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Abstract: Improving the rapidity of 3D reconstruction is vital for time-critical construction tasks such
as progress monitoring and hazard detection, but the majority of construction studies in this area have
focused on improving its quality. We applied a Direct Sparse Odometry with Loop Closure (LDSO)-
based 3D reconstruction method, improving the existing algorithm and tuning its hyper-parameter
settings, to achieve both near real-time operation and quality 3D point cloud simultaneously. When
validated using a benchmark dataset, the proposed method showed notable improvement in 3D
point cloud density, as well as loop closure robustness, compared to the original LDSO. In addition,
we conducted a real field test to validate the tuned LDSO’s accuracy and speed at both object and site
scales, where we demonstrated our method’s near real-time operation and capability to produce a
quality 3D point cloud comparable to that of the existing method. The proposed method improves
the accessibility of the 3D reconstruction technique, which in turn helps construction professionals
monitor their jobsite safety and progress in a more efficient manner.

Keywords: near real-time 3D reconstruction; direct sparse odometry with loop closure; progress
monitoring

1. Introduction

Three-dimensional reconstruction is the increasingly prevalent technology of capturing
the shape and surface of a real object or site in the form of a 3D point cloud for the purposes
of visualization, measurement, and documentation [1–4]. This highly effective technology
has saved project participants (e.g., architects/engineers, contractors, and inspectors) time
and costs, assisting them in remote site access and observation [4,5]. For example, in
current practices, a terrain model helps architects and engineers conduct a site survey
remotely [4–6], a worksite model aids general and sub-contractors in visually documenting
their work progress [7–14], and an as-built infrastructure model enables inspectors to detect
its structural damages or defects at a distance at more ease [15–22].

Recent advancements in computer vision allow for the addition of semantic informa-
tion to a given 3D point cloud, thereby opening a range of possibilities for the facilitated
use of 3D reconstruction in construction projects. Using computer vision techniques (e.g.,
object detection and semantic segmentation), a 3D point cloud can be converted into a 3D
semantic model, making it possible to detect and measure any object of interest without
human intervention [23–26]. Because this has far-reaching utility for the automation of mon-
itoring tasks [7,8,12,13], many construction researchers have studied its usefulness across
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various applications, including automated progress monitoring [7,12,13], safety monitoring
for crane operation [27], quality control for assembled components (e.g., pipelines [28],
welds [29], and scaffolds [30]), and defect detection in built infrastructures (e.g., pothole
detection [31] and crack detection [22]). Considering that monitoring tasks are cost- and
time-prohibitive, the successful development and adoption of such 3D reconstruction
applications are expected to hugely benefit many construction projects [4].

While a quality 3D point cloud is important for 3D reconstruction-based applications
(e.g., 3D proximity detection), efficient generation of the 3D point cloud is also particularly
important for time-critical monitoring tasks where the immediate detection of a problem
and timely follow-up action are critical. For example, safety monitoring necessitates the
immediate detection of hazards (e.g., proximity) and subsequent rapid intervention [27].
Another case is progress monitoring, where the earlier the detection of discrepancies
between as-built and as-planned progress, the higher the chance of preventing cost and
schedule overruns due to belated intervention [7,9,32]. In practice, such time-critical
monitoring tasks require not only accuracy but also rapid analysis, and near real-time 3D
reconstruction can provide an effective solution. Nevertheless, few studies have addressed
this need, instead choosing mainly to focus on improving the quality (e.g., shape accuracy
and point density) of 3D point clouds [29,33–36].

Given the state of research and the field’s practical needs, we propose a near real-time
3D reconstruction method to aid with time-critical construction monitoring tasks. More
specifically, we leveraged an advanced form of photogrammetry, Direct Sparse Odometry
with Loop Closure (LDSO) [37], which we have further enhanced by tuning its intrinsic
parameters and improving its algorithm, thereby achieving both a near real-time running
speed as well as a quality 3D point cloud. We tested our method at a real construction site,
where we demonstrated its near real-time operation and proved that the reconstructed 3D
point cloud exhibits comparable quality to those created using existing methods.

The remainder of this paper is organized as follows: Section 2 reviews the existing 3D
reconstruction methods used in construction applications; Section 3 describes the original
LDSO and details its subsequent improvements; Section 4 describes the test carried out
at the real site and presents its result; Section 5 provides a comprehensive discussion of
the proposed method’s utility and potential for time-critical construction monitoring tasks
such as safety and progress monitoring; finally, a conclusion is drawn in Section 6.

2. 3D Reconstruction Methods used in Construction Applications

Several 3D reconstruction methods have been previously used in construction applica-
tions, such as those based on Light Detection and Ranging (LiDAR) (e.g., Terrestrial Laser
Scanner) or photogrammetry (e.g., Structure from Motion (SfM)). This section introduces
the existing technologies (i.e., terrestrial LiDAR and SfM-based algorithm), reviews their
benefits and drawbacks, and examines their overall running speed from on-site data ac-
quisition to in-office data processing. Table 1 summarizes the existing technologies for 3D
reconstruction and their limitations.

Table 1. The list of literature reviewed.

Device Data Processing Approach Applications Limitations

Terrestrial
LiDAR

Reconstruct 3D digital model
from 3D point cloud

• Detect flatness defect on concrete
surfaces [15]

• Reconstruct and measure topography of
road construction site [38]

• Track volumetric change of structural
specimen [16]

• Measure displacement of highway
retaining wall [39]

• Device is cost-consuming [40]
• Data processing is

time-consuming—hours to full days [36]
• Device operation requires expertise [40]
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Table 1. Cont.

Device Data Processing Approach Applications Limitations

Camera

SfM-based algorithm to extract
3D point cloud

• Reconstruct construction materials, e.g.,
concrete blocks and columns [41]

• Reconstruct concrete bridges and stone
buildings [36]

• Dimensional quality control [18]
• Detect cracks on concrete surfaces [19]

• Requires large number of sequential
image frames [2,42]· Data processing is
time-consuming; time complexity is
O(n2) regarding image amount [3]

VSLAM-based algorithm to
extract 3D point cloud

• Real-time navigation for autonomous
robots [43]

• Point cloud density is insufficient
• Loop closure robustness is suboptimal

for accurate mapping

2.1. 3D Reconstruction of Construction Site Using Terrestrial Laser Scanner

The Terrestrial Laser Scanner (TLS), also referred to as Terrestrial LiDAR, is the most
widely used 3D reconstruction device in construction projects [15–17,23,24,36,41,44,45].
The TLS maps out its surroundings based on a mechanism called time-of-flight (ToF)
measurement [45], in which the TLS fires off multiple beams of light (i.e., lasers) along
horizontal and vertical axes and ranges the distance to various objects in its surroundings
by reading the length of time the lights take to travel (ToF) between the TLS and the objects
they encounter. In this way, it reconstructs the real world into a 3D digital model in the
form of a 3D point cloud.

There have been many studies examining the usefulness of TLS for construction
applications [15–17,27,38,39]. For example, Tang et al. [15] used a TLS and its laser scanned
3D point cloud to detect a flatness defect on concrete surfaces. In a similarly successful case
study, Jaselskis et al. [38] applied a TLS in reconstructing and measuring the topography
of a road construction site. In a slightly different application, Olsen et al. [16] used a TLS
to track the volumetric change of a large-scale structural specimen. Finally, more recently,
Oskouie et al. [39] showed that a laser-scanned 3D point cloud is also capable of measuring
the displacement of a highway retaining wall.

As the aforementioned studies indicate, TLS has proven itself useful for quality control
and inspection of built structures, with its helpful capability of generating highly dense and
accurate 3D point clouds. However, due to its time-consuming implementation process,
the TLS-based 3D reconstruction is not a good fit for time-critical construction monitoring
tasks, such as safety and progress monitoring, which require rapid analysis and timely
intervention [32,46]. In general, 3D reconstruction using a TLS requires a multi-step process
involving (i) site-layout planning, (ii) consecutive scanning at multiple spots, and (iii) the
consolidation of multiple 3D point clouds into one complete model. In practice, overall
implementation—from on-site scanning to in-office data processing—can take anywhere
from hours to full days, depending on the scale of the site; for example, Dai et al. [36]
reported that it took five hours to scan a small-scale bridge (around 15 m × 6 m), with an
additional two hours for the registration of 3D point clouds.

2.2. 3D Reconstruction of Construction Site Using Photogrammetry

Photogrammetry, a set of image-based 3D digital modeling techniques, has garnered
increased attention from construction researchers since the early 2000s, as a cost-effective
and easy-to-use alternative to TLS [40]. Photogrammetry inputs sequential digital images
and interprets geometric connections between image features underlying the input se-
quences in order to reconstruct the 3D point cloud for a given scene. Because it sequences
digital images, photogrammetry only requires a hand-held imaging device (e.g., digital
camera) and a computing server, which are jointly more affordable than a TLS.
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Many photogrammetry methods apply a procedure called Structure from Motion
(SfM), a set of algorithms that assists in photogrammetry by detecting and matching
recurring features across multiple images and then triangulating their positions [2,11,36,41].
In recent years, SfM-based 3D reconstruction has made great advances in terms of point
density and accuracy due to more delicately engineered image features (e.g., Fast Library
for Approximate Nearest Neighbors (FLANN) [47] and Oriented FAST and Rotated BRIEF
(ORB) [48]) and advanced SfM algorithms (e.g., incremental SfM [49], hierarchical SfM [50],
and global SfM [51]). For example, Khaloo and Lattanzi [33] presented a hierarchical SfM
capable of producing a dense 3D point cloud which could resolve details at up to 0.1 mm
by incorporating an Iterative Closest Point (ICP) algorithm with Generalized Procrustes
Analysis (GPA). Meanwhile, Dai et al. [36] conducted a comprehensive evaluation of five
types of SfM algorithms and reported the average distance error of each, which was less
than 15 cm, compared to ground truth.

Such promising advances have led many construction researchers to explore the po-
tential of SfM-based 3D reconstruction for construction applications [11,18–20,33,34,36,41].
For example, Golparvar-Fard et al. [41] used an SfM algorithm for the 3D reconstruction of
small-scale construction materials (i.e., concrete blocks and columns) and reported its high
shape accuracy compared to the corresponding ground truth, with an Aspect Ration Error
(ARE) of only 3.53%. On the other hand, Dai et al. [36] reported only moderate accuracy
when they applied an SfM algorithm to reconstruct a concrete bridge and a stone building.
Here, Dai et al. reported an Average Edge Error (AEE) of 8 cm for their SfM algorithm’s
3D point cloud, which was compared to that of the laser-scanned 3D point cloud. Other
examples of SfM-based 3D reconstruction for construction applications include its use for
dimensional quality control [18] and crack detection on concrete surfaces [19].

Although SfM-based 3D reconstruction has shown potential for many construction
applications, its algorithm necessitates a significant running time [2,3]. In general, an
SfM algorithm requires a series of four steps, which together involve a large number of
computations: (i) feature extraction, (ii) feature matching, (iii) camera pose estimation, and
(iv) triangulation [2]. SfM also must consume a large sequence of images, even in the case,
say, of a small-scale reconstruction task in which image features need to be extracted from
sequential images one at a time [2,42]; Popescu et al. [34] found that more than 730 images
were needed to reconstruct a small-scale bridge of 5.5 m × 3.8 m. Moreover, the processing
time for feature matching increases exponentially as the number of input images increases,
as time complexity is calculated as O(n2), where n is the number of images [3]. Lastly, the
sparse reconstruction also requires a large number of computations due to its need for a
bundle adjustment, which is a non-linear global optimization problem [3]. Due to its hefty
computational requirements, SfM, like the TLS, is unable to address the time needs of rapid
3D reconstruction essential for time-critical construction monitoring tasks [2].

3. Enhanced Direct Sparse Odometry with Loop Closure for Near Real-Time 3D
Reconstruction and Quality 3D Point Cloud

To achieve a near real-time 3D reconstruction for time-critical construction monitoring
tasks, this study examines the potential of another form of photogrammetry—Visual
Simultaneous Localization and Mapping (VSLAM). We leverage Direct Sparse Odometry
with Loop Closure (LDSO), chosen from among several VSLAM methods [37], because
it is lighter than the existing SfM algorithms but denser than conventional VSLAMs [52].
We have further enhanced the algorithm’s point density and loop closure robustness by
tuning its intrinsic parameters and embedding an adaptive thresholding feature, in order to
simultaneously achieve both a near real-time 3D reconstruction and quality 3D point cloud.
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3.1. VSLAM and LDSO

VSLAM was originally developed to enable real-time navigation for autonomous
robots [43]. It utilizes the same main procedures for 3D reconstruction as SfM (i.e., feature
extraction and matching, camera pose estimation, and triangulation), but several features
set it apart. First, it utilizes lighter features such as Oriented FAST and Rotated BRIEF
(ORB) [48] and relies on a fewer number of them, which greatly reduces the computation
cost of feature extraction [53]. Additionally, VSLAM inputs sequential images without
the need for sorting, which lessens the computing time required for feature searching and
matching [43]. Finally, VSLAM runs bundle adjustments on a thread parallel to that of
its other processes, thereby significantly reducing overall computing time [42,53]. Due
to VSLAM’s rapid data processing capabilities, this method has more potential for near
real-time 3D reconstruction than do SfM algorithms.

This study uses LDSO, one of many available VSLAM methods [37], with the aim
of simultaneously achieving both near real-time 3D reconstruction and quality 3D point
cloud. While most conventional VSLAM methods sacrifice quality because they employ
pixel-derived hand-crafted features, such as the ORB [48] and Features From Accelerated
Segment Test (FAST) [54], which are bound to penalize the VSLAMs to produce a sparse
3D point cloud [53], LDSO is able to generate denser, higher quality point clouds. LDSO,
sometimes called a “direct” method of VSLAM, directly utilizes the pixel intensity, thus
minimizing the need for the abstraction processes we see with conventional methods [52].
The direct utilization of pixel intensity allows the LDSO to process more points during the
reconstruction process within a given time window, thus making this method more capable
of generating a denser 3D point cloud than conventional VSLAM methods.

3.2. Framework of the Original LDSO

Figure 1 outlines the overall framework of the original LDSO [37], which consists of
three main modules: (i) camera tracking (Figure 1a), (ii) windowed optimization (Figure 1b),
and (iii) loop closure (Figure 1c).

Figure 1. Framework of the original LDSO. Note: sliding window = a window to maintain five
to seven key frames and 2000 matching points; active keyframes = 5 active keyframes in sliding
window; marginalized keyframes = keyframes out of sliding window; active points = points of active
keyframes in sliding window; marginalized points = points out of sliding window.
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• Module 1, camera tracking (Figure 1a): Camera tracking is the process of obtaining
the camera pose (i.e., position and orientation) for each frame. In LDSO, camera
tracking is realized as follows. First, one out of every few frames is selected as a
keyframe in LDSO. These keyframes act as critical positions in the trajectory, and
the camera pose for each of these keyframes is accurately calculated in Module 2.
Second, when a new frame is captured by the camera, the camera pose of this frame
is calculated by directly aligning this frame with the latest keyframe. The alignment
is processed by conventional two-frame direct image alignment, which is referred
to as the direct method [52]. If the new input frame meets the requirements to be
considered a keyframe (e.g., sufficient changes in camera viewpoint and motion), it
is then assigned as such and used for 3D reconstruction in Module 2 (Figure 1b) and
Module 3 (Figure 1c).

• Module 2, windowed optimization (Figure 1b): Windowed optimization is used to
refine the camera pose accuracy of keyframes and create map points. Once a new
keyframe is assigned, it is added to a sliding window containing between five and
seven keyframes at all times. Pixels with sufficient gradient intensity are then selected
from each keyframe, maintaining distribution across each frame, for triangulation.
Point positions and camera poses are both optimized for the keyframes in each window,
using a process similar to bundle adjustment in SfM, though the objective function in
this optimization is a photometric error rather than a reprojection error (as it would
be for SfM bundle adjustment). Following optimization, the outlying keyframe in the
window—that which is furthest away from the other keyframes in the same window—
is removed from the window (marginalized). The marginalized frame is, however,
saved in a database to detect a loop.

• Module 3, loop closing (Figure 1c): Loop closure reduces the error accumulated when
estimating overall camera pose trajectory, which occurs because LDSO estimates
camera pose frame by frame. This can lead to trajectory drift in the end result. LDSO
prevents this drift issue via loop closure. Module 3 utilizes the ORB features and packs
a portion of the pixels selected in Module 2 into a Bag of Words (BoW) database [55].
The keyframes with the ORB features are then queried in the database to find the
optimal loop candidates. Once a loop is detected and validated, the global poses of all
keyframes are optimized together via graph optimization [56].

3.3. Enhancing the Original LDSO for Denser 3D Point Cloud and More Robust Loop Closure

Although the original LDSO has the potential for near real-time 3D reconstruction,
its 3D point cloud density and loop closure robustness need significant improvement
for construction site applications. First, the density of the 3D point cloud, quantified by
the number of reconstructed points per unit area (EA/m2), is an important metric for
determining its quality and usefulness, as computer vision techniques subsequently used
for 3D semantic modeling (e.g., object detection and semantic segmentation) are largely
influenced by the density of the given 3D point cloud [57]. However, the capability of
the original LDSO is confined to producing semi-dense 3D point clouds since only pixels
with enough gradient at a grayscale are meant to be included in the reconstruction process.
Second, robust loop closure is another important feature for real-site applications that is
not fully satisfied by the original LDSO. Without a complete loop closure, errors in each
frame accumulate over the sequence, resulting in an inconsistent 3D point cloud. However,
it is often observed that the original LDSO fails to achieve a complete loop closure for a
construction site due to the high complexity of footage common to any given site.

Figure 2 illustrates the overall workflow of the tuned LDSO. Its technical details and
validation results for improved density and loop closure success rate are provided in
Sections 3.3.1 and 3.3.2, respectively.
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Figure 2. Overall Workflow of the Tuned LDSO.

3.3.1. Denser 3D Point Cloud Density

We found that the LDSO’s density is largely influenced by the number of points
involved in the windowed optimization module (Figure 1b), because more points accepted
by the windowed optimization module indicates more point depth values which are then
converged, and therefore more points which can be reconstructed. We therefore increased
the number of points involved in the windowed optimization module from 2000 to 3000
and ran before-and-after tests using a benchmark dataset, the results of which confirmed
the density improvement resultant from our fine-tuning. We used the Technical University
of Munich Monocular Visual Odometry (TUM Mono Vo) dataset, which is a widely used
benchmark dataset in monocular VSLAM studies [58], for our test. The dataset comprises
50 videos from different sites, all of which are recorded by a closed loop [58]. We ran these
datasets through both the original and tuned LDSOs and compared the total number of
reconstructed points of the two resultant 3D point clouds (Figure 3).
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Figure 3. Examples of reconstructed 3D point clouds on TUM Mono VO dataset: original vs.
tuned LDSO.

Figure 3 illustrates examples from the test results (TUM Mono VO #39, #40, and #41),
which allow for visual verification of the tuned LDSO’s capacity to reconstruct a much
denser 3D point cloud than that produced by the original LDSO. Table 2 summarizes the
detailed results of the entire test. As Table 2 demonstrates, the total number of reconstructed
points significantly increased for all 50 videos when using the tuned LDSO, exhibiting
an increase in the total number of reconstructed points of between 53% and 69%, and
recording an average increase of 61.05%, with a standard deviation of merely 4.40% across
all 50 videos. This low standard deviation is a clear indicator that the tuned LDSO can
consistently improve the 3D point cloud density, without being affected by variations across
given data (e.g., illumination and viewpoint variations) (Table 2).

Table 2. The number of reconstructed points: original vs. tuned LDSOs.

Input Video
The Total # of Reconstructed

Points Percentage
Increase (%)

Input Video
The Total Number of
Reconstructed Points Percentage

Increase (%)
Original Tuned Original Tuned

1 415,115 658,739 58.7% 26 175,279 271,803 55.1%
2 317,696 495,536 56.0% 27 568,437 923,535 62.5%
3 494,039 784,489 58.8% 28 431,847 667,609 54.6%
4 604,279 957,752 58.5% 29 1,029,730 1,704,825 65.6%
5 537,430 869,660 61.8% 30 368,949 610,472 65.5%
6 467,547 749,573 60.3% 31 658,455 1,102,686 67.5%
7 330,907 525,820 58.9% 32 616,615 1,032,057 67.4%
8 397,017 623,610 57.1% 33 557,479 918,824 64.8%
9 207,816 325,823 56.8% 34 1,028,383 1,711,655 66.4%

10 190,855 300,680 57.5% 35 140,482 214,230 52.5%
11 273,686 433,063 58.2% 36 154,730 238,362 54.1%
12 374,671 586,421 56.5% 37 282,092 439,258 55.7%
13 270,700 428,325 58.2% 38 349,997 541,363 54.7%
14 221,763 353,276 59.3% 39 368,639 573,842 55.7%
15 466,194 759,135 62.8% 40 379,725 582,686 53.4%
16 290,473 467,898 61.1% 41 464,620 743,132 59.9%
17 419,206 677,186 61.5% 42 736,967 1,194,749 62.1%
18 512,087 809,279 58.0% 43 480,989 795,431 65.4%
19 1,066,310 1,731,553 62.4% 44 305,705 505,551 65.4%
20 977,046 1,599,733 63.7% 45 631,486 1,036,933 64.2%
21 1,305,839 2,171,135 66.3% 46 677,427 1,115,721 64.7%
22 1,340,949 2,269,298 69.2% 47 600,759 1,007,490 67.7%
23 523,515 867,994 65.8% 48 605,129 1,017,770 68.2%
24 526,644 860,967 63.5% 49 547,252 878,302 60.5%
25 778,354 1,272,857 63.5% 50 811,535 1,336,625 64.7%

The average of percentage increase (%) 61.05%
The standard deviation of percentage increase (%) 4.40%
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3.3.2. More Robust Loop Closure

Because the original LDSO, as with conventional VSLAMs, estimates the camera’s 3D
location and orientation frame by frame in a sequence, the errors from each frame are bound
to accumulate, eventually resulting in inconsistencies that show up in the reconstructed
3D point cloud (Figure 4a,b). The original LDSO incorporates the loop closure module
(Figure 1c) to diminish the inconsistency, but such drift errors are often observed in real-site
applications under unpredictable conditions.

The main function of loop closure is tracking the camera’s trajectory and closing it,
creating a complete loop when the camera returns to its starting position [53]. In the original
LDSO, the validity of each loop candidate is heavily influenced by the quantitative condition
of the ORB features of the two consecutive frames. That is, the candidate is accepted as a
true loop, and the camera trajectory closed only if there are at least 10 matched features
between the two frames. The threshold for feature matching was empirically set by the
original authors but could, however, be too strict a standard for application to construction
images, which tend to be highly complex and unstructured. A lower threshold for feature
matching is highly likely to lead to fewer matched features and result in failed loop closures
(Figure 4b). However, merely applying a higher threshold instead would not be an effective
solution. Setting too high a threshold risks the module possibly closing the loop at an
incorrect position, which can, in turn, lead to the complete failure of the 3D point cloud
(Figure 4c).

Figure 4. Success and failure cases in loop closure and its resultant 3D point cloud.

Instead of applying a fixed value for the feature matching threshold, we attempted to
tune it by embedding an adaptive thresholding feature. Equation (1) denotes the adaptive
thresholding feature for the ORB feature matching.

Threshold =

{
= 50, i f D ≥ α

100 Dmax
= 80, i f D < α

100 Dmax
(1)

where D = the distance between the starting and ending candidates’ locations;
Dmax = the maximum distance between two arbitrary points along the camera’s trajectory;
α = adjustable hyper-parameter.

The adaptive thresholding feature first measures the distance between the starting
and ending candidates’ locations (denoted by D, Figure 5) and the maximum distance
between two arbitrary points along the camera’s trajectory (denoted by Dmax, Figure 5). The
adaptive thresholding feature applies different threshold values according to a comparison
between D and Dmax (Equation (1)). When the starting and ending candidates are too
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disparately located—greater than or equal to α% of Dmax —the algorithm applies a low
threshold for feature matching (50 matched features) in order to prevent the loop closure
module from accepting unmatched starting–end candidates as a closed loop. Using the
same principle, it applies a relatively high threshold for feature matching (80 matched
features) when the D is less than α% of Dmax. Herein, we intended to set α as an adjustable
hyper-parameter which can be flexibly customized in accordance with a target site’s layout.
For the time being, we set the default value of α through an experiment with the TUM
Mono VO dataset: we investigated average drift error (distance) between starting–end
candidates’ locations without the loop closure module and set α = 20 as a moderate value
for common cases since the drift error usually falls into the range of 20% of Dmax.

Figure 5. Loop closure module: (a) original LDSO and (b) tuned LDSO.

In a test using the TUM Mono VO dataset, we observed a significant improvement in
loop closure. The original LDSO demonstrated a success rate of merely 14% for the 50 TUM
Mono VO videos, whereas the tuned LDSO recorded a success rate of 74% (Table 3).

Table 3. Loop closure test on TUM Mono VO dataset: original vs. tuned LDSO.

LDSOs Total Numcber of Videos Total Number of Successful
Loop Closure Average Success Rate

Original 50 7 14%
Tuned 50 37 74%

The tuned LDSO failed during the loop closure of several videos, and in analyzing
the failures, we determined that they were due to challenging imaging conditions, such
as (i) environments lacking sufficient objects from which to derive enough feature points
and (ii) frequent overlap of the camera’s receptive field. However, it is noted that the TUM
Mono VO dataset is meant to consist of videos depicting highly challenging conditions,
which are not common even in real construction fields. Additionally, because camera
trajectory overlap can be easily avoided in practice, this factor would not be too impactful
in real field applications.

4. Field Test and Performance Evaluation

We tested the tuned LDSO at a real construction site, where we conducted the proof of
concept for our near real-time 3D reconstruction and evaluated the quality of the 3D point
cloud in detail at both object and site scales. This section describes the test setting and the
evaluation criteria and metrics, and lastly presents the test results and their implications.
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4.1. Test Setting

The field test took place at a building renovation site, located at Ann Arbor, Michigan,
U.S., where all mechanical, electrical, and plumbing elements had been removed, and only
structural elements (e.g., slabs, columns, and walls) remained (Figure 6a). We scanned a
whole floor (50 m × 20 m) with a camera-mounted hardhat (Figure 6b) in one closed loop
(Figure 6c), which took around 10 min. Meanwhile, the tuned LDSO reconstructed the 3D
point cloud of the floor after viewing the site only once. A monocular camera (UI-3241LE,
IDS [59]) was employed, and camera calibration was completed prior to site scanning to
remove radial distortion as well as to refine its intrinsic parameters, such as focal length
and principal point.

Figure 6. Test setting: site footages and camera set-up.

4.2. Evaluation Criteria

We evaluated the quality of the reconstructed 3D point cloud at both object and site
scales and measured the tuned LDSO’s overall running speed. At the object scale, we
considered two evaluation criteria: shape accuracy and point density. For the site-scale
evaluation, we measured the cloud-to-cloud distance between the reconstructed 3D point
cloud and the ground truth model to determine overall accuracy. In both object- and site-
scale evaluations, a Terrestrial Laser Scanner (TLS, Focuss S350, FARO [60]) was employed
and the laser-scanned 3D point cloud with ± 1 mm error was used as the ground truth.

4.3. Evaluation Metrics

We evaluated at object scale using the following metrics: (i) Aspect Ratio Error (ARE,
%) for shape accuracy and (ii) Average # of Points Per Unit Surface Area (APS, EA/m2) for
point density. Meanwhile, at the site scale, we used the Hausdorff Distance (cm) to measure
cloud-to-cloud distance. Lastly, we measured the tuned LDSO’s Frames Per Second (FPS,
f/s) to evaluate its overall running speed.

Aspect Ratio Error (ARE, %) for shape accuracy at object scale: To assess the shape
accuracy of a reconstructed object (e.g., column), we measured its AREs for all the three
dimensions (i.e., XY, YZ, and XZ planes). ARE is the percentage error compared to the
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ground truth aspect ratio (Equation (2)), and was first introduced in a previous study [41]
as a metric used to assess the shape accuracy of 3D point clouds at object scale.

|δ|XY =
∣∣∣GTx

GTy
− LDSOx

LDSOy

∣∣∣/ GTx
GTy
× 100

|δ|YZ =
∣∣∣GTy

GTz
− LDSOy

LDSOz

∣∣∣/ GTy
GTz
× 100

|δ|XZ =
∣∣∣GTx

GTz
− LDSOx

LDSOz

∣∣∣/ GTx
GTz
× 100

(2)

where |δ|XY = aspect ratio error for X-Y dimension; |δ|YZ = aspect ratio error for Y-Z
dimension; |δ|XZ = aspect ratio error for X-Z dimension; GTx = ground truth length
on X-axis; GTy = ground truth length on Y-axis; GTz = ground truth length on Z-axis;
LDSOx = reconstructed length on X-axis; LDSOy = reconstructed length on Y-axis; LDSOz =
reconstructed length on Z-axis.

• The Average # of Points Per Unit Surface Area (APS, EA/m2) for point density at
object scale: We measured a reconstructed object’s (e.g., column) APS to assess its
point density. The point density per unit surface area (m2) is first calculated for each
surface of the element; the APS of the object then denotes the average of the point
density values across all the object’s surfaces (Equation (3)).

PointDensity =
∑m

i=1

(
P#i
Ai

)
m

(3)

where P#i = the # of points on the ith surface; Ai = the area of ith surface (unit: m2); m
= the total # of surfaces.

• Hausdorff Distance (cm) for cloud-to-cloud distance at site scale: To evaluate the
reconstructed 3D point cloud’s overall discrepancy from the ground truth model,
we measured the intervening Hausdorff Distance, which is the most widely applied
metric in evaluating the distance between two 3D point clouds [21,33]. The Hausdorff
Distance is the average value of the nearest distances between the ground truth
model and the reconstructed 3D point cloud (Equation (3)). Each point in the ground
truth model is matched to its nearest point in the reconstructed 3D point cloud and
the distance between the two is measured. The Hausdorff Distance is the average
value of all these nearest distances, which represents the overall discrepancy of the
reconstructed 3D point cloud to its ground truth (Equation (4)).

Hausdor f f Distance =
∑m

i=1 min(‖pi − p′‖2)

m
(4)

where pi = the ith point of ground truth 3D point cloud; p′ = points of reconstructed
3D point cloud; m = the total # of points of ground truth 3D point cloud.

• Frames Per Second (FPS, f/s) for overall running speed: A camera streams a digital
image to a computer every 0.033 s, a rate totaling 30 FPS. The near real-time 3D
reconstruction thus requires an FPS of around 30. We measured the tuned LDSO’s FPS
during the field test and compared it to the real-time standard, thereby demonstrating
its potential for use in the near real-time 3D reconstruction of a construction site.

4.4. Object-Scale Evaluation and Result

We evaluated the shape accuracy (i.e., ARE, %) and point density (i.e., APS, EA/m2)
of the test site’s 15 reconstructed concrete columns (Figure 7). As shown in Table 4, the
reconstructed 3D point cloud recorded low AREs (%) for all the XY, XZ, and YZ planes along
with high APS (EA/m2): on average, the reconstructed 3D point cloud achieved 1.55%,
2.40%, and 2.61% AREs for XY, XZ, and YZ planes, respectively, along with an APS (EA/m2)
of 1286 (Table 4).
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Figure 7. Reconstructed 3D point cloud of 15 concrete columns.

Table 4. Shape accuracy and point density of 15 reconstructed concrete columns.

Column #
Aspect Ratio Error (ARE, %) Average # of Points/Unit

Surface Area
(APS, EA/m2)XY XZ YZ

1 0.71 4.16 4.9 722.72
2 1.87 2.76 0.83 1514.36
3 0.32 0.57 0.89 1801.47
4 0.15 3.4 3.25 687.45
5 1.64 1.46 0.16 2050.04
6 1.14 1.94 0.82 1475.80
7 1.55 7.78 9.45 1027.89
8 2.22 0.04 2.18 2367.51
9 0.41 0.18 0.6 1273.17
10 3.05 0.4 3.46 696. 47
11 3.72 2.95 0.88 1415.09
12 1.3 0.66 0.65 1242.82
13 2.04 4.8 2.86 896.63
14 3.23 2.12 5.42 1205.09
15 0.03 2.81 2.84 335.42

Average 1.56 2.40 2.61 1286.82
Standard deviation 1.11 2.02 2.42 529.82

Coefficient
variations 0.71 0.84 0.92 0.41

Our results indicate that the tuned LDSO can produce a 3D point cloud at competitive
shape accuracy (i.e., low ARE) compared with current technologies; our tuned LDSO
achieved an overall ARE of 2.19% (averaged across all the three planes), which is com-
petitive with that reported for an SfM-based 3D point cloud in a previous study (3.53%
ARE [41]). That the tuned LDSO’s AREs averaged less than 3% across all three planes
indicates that it can model objects in minute detail and at high shape accuracy for all
dimensions.

The tuned LDSO also demonstrated its ability to produce a sufficiently dense 3D
point cloud for use in semantic inference (e.g., object detection). It satisfied the minimum
density standard, suggested by Rebolj et al. [57], of 3D point clouds used for construction
object detection. According to this study, a 3D point cloud of an object must have an
APS of more than 530 for accurate automated object detection [57]. Our LDSO surpassed
the minimum density standard with a huge margin of more than 200% that is required
(1247 APS ≥ 530 APS) (Table 4).

Last but not least, in the realm of object-scale reconstruction, the tuned LDSO demon-
strated its capability to model objects at low variance, with coefficients for all ARE variations
(i.e., the ratio of standard deviation to average) across XY, XZ, and YZ planes of less than
one, and a similarly low APS. The result proves that the tuned LDSO is capable of model-
ing objects at low variance against potentially variable imaging conditions (e.g., different
viewpoint).
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4.5. Site-Scale Evaluation and Result

The reconstructed 3D point cloud also shows promise at site-scale evaluation. The
3D point cloud (Figure 8a) was superimposed with the laser-scanned ground truth model
(Figure 8b) through the Iterative Closet Point (ICP) algorithm, which is an algorithm widely
used for aligning two sets of 3D point clouds. Then, the Hausdorff Distance between
the reconstructed 3D point cloud and laser-scanned ground truth model was calculated
(Equation (3)) within the composite 3D point cloud (Figure 8c). The resulting Hausdorff
Distance for the reconstructed 3D point cloud was 17.3 cm, compared to the laser-scanned
ground truth.

Figure 8. Registration of the tuned LDSO’s 3D point cloud to laser-scanned ground truth.

The Hausdorff Distance achieved by the tuned LDSO is lower than that of several
types of commercial SfM-based 3D reconstruction software (19 cm [21] and 21 cm [33]).
However, our LDSO was unable to reach the Hausdorff Distance achieved by state-of-the-
art SfM-based 3D reconstruction in a previous study (5 cm [21]). Regardless, the tuned
LDSO has an advantage over SfM-based 3D reconstruction in that it can generate a 3D
point cloud in near real-time at a moderate level of accuracy, something no SfM-based 3D
reconstruction technology is currently capable of. This has significant potential to impact
time-critical construction monitoring tasks, as detailed in the following discussion section
(Section 5).

4.6. Overall Running Speed

The tuned LDSO demonstrated its near real-time operation during the field test,
with 24 FPS overall (real-time standard = 30 FPS). While scanning the 50 m × 20 m test
site, it processed all input sequences, showing little lag time throughout computation,
including during visualization. That is, the result could be visualized while scanning the
site simultaneously. The tuned LDSO took merely 12 min and 34 s to complete the entire
process, whereas laser scanning took seven hours. The site scanning took around 10 min,
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and the tuned LDSO completed the 3D reconstruction of the site after another 2 min and
34 s.

5. Discussion: Near Real-Time 3D Reconstruction for Time-Critical Construction
Monitoring Tasks

The tuned LDSO allows for the 3D reconstruction of a construction site—with mini-
mal hardware installation and without requiring expertise in site imaging. Construction
professionals can conduct 3D reconstruction by simply surveying the region of interest
with a camera-mounted hardhat, making a closed loop. This can even be accomplished
while they carry out their regular tasks. In a field test, the tuned LDSO demonstrated its
near real-time operation while producing a high-quality 3D point cloud comparable to that
of an SfM-based 3D reconstruction. The convenience, rapidity, and quality of the tuned
LDSO indicate its far-reaching potential to facilitate 3D reconstruction for time-critical
construction monitoring tasks.

5.1. Online 3D Reconstruction: Simultaneous Scanning and Visualization

One concrete advantage of the tuned LDSO is its online 3D reconstruction, wherein
site scanning feedback becomes immediately available due to rapid 3D reconstruction and
visualization. The existing 3D reconstruction methods, including those based on LiDAR
and photogrammetry, only function offline. In other words, the process for these methods
takes two steps: a complete on-site scanning, either laser scanning or site imaging, is
conducted first, and in-office 3D reconstruction and visualization then follow. The practical
concern here is that site scanning often needs to be redone due to misalignment among
resultant 3D point clouds or missing site details in the images utilized for 3D reconstruction.
Using existing methods, there is no way to pre-qualify the scanned data before examining
the result of the 3D reconstruction; the long run-time of existing 3D reconstruction methods
disallows this. Note that the TLS-based 3D reconstruction took around seven hours total,
including the time necessary to complete visualization for the test site (50 m × 20 m). As
noted by many previous studies [3,12,18,35], SfM-based 3D reconstruction generally has an
FPS of less than 0.01, which is entirely insufficient for near real-time 3D reconstruction and
thus for immediate site scanning feedback.

The tuned LDSO, on the other hand, can be used online, such that site scanning
updates at the moment in accordance with the resultant 3D point cloud. A worker can
directly check the quality of the 3D point cloud while scanning the site. If a mismatch
or a sparsity is found in the 3D point cloud, the worker can easily correct it by simply
re-scanning the region and confirming the quality of the 3D point cloud. As such, the
tuned LDSO, with its near real-time operation, can contribute to making the overall process
of 3D reconstruction for a construction site more convenient, efficient, and rapid. These
advantages would in turn, lead to better facilitation of 3D reconstruction in time-critical
construction monitoring tasks, such as safety and progress monitoring.

5.2. Near Real-Time 3D Reconstruction for Regular and Timely Monitoring

The core function of progress monitoring lies in identifying discrepancies between
as-built and as-planned progress as soon as possible and taking timely corrective actions,
thereby minimizing unexpected costs due to delays and reworks. To this end, regular and
timely site modeling is of vital importance; however, the existing methods—such as those
based on TLS or SfM—exhibit excessive run times, which limit their utility for effective
progress monitoring.

As a corrective strategy, our tuned LDSO presents an effective solution for progress
monitoring, while complementing the existing methods. The tuned LDSO is easy to apply
at a minimal cost and is also capable of as-built modeling (i.e., 3D reconstruction) in near
real-time. A project manager (or a field worker) can easily scan their jobsite with a camera-
mounted hardhat and acquire the as-built model of the site shortly thereafter. In the case
of a large-scale project, scanning can be completed by multiple agents, and the as-built
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modeling of the site can be created simply by registering the resultant multiple 3D point
clouds into one composite model. Therefore, the tuned LDSO presents a convenient method
which can help a project manager with regular and timely progress monitoring. More
importantly, the near real-time 3D reconstruction can provide said project manager with
the data necessary to identify and control discrepancies between as-built and as-planned
progresses at the earliest opportunity.

The near real-time 3D reconstruction along with other computer vision tasks, such as
object detection, can enhance onsite safety monitoring. Take, for example, the vision-based
proximity monitoring applications that have been exercised in 2D space. It can be readily
expanded to 3D proximity detection coupled with near real-time 3D reconstruction. While
capturing a construction scene, 2D object detection and 3D reconstruction can be completed
simultaneously, which enables us to have the full 3D coordinates of objects of interest,
making it possible to estimate the target distance (i.e., proximity) in 3D space. For the
other safety applications that require the missing third coordinates, the same principle can
be applied.

5.3. Improvement Point toward Real Field Applications: Real-Time Data Transmission

The quality and speed of the network connection between the imaging device (or
devices) and computing server need to be further investigated prior to the tuned LDSO’s
use in real-field applications. The tuned LDSO uses a camera-mounted hardhat to generate
image inputs, which then must be streamed in real-time to either a local or a web-based
computing server. Therefore, it is important to ensure rapid data transmission between
imaging devices and the computing server. Leveraging a 5G wireless network and Internet
of Things (IoT) cloud platform may be a promising solution to this potential problem.
The 5G wireless network would support real-time data transmission at a data transfer
rate of several gigabytes per second. With such a high-speed network connection, an
IoT cloud platform could, in turn connect multiple imaging devices to a cloud server,
thereby supporting the wireless, near real-time operation of 3D reconstruction at real
construction sites.

The application scope of the proposed tuned LDSO can be further expanded with the
semantic modeling of a 3D point cloud. Digital twin or smart construction needs to model
the 3D real world in a digital space, which requires not only accurate 3D reconstruction in
real time but also semantic information of reconstructed entities (e.g., class labels). When a
3D point cloud comes with such semantic information (e.g., class labels), site monitoring
tasks such as progress monitoring and hazard detection can be more automated in a digital
space. For the semantic modeling of a 3D point cloud, a 2D image-based deep neural
network for semantic segmentation can be considered to be integrated with the proposed
tuned LDSO.

6. Conclusions

3D reconstruction has the potential to automate construction monitoring tasks. How-
ever, the primary research focus of this area has thus far been improving the quality of 3D
point clouds, with little attention paid to achieving the near real-time operation necessitated
by time-critical monitoring tasks such as regular progress monitoring or hazard detection.
As a corrective strategy, this paper presented an enhanced LDSO-based 3D reconstruction
technique, which is capable of simultaneously achieving near real-time operation while
creating a quality 3D point cloud. During validation using the TUM Mono VO dataset, the
proposed method demonstrated notable improvements in point density and loop closure
robustness: compared to the original LDSO, the density was improved by 61%, while the
loop closure success rate improved from 14% to 74%. Further, in a field test, our method ex-
hibited near real-time operation while creating a quality 3D point cloud comparable to that
of the existing 3D reconstruction method (i.e., SfM). While the existing 3D reconstruction
methods, such as those based on terrestrial LiDAR or SfM do not allow near real-time 3D
reconstruction due to the significant amount of time required for site scanning and data
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processing, the proposed method provides a potentially more accessible 3D reconstruction
with near real-time visualization. It will allow project managers to monitor their ongoing
jobsites in a more convenient, efficient, and timely manner.
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