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Abstract: We investigate the interaction of polarized electromagnetic

waves with hyperbolic metamaterial structures, whereby the in-plane

permittivity component εx is opposite in sign to the normal component

εz. We find that when the thickness of the metamaterial is smaller than

the wavelength of the incident wave, hyperbolic metamaterials can absorb

significantly higher amounts of electromagnetic energy compared to their

conventional counterparts. We also demonstrate that for wavelengths

leading to ℜ(εz) ≈ 0, near-perfect absorption arises and persists over a

range of frequencies and subwavelength structure thicknesses.
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1. Introduction

With recent advances in nanoscale fabrication of metal-dielectric multilayers and arrays of rods,

hybrid structures can now be created that absorb a substantial portion of incident electromag-

netic (EM) radiation. In conventional approaches, strong absorption was achieved by utilizing

materials that had either high loss or large thickness. Nowadays, with the advent of metama-

terials, absorbing structures can be created that harness plasmonic excitations or implement

high impedance components [1] that have extreme values [2–5] of the permittivity εεε or per-

meability µµµ . In close connection with these developments, there has also been a substantial

amount of research lately involving anisotropic metamaterials, where now εεε and µµµ are tensors

that have in general differing components along the three coordinate axes. An important type of

anisotropic metamaterial is one whose corresponding orthogonal tensor components are of op-

posite sign, sometimes referred to as indefinite media [6]. When such structures are described

by a diagonal tensor, the corresponding dispersion relation permits wavevectors that lie within

a hyperbolic isofrequency surface, and hence such a material is also called a hyperbolic meta-

material (HMM). The inclusion of HMM elements in many designs can be beneficial due to

their inherent nonresonant character, thus limiting loss effects [7].

The earliest HMM construct involving bilayers of anisotropic media was discussed in the

context of bandpass spatial filters with tunable cutoffs [6]. For wavelengths λ in the visible

spectrum, an effective HMM was modeled using arrays of metallic nanowires [8] spaced apart

distances much smaller than λ , thus avoiding the usual problems associated with resonances.

Periodic arrays of carbon nanotubes [9] have been shown to exhibit HMM characteristics in the

THz spectral range. Other possibilities involve metal-dielectric layers: The inclusion of active

media in metal-dielectric multilayers can result in improved HMM-based imaging devices [10].

For certain layer configurations, nonlocal effects [11], which depending on geometry [12], can

limit the number of accessible photonic states [13]. The absorption in thin films has been shown

experimentally to be enhanced when in contact with a multilayered HMM substrate [14]. Rather

than using metallic components, tunable graphene can switch between a hyperbolic and con-

ventional material via a gate voltage [15]. The HMM dispersion can be tuned in gyromag-

netic/dielectric [16] and semiconductor/dielectric structures [17]. Slabs of semiconductors can

also exhibit tunability by photogenerating a grating via variations in the carrier density caused

by two incident beams, revealing a hyperbolic character [18].

Increased absorption can also be achieved by incorporating a grating with the HMM, so that

by introducing surface corrugations, or grooves, light can diffract and generate a broad spectrum

of wave vectors into the HMM layer. These wavevectors can couple via surface modes [19]

due to the impedance mismatch at the various openings. Grating lines were patterned above a

layered Au/TiO2 HMM structure, creating a “hypergrating” capable of exciting both surface

and bulk plasmons [20]. By judiciously designing the materials below the grating, it can be

possible to absorb a considerable fraction of the diffracted EM field. Indeed, a HMM comprised

of arrays of silver nanowires was experimentally shown to reduce the reflectance by introducing

surface corrugations [21]. Spherical nanoparticles deposited on planar HMM structures also

resulted in reduced reflectance due to the increased density of photonic states [22].

In this paper we show that near-perfect absorption of EM radiation can arise in a simple

HMM structure adjacent to a metal. We investigate a range of frequencies where the permittivity

components perpendicular and parallel to the interfaces are of opposite sign. We consider two

possibilities: when the HMM dispersion relation is of type-1 or type-2, which for our geometry

corresponds to εx > 0, εz < 0 or εx < 0, εz > 0 respectively (see Fig. 1). We show that for those

λ leading to the real part of the permittivity component perpendicular to the interfaces (εz)

nearly vanishing, an intricate balance between material loss and structure thickness (τ) yields a

broad range of incident angles θ and τ in which nearly the entire EM wave is absorbed. These
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Fig. 1. (a) Schematic of the hyperbolic metamaterial configuration: The HMM layer of

thickness τ is bordered by a semi-infinite superstrate and substrate. The permittivites εεε i

(i=1,2,3) are in general anisotropic. The incident field is polarized in the x−z plane at an

angle θ . (b) Dispersion contours for a type-2 HMM where εx<0, and εz>0 and (c) for a

type-1 HMM with εx>0, and εz<0.

findings are absent in conventional anisotropic “elliptical” structures.

2. Methods

We assume that the incident EM wave propagates with wave vector in the x− z plane with

polarization (Ex,Ez,By) (p-polarized) or (Ey,Bx,Bz) (s-polarized). Once the wave enters the

anisotropic medium, its polarization state can then split into linear combinations of both TE

and TM polarizations [23]. Consider an unbounded diagonally anisotropic medium described

by homogeneous parameters (εx,εy,εz) and (µx,µy,µz), where it is always possible to choose

principal coordinate axes so that the permittivity and permeability are diagonal. Assuming a

harmonic time dependence, exp(−iωt), for the EM fields, Maxwell’s equations give the corre-

sponding wave equations for the electric field components Ex and Ey:

∂ 2Ex

∂ z2
+

[

(ω

c

)2

εxµy −

(

εx

εz

)

k2
x

]

Ex = 0, (1)

∂ 2Ey

∂ z2
+

[

(ω

c

)2

εyµx −

(

µx

µz

)

k2
x

]

Ey = 0. (2)

Equations (1) and (2) illustrate that the wave equations are different for Ex and Ey, resulting in

two different wave vectors. In this work, we focus exclusively on p-polarization from which

the nature of the HMM dispersion can be qualitatively understood. From Eq. (1), k̂2
z = εxµy −

(εx/εz) k̂2
x (the caret symbol signifies normalization by ω/c). For this discussion we assume real

valued material parameters and positive µy. Focusing on εx>0, we consider two scenarios (a)

εz>0 and (b) εz<0, yielding the respective dispersion relations k̂2
z/(εxµy)+ k̂2

x/(εzµy) = 1 and

k̂2
z/(εxµy)− k̂2

x/(|εz|µy) = 1. Thus the isofrequency contours are (a) ellipses and (b) hyperbola

(see e.g., Fig. 1(c) when ky = 0). Moreover, for the ellipsoidal case, as k̂x increases there will be



a frequency cutoff since k̂2
z eventually becomes negative. On the other hand, for the hyperbolic

case, when k̂x increases, there is no cutoff since k̂2
z remains positive. If εx < 0 and εz > 0, we

then have the possibility of a connected hyperbola (see Fig. 2(b)).

To determine the absorbed EM energy, it is convenient to first determine the Fresnel reflection

coefficient, r. The corresponding reflectance R is then given by R= |r|2. For a p-polarized plane

wave incident at an angle θ relative to the normal of a planar layer of thickness τ , we find,

r = β

[

(k̂z1εx2 − k̂z2εx1)(k̂z2εx3 + k̂z3εx2)e
iφ2 +(k̂z1εx2 + k̂z2εx1)(k̂z2εx3 − k̂z3εx2)e

−iφ2

(k̂z1εx2 − k̂z2εx1)(k̂z2εx3 − k̂z3εx2)eiφ2 +(k̂z1εx2 + k̂z2εx1)(k̂z2εx3 + k̂z3εx2)e−iφ2

]

, (3)

where the semi-infinite substrate and superstrate are in general anisotropic (see Fig. 1). The

details can be found in Sec. 4. We define,

β = exp(−2iφ3), (4)

where

φ j ≡ (ω/c)k̂z jτ, (5)

and

k̂2
z j ≡ εx jµy j − (εx j/εz j) k̂2

x . (6)

The index j labels the regions 1,2 or 3 (see Fig. 1). In all cases below, the incident beam is in

vacuum (region 3) so that k̂x = sinθ , which is conserved across the interface. The frequency

dispersion in the HMM takes the Drude-like form: εz2 = a+ ib, where a = 1−α2/[1+(α f )2],
and b = α3 f/[1 + (α f )2]. Here, α ≡ λ/λz, f = 0.02, and the characteristic wavelength,

λz = 1.6µm. When discussing the two types of HMM, the permittivity parallel to the inter-

face is described using εx2 = ±4+ 0.1i for type-1 (+) and type-2 (−). The wavelength range

considered here, where the system exhibits HMM behavior is consistent with experimental

work involving HMM semiconductor hybrids [24].

When the surrounding media is air and the central layer is a diagonally anisotropic HMM,

setting the numerator of (3) to zero leads to a set of conditions on the wavevector components

that results in a complete absence of reflection (R = 0):

k̂2
x = εz2

(

εx2 −µy2

εz2εx2 −1

)

; k̂2
z2 = ε2

x2

(

εz2µy2 −1

εz2εx2 −1

)

(7)

k̂2
x = εz2µy2 −

(

εz2

εx2

)(

nλ

2τ

)2

; k̂2
z2 =

(

nλ

2τ

)2

, (8)

where n is an integer. The k̂x in Eq. (7) corresponds to the classic Brewster angle condition for

isotropic media: k̂2
z ε2

x2 = k̂2
z2, and the k̂x in Eq. (8) corresponds to a standing wave condition

in the z-direction. In either case, when Eqs. (7) or (8) is satisfied, a minimum in R arises. Un-

der the Brewster angle condition in Eq. (7), a simple rearrangement shows that k̂2
x(εx2 − ε−1

z2 )
= εx2 − µy2. This implies that if we choose εx2 = µy2 and εx2εz2 = 1, then we should have

R = 0 for any value of k̂x = sinθ . This choice of anisotropic material parameters is similar to

the perfectly matched layer (PML) approach to eliminating unwanted reflection from absorbing

computational domain boundaries, especially in time-domain [25,26] and frequency-domain al-

gorithms [27,28]. Note that such a PML medium is somewhat artificial since εx2 = ε−1
z2 implies

sources in region 2. Nonetheless such a concept is successful for absorbing layers designed to

simulate an infinite computational domain.

We now illustrate the important case of a HMM backed by a perfectly conducting metal,

and the near-perfect absorption that can arise. As is appropriate for HMM structures, we also
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Fig. 2. Absorption as a function of incident angle θ . The superstrate is air, and the HMM

layer is supported by a perfectly conducting substrate. In (a) and (b) a range of HMM

widths τ are studied (legend units are in microns). In (a) ℜ(ε2x)> 0 and ℜ(ε2z)< 0 (type-

1 HMM), and in (b) ℜ(ε2x) < 0, and ℜ(ε2z) > 0 (type-2 HMM). For both panels (a) and

(b), λ ≈ λz so that ℜ(ε2z) ≈ 0. Panels (c) and (d) show the effects of varying λ for both

the type-1 and type-2 cases respectively. For those cases τ is fixed at 0.16 µm. For normal

incidence (θ = 0◦), there is generally little absorption (high reflectance). Remarkably, for a

range of HMM widths and wavelengths there are strong absorption peaks spanning a broad

range of θ .



consider the regime where all materials are nonmagnetic (µµµ = 1). The reflection coefficient in

Eq. (3) then becomes,

r = e−2iφ

[

(k̂z2 + k̂zεx2)e
iφ2 − (k̂z2 − k̂zεx2)e

−iφ2

(k̂z2 − k̂zεx2)eiφ2 − (k̂z2 + k̂zεx2)e−iφ2

]

, (9)

where φ ≡ (ω/c)k̂zτ, and k̂z = cosθ . It is readily verified that for lossless media, Eq. (9) yields

perfect reflection (|r|2=1) as expected. In the absence of transmission, the absorption, A, is

simply written as A = 1−R.

3. Results

Figure 2 shows the absorption as a function of incident angle θ for both types of HMM: type-

1, ℜ{ε2x} > 0, ℜ{ε2z} < 0 (panels a and c), and type-2, ℜ{ε2x} < 0, ℜ{ε2z} > 0 (panels b

and d). Since λ ≈ λz, we have also the condition, ℜ(ε2z) ≈ 0. There cannot be any substrate

transmission and thus R < 1 is due to intrinsic HMM losses. In terms of practical designs, it

is important to determine the range of sub-wavelength HMM layer thicknesses that can admit

perfect absorption. Thus Figs. 2(a) and (b) explore differing τ ranging from 0.001 to 0.156 µm.

Although the relative sign of εx2 and εz2 usually plays a pivotal role, for extremely thin HMM

widths this is not the case. Indeed in the regime of small φ2, Eq. (9) simplifies to,

r =
k̂z + i2πτ̂(1− k̂2

x/εz2)

−k̂z + i2πτ̂(1− k̂2
x/εz2)

, (10)

which is independent of εx2. Here we have introduced the dimensionless thickness: τ̂ ≡ ωτ/c.

Setting the numerator of r to zero gives the angle, θc, where the reflectance vanishes:

θc = cos−1
[(

iεz2 +
√

(2τ̂)2(1− εz2)− ε2
z2

)

/(2τ̂)
]

. (11)

In Fig. 2(a), for the incident wavelength of 1.601µm, the approximate absorption angles are

found from taking the real part of Eq. (11), giving, θc ≈ 79◦,66◦,52◦,28◦, and 11◦, in order of

increasing τ . Deviations in the angle predicted from Eq. (11) arise for larger τ as higher or-

der corrections are needed. As the thickness τ decreases, near-perfect absorption shifts towards

grazing incidences, in agreement with Eq. (11) where as τ → 0, θc → π/2. For the type-2 HMM,

similar trends are seen in Fig. 2(b), where λ = 1.59µm and the near-perfect absorption angles

were found to agree well with Eq. (11). It is apparent that for a type-2 HMM, the angular range

of near-perfect absorption exhibits a greater sensitivity to τ than the type-1 case shown. In both

cases (a) and (b), near-perfect absorption can be controlled over nearly the whole angular range

by properly choosing the effective material thicknesses. When calculating the regions of high

absorption, ℑ(εz2) plays a significant role when ℜ(εz2)≈ 0. This is consistent with anisotropic

leaky-wave structures [4] and coherent perfect absorbers [5]. Although more difficult to achieve

in practice, subwavelength isotropic slabs where the permittivity and permeability simultane-

ously vanish, can exhibit perfect absorption for small loss and a perfectly conducting metal

backing [29]. Additional control of absorption may also be possible with the introduction of

gain media [10].

Next we investigate how varying the wavelength of the source beam affects the absorp-

tion features. In Figs. 2(c) and (d) the thickness τ is set to 0.16µm for both the type-1 and

type-2 HMM cases respectively. For the type-1 HMM (panel c), as λ increases beyond λz, the

wavelength-dependent εz2 shifts so that its real part becomes more negative. The correspond-

ing absorption peaks then migrate towards θ = 90◦. The opposite trend occurs for the type-2



Fig. 3. Density plots showing absorption as a function of incident wavelength λ and angle

θ . Bright regions correspond to high absorption. The HMM thickness in both plots is τ =
0.16µm. The characteristic wavelength, λz = 1.6µm separates the HMM regions according

to (a) type-1: εx2 > 0 and εz2 < 0 for λ > 1.6µm, and (b) type 2: εx2 < 0, and εz2 > 0 for

λ < 1.6µm. Thus we find that when the metamaterial is effectively hyperbolic, absorption

can be strongly enhanced.

case, where increasing λ from λ = 1.5µm causes ℜ(εz2) (which is positive at this wavelength)

to approach zero. Consequently, the observed double-peaked absorption shifts towards nor-

mal incidence, consistent with the trends above and Eq. (11), where as λ → λz (and hence

ℜ(ε2z) → 0), the angle of near-perfect absorption tends to zero. It is worth noting that if the

HMM is replaced by an isotropic metallic layer like silver, the condition where the permittivity

is near zero is consistent with the generation of bulk longitudinal collective oscillations of the

free electrons. This type of excitation can produce moderate (but less than 100%) absorption

when there is minimal intrinsic material loss.

For the case of vacuum superstrate and substrate, Eq. (3) reveals that when sinφ2 = 0, then

R = 0. If on the other hand, both substrate and superstrate are perfectly conducting, then setting

the denominator of (3) equal to zero also yields sinφ2 = 0, which coincides with the dispersion

relation for guided waves in an HMM layer. Equation (8) shows that when n = 0, k̂2
x = εz2µy2

and k̂2
z = 0, corresponding to a TEM mode which is essentially a plane wave confined to prop-

agate in the x-direction. Thus if φ2 = k̂z2τ̂ = nπ , this assertion is valid if φ2 << nπ . If however

εz2/εx2 < 0, Eq. (8) reveals that there is no guided mode cutoff for k̂2
x .

To present a global view of the parameter space in which our anisotropic structure can
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Fig. 4. Absorption as a function of incident angle θ (a) and wavelength λ (b) extracted

from the high absorption regions of the density plots in Fig. 3(a) and (b).

absorb unusually large portions of incident energy, we present in Figs. 3(a) and (b), 2-D

density plots that map the absorption versus λ and θ . The HMM thickness is fixed at τ=
0.16µm, as in Figs. 2(c) and (d). In Fig. 3(a) εx2 = (4,0.1), so that the HMM region where

ℜ(εz2) < 0 corresponds to λ > λz (recall that λz=1.6µm). Similarly for (b), εx2 = (−4, 0.1),
and thus the HMM region there corresponds to λ < 1.6µm. Figs. 4(a) and (b) are slices from

Figs. 3(a) and (b). In Fig. 4(a) near-perfect absorption occurs at θ = 65◦ for both HMM types.

For λ = 1.7µm, ℜ(εx2) = 4 and ℜ(εz2) = −0.128 corresponding to a Type-1 HMM. For

λ = 1.5µm, ℜ(εx2) =−4 and ℜ(εz2) = 0.121, corresponding to a Type-2 HMM. In Fig. 4(b),

the Type-1 absorption peak occurs at λ = 1.66µm, where ℜ(εz2) = −0.076, and the Type-2

case peaks at λ = 1.55µm, where ℜ(εz2) = 0.062.

Further insight into this anomalous absorption can be gained from studying the balance of

energy [30]. For our structure and material parameters, it suffices to compute,

4π

c

∫

V
dv EEE · JJJ∗ =−

∫

V
dv ∇ · (EEE ×HHH∗)−

iω

c

∫

V
dv
[

ε∗x2|Ex2|
2 + ε∗z2|Ez2|

2 −|Hy2|
2
]

. (12)

Since we have incorporated the conductive part of the HMM into the dielectric response, the

JJJ term is absent. In all of the near-perfect absorption examples investigated here, evaluation of

Eq. (12) confirmed that the net energy flow into the HMM volume, V , is converted into heat.

To explore further the behavior of the energy flow, we present in Fig. 5 the average power PPP

in the HMM as a function of θ for the two cases in Fig. 4(a). Thus, panel (a) is for λ = 1.7µm

(type-1 HMM), and panel (b) corresponds to λ = 1.5µm (type-2 HMM). The average power
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Fig. 5. The power PPP in the HMM, normalized by the incident power in the z-direction, and

plotted as a function of θ . In (a) λ = 1.7 µm (type-1 HMM) and in (b) λ = 1.5 µm (type-2

HMM). The material parameters are the same as in Fig. 4(c). Panel (a) reveals that energy

flow parallel to the interface (Px2) in the type-1 HMM is negative, which is opposite that of

the vacuum region containing the incident beam.

along the x and z directions, Px2 and Pz2, is found from averaging the corresponding components

of the Poynting vector over the HMM region (see Eqs. (29)). It is evident that the direction of

energy flow depends on the sign of εz2 (or equivalently whether λ is above or below λz). The

component of PPP normal to the interfaces (Pz2) must always have the same sign on both sides

of the interface [31]. Its direction parallel to the interface (Px2) however can be negative if the

HMM is of type-1, as seen in Fig. 5(a), and is clearly opposite in direction to kx, which is

always positive. This manifestation of “negative refraction” was discussed in the context of

uniaxially anisotropic media [32], certain nanowire structures [8], and observed in ZnO-based

multilayers [24]. Comparing the peaks in panels (a) and (b) with Fig. 4(a), we see the correlation

with the angles where near-perfect absorption occurs and those where |Pz2| is maximal.

4. Conclusion

In conclusion, we have investigated the absorption properties of both type-1 and type-2 hyper-

bolic metamaterials. We found that HMMs can absorb significantly higher amounts of elec-

tromagnetic energy compared to their conventional counterparts, where ℜ(εx2) and ℜ(εz2) are

both of the same sign. Our results show that the incident beam can couple to the HMM struc-

ture without recourse for a second compensating layer. We also revealed that the condition

ℜ(εz)≈ 0 leads to near-perfect absorption over a range of frequencies, angles of incidence, and



subwavelength structure thicknesses, making the proposed structures experimentally achiev-

able. Alternate methods exist to achieve perfect absorption, including periodic layers of silver

and conventional dielectrics that depending on the direction of incident wave propagation and

loss, can exhibit anisotropic behavior that cancels the reflected and transmitted waves simulta-

neously [33]. Our HMM with metallic backing is a different configuration in which no energy

can be transmitted, and the inherently finite width of the structure means that there are no Bloch

wave excitations. Arrays of metal-dielectric films can serve as an effective HMM waveguide

taper, resulting in light localization and enhanced absorption [34], however, the modes respon-

sible for “slow-light” are very sensitive to the presence of loss [35].

When the incident wavelength results in the dielectric response of the metamaterial pos-

sessing a nearly vanishing component of the permittivity, contributions from nonlinear effects

and/or spatial dispersions can become important. Nonlinear effects can in this case generate

interesting phenomena such as two-peaked or flat solitons [36], as well as additional venues for

second- and third-harmonic generation [37], and guided waves whose Poynting vector under-

goes localized reversal [38]. Since the nonlinear part of the dielectric response can now be of

the same order as the (small) linear part, the transmissivity can exhibit directional hysteresis

behavior [39]. Spatial dispersion can moreover lead to the appearance of additional EM waves,

as was reported for nanorods [40]. For metal-dielectric structures, nonlocality arising from the

excitation of surface plasmons can also lead to significant corrections [41] to conventional ef-

fective medium theories [42].

Appendix: Poynting’s Theorem

In this section we present the details on how the EM fields are straightforwardly calculated for

determining the reflectance and energy flow in HMM structures. We have considered in this pa-

per diagonally anisotropic HMM layers (εx,εz,µy). We also assume that EM wave propagation

and polarization is in the x-z plane. The wave equation for Ex is thus,

∂ 2Ex

∂ z2
+

[

(ω

c

)2

εxµy −

(

εx

εz

)

k2
x

]

Ex = 0. (13)

Taking into account that ∇ ·DDD = ∇ ·BBB = 0, this yields the electric field solutions in their respec-

tive media as,

EEE1 =

[

A

{

x̂+ ẑ

(

k̂xεx1

k̂z1εz1

)}

e−ikz1z

]

eikxx, (14)

EEE2 =

[

G

{

x̂− ẑ

(

k̂xεx2

k̂z2εz2

)}

eikz2z +F

{

x̂+ ẑ

(

k̂xεx2

k̂z2εz2

)}

e−ikz2z

]

eikxx, (15)

EEE3 =

[

C

{

x̂− ẑ

(

k̂xεx3

k̂z3εz3

)}

eikz3z + I

{

x̂+ ẑ

(

k̂xεx3

k̂z3εz3

)}

e−ikz3z

]

eikxx. (16)

Similarly, the components of the magnetic field are written,

HHH1 = −ŷ

(

εx1

k̂z1

)

Ae−ikz1zeikxx, (17)

HHH2 = ŷ

(

εx2

k̂z2

)

[

Geikz2z −Fe−ikz2z
]

eikxx, (18)

HHH3 = ŷ

(

εx3

k̂z3

)

[

Ceikz3z − Ie−ikz3z
]

eikxx. (19)



The I terms represent the incident field. The quantities k̂z j and φ j are defined in Eqs. (5) and

(6). Utilizing matching boundary conditions for the tangential components of the electric and

magnetic fields permits calculation of the coefficients,

A =
4e−iφ3 k̂z1k̂z2εx2εx3

G−F−eiφ2 +G+F+e−iφ2
; C = β

[

G−F+eiφ2 +G+F−e−iφ2

G−F−eiφ2 +G+F+e−iφ2

]

, (20)

F =
2e−iφ3 k̂z2εx3G

+

G−F−eiφ2 +G+F+e−iφ2
; G =

−2e−iφ3 k̂z2εx3G
−

G−F−eiφ2 +G+F+e−iφ2
, (21)

were β is given in Eq. (4). We also define,

F
± = k̂z3εx2 ± k̂z2εx3, (22)

G
± = k̂z2εx1 ± k̂z1εx2, (23)

where εx j describe the media for regions j = 1,2,3, and kz j is defined in Eq. (6). The caret

symbol signifies that wavenumber components kx and kz j have been normalized to ω/c. In

general, k̂x can be any value, but for the case of an incident plane wave in vacuum, k̂x = sinθ .

For time-harmonic fields, consider now the integral,

1

2

4π

c

∫

V
dv EEE · JJJ∗ =−

1

2

∫

V
dv ∇ · (EEE ×HHH∗)−

iω

2c

∫

V
dv [EEE ·DDD∗−HHH∗ ·BBB] , (24)

where we have used,

∇×HHH =
4π

c
JJJ−

iω

c
DDD ; ∇×EEE =

iω

c
BBB. (25)

The media are diagonally anisotropic with DDD = εεε ·EEE and BBB = µµµ ·HHH. Inserting Eqs. (15) and

(18) into Eq. (24) yields the following energy conservation relationships,

iω

2c

∫ τ

0
dz E2xD∗

2x =
iε∗2x

2

[

|G|2
(e−2τℑ(k2z)−1

−2ℑ(k̂2z)

)

+ |F |2
(e2τℑ(k2z)−1

2ℑ(k̂2z)

)

+ 2ℜ

{

GF∗
(e2iτℜ(k2z)−1

2iℜ(k̂2z)

)}]

, (26)

iω

2c

∫ τ

0
dz E2zD

∗
2z =

iε∗2z

2

∣

∣

∣

∣

k̂xε2x

k̂2zε2z

∣

∣

∣

∣

2
[

|G|2
(e−2τℑ(k2z)−1

−2ℑ(k̂2z)

)

+ |F |2
(e2τℑ(k2z)−1

2ℑ(k̂2z)

)

−2ℜ

{

GF∗
(e2iτℜ(k2z)−1

2iℜ(k̂2z)

)}]

, (27)

iω

2c

∫ τ

0
dz H∗

2yB2y =
iµ2y

2

∣

∣

∣

∣

ε2x

k̂2z

∣

∣

∣

∣

2
[

|G|2
(e−2τℑ(k2z)−1

−2ℑ(k̂2z)

)

+|F |2
(e2τℑ(k2z)−1

2ℑ(k̂2z)

)

−2ℜ

{

GF∗
(e2iτℜ(k2z)−1

2iℜ(k̂2z)

)}]

, (28)

where the x and y integrations over V are omitted.

Finally, the time-averaged Poynting vector in V is SSS = EEE ×HHH∗/2, giving the result,

S2x(z) =
( k̂x

εz2

)

∣

∣

∣

∣

εx2

k̂z2

∣

∣

∣

∣

2[

|G|2e−2zℑ(kz2)+ |F |2e2zℑ(kz2)−2ℜ

(

GF∗e2izℜ(kz2)
)

]

, (29)

S2z(z) =
(εx2

k̂z2

)∗
[

|G|2e−2zℑ(kz2)−|F |2e2zℑ(kz2)−2iℑ
(

GF∗e2izℜ(kz2)
)

]

. (30)
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