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Abstract

How should we present training examples to

learners to teach them classification rules? This

is a natural problem when training workers for

crowdsourcing labeling tasks, and is also moti-

vated by challenges in data-driven online educa-

tion. We propose a natural stochastic model of the

learners, modeling them as randomly switching

among hypotheses based on observed feedback.

We then develop STRICT, an efficient algorithm

for selecting examples to teach to workers. Our

solution greedily maximizes a submodular surro-

gate objective function in order to select examples

to show to the learners. We prove that our strategy

is competitive with the optimal teaching policy.

Moreover, for the special case of linear separators,

we prove that an exponential reduction in error

probability can be achieved. Our experiments

on simulated workers as well as three real image

annotation tasks on Amazon Mechanical Turk

show the effectiveness of our teaching algorithm.

1. Introduction

Crowdsourcing services, such as Amazon’s Mechanical

Turk platform (henceforth MTurk), are becoming vital

for outsourcing information processing to large groups

of workers. Machine learning, AI, and citizen science

systems can hugely benefit from the use of these services

as large-scale annotated data is often of crucial importance

(Snow et al., 2008; Sorokin & Forsyth, 2008; Lintott

et al., 2008). Data collected from such services however

is often noisy, e.g., due to spamming, inexpert or careless

workers (Sorokin & Forsyth, 2008). As the accuracy of the

annotated data is often crucial, the problem of tackling noise
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from crowdsourcing services has received considerable

attention. Most of the work so far has focused on methods

for combining labels from many annotators (Welinder et al.,

2010; Gomes et al., 2011; Dalvi et al., 2013) or in designing

control measures by estimating the worker’s reliabilities

through “gold standard” questions (Snow et al., 2008).

In this paper, we explore an orthogonal direction: can

we teach workers in crowdsourcing services in order to

improve their accuracy? That is, instead of designing

models and methods for determining workers’ reliability,

can we develop intelligent systems that teach workers to

be more effective? While we focus on crowdsourcing

in this paper, similar challenges arise in other areas of

data-driven education. As running examples, in this paper

we focus on crowdsourcing image labeling. In particular,

we consider the task of classifying animal species, an

important component in several citizen science projects

such as the eBird project (Sullivan et al., 2009).

We start with a high-level overview of our approach.

Suppose we wish to teach the crowd to label a large set of

images (e.g., distinguishing butterflies from moths). How

can this be done without already having access to the labels,

or a set of informative features, for all the images (in which

case crowdsourcing would be useless)? We suppose we

have ground truth labels only for a small “teaching set” of

examples. Our premise is that if we can teach a worker to

classify this teaching set well, she can generalize to new

images. In our approach, we first elicit—on the teaching

set—a set of candidate features as well as a collection of

hypotheses (e.g., linear classifiers) that the crowd may be

using. We will describe the concrete procedure used in

our experimental setup in Section 5. Having access to this

information we use a teaching algorithm to select training

examples and steer the learner towards the target hypothesis.

Classical work on teaching classifiers (reviewed in Sec-

tion 2.2), assumes that learners are noise-free: Hypotheses

are immediately eliminated from consideration upon ob-
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Figure 1. Illustration of crowd-teaching. Given a large set of images, the teacher (randomly) picks a small “teaching set”. For this set,

expert labels, as well as candidate features and hypotheses used by the crowd are elicited (see Section 5). The teacher then uses this

information to teach the rest of the crowd to label the rest of the data, for which no features or labels are available. The teacher sequentially

provides an unlabeled example from the teaching set to the worker, who attempts an answer. Upon receipt of the correct label, the learner

may update her hypothesis before the next example is shown.

servation of an inconsistent training example. As we see in

our experiments (Section 6), such approaches can be brittle.

In contrast, we propose a noise-tolerant stochastic model

of the learners, capturing our assumptions on how they

incorporate training examples. We then (Section 4) propose

STRICT (Submodular Teaching for cRowdsourcIng

ClassificaTion), a novel teaching algorithm that selects a se-

quence of training examples to the workers in order to steer

them towards the true hypothesis. We theoretically analyze

our approach, proving strong approximation guarantees and

teaching complexity results. Lastly, we demonstrate the

effectiveness of our model and STRICT policy on three real

image annotation tasks, carried out on the MTurk platform.

2. Background and Teaching Process

We now describe our learning domain and teaching proto-

col. As a running example, we consider the task of teaching

to classify images, e.g., to distinguish butterflies from moths

(see Figure 1).

2.1. The domain and the teaching protocol

Let X denote a set of examples (e.g., images), called the

teaching set. We use (x, y) to denote a labeled example

where x ∈ X and y ∈ {−1, 1}. We denote by H a finite

class of hypotheses. Each element of H is a function

h : X 7→ R. The label assigned to x by hypothesis h is

sgn(h(x)). The magnitude |h(x)| indicates the confidence

hypothesish has in the label ofx. For now, let us assume that

X and H are known to both the teacher and the learner. In

our image classification example, each image may be given

by a feature vector x, and each hypothesis h(x) = wT
h x

could be a linear function. In Section 5, we discuss the

concrete hypothesis spaces used in our crowdsourcing

tasks, and how we can elicit them from the crowd.

The teacher has access to the labels y(x) of all the examples

x inX . We consider the realizable setting whereH contains

a hypothesis h∗ (known to the teacher, but not the learner)

for which sgn(h∗(x)) = y(x) for all x ∈ X . The goal

of the teacher is to teach the correct hypothesis h∗ to the

learner. The basic assumption behind our approach is that if

we can teach the workers to classify X correctly, then they

will be able to generalize to new examples drawn from the

same distribution as X (for which we neither have ground

truth labels nor features). We will verify this assumption

experimentally in Section 6. In the following, we review

existing approaches to teaching classifiers, and then present

our novel teaching method.

2.2. Existing teaching models

In existing methods, a broad separation can be made about

assumptions that learners use to process training examples.

Noise-free models assume learners immediately discard

hypotheses inconsistent with observed examples. As our

experiments in Section 6 show, such models can be brittle in

practice. In contrast, noise-tolerant models make less strict

assumptions on how workers treat inconsistent hypotheses.

Noise-free teaching: In their seminal work, Goldman

& Kearns (1992) consider the non-interactive model: The

teacher reveals a sequence of labeled examples, and the

learner discards any inconsistent hypotheses (i.e., for which

h(x) 6= y for any example (x, y) shown). For a given

hypothesis class, the Teaching Dimension is the smallest

number of examples required to ensure that all inconsistent

hypotheses are eliminated. More recent work (Balbach &

Zeugmann, 2009; Zilles et al., 2011; Doliwa et al., 2010;

Du & Ling, 2011) consider models of interactive teaching,

where the teacher, after showing each example, obtains

feedback about the hypothesis that the learner is currently

entertaining. Such feedback can be used to select future

teaching examples in a more informed way. While theoret-

ically intriguing, in this paper we focus on non-interactive

models, which are typically easier to deploy in practice.

Noise-tolerant teaching: In contrast to the noise-free

setting, the practically extremely important noise-tolerant

setting is theoretically much less understood. Very re-

cently, Zhu (2013) investigates the optimization problem

of generating a set of teaching examples that trades off

between the expected future error of the learner and the

“effort” (i.e., number of examples) taken by the teacher,

in the special case when the prior of the learner falls into

the exponential family, and the learner performs Bayesian

inference. Their algorithmic approach does not apply to

the problem addressed in this paper. Further, the approach
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is based on heuristically rounding the solution of a convex

program, with no bounds on the integrality gap.

Basu & Christensen (2013) study a similar problem of

teaching workers to classify images. The authors empiri-

cally investigate a variety of heuristic teaching policies on

a set of human subjects for a synthetically generated data

set. Lindsey et al. (2013) propose a method for evaluating

and optimizing over parametrized policies with different

orderings of positive and negative examples. None of these

approaches offer theoretical performance guarantees of the

kind provided in this paper.

3. Model of the Learner

We now introduce our model of the learner, by formalizing

our assumptions about how she adapts her hypothesis based

on the training examples she receives from the teacher.

Generally, we assume that the learner is not aware that

she is being taught. We assume that she carries out a

random walk in the hypothesis spaceH: She starts at some

hypothesis, stays there as long as the training examples

received are consistent with it, and randomly jumps to an

alternative hypothesis upon an observed inconsistency.

Hereby, preference will be given to hypotheses that better

agree with the received training.

More formally, we model the learner via a stochastic pro-

cess, in particular a (non-stationary) Markov chain. Before

the first example, the learner randomly chooses a hypothesis

h1, drawn from a prior distribution P0. Then, in every

round t there are two possibilities: If the example (xt, yt)
received agrees with the label implied by the learner’s

current hypothesis (i.e., sgn(ht(xt)) = yt), she sticks to

it: ht+1 = ht. On the other hand, if the label yt disagrees

with the learner’s prediction sgn(ht(xt)), she draws a new

hypothesis ht+1 based on a distribution Pt constructed

in a way that reduces the probability of hypotheses that

disagreed with the true labels in the previous steps:

Pt(h) =
1

Zt

P0(h)
t∏

s=1
ys 6=sgn(h(xs))

P (ys|h, xs) (1)

with normalization factor

Zt =
∑

h∈H

P0(h)

t∏

s=1
ys 6=sgn(h(xs))

P (ys|h, xs).

In Equation (1), for some α > 0, the term

P (ys|h, xs) =
1

1 + exp(−αh(xs)ys)

models a likelihood function, encoding the confidence that

hypothesis h places in example xs. Thus, if the example

(xs, ys) is “strongly inconsistent” with h (i.e., h(xs)ys
takes a large negative value and consequently P (ys | h, xs)
is very small), then the learner will be very unlikely to jump

to hypothesis h. The scaling parameter α allows to control

the effect of observing inconsistent examples. The limit

α→∞ results in a behavior where inconsistent hypotheses

are completely removed from consideration. This case pre-

cisely coincides with the noise-free learner models classi-

cally considered in the literature (Goldman & Kearns, 1992).

It can be shown (see Lemma 1 in the supplementary

material), that the marginal probability that the learner

implements some hypothesis h in step t is equal to Pt(h),
even when the true label and the predicted label agreed in

the previous step.

4. Teaching Algorithm

Given the learner’s prior over the hypotheses P0(h), how

should the teacher choose examples to help the learner nar-

row down her belief to accurate hypotheses? By carefully

showing examples, the teacher can control the learner’s

progress by steering her posterior towards h∗.

With a slight abuse of notation, if the teacher showed the

set of examples A = {x1, . . . , xt} we denote the posterior

distribution by Pt(·) and P (·|A) interchangeably. We use

the latter notation when we want to emphasize that the ex-

amples shown are the elements ofA. With the new notation,

we can write the learner’s posterior after showing A as

P (h|A) =
1

Z(A)
P0(h)

∏

x∈A
y(x) 6=sgn(h(x))

P (y(x)|h, x) .

The ultimate goal of the teacher is to steer the learner

towards a distribution with which she makes few mis-

takes. The expected error-rate of the learner after seeing

examples A = {x1, . . . , xt} together with their labels

yi = sgn(h∗(xi)) can be expressed as

E[errL | A] =
∑

h∈H

P (h|A) err(h, h∗) ,where

err(h, h∗) =
|{x ∈ X : sgn(h(x)) 6= sgn(h∗(x))}|

|X |

is the fraction of examples x from the teaching set X on

whichh andh∗ disagree about the label. We use the notation

E[errL] = E[errL | {}] as shorthand to refer to the learner’s

error before receiving training.

Given an allowed tolerance ǫ for the learner’s error, a

natural objective for the teacher is to find the smallest set of

examples A∗ achieving this error, i.e.:

A∗
ε = arg min

A⊆X
|A| s.t. E[errL | A] ≤ ǫ. (2)

We will use the notation OPT(ǫ) = |A∗
ǫ | to refer to the size

of the optimal solution achieving error ǫ. Unfortunately,

Problem (2) is a difficult combinatorial optimization prob-

lem. The following proposition, proved in the supplement,

establishes hardness via a reduction from set cover.
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Policy 1 Teaching Policy STRICT

1: Input: examplesX , hyp.H, prior P0, error ǫ.
2: Output: teaching set A
3: A← ∅
4: while F (A) < E[errL]− P0(h

∗)ǫ do

5: x← argmaxx∈X (F (A ∪ {x}))
6: A← A ∪ {x}
7: end while

Proposition 1. Problem (2) is NP-hard.

Given this hardness, in the following, we introduce an

efficient approximation algorithm for Problem (2).

The first observation is that, in order to solve Problem (2),

we can look at the objective function

R(A) = E[errL]− E[errL | A]

=
∑

h∈H

(P0(h)− P (h|A)) err(h, h∗) ,

quantifying the expected reduction in error upon teaching

A. Solving Problem (2) is equivalent to finding the smallest

set A achieving error reduction E[errL] − ǫ. Thus, if we

could, for each k, find a set A of size k maximizing R(A),
we could solve Problem (2), contradicting the hardness.

The key idea is to replace the objective R(A) with the

following surrogate function:

F (A) =
∑

h∈H

(Q(h)−Q(h|A)) err(h, h∗) ,where

Q(h|A) = P0(h)
∏

x∈A
y(x) 6=sgn(h(x))

P (y(x)|h, x)

is the unnormalized posterior of the learner. As shown

in the supplementary material, this surrogate objective

function satisfies submodularity, a natural diminishing

returns condition. Submodular functions can be effectively

optimized using a greedy algorithm, which, at every

iteration, adds the example that maximally increases the

surrogate function F (Nemhauser et al., 1978). We will

show that maximizing F (A) gives us good results in terms

of the original, normalized objective function R(A), that is,

the expected error reduction of the learner. In fact, we show

that running the algorithm untilF (A) ≥ E[errL]−P0(h
∗)ǫ

is sufficient to produce a feasible solution to Problem (2),

providing a natural stopping condition. We call the greedy

algorithm for F (A) STRICT, and describe it in Policy 1.

Note that in the limit α → ∞, F (A) quantifies the prior

mass of all hypotheses h (weighted by err(h, h∗)) that are

inconsistent with the examplesA. Thus, in this case,F (A) is

simply a weighted coverage function, consistent with classi-

cal work in noise-free teaching (Goldman & Kearns, 1992).

4.1. Approximation Guarantees

The following theorem ensures that if we choose the

examples in a greedy manner to maximize our surrogate

objective function F (A), as done by Policy 1, we are close

to being optimal in some sense.

Theorem 1. Fix ǫ > 0. The STRICT Policy 1 terminates

after at most OPT(P0(h
∗)ǫ/2) log 1

P0(h∗)ǫ steps with a set

A such that E[errL | A] ≤ ǫ.

Thus, informally, Policy 1 uses a near-minimal number of

examples when compared to any policy achieving O(ǫ)
error (viewing P0(h

∗) as a constant).

The main idea behind the proof of this theorem is that we

first observe that F (A) is submodular and thus the greedy

algorithm gives a set reasonably close toF ’s optimum. Then

we analyze the connection between maximizing F (A) and

minimizing the expected error of the learner,E[errL | A]. A

detailed proof can be found in the supplementary material.

Note that maximizing F (A) is not only sufficient, but also

necessary to achieve ǫ precision. Indeed, it is immediate

that P (h|A) ≥ Q(h|A) , which in turn leads to

E[errL |A]=
∑

h∈H

P (h|A) err(h, h∗)≥
∑

h∈H

Q(h|A) err(h, h∗)

= E[errL]− F (A) .

Thus, if E[errL] − F (A) > ǫ, then the expected posterior

error E[errL | A] of the learner is also greater than ǫ.

4.2. Teaching Complexity for Linear Separators

Theorem 1 shows that greedily optimizing F (A) leads to

low error with a number of examples not far away from the

optimal. Now we show that, under some additional assump-

tions, the optimal number of examples is not too large.

We consider the important case where the set of hypotheses

H = {h1, h2, . . . , hn} consists of linear separators h(x) =
wT

h x+ bh for some weight vector wh ∈ R
d and offset bh ∈

R. The label predicted byh for examplex is sgn(wT
h x+bh).

We introduce an additional assumption, namely λ-richness

of (X ,H). First notice that H partitions X into polytopes

(intersections of half-spaces), where within one polytope,

all examples are labeled the same by every hypothesis, that

is, within a polytope P , for every x, x′ ∈ P ⊆ R
d and

h ∈ H, sgn(h(x)) = sgn(h(x′)). We say that X is λ-rich

if any P contains at least λ examples. In other words, if

the teacher needs to show (up to) λ distinct examples to the

learner from the same polytope in order to reduce her error

below some level, this can be done.

Theorem 2. Fix ε > 0. Suppose that the hypotheses are

hyperplanes in R
d and that (X ,H) is (8 log2 2

ǫ
)-rich. Then

the STRICT policy achieves learner error less than ǫ after

at most m = 8 log2 2
ǫ

teaching examples.
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Figure 2. Sample images of all the three data sets used for the experiments.

The proof of this theorem is in the supplementary material.

In a nutshell, the proof works by establishing the existence

(via the probabilistic method) of a teaching policy for which

the number of examples needed can be bounded – hence also

bounding the optimal policy – and then using Theorem 1.

5. Experimental Setup

In our experiments, we consider three different image clas-

sification tasks: i) classification of synthetic insect images

into two hypothetical species Vespula and Weevil (VW); ii)

distinguishing butterflies and moths on real images (BM);

and iii) identification of birds belonging to an endangered

species of woodpeckers from real images (WP). Our

teaching process requires a known feature space for image

dataset X (i.e. the teaching set of images) and a hypothesis

class H. While X and H can be controlled by design for

the synthetic images, we illustrate different ways on how to

automatically obtain a crowd-based embedding of the data

for real images. We now discuss in detail the experimental

setup of obtaining X with its feature space and H for the

three different data sets used in our classification tasks.

5.1. Vespula vs. Weevil

We first generate a classification problem using synthetic

images X in order to allow controlled experimentation. As

a crucial advantage, in this setting the hypothesis classH is

known by design, and the task difficulty can be controlled.

Furthermore, this setting ensures that workers have no prior

knowledge of the image categories.

Dataset X and feature space: We generated synthetic im-

ages of insects belonging to two hypothetical species: Wee-

vil and Vespula. The task is to classify whether a given image

contains a Vespula or not. The images were generated by

varying body size and color as well as head size and color. A

given image xi can be distinguished based on the following

two-dimensional feature vector xi = [xi,1 = f1, xi,2 = f2]
– i) f1: the head/body size ratio, ii) f2: head/body color con-

trast. Fig. 3(a) shows the embedding of this data set in a two-

dimensional space based on these two features. Fig. 2 shows

sample images of the two species and illustrates that Weevils

have short heads with color similar to their body, whereas

Vespula are distinguished by their big and contrasting heads.

A total of 80 images per species were generated by sampling

the features f1 and f2 from two bivariate Gaussian distribu-

tions: (µ = [0.10, 0.13], Σ = [0.12, 0; 0, 0.12]) for Vespula

and (µ = [−0.10,−0.13], Σ = [0.12, 0; 0, 0.12]) for Wee-

vil. A separate test set of 20 images per species were gener-

ated as well, for evaluating learning performance.

Hypothesis classH: As we know the exact feature space of

X , we can use any parametrized class of functionsH on X .

In our experiments, we use a class of linear functions forH
, and further restrictH to eight clusters of hypotheses, cen-

tered at the origin and rotated by π/4 from each other. Specif-

ically, we sampled the parameters of the linear hypothe-

ses from the following multivariate Gaussian distribution:

(µi = [π/4 · i, 0], Σi = [2, 0; 0, 0.005]), where i varies from

0 to 7. Each hypothesis captures a different set of cues about

the features that workers could reasonably have: i) ignoring

a feature, ii) using it as a positive signal for Vespula, and iii)

using it as a negative signal for Vespula. Amongst the gen-

erated hypotheses, we picked the target hypothesis h∗ as the

one with minimal error on teaching setX . In order to ensure

realizability, we then removed any data points x ∈ X where

sgn(h∗(x)) 6= y(x). Fig. 3(a) shows a subset of four of

these hypotheses, with the target hypothesis h∗ represented

in red. The prior distribution P0 is chosen as uniform.

5.2. Butterflies vs. Moths

Dataset images X : As our second dataset, we used a col-

lection of 200 real images of four species of butterflies and

moths from publicly available images (Imagenet) : i) Pea-

cock Butterfly, ii) Ringlet Butterfly, iii) Caterpillar Moth,

iv) Tiger Moth, as shown in Fig. 2. The task is to classify

whether a given image contains a butterfly or not. While

Peacock Butterfly and Caterpillar Moth are clearly distin-

guishable as butterflies and moths, Tiger Moth and Ringlet

Butterfly are often considered hard to classify correctly. We

used 160 of these images (40 per sub-species) as teaching

setX and the remaining 40 (10 per sub-species) for testing.

Crowd-embedding ofX : A Euclidean embedding ofX for

this image set is not readily available. Human-perceptible

features for such real images may be difficult to compute. In

fact, this challenge is one major motivation for using crowd-

sourcing in image annotation. However, several techniques

do exist that allow estimating such an embedding from a

small set of images and a limited number of crowd labels.

In particular, we used the approach of Welinder et al. (2010)

as a preprocessing step. Welinder et al. propose a generative

Bayesian model for the annotation process of the images by

the workers and then use an inference algorithm to jointly

estimate a low-dimensional embedding of the data, as well

as a collection of linear hypotheses – one for each annota-

tor – that best explain their provided labels. We requested

binary labels (of whether the image contains a butterfly) for
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(a) X and H for VW (b) X and H for BM
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0 87 15
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18 69 7

25 81 94

98 0 96

2 86 36
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Figure 3. (a) shows the 2-D embedding of synthetic images for Weevil and Vespula for the features: head/body size proportion (f1) and

head/body color contrast (f2), normalized around origin. It shows four of the hypotheses in H, with the target hypothesis h∗ in red. (b)

shows the 2-D embedding of images for the Moth and Butterfly data set, and the hypothesis for a small set of workers, as obtained using

the approach of Welinder et al. (2010). (c) shows the 13 features used for representation of woodpecker images and the wh∗ vector of the

target hypotheses. It also lists the average number of times a particular feature is present in the images of a given species.

our teaching setX , |X | = 160, from a set of 60 workers. By

using the software CUBAM, implementing the approach of

Welinder et al., we inferred a 2-D embedding of the data,

as well as linear hypotheses corresponding to each of the 60

workers who provided the labels. Fig. 3(b) shows this em-

bedding of the data, as well as a small subset of workers’

hypotheses as colored lines.

Hypothesis class H: The 60 hypothesis obtained through

the crowd-embedding provide a prior distribution over lin-

ear hypotheses that the workers in the crowd may have been

using. Note that these hypotheses capture various idiosyn-

crasies (termed “schools of thought” by Welinder et al.) in

the workers’ annotation behavior – i.e., some workers were

more likely to classify certain moths as butterflies and vice

versa. To create our hypothesis classH, we randomly sam-

pled 15 hypotheses from these. Additionally, we fitted a

linear classifier that best separates the classes and used it as

target hypothesis h∗, shown in red in Fig. 3(b). The few ex-

amples in X that disagreed with h∗ were removed from our

teaching set, to ensure realizability.

Teaching the rest of the crowd: The teacher then uses this

embedding and hypotheses in order to teach the rest of the

crowd. We emphasize that – crucially – the embedding is not

required for test images. Neither the workers nor the system

used any information about sub-species in the images.

5.3. Endangered Woodpecker Bird Species

Dataset images X : Our third classification task is inspired

from the eBird citizen science project (Sullivan et al., 2009)

and the goal of this task is to identify birds belonging to an

endangered species of woodpeckers. We used a collection of

150 real images belonging to three species of woodpeckers

from a publicly available dataset (Wah et al., 2011), with

one endangered species: i) Red-cockaded woodpecker and

other two species belonging to the least-concerned category:

ii) Red-bellied woodpecker, iii) Downy woodpecker. On this

dataset, the task is to classify whether a given image contains

a red-cockaded woodpecker or not. We used 80 of these

images (40 per red-cockaded, and 20 each per the other two

species of the least-concerned categories) for teaching (i.e.,

dataset X ). We also created a testing set of 20 images (10

for red-cockaded, and 5 each for the other two species).

Crowd-embedding of X : We need to infer an embedding

and hypothesis space of the teaching set for our teaching

process. While an approach similar to the one used for the

BM task is applicable here as well, we considered an alter-

nate option of using metadata associated with these images,

elicited from the crowd, as further explained below.

Each image in this dataset is annotated with 312 binary

attributes, for example, has forehead color:black, or

has bill length:same as head, through workers on MTurk.

The features can take values {+1, -1, 0} indicating the

presence or absence of an attribute, or uncertainty (when

the annotator is not sure or the answer cannot be inferred

from the image given). Hence, this gives us an embedding

of the data in R
312. To further reduce the dimensionality

of the feature space, we pruned the features which are

not informative enough for the woodpecker species. We

considered all the species of woodpeckers present in the

dataset (total of 6), simply computed the average number of

times a given species is associated positively with a feature,

and then looked for features with maximal variance among

the various species. By applying a simple cutoff of 60 on

the variance, we picked the top d = 13 features as shown in

Fig 3(c), also listing the average number of times the feature

is associated positively with the three species.

Hypothesis class H: We considered a simple set of linear

hypotheses h(x) = wTx for w ∈ {+1, 0,−1}d, which

place a weight of {+1, 0, -1} on any given feature and pass-

ing through the origin. The intuition behind these simple

hypotheses is to capture the cues that workers could possi-

bly use or learn for different features: ignoring a feature (0),
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Figure 4. (a) compares the algorithms’ teaching performance in terms of simulated workers’ test error (VW task). (b) shows the robustness

of STRICT w.r.t. unknownα parameters of the learners. Thus, a noise-tolerant teacher (i.e.,α < ∞) performs much better than noise-free

SetCover teaching, even with misspecified α. (c) shows how the difficulty of STRICT’s examples naturally increase during teaching.

using it as a positive signal (+1), and using it as a negative

signal (−1). Another set of simple hypotheses that we ex-

plored are conjunctions and disjunctions of these features

that can be created by setting the appropriate offset factor bh
(Anthony et al., 1992). Assuming that workers focus only

on a small set of features, we considered sparse hypothe-

ses with non-zero weight on only a small set of features.

To obtain the target hypothesis, we enumerated all possible

hypotheses that have non-zero weight for at most three fea-

tures. We then picked as h∗ the hypothesis with minimal

error on X (shown in Fig 3(c)). Again, we pruned the few

examples inX which disagreed withh∗ to ensure realizabil-

ity. As hypothesis class H, we considered all hypotheses

with a non-zero weight for at most two features along with

the target h∗, resulting in a hypothesis class of size 339.

Teaching the rest of the crowd: Given this embedding and

hypothesis class, the teacher then uses the same approach as

in the two previous datasets to teach the rest of the crowd.

Importantly, this embedding is not required for test images.

6. Experimental Results

Now we present our experimental results, consisting of

simulations and actual annotation tasks on MTurk.

Metrics and baselines: Our primary performance metric

is the test error (avg. classification error of the learners), of

simulated or MTurk workers on a hold-out test data set. We

compare STRICT against two baseline teachers: Random

(picking uniformly random examples), and SetCover (the

classical noise-free teaching model introduced in Section 3).

6.1. Results on Simulated Learners

We start with simulated learners and report results only on

the VW dataset here for brevity. The simulations allow us

to control the problem (parameters of the learner, size of the

hypothesis space, etc.), and hence gain more insight into the

teaching process. Additionally, we can observe how robust

our teaching algorithm is against misspecified parameters.

Test error. We simulated 100 learners with varying α pa-

rameters chosen randomly from the set {2, 3, 4} and differ-

ent initial hypotheses of the learners, sampled fromH. We

varied the experimental setting by changing the size of the

hypothesis space and theα value used by STRICT. Fig. 4(a)

reports results with α = 2 for STRICT and size of hypoth-

esis class 96 (2 hypotheses per each of the eight clusters,

described in Section 5 for the VW dataset.

How robust is STRICT for a mismatched α? In real-

world annotation tasks, the learner’s α parameter is not

known. In this experiment, we vary the α values used by

the teaching algorithm STRICT against three learners with

values ofα = 1, 2 and 3. Fig. 4(b) shows that a conservative

teacher usingα bounded in the range 1 to 5 performs as good

as the one knowing the true α value.

On the difficulty level of teaching. Fig. 4(c) shows the

difficulty of examples picked by different algorithms dur-

ing the process of teaching, where difficulty is measured in

terms of expected uncertainty (entropy) that a learner would

face for the shown example, assuming that the expectation

is taken w.r.t. the learners current posterior distribution over

the hypotheses. SetCover starts with difficult examples as-

suming that the learner is perfect. STRICT starts with easy

examples, followed by more difficult ones, as also illustrated

in the experiments in Fig. 5(a). Recent results of Basu &

Christensen (2013) show that such curriculum-based learn-

ing (where the difficulty level of teaching increases with

time) indeed is a useful teaching mechanism. Note that our

teaching process inherently incorporates this behavior, with-

out requiring explicit heuristic choices. Also, the transition

of SetCover to easier examples is just an artifact as SetCover

randomly starts selecting examples once it (incorrectly) in-

fers that the learner has adopted the target hypothesis. The

difficulty can be easily seen when comparing the examples

picked by SetCover and STRICT in Fig. 5(a).

6.2. Results on MTurk Workers

Next, we measure the performance of our algorithms when

deployed on the actual MTurk platform.

Generating the teaching sequence. We generate se-

quences of teaching examples for STRICT, as well as Ran-

dom and SetCover. We used the feature spaces X and hy-

pothesis spaces H as explained in Section 5. We chose

α = 2 for our algorithm STRICT. To better understand

the execution of the algorithms, we illustrate the exam-



Near-Optimally Teaching the Crowd to Classify

SetCover (VW)

STRICT (VW)

STRICT (BM)

STRICT (WP)

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

(a) Examples in teaching sequence

0.3	
  

0.35	
  

0.4	
  

0.45	
  

0.5	
  

0	
   1	
   3	
   5	
   7	
  

T
e
st
	
  E
rr
o
r	
  

#	
  Teaching	
  Examples	
  

Vespula	
  vs.	
  Weevil:	
  MTurk	
  Workers	
  

Random	
  

	
  

STRICT	
  

	
  

SetCover	
  

	
  

(b) Test error on VW dataset
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(c) Test error on BM dataset
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(d) Test error on WP dataset
Figure 5. (a) shows the order of examples picked by the teaching algorithms. For the VW and BM tasks, we embed the examples in the 2D-

feature space in Figs. 3(a) and 3(b). (b-d) show the teaching performance of our algorithm measured in terms of test error of humans learners

(MTurk workers) on hold out data. STRICT is compared against SetCover and Random teaching, as we vary the length of teaching.

ples picked by our algorithm as part of teaching, shown in

Fig. 5(a). We further show these examples in the 2-D em-

bedding for the VW and BM datasets in Figs. 3(a) and 3(b).

Workers on MTurk and the teaching task. We recruited

workers from the MTurk platform by posting the tasks on the

MTurk platform. Workers were split into different control

groups, depending on the algorithm and the length of teach-

ing used (each control group corresponds to a point in the

plots of Fig. 5). Fig. 1 provides a high level overview of how

the teaching algorithm interacted with the worker. Teaching

is followed by a phase of testing examples without provid-

ing feedback, for which we report the classification error.

For the VW dataset, a total of 780 workers participated (60

workers per control group). For BM, a total of 300 work-

ers participated, and 520 participated in the WP task. The

length of the teaching phase was varied as shown in Fig. 5.

The test phase was set to 10 examples for the VW and BM

tasks, and 16 examples for the WP task. The workers were

given a fixed payment for participation and completion, ad-

ditionally a bonus payment was reserved for the top 10%

performing workers within each control group.

Does teaching help? Considering the worker’s test set

classification performance in Fig. 5, we can consistently

see an accuracy improvement as workers classify unseen

images. This aligns with the results from simulated learners

and shows that teaching is indeed helpful in practice. Fur-

thermore, the improvement is monotonic w.r.t. the length of

teaching phase used by STRICT. In order to understand the

significance of these results, we carried out Welch’s t-test

comparing the workers who received teaching by STRICT

to the control group of workers without any teaching.

The hypothesis that STRICT significantly improves the

classification accuracy has two-tailed p-values of p < 0.001
for VW and WP tasks, and p = 0.01 for the BM task.

Does our teaching algorithm outperform baselines?

Fig. 5 demonstrates that our algorithm STRICT outper-

forms both Random and SetCover teaching qualitatively in

all studies. We check the significance by performing a

paired-t test, by computing the average performance of the

workers in a given control group and pairing the control

groups with same length of teaching for a given task. For

the VW task, STRICT is significantly better than SetCover

and Random (at p = 0.05 and p = 0.05). For WP, STRICT

is significantly better than SetCover (p = 0.002) whereas

comparing with Random, the p-value is p = 0.07.

7. Conclusions

We proposed a noise-tolerant stochastic model of the work-

ers’ learning process in crowdsourcing classification tasks.

We then developed a novel teaching algorithm STRICT

that exploits this model to teach the workers efficiently.

Our model generalizes existing models of teaching in

order to increase robustness. We proved strong theoretical

approximation guarantees on the convergence to a desired

error rate. Our extensive experiments on simulated workers

as well as on three real annotation tasks on the Mechanical

Turk platform demonstrate the effectiveness of our teaching

approach. More generally, our approach goes beyond

solving the problem of teaching workers in crowdsourcing

services. With the recent growth of online education

and tutoring systems (e.g., Coursera), algorithms such as

STRICT can be envisioned to aid in supporting data-driven

online education (Weld et al., 2012; Dow et al., 2013).
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