The expression derived for the inverse speedup does not have a neat analytical form, but we
can evaluate it for different values of d to obtain a diagram. As a sanity check, the worst expected
speedup comes with d = 0. If there is only a single expensive element in the range, then there
is no way to parallelize execution – the expression gives us the speedup 1. We expect a better
speedup as d grows – when there are more expensive elements, it is easier for the scheduler to
stumble upon some of them. In fact, for d = k, with the conventions established in the proof, we
get that the speedup is 1

P
+
(
1− 1

P

)
· c0
D

. This means that when all the elements are expensive
the proximity to the optimal speedup depends on the size c0 of the first batch – the less elements
in it, the better. Together with the fact that many applications have uniform workloads, this is also
the reason why we advocate exponential backoff for which the size of the first batch is 1.

We call the term (q0−D)!
q0!

∑k−1
i=0 ci ·

(qi−1)!
(qi−D)!

the slowdown and plot it with respect to span D
on the diagram in Figure 17. In this diagram we choose k = 10, and the number of elementsN =
210 = 1024. As the term nears 1, the speedup nears 1. As the term approaches 0, the speedup
approaches the optimal speedup P . The quicker the term approaches 0 as we increase d, the better
the scheduler. We can see that fixed-size batching should work better than the exponential backoff
if the span D is below 10 elements, but is much worse than the exponential backoff otherwise.
Linearly increasing the batch size from 0 in some step a = 2·(2k−1)

k·(k−1)
seems to work well even for

span D < 10. However, the mean batch size ci = S
k

means that this approach may easily violate
the baseline constraint, and for P ≈ D the formula is an approximation anyway.

The conclusion is that selecting a random permutation of the elements should work very
well in theory. For example, the average speedup becomes very close to optimal if less than
D = 10 elements out of N = 1024 are expensive. However, randomly permuting elements
would in practice either require a preparatory pass in which the elements are randomly copied or
would require the workers to randomly jump through the array, leading to cache miss issues. In
both cases the baseline performance would be violated. Even permuting the order of the batches
seems problematic, as it would require storing information about where each batch started and
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Fig. 17. Randomized scheduler executing step workload – speedup vs. span

left off, as well as its intermediate result – for something like that we need a data structure like a
work-stealing tree and we saw that we have to minimize the number of nodes there as much as
possible.

There are many approaches we could study, many of which could have viable implementa-
tions, but we focus on a particular one which seems easy to implement for ranges and other data
structures. Recall that in the example in Figure 9-36 the interval with expensive elements was
positioned at the end of the range. What if the worker alternated the batch in each step by tossing
the coin to decide if the next batch should be from the left (start) or from the right (end)? Then
the worker could arrive at the expensive interval on the end while the batch size is still small
with a relatively high probability. The changes to the work-stealing tree algorithm are minimal
– in addition to another field called rresult (the name of which should shed some light on
the previous choice of name for lresult), we have to modify the workOn, complete and
pushUp methods. While the latter two are straightforward, the lines 47 through 51 of workOn
are modified. The new workOn method is shown in Figure 18.

def workOn(ptr: Ptr): Boolean =
val node = READ(ptr.child)
var batch = -1
var sum = 0
do

val p = READ(node.progress)
if (notCompleted(p) && notStolen(p))
if (coinToss())
batchs = tryAdvanceLeft(node, p)
if (notStolen(batch)) sum += kernel(p, p + decodeStep(batch))

else
batch = tryAdvanceRight(node, p)
if (notStolen(batch)) sum += kernel(p, p + decodeStep(batch))

else batch = -1
while (batch 6= -1)
complete(sum, ptr)

Fig. 18. Randomized loop method



The main issue here is to encode and atomically update the iteration state, since it consists of
two pieces of information – the left and the right position in the subrange. We can encode these
two positions by using a long integer field and a long CAS operation to update it. The initial 32
bits can contain the position on the left side of the subrange and the subsequent 32 on the right
side. With this in mind, the methods tryAdvanceLeft, tryAdvanceRight, notStolen,
notCompleted and decodeStep should be straightforward.
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Fig. 19. The randomized work-stealing tree and the STEP3 workload

We evaluate the new scheduler on the distribution from Figure 9-36 and show the results in
Figure 19. The first two diagrams (STEP2 and STEP3) show that with the expensive interval at
the beginning and the end of the range the work-stealing tree achieves a close to optimal speedup.
However, there is still a worst case scenario that we have to consider, and that is to have a step
workload with the expensive interval exactly in the middle of the range. Intuition tells us that the
probability to hit this interval early on is smaller, since a worker has to progress through more
batches to arrive at it. The workload STEP4 in the third diagram of Figure 19 contains around
25% expensive elements positioned in the middle of the range. The speedup is decent, but not
linear for STEP4, since the bigger batches seem to on average hit the middle of the range more
often.

Having shown that randomization does help scheduling both in theory and in practice, we
conclude that the problem of overcoming particularly bad workload distributions is an algorithmic
problem of finding a batching schedule which can be computed and maintained relatively quickly,
leaving this task as future work.


