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Abstract

Several real-time/near real-time stereo algorithms can currently provide ac-

curate 3D reconstructions for well-textured scenes. However, most of these

fail in sufficiently large regions that are weakly textured. Conversely, other

scene reconstruction algorithms assume strong planarity in the environment.

Such approaches can handle lack of texture, but tend to force nonplanar ob-

jects onto planes. We propose a compromise approach that prefers stereo

depth estimates but can replace estimates in textureless regions with planes

in a principled manner at near real-time rates. Our approach segments the im-

age via a novel real-time color segmentation algorithm; we subsequently fit

planes to textureless segments and refine them using consistency constraints.

To further improve the quality of our stereo algorithm, we optionally employ

loopy belief propagation to correct local errors.

1 Introduction

Our paper presents a robust method for correcting textureless areas in stereo depth maps

using locally estimated planes. The approach is especially relevant to 3D reconstruction

of urban and other man-made scenes, for which many areas in an image may contain

planar objects. We designed our system with an emphasis on performance in order to

facilitate the computation of large reconstructions gathered from video sequences.

When creating reconstructions from video, small subsequences can be reconstructed

via stereo depth estimates, which are later combined into a larger reconstruction. While

accurate depth estimates are important for generating usable reconstructions, the best cur-

rent algorithms run offline. Since the number of depth maps necessary for reconstructing

an urban area is typically high, allowing individual estimates to run until some optimal

convergence or otherwise execute for an arbitrarily long time may not be feasible, so

offline algorithms are not typically appropriate here. Several online approaches also ex-

ist, often executing on graphics hardware or on low resolution images. However, such

approaches often fail in large textureless or weakly-textured regions, since stereo corre-

spondence is uninformative. Unfortunately, urban areas tend to have many such regions.
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Conversely, other reconstruction approaches forgo dense stereo estimation by assum-

ing image regions correspond to facades, which can be approximated as planes. Such

approaches can handle textureless areas well, since they can simply be assigned to nearby

planes. The resulting models are clean, possibly to the point of oversimplification, since

they may miss finer depth details that stereo estimation can reconstruct.

We employ a philosophically different approach to plane fitting from those discussed

at the end of Section 2, which typically assume any observed region in an image lies on or

close to a plane. In well-textured areas, stereo depth estimates are trustworthy and reflect

observed data more precisely (i.e. at pixel and even subpixel scales) than large scale plane

fitting. We choose to trust the observed data as much as possible and only attempt to fit

planes to regions that are locally uninformative and therefore can not provide useful depth

cues independently.

In this paper, we propose a near real-time plane-fitting stereo pipeline to deal with this

problem. Our pipeline contains three modules: window-based multi-view stereo match-

ing, stereo fusion and plane-fitting refinement. To achieve high performance, we pro-

pose a novel real-time color segmentation approach in the last module. We also propose

an optional modification based on belief propagation (BP), where after stereo matching,

an initial plane-fitted depth map is created, followed by a loopy belief propagation re-

finement. This addition helps to correct potential errors caused by plane-fitting due to

non-robustness of color segmentation.

We discuss previous work in Section 2. Section 3 provides an overview of the algo-

rithm that provides a basis for our approach. Sections 4 and 5 detail our improvements

via plane fitting and belief propagation, respectively. Results are shown in Section 6, and

Section 7 concludes.

2 Related Work

Several surveys of a number of classes of stereo algorithms are given in [4, 14, 15]. As

stated in [14], local stereo algorithms are dependent on their aggregation windows. If a

local algorithm encounters a textureless area larger than the aggregation window, i.e. the

depth estimate for a given pixel has no unique support within a local region, the algorithm

is guaranteed to fail. Moreover, most real time algorithms are local, meaning that in

weakly-textured environments, such algorithms will produce large amounts of error.

Global algorithms, such as graph cuts [3] and belief propagation [16], have properties

that can improve depth estimates in difficult environments. These algorithms rely on

minimization of some global cost function. In textureless areas, the minimization tends

to have a smoothing or blurring effect. Because of their iterative nature, they are typically

too slow for limited time frame applications.

Instead of attempting to infer depth purely from stereo matching, several methods

exploit the planarity implicit to urban environments. Baillard and Zisserman [2] use a

3D line and surrounding texture to hypothesize planes in an image. Similarly, Werner

and Zisserman [17] automatically search for scene planes in a set of images using point

and line correspondences. Since the authors focus on architectural scenes, they assume

most of the reconstruction will be limited to a few dominant planes and compensate for

deviations from this assumption as a secondary step. Cornelis et al. [6] describe a real-

time method for creating simplified urban models that assumes all surfaces are either on



a ground plane or a plane orthogonal to it. The planar prior modifies the cost function,

so instead of choosing the depth with the lowest cost over an aggregation window, costs

for depths close to the prior become slightly lower. Their approach relies on the ability to

robustly calculate the correct plane priors from the sparse structure, which can be difficult

in many scenes.

In contrast to these methods, we place no initial assumption of planarity on the scene

and use plane estimation only as an error compensation method for depths we can not

otherwise determine.

3 Window-based Stereo

A real-time local window-based stereo pipeline is described in [1], which we briefly re-

view here.

The primary step of a multi-view stereo matching module is the plane-sweeping al-

gorithm of [5]. Given a sequence of consecutive images, the depth map is computed for

the central image, denoted the reference image. A set of planes is swept through space at

a number of hypothesized depths. Each plane defines a set of homographies with which

all the non-reference images are warped onto the reference image. The absolute intensity

difference defines a cost for each hypothesized depth. The set of images is divided in two

halves, one preceding and one following the reference image. The costs are aggregated

by a boxcar filter and the minimum of the two sums defines the cost of the depth hypoth-

esis [11] (this is an effective way of handling occlusions). Unfortunately, the hypothesis

having the lowest cost may not always be the true depth. This is in most cases due to lack

of texture. Therefore a confidence map is needed to denote how certain we are about each

chosen depth hypothesis. We follow the suggestion of Merrell et al. [13] and define our

stereo confidence function Cs as

Cs(p) =

(

∑
d 6=dest

exp(−(c(p,d)− c(p,dest))
2/σ2)

)−1

, (1)

where p is a pixel, c(p,d) denotes the matching cost at a depth d, dest is the estimated

depth, and σ is a constant dependent on noise.

Given a sequence of consecutive depth maps, we next enforce consistency among

these maps and output an improved set of depth maps as in [13]. However, even after this

step there may still be pixels for which the depth estimate is unlikely or wrong, so each

new depth map is again associated with a confidence map. We compute this new fused

confidence map, denoted C f , by adding the confidences corresponding to depth estimates

that were consistent within some interval to the fused depth estimate for each pixel.

4 Plane-fitting Stereo

The Plane-fitting stereo pipeline begins with window-based stereo matching and consis-

tency fusion as described in Section 3. We then apply a novel real-time color segmenta-

tion approach, where a plane is fit for each output segment in order to obtain correct depth

values for the weakly-textured regions.



(a) Color image. (b) Graph-Based [8]. (c) EDISON [7]. (d) Our approach.

Figure 1: Comparison of different color segmentation approaches. For one 512× 384

image, (b) requires 0.5 seconds, (c) 4 seconds, and (d) 0.067 seconds.

4.1 Real-time Color-weighted Color Segmentation

We separate our segmentation approach into two steps: image smoothing and region link-

ing. To preserve the edges, we use a color-weighted filter [18, 21] to smooth the image.

The support from a neighboring pixel q to a pixel under consideration p is weighted as

w(p,q) = exp(−(
△ cpq

γc

+
△ spq

γs

)), (2)

where △ cpq is the maximal color difference between p and q measured in each channel of

the CIELUV color space and △ spq is the distance between p and q in the image domain,

and γc and γs are weighting parameters. To achieve real-time performance, the color space

transformation and the smoothing steps are done in Graphics Processing Unit (GPU), and

the range of the three channels of CIELUV color space is confined in [0,255]. We apply

the filter five times, with γc = 2.0 and γs = 10 determined experimentally. This smoothing

step processes about 15 frames per second (fps) on 512×384 resolution images using our

GPU implementation.

We next link all 8-connected pixel neighbors p and q if △ cpq < γc. The region linking

processes at 33 fps on CPU. The smoothing step remains the bottleneck, and the overall

segmentation performance is 15 fps.

Figure 1 provides a visual comparison of our segmentation approach with two other

approaches. Our real-time segmentation approach is comparable to the other two algo-

rithms, although some over-segmentation occurs in heavily-textured areas. However, we

would expect that stereo matching will perform well in these areas, so over-segmentation

will not adversely affect our approach.

4.2 Plane-fitting

The goal of plane-fitting is to correct depth values that we believe to be incorrect, for

example depth estimates computed in weakly textured image regions. We classify all the

pixels in the reference depth map into stable and unstable pixels by setting a threshold for

the confidence map C f . For each selected segment S
j
I in the reference image, we robustly



fit a 3D plane using a RANSAC approach [10] on the depth values of the stable pixels

only. We back project all stable pixels pk ∈ S
j
I to 3D world points Pk ∈ S

j
W . A set of

hypothesis planes are generated by randomly selecting three 3D points and computing

the plane that intersects these. The vector defining the plane is then normalized and each

plane is associated with the following error cost:

Eπ(S j
I ,π j) = ∑

Pk∈S
j
W

min(PT
k π j,ηd), (3)

where ηd is a constant to increase robustness by bounding the penalty of potential outliers.

Finally, the plane hypothesis with the minimum cost is selected and the depth values of

only the unstable pixels are replaced with the plane-fitted depth values. Only sufficiently

large segments will be fit with a plane, since a small segment suggests variations in the

segments neighborhood, i.e high texture.

The plane-fitting approach may fail if the number of stable pixels in the segment is

too small. In this case, we compute a bounding box containing the segment and instead

use all the stable pixels within the bounding box for the RANSAC plane-fitting.

In order to remove small differences between plane fitted unstable pixels and the orig-

inal stable pixels, we add an adaptive smoothing step. We replace each depth value with

the average of those values that are within a threshold σp < 0.5 over a 9×9 window.

Finally, we apply a consistency check to the plane-fitted depth maps in order to reject

outliers using a new confidence map defined as follows:

Cc(p) = h(
N

∑
i=1

h(|D′
i(p)−Dre f (p)|,σc),ηc), (4)

where

h(a,b) =

{

1 if a >= b

0 else
.

D′
i is one of the N neighbouring depth maps projected onto the reference depth map, Dre f .

σc = 0.2 and ηc = N − 1 are thresholds for the consistency check. This confidence map

is passed on to the mesh generation module where triangles are only created for depth

values that have a high confidence.

5 BP-based Plane-fitting Stereo

We now describe a modification to the first module of our pipeline incorporating BP-

based stereo matching. While not sufficient for correcting large areas, a few iterations of

belief propagation can help to correct potential fattening and robustness errors caused by

the stereo matching, color segmentation, and plane fitting steps. The last two modules are

the same as the plane-fitting stereo pipeline described in Section 4.

After window-based stereo matching, the pixels are classified into stable and unstable

pixels based on the confidence map as described in Section 3, after which plane-fitting is

computed for large segments as described in Section 4.2. To correct the potential errors,

a GPU hierarchical loopy belief propagation approach is implemented according to [19].

The loopy belief propagation minimizes the following energy function:

E(p,d) = ED(p,d)+ES(p,d), (5)



where p is a pixel and d is the depth hypothesis.

The data term ED(p,d) is constant and is defined as:

ED(p,d) = Cs(p)min(Em(p,d),ηm)+(1−Cs(p))min(β (d −Dπ(p))2,ηπ), (6)

where Cs(p) ∈ [0,1] is the confidence map calculated from the correlation volume, Em is

the correlation volume without boxcar aggregation, and Dπ is the plane-fitted depth map.

By integrating Cs, Em and Dπ , the data term ED depends mostly on the plane-fitted depth

map in the low confidence areas and on the correlation volume in the high confidence

areas. The constant ηm = 50.0 is used to reject outliers in the correlation volume. β = 2.0
is the rate of increase in the cost caused by the plane-fitted depth map Dπ and ηπ = 50.0
controls when the cost stops increasing.

The smoothness term ES(p,d), which is based on the assumption that the world sur-

faces are piecewise smooth, is iteratively minimized by passing messages to p from its

neighbors, which we form similarly to [9]. The message passed from q to p at iteration i

is defined as

Mi
q→p(d) = argmin

dq

(ED(q,dq)+ ∑
s∈N(q),s 6=p

Mi−1
s→q(dq)+E j(dq,d)), (7)

where N(q) is the four-connectivity neighborhood of q, E j(dq,d) is the jump cost, and

d is the label that minimizes the total energy for pixel q, which contains the data term

and the smoothness term. The jump cost E j(dq,d) is based on the degree of difference

between labels, and a truncated linear model is adopted:

E j(dq,d) = min(λbp, |dq −d|), (8)

where λbp = 6.0 is a constant controlling when the cost stops increasing. Equation 8 is

defined under the assumption of piecewise-constant surfaces. The smoothness term is

then the sum of the messages:

E i
S(p,d) = ∑

q∈N(p)

Mi
q→p(d). (9)

Rather than allow the global energy to converge, we stop after a certain number of

iterations due to time constraints. Finally, the label d that minimizes E(p,d) individually

at each pixel is selected. A good example about how belief propagation corrects the errors

introduced by the plane-fitting stereo is shown in Figure 2.

After BP refinement, we apply the color-weighted filter designed in Section 4.1 to E

to help preserve the depth discontinuity under the assumption that color discontinuity is

a strong indicator of depth discontinuity. Note that after BP refinement, the depth values

of low confidence areas have been corrected, thus the confidence map should be updated

too. Stereo fusion and another pass of plane-fitting refinement are then performed as in the

plane-fitting stereo pipeline described in Section 4. Figure 3 shows depth maps produced

by different stereo pipelines for visual comparison. Note that the BP-based plane-fitting

stereo correctly captures the weakly-textured regions while preserving thin structures.

6 Results

For visual comparison, we ran the three stereo pipelines on an urban dataset. Figure 4

shows the depth maps produced by each method on a representative image, while Figure



(a) Reference image. (b) Color segmentation. (c) Stereo confidence.

(d) Window-based depth. (e) Plane-fitted depth. (f) BP-based depth.

Figure 2: Due to strong illumination, part of the column in (a) is joined with the ground

in color segmentation as seen in (b). In this case, the plane-fitted stereo (e) will fail.

However, after BP refinement (f), the errors that appear in (e) are removed. The initial

stereo confidence Cs and depth map are given in (c) and (d) respectively.

(a) Reference image. (b) Window-based. (c) Plane-fitting. (d) BP-based.

Figure 3: Visual comparison of depth maps. (b) is the depth map produced by a real-time

local window-based stereo pipeline [1]. Plane fitting (c) corrects larger errors, such as

the incorrect depth values in the textureless ground region. Belief propagation (d) refines

the depth estimates locally and serves to preserve thin structures, such as those on the

shopping cart.

5 shows their respective 3D models. The models are generated only with the highly-

confident pixels in the depth map. If the confidence of a region is low, it will leave a

hole in the 3D model. The two proposed stereo pipelines are capable of estimating depths

planes for the weakly-textured areas where the window-based stereo clearly fails, such as

the door in Figure 4(a). In Figure 5, the textureless areas on the ground result in a lack of

confident depth estimates. However, the two proposed stereo pipelines successfully fill in

most of these areas correctly. While plane fitting refines depth maps on a global scale, the

effects of belief propagation are more local. These effects are primarily the smoothing of

small errors and reduction of the fattening caused by the aggregation windows.

The two proposed stereo pipelines outperform the window-based stereo, while still

providing good performance. With our settings the window-based stereo pipeline can



(a) Reference image (b) Window-based (c) Plane-fitting (d) BP-based

Figure 4: Visual comparison of representative depth maps associated with the 3D models

in Figure 5.

Figure 5: top: Window-based stereo. middle: Plane-fitting stereo. bottom: BP-based

plane-fitting stereo. Notice how we obtain good surfaces for the textureless regions where

the window-based stereo fails.

process video data of resolution 512× 384 and 48 depth hypotheses at about 18 frames

per second using an NVIDIA Geforce 8800 GTX graphics card and an Intel Xeon 3.2GHz

CPU, the Plane-fitting Stereo pipeline runs at about 8 frames per second, and the BP-based

Plane-fitting Stereo pipeline runs at about 1 frame per second. Overall, the plane-fitting

stereo pipeline achieves the best balance due to its fast processing time and ability to

produce accurate reconstructions.

Our approach is primarily intended for urban and man made scenery with large tex-

tureless regions, rather than general stereo pairs; thus, the Middlebury datasets [14] do

not exactly address the problem we are trying to solve. Nonetheless, we evaluated our

BP-modified stereo and provide the results in Table 1. The values are the percentage of

pixels with incorrect disparities on different image regions, along with their current rank.

We omit the corresponding depth maps due to space constraints.



Avg. Tsukuba Venus Teddy Cones

Rank nonocc all disc nonocc all disc nonocc all disc nonocc all disc

PlanefitBP 12.7 0.977 1.8316 5.267 0.178 0.5110 1.714 6.6511 12.115 14.79 4.1722 10.722 10.621

Table 1: Evaluation results on the Middlebury datasets with error threshold 1.

7 Conclusion and Future Work

In this paper, we focus on providing a fast, accurate solution to the reconstruction of

weakly-textured regions that are common in urban environments. Our solution gives local

smoothness to weakly-textured segments while preserving depth details in textured areas.

We do not currently consider any smoothness cost across the neighboring segments.

Although we provide a solution with the BP-based modification, it is time consuming.

We can reformulate this plane-fitting problem as an energy minimization problem which

includes both data and smoothness terms. The data term associated with a 3D plane hy-

pothesis will be the sum of all the euclidean distances from the 3D points to the plane, and

the smoothness term will be a function measuring the similarity of the plane hypothesis

in the current segment and the plane hypotheses in all its neighboring segments. Some

stereo algorithms [12] are very adept at solving this energy minimization problem. These

methods are far from being real-time because they use mean-shift color segmentation.

However, this restriction is not an issue using our real-time segmentation method.

References

[1] A. Akbarzadeh, J.-M. Frahm, P. Mordohai, B. Clipp, C. Engels, D. Gallup, P. Mer-

rell, M. Phelps, S. Sinha, B. Talton, L. Wang, Q. Yang, H. Stewénius, R. Yang,

G. Welch, H. Towles, D. Nistér, and M. Pollefeys. Towards urban 3d reconstruction

from video. In 3DPVT, 2006.

[2] C. Baillard and A. Zisserman. Automatic reconstruction of piecewise planar mod-

els from multiple views. Proc. IEEE Conf. Comp. Vision and Pattern Recognition,

02:2559, 1999.

[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via

graph cuts. IEEE Trans. Pattern Analysis and Machine Intelligence, 23(11):1222–

1239, 2001.

[4] M.Z. Brown, D. Burschka, and G. D. Hager. Advances in computational stereo.

IEEE Trans. Pattern Analysis and Machine Intelligence, 25(8):993–1008, 2003.

[5] R.T. Collins. A space-sweep approach to true multi-image matching. In Proc. IEEE

Conf. Comp. Vision and Pattern Recognition, pages 358–363, 1996.

[6] N. Cornelis, K. Cornelis, and L. J. V. Gool. Fast compact city modeling for naviga-

tion pre-visualization. In Proc. IEEE Conf. Comp. Vision and Pattern Recognition,

pages 1339–1344, 2006.

[7] Edison. Edge detection and image segmentation system.

http://www.caip.rutgers.edu/riul/research/code/EDISON/.



[8] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image segmenta-

tion. Intl. J. Comp. Vision, 59(2):167–181, 2004.

[9] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient belief propagation for early

vision. Intl. J. Comp. Vision, 70(1):41–54, 2006.

[10] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography. Communica-

tions of the ACM, 24(6):381–395, 1981.

[11] S. Kang, R. Szeliski, and J. Chai. Handling occlusions in dense multiview stereo. In

Proc. IEEE Conf. Comp. Vision and Pattern Recognition, 2001.

[12] A. Klaus, M. Sormann, and K. Karner. Segment-based stereo matching using belief

propagation and a self-adapting dissimilarity measure. In Proc. Intl. Conf. Pattern

Recognition, pages 15–18, 2006.

[13] P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, J-M. Frahm, R. Yang, D. Nister,

and M. Pollefeys. Real-time visibility-based fusion of depth maps. In Proc. Intl.

Conf. Comp. Vision, 2007.

[14] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo

correspondence algorithms. Intl. J. Comp. Vision, 47(1-3):7–42, 2002.

[15] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A comparison

and evaluation of multi-view stereo reconstruction algorithms. In Proc. IEEE Conf.

Comp. Vision and Pattern Recognition, pages 519–528, 2006.

[16] J. Sun, N.-N. Zheng, and H.-Y. Shum. Stereo matching using belief propagation.

IEEE Trans. Pattern Analysis and Machine Intelligence, 25(7):787–800, 2003.

[17] T. Werner and A. Zisserman. New techniques for automated architecture reconstruc-

tion from photographs. In Proc. European Conf. Comp. Vision, volume 2, pages

541–555, 2002.

[18] Q. Yang, L. Wang, R. Yang, H. Stewénius, and D. Nistér. Stereo matching with

color-weighted correlation, hierarchical belief propagation and occlusion handling.

In Proc. IEEE Conf. Comp. Vision and Pattern Recognition, pages 2347–2354, 2006.

[19] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nistér. Real-time global

stereo matching using hierarchical belief propagation. In Proc. British Machine

Vision Conf., pages 989–998, 2006.

[20] Q. Yang, R. Yang, J. Davis, and D. Nistér. Spatial-depth super resolution for range

images. In Proc. IEEE Conf. Comp. Vision and Pattern Recognition, Minneapolis,

MN, USA, 2007. IEEE Computer Society.

[21] K.-J. Yoon and I.-S. Kweon. Adaptive support-weight approach for correspondence

search. IEEE Trans. Pattern Analysis and Machine Intelligence, 28(4):650– 656,

2006.


