
Near-Pri: Private, Proximity Based Location Sharing
Ed Novak, Qun Li

{ejnovak, liqun}@cs.wm.edu
Department of Computer Science

College of William and Mary

Abstract—As the ubiquity of smartphones increases we see an
increase in the popularity of location based services. Specifically,
online social networks provide services such as alerting the user
of friend co-location, and finding a user’s k nearest neighbors.
Location information is sensitive, which makes privacy a strong
concern for location based systems like these. We have built one
such service that allows two parties to share location information
privately and securely. Our system allows every user to maintain
and enforce their own policy. When one party, (Alice), queries the
location of another party, (Bob), our system uses homomorphic
encryption to test if Alice is within Bob’s policy. If she is,
Bob’s location is shared with Alice only. If she is not, no
user location information is shared with anyone. Due to the
importance and sensitivity of location information, and the easily
deployable design of our system, we offer a useful, practical,
and important system to users. Our main contribution is a
flexible, practical protocol for private proximity testing, a useful
and efficient technique for representing location values, and a
working implementation of the system we design in this paper.
It is implemented as an Android application with the Facebook
online social network used for communication between users.

I. INTRODUCTION

Online social networks (OSNs) have been growing rapidly
in size and popularity since their inception around 2004.
The most popular online social network, Facebook, now has
approximately 1.1 billion registered, active users and has an
Alexa rating of two, [1], [2]. As online social networking,
aided by smart-phone catalysts, becomes more ubiquitous,
we are seeing an equal increase in the use of user location
information in a social context. The dominant OSNs all
have location elements and sites like Foursquare, Jiepang,
and FullCircle are referred to as location-based online social
networks (LB-OSNs), due to their focus on location. These
providers can offer useful services based on user location such
as cab hailing, directions, nearby friend alerts, fair rendezvous
points between friends [3], and simple location sharing.

As these online social networking and location based ser-
vices grow in popularity, important questions about privacy
are raised. Location privacy is nuanced and valuable because
it can easily be used to derive other information about a
person. For example, it is trivial, given a location trace,
to determine the home of the user (the address they are
at most frequently between 12:00am and 7:00am), or their
place of work (similarly) [4]. Inferring information from a
location trace can reveal other, sensitive information when
more sophisticated analysis is employed [5], [6].

Using this information, adversaries can perform a variety

of attacks. These range from mild inconveniences, such as
dropping by for lunch unexpectedly and targeted advertise-
ments, to a variety of much more serious attacks. An adversary
can use location information to more easily steal a user’s
identity, determine the answer to common security questions,
and even stalk the user. Insurance companies can use location
information as leverage to raise premiums. It can even be used
by governments to enforce strict, totalitarian-style laws.

Currently, it is common for location based services to
require the user to upload their location information in plain
text. They use this location information to perform some com-
putation, which is vital to their service. This means, however,
that service providers have unfettered access to user location
data. Furthermore, these providers are weakly motivated to
protect this information from the world at large, as has been
demonstrated by the recent NSA privacy revelations [7]. Users
should be wary of providing their location information to
any third parties. Because of this situation, systems that offer
location based services that protect users’ location information
are very valuable.

Our paper aims to offer one such location based service
to users in a convenient, privacy preserving, and secure way.
Specifically, we build a system which allows a user, (Alice),
to query the location of her friend, (Bob), in an online social
network. Our system, without exposing location information
to either party, or the OSN provider, allows Bob to test if Alice
is within X meters of him (private proximity detection). We
refer to this X as Bob’s policy or Pb. If Alice and Bob are not
within Pb meters of one another, both parties learn only this
fact. If they are within Pb then Bob’s location is revealed to
Alice. Our system allows for every user to maintain their own
policy. By requiring that users are near Bob, we protect Bob’s
location information from his friends, the service providers,
and any other, possibly malicious, third parties. When the GPS
coordinates are transmitted from Bob to Alice, asymmetric
encryption is used to hide the values.

In this paper we make several contributions. We present
a protocol that allows one party to determine, privately and
securely, if a second party is within a certain distance and we
use our protocol to enforce distance based access control in
location queries. Our protocol is flexible in that each user is
able to maintain their own policy and can even assign different
policies for different queriers. To the best of the authors’
knowledge, this is the first protocol of its kind. Our system
does not rely on any dedicated, trusted third party server to

978-1-4799-3360-0/14/$31.00 c©2014 IEEE

perform any computation. We overcome the challenge of name
resolution, for Alice and Bob to send messages to one another,
by utilizing the Facebook messaging service and building our
system in a distributed way.

We present a novel and elegant method of discretizing GPS
coordinates for use in our system. We utilize a binary tree
data structure and we support granularity as small as 10m.
This presents the challenge that the tree is very large, as each
leaf represents a 10m section of the Earth. We overcome this
challenge by building only the necessary segment of the tree,
and building from the leaf level up. By doing this, we are
able to significantly decrease the running time of our system,
decreasing the amount of data sent between Alice and Bob,
and reducing computation.

We offer a working implementation, which is the first and
only, to the author’s knowledge, that enforces proximity based
content access control (through private proximity detection).
It does not require modification of the infrastructure and does
not leak information to any third parties, despite its use of
Facebook as a message channel. Queries are processed in tens
of seconds and the system scales well as the user’s policy
increases.

In order to overcome the challenge of making our system
practical and useful for users we perform an extensive eval-
uation, which shows query times, data usage, and scalability
analysis. Our system can process a single query in roughly 30
seconds. We also consider the case where Alice wants to be
notified when any of her hundreds of Facebook friends become
near. We make key improvements, including pre-processing,
to make sure our system is scalable in this way.

II. RELATED WORK

Several papers propose methods for making location infor-
mation private that can be applied to any location based service
([8]–[11]). These papers obfuscate location and temporal infor-
mation, usually based on the k-anonymous measure. Although
all of these systems intend for location based services to still
function effectively, they all gradually erode service quality.
As the user’s location becomes more and more vague, location
based services become less and less useful. For example, if a
user’s location data has been obfuscated to the granularity of
400m, a cab hailing service becomes useless. There is even
literature that offers a framework for choosing the best location
privacy system for the task at hand, [12], [13]. However,
even after choosing the best system for preserving privacy,
the location based service may not function correctly or
adequately. The idea of a one-size-fits-all solution to location
privacy is, at the least, controversial, [14].

Obfuscation, even k-anonymous obfuscation, does not pro-
vide adequate privacy when applied to location information,
because attackers can still perform trajectory attacks. Further-
more, k-anonymity does not protect users when they are in
a densely populated area. While it is true the attacker cannot
distinguish the user from the many other users near her, the
attacker is actually given higher accuracy results.

In order to achieve location privacy while still maintaining
the proper operation of location based services, we must take
each service on a case by case basis. Privacy and security must
be built into the design. This is the goal of [15], [16], and [3].
Each of these papers attempt to design one specific location-
based service in a privacy preserving way. Mobishare, [15],
allows users to share their (authenticated) location values with
one another, without allowing any third parties to link user
(OSN profile) with location. However, it requires significant
changes to the infrastructure including cellular towers. Our
protocol avoids any changes to the network infrastructure.

There are several papers that focus on a service similar to
ours [17]–[21]. All of these papers offer the theory behind
private proximity testing. Our system closely relies on Nergiz’s
et. al., work [22] but makes a simple improvement which
allows our protocol run in a much lower time. The main con-
tribution of our work is a pragmatic, working implementation
of the theory involved in these works. We provide a thorough
evaluation, including end-to-end measurements to ascertain the
system speed. The technical challenges here are the numerous
engineering problems and security concerns. Additionally, we
show an extension of our system that allows users to be alerted
as soon as their friends are nearby efficiently.

Other encryption systems, such as order preserving encryp-
tion, may be used to build a system similar to the one described
in this work [23], [24]. We leave this avenue open as possible
future work.

III. PROBLEM DESCRIPTION

Our system allows users to share location information
privately and securely. When one user, Alice, requests the
location of another user, Bob, the location is disclosed if Alice
is within a certain range of Bob, Pb. Every user in the system
defines their own policy, Pb. Determining if Alice is within
Pb, without revealing the location of either user to the other,
is known as private proximity detection.

Each user has a current location; a 2-tuple of that user’s
GPS coordinates < lat, lon >. Where lat ∈ R in the range
[−90, 90], and lon ∈ R in the range [−180, 180]. Each user
also maintains a policy, Pb, which is a factor of ten meters
in the range [30m, 20000km], (20000km ≈ 1

2 the Earth’s
circumference). The goal is to determine if Alice’s location
is in the circle centered at Bob’s location, with radius Pb.
Our protocol allows Bob to test if Alice is near him, without
revealing his location to Alice and without Alice revealing her
location to him.

In our implementation, we separate the Earth’s surface
based on a grid formed by longitude and latitude lines. A
small spherical cap of this grid is depicted in Fig. 1. We
approximate the circle, centered at Bob, with a subset of these
grid squares. This allows us to significantly simplify the private
proximity detection protocol. Each square’s edges are five
meters from the center in the cardinal directions. Due to the
curvature of the Earth, they are slightly distorted. The corners
of the squares introduce a small margin of error, because they
are slightly larger than the would-be circle. However, this

error is negligible, because as Pb grows larger, the squares
approximate the shape of a circle with better accuracy, and
the error is minimized.

Longitude
L

at
it

u
d

e

B

Fig. 1: A small error is introduced due to the difference between the theoretical circle,
centered at Bob, and the squares used as an approximation. Because each square is only
approximately ten square meters, this error area is miniscule.

A. Assumptions

We assume that Alice and Bob are curious but not malicious.
They will follow the protocol correctly but once the protocol
has ended they can perform any computation they want on the
information (encrypted or otherwise) acquired.

We assume that users cannot forge their GPS coordinates.
While it is possible for users to forge their location using apps
or developer tools, it is detectible. Either the user has modified
the developer option “Allow Mock Locations”, or the user
has root access on the device [25], which is very difficult to
be made undetectable. Although we did not implement these
checks in our application, adding them would be trivial.

IV. SYSTEM DESIGN

Our system is purely distributed, existing only as client
software running on Android smartphones. Our client software
connects to Facebook Chat, which is depicted in Fig. 2 to send
messages. By doing this, we do not have to do name/address
resolution, and, because Facebook stores messages when users
are not online, our system can tolerate users being unavailable.
Despite the fact that our system sends messages over the Inter-
net, and directly through the OSN, user location information
is never leaked.

Internet

Facebook

Fig. 2: Phones communicate by sending messages, over the Internet, in the Facebook
chat API to one another.

A. Homomorphic Cryptography

Homomorphic encryption takes a foundational role in our
system. We use Paillier encryption, in which the following
equations hold true.

D[(E(m1) ∗ E(m2))%n
2] = (m1 +m2)%n (1)

D[(E(m1)
m2)%n2] = (m1 ∗m2)%n (2)

D[(E(m2)
m1)%n2] = (m1 ∗m2)%n (3)

In Eqs. 1, 2, and 3, E() is Paillier encryption, D[] is Paillier
decryption, n is the product of two large primes, p and q, and
mi is an integer. This properties are very useful. Computation
can be done with encrypted values that translates to operations
in the plain text domain. This allows parties to do blind
computation on encrypted values. For more information on
Paillier key generation, please refer to citation [26].

B. Main Idea

In order to better understand the protocol, we first introduce
a simple example. Alice wants to learn Bob’s location, but Bob
only wants to share his location if Alice is within Pb of Bob.
Bob wants to determine if Alice is within Pb of Bob without
revealing his location to her, or learning her location. In order
to achieve this, we begin with two sets of location values α
and β, which represent latitude and longitude respectively.

The elements in β each represent approximately 0.00008◦

of longitude area on the Earth, which is about ten meters at
the equator. At other latitude cross sections, 0.00008◦ < 10m.
0.00004◦ is used for α, because latitude degrees cover more
area. These values are not precise; in our actual implemen-
tation we use values with higher precision. All the discrete
longitude location values (roughly four million) in the range
[−180, 180] are numbered uniquely from N and together form
the set β. The same is done with all the discrete latitude
location values in the range [−90, 90] which forms the set
α. This numbering is used as location values.

In order to determine if Alice is near Bob, Bob builds two
subsets, one from α and the other from β. Bob’s subsets
contain all the elements in the range [Lb−Pb, Lb+Pb] where
Lb is Bob’s location (longitude or latitude). Alice builds two
singleton sets, each containing the location value correspond-
ing to her latitude or longitude coordinate respectively.

If Alice’s longitude and latitude singleton sets intersect with
Bob’s corresponding sets, we know that Alice must be within
Bob’s policy, Pb. Determining if one of Alice’s singleton sets
intersects with Bob’s set is trivial if Alice and Bob can share
their values with one another. However, our goal is to hide
their locations at this point. In order to do this, Bob generates
several, degree one, polynomials. Each polynomial is rooted
at one value from his set [Lb−Pb, Lb+Pb]. This can be seen
in Eq. (4) where each Ci is equal to a corresponding location
value.

(X − C1), (X − C2), ... (X − Cn) (4)

Bob sends the encryption of the negated coefficients
(E(−Ci) ∀i ∈ [1, n]) from these polynomials to Alice.
Referring to Eq. (1) we can see that Alice can evaluate the
polynomials at her singleton set element’s value, La.

D[(E(La) ∗ E(−Ci))%n
2] = (La − Ci)%n (5)

Therefore, Alice computes E(La) ∗ E(−Ci)%n
2, and the

resulting value can be decrypted by Bob only. If the decrypted

result is 0, Bob knows that Alice’s value La = Ci and must
have been in Bob’s set. This process is repeated once for
longitude and then again for latitude.

At this point, the software alerts the user. If Alice is within
Bob’s policy in both longitude and latitude, the client software
notifies Bob that his location has been shared and his GPS
coordinates are sent to Alice. When this message arrives
at Alice, the GPS coordinates are presented to her in the
application. From this point she can open a map centered at
these coordinates.

C. An Improvement

If Bob uses every node in the range [Lb−Pb, Lb +Pb], the
protocol will not scale well as Bob’s policy increases. Bob
will generate hundreds or thousands of polynomials, as shown
in Table III. To solve this problem, we use a binary tree to
reduce the size of Bob’s set, which is inspired by authors A.E.
Nergiz et. al., [22]. For the following we perform everything
identically twice, once for longitude and again for latitude. We
begin by taking the set of longitude (latitude) location values,
β (α), and use these as the leaf nodes in the binary tree.

The leaves have already been uniquely numbered from
N. The values used for the tree nodes above the leaf level
are chosen carefully so that every node in the entire tree
is numbered uniquely. For a given, non-leaf node, value =
leftChild+ 4003017. If the node does not have a left child,
then value = rightChild+(4003017−2h−1) where h is the
current height in the tree. 4,003,017 is used because that is
the largest longitude leaf node value. 4,003,003 is used in the
latitude tree. This guarantees that any node at level h will be
greater than any node at level h− 1 and that all nodes will be
uniquely numbered.

10860534

68575176857515

2854497 28545002854498 2854501

2854499

A B

6857513

10860530

14863547

Lon: 76.71126

Fig. 3: Example of a longitude tree segment. This tree was generated by Bob at 37.2710,
76.71126, and Pb = 10 meters. Bob’s wall set = {2854497, 6857515, 6857517}.
Alice’s path set = {2854499, 6857515, 10860530, 14863547, ...}. Node 6857515 can be
generated from the left child or the right child. 6857515 = 2854498 + 4003017 =
2854499 + (4003017 − 21−1). The leaf node at longitude 76.71126 generates
2854499 ≈ 76.71126+180

0.0000899321 .

When building the parent of a particular node, we must
know the orientation of the branch connecting these two nodes.
The correct branch directions are encoded in the reverse binary
representation of the nodes’ values. We use 0 to represent a
rightward branch and 1 to represent a leftward branch. This
allows us to build only a segment of the tree from the leaf
level up.

D. Utilizing The Binary Tree

Once this tree is built, Bob and Alice select subsets of the
nodes of their tree segment. We refer to Bob’s set as the wall
set. The span of a node is the set of leaf nodes which can
be reached as children of that node, (i.e., can be reached by
following depth first search from that node). Bob’s wall set is
the set of nodes, highest in the tree, with spans that collectively
cover all of, and only, the elements in Bob’s range, [Lb −
Pb, Lb + Pb]. Bob uses the values from the wall set to build
his polynomials. It might seem obvious that the root node
alone would be an adequate (singleton) wall set. However, the
root node often spans a larger range of leaves then Pb allows.
In Fig. 3, Bob’s wall set = {2854497, 6857515, 6857517}.

We refer to Alice’s set as the path set. The path set is
simply the set of nodes starting at Alice’s node and traversing
to its parent and its parent’s parent iteratively. In Fig. 3 Alice
is located at node 2854498 and her path set = {2854498,
6857515, 10860530, 14863547, ...}. Alice’s path set actually
extends further than is depicted in Fig. 3. The rest of her path
set is omitted for brevity.

The intuition behind these two sets is that Bob’s set forms
a wall, (the dashed line in Fig. 3). Alice’s path set will
necessarily break through this wall if Alice is within Pb

of Bob. In Fig. 3 Alice’s and Bob’s sets intersect at node
6857515. The value at which the two sets intersect is an
element of Bob’s wall set and therefore, a root of one of
Bob’s polynomials.

E. Putting It All Together

Alice first sends a location query to Bob. Bob builds his tree
segment, based on his policy and location. He then finds his
wall set and builds n polynomials, each rooted at a value in his
wall set. He sends the encryption of the negated value of each
coefficient to Alice. Along with this cipher-text, Bob sends the
public key he used to encrypt his values, and the height, in the
tree segment, of each coefficient. Alice, upon receiving these
values, can reconstruct and evaluate each polynomial. She uses
the height information to evaluate each polynomial only once,
using her path set node at the corresponding height. Without
this modification, the method proposed in [22], is too slow.
Alice sends the polynomial evaluations, (encrypted), back to
Bob, who can decrypt them. Bob decrypts these values and,
if any value decrypts to zero, Bob knows that his wall set and
Alice’s path set intersect at this point, and that she is within
his policy. This is repeated twice for latitude and longitude

When the policy testing is completed, Bob notifies Alice,
Alice sends her public key, which Bob uses to encrypt his
longitude and latitude coordinates. Bob sends these ciphers to
Alice, who decrypts them, and the query is completed.

V. IMPLEMENTATION DETAILS

A. Messages

In any distributed system, it is assumed that nodes, cell
phones in our case, can send messages between one another.
Our message channel is implemented using the Facebook Chat
protocol, which provides simple user-oriented name resolution.

The Facebook Chat protocol is built on top of the Extensible
Messaging and Presence Protocol (XMPP), which features,
among many other things, guaranteed delivery of messages.
Users start the application, set a username and password, and
are able to log in to Facebook Chat using our application
directly. Once the user is logged in, they can be queried by
the other users using our system and make queries themselves.
Because Facebook stores messages sent to users that are not
currently online, our system tolerates downtime (although pro-
cessing these buffered messages is not currently implemented).

The Facebook XMPP Chat protocol enforces a limit of
1,000 ASCII characters per message, which we discovered
empirically. In order to circumvent this limit, we are forced to
split messages into 1,000 character packets. In order to reduce
the number of packets sent (and therefore reduce user wait
time), we trans-code the messages into base 32 encoding.

When packets arrive, if the user is currently logged into
Facebook chat using our application, the application will parse
the packet. If the packet begins with a special symbol (e.g.,
“@@” in our implementation), we know that this packet
pertains to the protocol, and should be processed. Packets
beginning with the special symbol are collected until a packet
is found that ends with the special symbol, which denotes the
last packet of the message.

Packet collisions, in the traditional sense, are not an issue
when using XMPP, as messages retain the correct sending
order on arrival. However, if one user receives two, simul-
taneous queries from another user, the recipient will not be
able to distinguish which messages pertain to which query. In
order to avoid these logical session collisions, we issue session
numbers, in the range [1, 10000), to the messages.

When Bob sends messages to Alice they are in the form

< @@T : sess : E(C1), h1, ..., E(Cn), hn, pk > (6)

Here, @@T is the packet type T preceded by our imple-
mentation’s special character, and sess is the session number.
Each E(Ci) is the i-th encrypted coefficient, and each hi is the
corresponding height. pk is Bob’s public key, which Alice uses
to encrypt her path set values to perform the homomorphic
computation of the polynomials.

The type number T allows the receiver to determine what
stage of the protocol this packet is intended for. For example, a
type 2 packet contains the encrypted coefficients from Bob’s
longitude polynomials. Their are approximately nine packet
types that handle different segments of the protocol, which
are omitted for brevity.

When Alice sends messages to Bob they are in the form

< @@T : sess : w1, w2, ..., wk > (7)

In Eq. 7, each wi is the i-th polynomial evaluation which are
transmitted back in random order to preserve Alice’s privacy.
Use use Facebook chat to send messages because it brings
with it several features including guaranteed message delivery,
guaranteed message order between two users, it requires the
two users to be friends on the social network to send messages,
and it buffers messages when users are not available. However,

we can also use a third party server to speed up message
communication, and avoid splitting our messages into packets
manually. We evaluate the speed gains of using such a server
in our evaluation, Section VII-C.

B. Key Management

Our system uses two sets of Paillier, public/private key
pairs. The first set is used for private proximity detection. Bob
generates a key pair which he uses to encrypt the coefficients
of his polynomial. He sends these coefficients, along with the
matching public key, to Alice. The second set is used to send
the actual GPS coordinates from Bob to Alice. Alice generates
a key pair and sends the public key to Bob, which he uses to
send his location back to her.

These keys are never explicitly saved to disk. Although time
can be saved not generating new keys for each query, this time
is negligible and the security risk of re-using keys is large. It
is important to note that the user never has to do any manual
key management.

VI. SECURITY ANALYSIS

The goal of our system is to provide a private and secure
service to users. This section analyzes the security of the
system from the different perspectives of the parties involved.

The protocol has one potential issue, because the proximity
detection is handled in two rounds. When the first round has
finished, Bob can decrypt the values and, if any one of them
decrypts to 0, Bob knows that Alice is within Pb in longitude
only. At this point information has been leaked to Bob, who
should only learn location information about Alice if she is
near him in both longitude and latitude. He can fool Alice by
continuing the protocol regardless of the result so she cannot
infer anything about Bob’s location.

Fortunately, the information exposed to Bob is limited. He
knows that Alice is within Pb of Bob in longitude only. As
a result, he can guess she is in a 2 ∗ Pb wide vertical band,
centered on him, of longitude values all the way around the
Earth. This disclosure is relatively mild. There are still millions
of latitude values to guess. Due to the weak disclosure of this
issue, we felt it unnecessary to modify the system. We have
implemented a trivial amount of protection in that the client
software does not reveal any information to the user until the
protocol has finished. Only at this point can it be confirmed
that Alice is within Pb in both longitude and latitude.

We can solve this problem completely if we represent all
the permutations of all possible < lat, lon > pairs. This is
substantially different then the current system, which creates
two sets of polynomials, one rooted at longitude values and
the other rooted at latitude values. Due to the complexity, the
significant difference from our current system, and the relative
insignificance of the information leaked, we did not attempt
this approach.

Social Networking Site Provider Messages are passed in-
band (i.e., over the social networking service). We assume that
the social network provider can see and read all messages.
However, information is not leaked to the provider, because

our system maintains that the sensitive contents of all messages
are encrypted, and new key pairs are generated for each query.
The social network provider (or any message provider) may
attempt to perform IP geolocation. However, IP geolocation is
easily circumvented using IP address obfuscation techniques
such as TOR or a VPN.

In the worst case, the social network provider can sabotage
the system by scrambling messages or refusing to send en-
crypted messages. However, determining which messages are
related to the protocol, and which are simply users conversing,
comes down to identifying which messages are cipher-text and
which are plain-text. This is non-trivial on a large scale and
yields little reward. Therefore, it is not practical for the social
network provider to do this.

Alice Alice receives, from Bob, the coefficients for a
polynomial rooted at Bob’s wall set values. However, they
are encrypted and, therefore, incoherent to Alice. If these
coefficients were in plain text Alice could easily determine
the roots.

Alice may cache the encrypted coefficients sent to her in
queries (from Bob). She might then recognize the encrypted
coefficients sent to her in future queries. This would only occur
if Bob was at the same location, with the same policy, and
using the same key. Fortunately, in our system we generate
a new key for every query. By doing this we significantly
decrease the likelihood of one user recognizing another re-
using the encrypted coefficients from a previous query.

Bob also reveals height information about each coefficient
to Alice. Alice may be able to deduce Bob’s policy from this
height information, (larger heights indicate a larger policy),
but this disclosure is minimal and does not indicate to Alice
anything about Bob’s location.

Bob Bob receives, from Alice, her evaluations of the
polynomial and he has the polynomial (which he generated).
Because this function is simple and well-behaved he can
determine the input necessary to generate the given output.
This allows Bob to determine Alice’s location. In order to stop
this attack we implement a random number r which Alice
uses after she has generated her wi values. ∀wi we modify
wi = (wi)

r%n2. If wi = 0 it remains 0. However, other
values are hidden from Bob who does not know the value
of r.

VII. PERFORMANCE EVALUATION

In order to evaluate the performance of this system, we
ran several experiments which are detailed in the following
subsections. The first subsection details the speed of homo-
morphic encryption on smartphones. In the second subsection,
we examine the savings from utilizing a binary tree. In the
third subsection, we analyze the running time of our system
in order to determine the practicality for end users.

For all of these experiments, we used one or both of two
Android OS based smartphones connected to the Internet using
WiFi. WiFi is always used in our experiments because of the
excessive cost of mobile phone 3g or 4g data plans. The
first phone p1 is an LG-C800 with a 1Ghz processor and

512Mb of RAM running Android 2.3. The second phone p2
is a Samsung Nexus S with a 1Ghz Cortex-A8 processor and
512MB of RAM. Our Paillier cryptography implementation
was borrowed from the University of Maryland Baltimore
County [27].

A. Homomorphic Encryption

In the first experiments we wanted to determine if the
weak ARM processors on typical Android cell phones are
powerful enough to perform Paillier cryptographic operations
in a timely fashion. A small Android application was written
and used, which generates a Paillier key, encrypts a user
selected value, and decrypts the value. We ran this program
five times, with a random value as input, and summarized the
results in Table I. We chose 1024 bit encryption because it is
a good balance between security and speed. To get a better
estimate of the protocol’s running time, we examine lower-
level, cryptographic functions, shown in Table II. Here one key
is generated and the random value is encrypted and decrypted
once.

Bits Run 1 Run 2 Run 3 Run 4 Run 5 Avg.
256 123 75 82 74 82 115.3
512 208 139 374 134 177 257.3

1024 1536 1366 1042 933 1158 1176.5
2048 6773 8105 9453 8007 3710 6349.3
4096 91785 44144 31311 26047 81108 46415.2

TABLE I: Time in milliseconds of generating a Paillier public, private key pair, encrypting
a value with the public key, and decrypting that value with the private key.

Run Key Gen Encryption Decryption Total
1 769 80 147 1006
2 1601 81 147 1830
3 624 80 146 852
4 756 80 151 989
5 1891 80 146 2118

Avg. 1128.2 80.2 147.4

TABLE II: Time in milliseconds of generating a Paillier public, private key pair,
encrypting a value with the public key, and decrypting that value with the private key
on an ARM 1Ghz processor

During our protocol, there are only a few dozen encryp-
tions / decryptions performed, each one costing approximately
100ms and there are only two key generations, each costing
approximately one second. This shows that 1024 bit encryption
is appropriate for our system.

B. Binary Tree Efficiency

In the second experiment, we wanted to determine the
savings we achieved by using a binary tree data structure in
order to encode the discretized location values. We ran the
protocol six times, on p2, while varying Pb. If the tree structure
affords us a large saving, the protocol will transmit less
information and there will be fewer cryptographic operations.

In Table III, we can see that, as the policy increases,
the number of leaves increase. This is expected, leaves =
((policy/10) ∗ 2) + 1. Bob’s wall set grows at approximately
O(log(n)) because of the nature of binary trees.

Paillier encryption generates cipher-text that is twice the bit
length of the key [28]. We use 1024 bit encryption so we
expect cipher-text will be 2048 bits long. Messages are trans-
coded, for transmission, in a base 32 numbering system. As

Policy 30 100 300 3000 30000 160000
Leaves 7 21 61 601 6001 32001

Wall Size 3 6 6 10 12 12
Message Length 1638 2867 2867 4505 5324 5324

Packets 2 3 3 5 6 6

TABLE III: Analysis of wall size as a function of Bob’s policy. Also included,is the
approximate message length that can be expected for the given policy.

discussed in Section 5, messages are then broken up into 1000
character packets. Therefore, it is reasonable to see only a few
packets generated from thousands of characters.

C. System Running Time

1) End-To-End Running Time: To get an idea of what users
will experience when using the application, we ran ten location
queries with different policies, between p1, Bob, and p2, Alice.
In this experiment Alice and Bob are at the same location
(37.2701, -76.7119) which was selected randomly. The results
of these experiments are summarized in Fig. 4.

15

20

25

30

35

40

30 100 300 1000 3000 10000 30000 160000
Bob’s Policy in Meters

Query Time

T
im

e
 i
n

 S
e

c
o

n
d

s

Fig. 4: Box plot of the total running time of the system. Our system takes on the order
of tens of seconds to run depending on the policy.

We can see that the protocol runs in a reasonable time. Even
a very large policy of 160km only takes [30 − 35] seconds
to complete. More reasonable queries take tens of seconds
and very small policies require under 15 seconds. Because the
user is alerted via an Android notification when a query has
completed and query progress is indicated to the user while
waiting, this is a reasonable waiting time [29].

2) Message Transmission Speed: To evaluate the data
transmission speed of our system, we had one phone, p1,
send a random string of characters, to a second phone, p2.
p2 immediately responds back with the same characters. p1
records the time it takes to send and receive the entire message,
(round trip time). p1 also records the time between receiving
the first and last packet from p2. This shows the overhead
incurred by the packet size limitation. We performed the
experiment five times for each message length and plotted the
results in Fig. 5.

Unsurprisingly, messages of 500 or 1000 characters take a
short time to transmit; median of 1.6 seconds and 1.8 seconds
respectively. As the message length grows larger, the round trip
time and packet receiving time increases. In the bottom of Fig.
5, we can see plateaus in each pair of sizes (e.g., 2.5k and 3k,
3.5k and 4k, etc). This is due to the 1000 character limit. A
3000 character message and a 2500 character message are both

5000

10000

15000

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
message size x’s 1000

Round Trip Time

m
ill

is
e

c
o

n
d

s

0

2000

4000

6000

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
message size x’s 1000

Packet Receiving Time

m
ill

is
e

c
o

n
d

s

Fig. 5: Top: Round trip time, in ms, of sending a random message. Bottom: packet
receiving time, in ms, between receiving the first and last packet. For each size, a random
message was generated and sent five times (round trip).

broken up into 3 packets. When the message sizes are very
large, > 5000 characters, the volatility increases greatly. We
can attribute this to the fact that the Facebook message system
is not designed to send such high volumes of data. Humans
typically converse at a few dozen characters per second.

3) Message Size: To evaluate how much data is sent during
a typical query, we ran sets of ten queries varying Bob’s policy,
similar to our experiment in Section VII-C1, on p1 and p2.
During each query we recorded the total bytes transmitted and
received by Bob, (p2). It is safe to assume that the traffic on
Alice is accurately reflected at Bob, because Bob and Alice
are the only two parties communicating. The results of this
experiment are summarized in Fig 6.

 30 100 300 1000 3000 10000 30000 160000
0

2

4

6

8
x 10

4

Bob’s Policy in Meters

B
y
te

s

Query Transmission Magnitude

Rx

Tx

Fig. 6: Transmission size of a query as measured by Bob.

Because the Android API only provides a measure of total
bytes transmitted or received, our results include some small
background data transmissions from other miscellaneous ap-
plications and services (e.g., email sync, automatic application
updates). Also, the size of the cipher text transmitted varies
slightly. Different keys will generate different cipher text
values, requiring more or less characters to represent, given the
same input. To capture these variations, the standard deviation
of each set of ten queries is presented in Table IV.

Our system takes only tens of kilobytes to perform a query,

Policy Rx Standard Deviation Tx Standard Deviation
30 2441.8 54.4

100 1257.7 79.4
300 1283.7 113.9
1000 1338.2 223.6
3000 1776.4 133.8

10000 3186.4 122.7
30000 1877.0 458.9

160000 2905.2 404.8

TABLE IV: Standard deviation of the transmission size.

even for very large policies. The standard deviation, which is
a small fraction of the bytes transmitted, demonstrates that our
protocol is stable in data transmission size.

Combining all the results from section VII, we conclude that
the largest bottleneck in our system is message transmission,
which takes up the vast majority of the query time. As evi-
denced by the message size, and the experiments in Sections
VII-C2 and VII-C3, this is because the Facebook Chat protocol
is slow, not because our system sends large amounts of data.
Although all of our experiments utilize the mobile phones’
WiFi connections, our system is practical for mobile 3g or 4g
data plans. Message transmission speed is limited by the speed
of Facebook Chat, only roughly 8k-bits per second. We can
easily increase this speed by using Facebook Chat to initiate
a query, allowing Alice and Bob to exchange references. We
then offload all message sending to a third party server. Here
the bottleneck for data transmission would be 3g speeds which
are at least 384k-bits per second [30].

D. Scalability Analysis

Our system is concerned with one user querying the location
of another. However, users may want to learn their friends’
location as soon as they are nearby (within Pb). We face many
challenges when trying to scale our system up for many users
in use cases like these. Each query takes approximately 40
seconds and 80 KBytes in the worst case, which means Alice
can send queries at a maximum rate of 90/hr. and 7.03MB/hr.
In the most naive approach, where Alice queries one user at a
time repeatedly, it will take over three hours in the worst case
for her to be alerted when a friend is nearby if she has 300
Facebook friends.

To scale our system we can make several key improvements.
Firstly, we note that Alice can query many of her friends
in parallel. That is, she can send messages using Facebook
chat to query all of her friends simultaneously. In this way,
Alice doesn’t wait for each query to finish before starting the
next one. If she does this, several other factors become the
bottleneck. Alice will need to to generate one key for each
friend, and a second key if the query is successful to send
the location coordinates. To save time, we can pre-compute
many keys and store them locally. Keys are only 1024 bits
long, so a table of 10,000 pre-computed keys will only take
up approximately 1MB of local storage and access to them
will be instant. In our protocol, in the worst case, Bob will
have a policy of 160km, which means he will generate a wall
set of twelve nodes, or 5k characters. Bob will send this to
Alice. Using our third party server for communication, and
opening many connections, Alice can accept all of this data

in parallel from each of her Facebook friends. However, her
3g bandwidth will limit the transfer to roughly 384kbit/s, the
minimum speed set forth by the ITU [30]. So sending these
encrypted coefficients will take 31 seconds with 300 friends.
Once Alice has received these coefficients, she reconstructs
and evaluates the polynomials which require multiplications
of all the values. The time to perform these multiplications
is negligible for the BigInteger java library with relatively
small values. Once the values are calculated, they’re sent
back to Bob who decrypts to see if any of the results are
zero. This incurs another 31 seconds of transfer time by
opening multiple connections. Because each Bob is doing
the decryption independently, it’s effectively in parallel and
only adds roughly one second to the running time. The data
transfers, multiplications, and decryptions are all done twice.
Once for latitude and again for longitude. Therefore, it will
take between two and three minutes to complete the protocol
for 300 friends.

Once this is completed, Bob knows if Alice was nearby and
he can use her public key (sent to him in the final transmission)
to transmit his actual location values. In the worst case, all of
Alice’s friends are nearby, and Alice must receive another set
of 300 messages. Fortunately, the final location messages are
small, only taking up about 1k characters. So this transfer only
takes about one second.

E. Mobility Analysis

Our system captures the use case where Alice wants to
learn Bob’s location one time, when they are not moving.
When Alice and Bob are moving, they have some speed
relative to one another. When Pb is very small, but the relative
speed is very large, the required query rate becomes too high.
In these situations, Alice and Bob may move toward one
another, spend some brief moment nearby, and move far apart
again before the query has finished. In this case, Alice and
Bob will not be alerted by the system (false negative). We
simulated these scenarios by analyzing many combinations
of relative speed (in the range [1, 200]km) and policy (in the
range [100, 3000]meters). For the vast majority of scenarios,
(there are many policies greater than 3000m), the required
query rate is below this threshold. However, at very small
policies, the query rate required is far too fast. We summarize
some significant relative speeds and query rates in Table
V. Fortunately, these are reasonable policy sizes given the
corresponding speed the users are traveling.

Activity Relative Speed Minimum Policy
Driving (Highway) 200km/hr 2220m

Driving (City) 90km/hr 1000m
Biking 50km/hr 550m

Walking 10km/hr 110m

TABLE V: Minimum policy size required to allow maximum query rate (90/hr) at the
given relative speed. These points are all at the intersection of the plane at Z=90.

VIII. CONCLUSION

In this paper we present a working system with which users
can privately and securely share their location information with
one another. The system enforces location information access

control through private proximity detection by utilizing Paillier
homomorphic encryption. We offer an implementation of this
system on the Android platform and Facebook online social
network. It is our hope that this system can be used by people
in order to enjoy the convenience of proximity detection and
location sharing without worrying about the implications of
strangers, or online social network providers, gaining access
to their location data. Additionally, our system can be deployed
as a layer in another location based service or system to protect
user privacy while maintaining the proper operation of the
service. The source code is freely accessible online for users
to install or make improvements on [31].

REFERENCES

[1] Wikipedia, “List of online social networks,” http://en.wikipedia.org/wiki/
List of social networking websites, September 2012.

[2] C. Johnson, “Facebook hits one billion users, not counting
fake accounts,” http://arstechnica.com/business/2012/10/
facebook-hits-one-billion-users-not-counting-fake-accounts, October
2012.

[3] I. Bilogrevic, M. Jadliwala, K. Kalkan, J.-P. Hubaux, and I. Aad,
“Privacy in mobile computing for location-sharing-based services,” in
Proceedings of the 11th international conference on Privacy enhancing
technologies, ser. PETS’11. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 77–96. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2032162.2032167

[4] “Saga android and ios application,” http://www.getsaga.com/, July 2013.
[5] J. Cranshaw, E. Toch, J. Hong, A. Kittur, and N. Sadeh, “Bridging

the gap between physical location and online social networks,” in
Proceedings of the 12th ACM international conference on Ubiquitous
computing, ser. Ubicomp ’10. New York, NY, USA: ACM, 2010,
pp. 119–128. [Online]. Available: http://doi.acm.org/10.1145/1864349.
1864380

[6] T. Pontes, M. Vasconcelos, J. Almeida, P. Kumaraguru, and V. Almeida,
“We know where you live: privacy characterization of foursquare
behavior,” in Proceedings of the 2012 ACM Conference on Ubiquitous
Computing, ser. UbiComp ’12. New York, NY, USA: ACM, 2012,
pp. 898–905. [Online]. Available: http://doi.acm.org/10.1145/2370216.
2370419

[7] G. Greenwald and W. MacAskill, “Edward snowden: the whistleblower
behind the nsa surveillance revelations,” June 2013.

[8] F. Rahman, M. E. Hoque, F. A. Kawsar, and S. I. Ahamed,
“Preserve your privacy with pco: A privacy sensitive architecture for
context obfuscation for pervasive e-community based applications,”
in Proceedings of the 2010 IEEE Second International Conference
on Social Computing, ser. SOCIALCOM ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 41–48. [Online]. Available:
http://dx.doi.org/10.1109/SocialCom.2010.16

[9] M. F. Mokbel, C.-Y. Chow, and W. G. Aref, “The new casper:
query processing for location services without compromising privacy,”
in Proceedings of the 32nd international conference on Very large
data bases, ser. VLDB ’06. VLDB Endowment, 2006, pp. 763–774.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1182635.1164193

[10] C.-Y. Chow and M. F. Mokbel, “Enabling private continuous queries
for revealed user locations,” in Proceedings of the 10th international
conference on Advances in spatial and temporal databases, ser.
SSTD’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 258–273.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1784462.1784477

[11] M. Gruteser and D. Grunwald, “Anonymous usage of location-based
services through spatial and temporal cloaking,” in Proceedings of
the 1st international conference on Mobile systems, applications and
services, ser. MobiSys ’03. New York, NY, USA: ACM, 2003, pp. 31–
42. [Online]. Available: http://doi.acm.org/10.1145/1066116.1189037

[12] R. Shokri, G. Theodorakopoulos, C. Troncoso, J.-P. Hubaux, and J.-
Y. Le Boudec, “Protecting Location Privacy: Optimal Strategy against
Localization Attacks,” in 19th ACM Conference on Computer and
Communications Security, 2012.

[13] R. Shokri, G. Theodorakopoulos, J.-Y. Le Boudec, and J.-P. Hubaux,
“Quantifying location privacy,” in Proceedings of the 2011 IEEE Sym-
posium on Security and Privacy, ser. SP ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 247–262.

[14] M. Srivatsa and M. Hicks, “Deanonymizing mobility traces: Using social
network as a side-channel,” in Proceedings of the ACM Conference on
Computer and Communications Security (CCS), Oct. 2012.

[15] W. Wei, F. Xu, and Q. Li, “Mobishare: Flexible privacy-
preserving location sharing in mobile online social networks.” in
INFOCOM, A. G. Greenberg and K. Sohraby, Eds. IEEE, 2012,
pp. 2616–2620. [Online]. Available: http://dblp.uni-trier.de/db/conf/
infocom/infocom2012.html#WeiXL12

[16] S. Papadopoulos, S. Bakiras, and D. Papadias, “Nearest neighbor search
with strong location privacy,” Proc. VLDB Endow., vol. 3, no. 1-2, pp.
619–629, Sep. 2010. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1920841.1920920

[17] L. Zhang and X.-Y. Li, “Message in a sealed bottle: Privacy preserving
friending in social networks,” CoRR, vol. abs/1207.7199, 2012.

[18] R. Tonicelli, B. M. David, and V. de Morais Alves, “Universally
composable private proximity testing,” in Proceedings of the 5th
international conference on Provable security, ser. ProvSec’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 222–239. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2042756.2042776

[19] Z. Lin, D. F. Kune, and N. Hopper, “Efficient private proximity testing
with gsm location sketches,” in Financial Cryptography, 2012, pp. 73–
88.

[20] L. Siksnys, J. R. Thomsen, S. Saltenis, and M. L. Yiu, “Private
and flexible proximity detection in mobile social networks,” in
Proceedings of the 2010 Eleventh International Conference on
Mobile Data Management, ser. MDM ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 75–84. [Online]. Available:
http://dx.doi.org/10.1109/MDM.2010.43

[21] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, and D. Boneh,
“Location privacy via private proximity testing,” in NDSS, IEEE. The
Internet Society, 2011.

[22] A. Nergiz, M. Nergiz, T. Pedersen, and C. Clifton, “Practical and
secure integer comparison and interval check,” in Social Computing
(SocialCom), 2010 IEEE Second International Conference on, aug.
2010, pp. 791 –799.

[23] G. Ozsoyoglu, D. A. Singer, and S. S. Chung, “Anti-tamper databases:
Querying encrypted databases,” in In Proc. of the 17th Annual IFIP WG
11.3 Working Conference on Database and Applications Security, Estes
Park, 2003, pp. 4–6.

[24] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order preserving
encryption for numeric data,” in Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data, ser.
SIGMOD ’04. New York, NY, USA: ACM, 2004, pp. 563–574.
[Online]. Available: http://doi.acm.org/10.1145/1007568.1007632

[25] D. Doonan, “Android gps forensics,” http://dandoonan.blogspot.co.uk/
2013/03/mock-locations.html, March 2013.

[26] Wikipedia, “Paillier encryption,” http://en.wikipedia.org/wiki/Paillier
encryption, September 2012.

[27] B. C. University of Maryland, “Umbc implementation of paillier encryp-
tion in java,” http://www.csee.umbc.edu/∼kunliu1/research/Paillier.html,
September 2012.

[28] M. Prabhakaran, “Homomorphic encryption, lecture 15,” courses.engr.
illinois.edu/cs598man/fa2011/slides/ac-f11-lect15.pdf, p. 94, Fall 2011.

[29] J. Nielsen, “Response times: The 3 important limits,” http://www.
nngroup.com/articles/response-times-3-important-limits/, January 1993.

[30] ”wikipedia”, “Wikipedia 3g article,” http://en.wikipedia.org/wiki/3G,
January 2014.

[31] E. Novak, “Near-pri online code repository,” https://github.com/
deadmund/Nearby, November 2012.

[32] A. Narayanan, V. Toubiana, S. Barocas, H. Nissenbaum, and D. Boneh,
“A critical look at decentralized personal data architectures,” CoRR, vol.
abs/1202.4503, 2012.

[33] W. Wei, F. Xu, C. C. Tan, and Q. Li, “Sybildefender: Defend against
sybil attacks in large social networks,” in IEEE Infocom, Orlando, FL,
March 2012.

