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Abstract A mechanical system composed of two

weakly coupled oscillators under harmonic excitation

is considered. Its main part is a vibro-impact unit com-

posed of a linear oscillator with an internally colliding

small block. This block is coupled with the secondary

part being a damped linear oscillator. The mathemati-

cal model of the system has been presented in a non-

dimensional form. The analytical studies are restricted

to the case of a periodic steady-state motion with two

symmetric impacts per cycle near 1:1 resonance. The

multiple scales method combined with the sawtooth-

function-based modelling of the non-smooth dynam-

ics is employed. A conception of the stability analy-

sis of the periodic motions suited for this theoretical

approach is presented. The frequency–response curves

and force–response curves with stable and unstable

branches are determined, and the interplay between

various model parameters is investigated. The theoreti-

cal predictions related to the motion amplitude and the

range of stability of the periodic steady-state response

are verified via a series of numerical experiments and

computation of Lyapunov exponents. Finally, the limi-

tations and extensibility of the approach are discussed.
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1 Introduction

Vibro-impact systems can be found in many areas of

science and engineering. Even with a simple structure,

they are strongly nonlinear. Therefore, there are no

general analytical solutions or strategies for dynamic

problems of this type. Many approximate analytical

methods designed for nonlinear systems are based on

the classical perturbation approach, and they can be

applied only to weakly nonlinear problems [18,24]. In

recent decades, some analytical techniques have been

developed to cope with vibro-impact systems by impos-

ing certain conditions on their motion (e.g., periodicity

at the resonant state): the power-law phenomenolog-

ical modeling, the non-smooth temporal transforma-

tion (NSTT), the concept of impact modes, the Ivanov

non-smooth coordinate transformation, and few others

[12,27,28].

There is also a solution strategy that particularly fits

in with the asymptotic approach to nonlinear problems

and near-resonant dynamics. It consists in combining

the multiple time scales method (MTSM) with a use of

a sawtooth function which describes the non-smooth

nature of the given system. In recent years the tech-

nique has been applied to the systems including vibro-

impact nonlinear energy sink (VI NES) [9–11,13–16].
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Problems of this kind are strictly connected with the

increasingly extensive studies on targeted energy trans-

fer (TET) and energy harvesting [32].

Approximate analytical solutions and the related

stability analysis can be useful, among others, in the

control and improvement of periodic orbits of vibro-

impact systems [4]. However, in the framework of

the ’MTSM—sawtooth function’ approach, there is a

lack of comprehensive works on stability studies of

the periodic steady-state near-resonant solutions. Per-

haps the most commonly cited work related to stability

of impact dampers is the PhD thesis by Masri [19].

The proposed conception and results were also dis-

cussed in later papers [20,21]. Similar method was pre-

sented, for example, by Popplewell et al. [29]. Unfortu-

nately, in all these works, motion of the primary system

between impacts is described by the general solution

for a piecewise linear oscillator with viscous damping

and periodic excitation. Such a model is usually incon-

sistent with the approximate solution formulated with

the method of multiple scales under the assumption of

small forcing and/or damping.

Results of the stability analysis focused on an

approximate analytical solution can be verified numer-

ically, by computation of Lyapunov exponents associ-

ated with the given system. For nonlinear discontinuous

problems (with impacts and/or dry friction), the stan-

dard, well-established technique for determination of

Lyapunov spectrum [23,25,26] need to be modified in

order to handle the discontinuities (jumps). A theoret-

ically based and straightforward generalization of the

method was proposed by Müller [22]. This approach

has been successfully applied to various multi-degree-

of-freedom systems with impacts (e.g., see [1–3]).

In practical applications, machine components that

undergo impacts are often interconnected with other,

non-colliding parts (e.g., in percussive machines/tools

such as hammer drills). Mostly, these couplings are

strong. The mechanical system under consideration

consists of two coupled oscillators, of which one

includes an internally colliding small body. Due to the

assumption of weak coupling, the paper can be treated

as a preliminary work towards more realistic and prac-

tical problems. The main aim of this paper is to adapt

and discuss the conception of the stability studies suited

for the ’MTSM – sawtooth function’ approach.

The paper is divided into six sections. A mathemat-

ical formulation of the problem is presented in Sect. 2.

Section 3 includes an outline of the approximate ana-

Fig. 1 The analyzed vibro-impact system

lytical procedure of solution, and admissibility of the

steady-state solutions is discussed from the viewpoint

of different criteria. Analytical results and their verifi-

cation via numerical simulations are reported in Sect. 4.

Section 5 includes some remarks on limitations and

extensibility of the presented approach. Conclusions

and final remarks are given in Sect. 6.

2 Physical and mathematical model

Let us consider the system illustrated schematically in

Fig. 1. The primary part is a vibro-impact unit com-

prised of a damped linear oscillator (box) of mass m1

and an embedded block of mass m2. The latter one can

move freely between two rigid stops (L is the symmet-

ric gap size). The unit is driven by a harmonic force

F1, and the components undergo mutual impact inter-

actions. The secondary part of the system, in turn, is

an ordinary damped linear oscillator of mass m3, elas-

tically coupled with the block. The stiffness constants

associated with the linear springs are denoted by k1, k3

and k23; the viscous damping coefficients are c1, c3.

It is assumed that the masses of the block and the

secondary oscillator are identical (m2 = m3) and rela-

tively small (m2 ≪ m1 and m3 ≪ m1). Impacts of the

block against the main body are characterized by the

restitution coefficient κ . The case of imperfectly elastic

collisions is considered, that is 0 < κ < 1. Moreover,

the spring coupling between the left and right subsys-

tem is assumed to be weak (k23 ≪ k1, k3). The external

force is harmonic: F1(t) = F10 sin(ω1t).

Let x1, x2 and x3 be the displacements of the compo-

nents from equilibrium (−L ≤ x2−x1 ≤ L). The equa-

tions of motion of the three-degree-of-freedom system
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between impacts (for |x2 − x1| < L) take the form:

m1 ẍ1 + c1 ẋ1 + k1x1 = F10 sin(ω1t) ,

m2 ẍ2 + k23(x2 − x3) = 0 ,

m3 ẍ3 + c3 ẋ3 + k3x3 + k23(x3 − x2) = 0 .

(1)

Classically, it is assumed that the duration of the col-

lisions is very short, and any external forces are neg-

ligible compared to the impact force. When Newton’s

restitution rule is used together with the momentum

conservation principle [31], the change in momentum

of the main oscillator due to an impact is given by

∆p1 = m1(ẋ+
1 − ẋ−

1 ) = −µ(1 + κ)(ẋ−
1 − ẋ−

2 ) (2)

where

µ = m1m2

m1 + m2

and ẋ−
i , ẋ+

i denote the velocities of the i th body just

before the impact and just after the impact, respec-

tively. Including the effect of consecutive collisions,

the dynamic equations (for |x2 − x1| ≤ L) become

m1 ẍ1 + c1 ẋ1 + k1x1 = F10 sin(ω1t)+
− µ(1 + κ)

∑

j

(ẋ1 − ẋ2)δ(t − t−j ) ,

m2 ẍ2 + k23(x2 − x3)

= µ(1 + κ)
∑

j

(ẋ1 − ẋ2)δ(t − t−j ) ,

m3 ẍ3 + c3 ẋ3 + k3x3 + k23(x3 − x2) = 0 ,

(3)

where δ(•) is the Dirac delta function, and t j is the time

instant of the j th impact.

For convenience of analytical studies, we introduce

the dimensionless time and displacements:

τ = ω10t, ω2
10 = k1

m1
, X i = xi

L
.

Now, Eq. (3) can be rewritten in their counterpart non-

dimensional form (cf. [9–11]):

Ẍ1 + γ1 Ẋ1 + X1 = f10 sin(Ω1τ)

−ε
1 + κ

1 + ε

∑

j

(Ẋ1 − Ẋ2)δ(τ − τ−
j ) ,

ε Ẍ2 + α23(X2 − X3) = ε
1 + κ

1 + ε

∑

j

(Ẋ1 − Ẋ2)δ(τ −τ−
j ) ,

ε Ẍ3 + γ3 Ẋ3 + Ω2
30 X3 + α23(X3 − X2) = 0 , (4)

where the overdots denote differentiation with respect

to τ , and the dimensionless parameters are as follows:

ε = m2

m1
= m3

m1
, f10 = F10

m1Lω2
10

, Ω1 = ω1

ω10
,

γi = ci

m1ω10
, Ω2

30 = k3

m1ω
2
10

, α23 = k23

m1ω
2
10

.

In order to cope with the impulsive right-hand sides

of the equations, we define new variables, namely the

coordinates describing (approximately) the displace-

ment of the center of mass of the vibro-impact unit,

and the relative displacement of the main body:

U = X1 + εX2, W = X1 − X2 . (5)

Introducing these variables into Eq. (4) leads to

Ü + γ1
U̇ + εẆ

1 + ε
+ U + εW

1 + ε
+

+ α23
U − W

1 + ε
− α23 X3 = f10 sin(Ω1τ) ,

Ẅ + γ1
U̇ + εẆ

1 + ε
+ U + εW

1 + ε
+

− α23

ε

U − W

1 + ε
+ α23

ε
X3 = f10 sin(Ω1τ)+

− (1 + κ)
∑

j

Ẇ jδ(τ − τ−
j ) ,

ε Ẍ3 + γ3 Ẋ3 + (Ω2
30 + α23)X3 − α23

U − W

1 + ε
= 0 .

(6)

Although the left-hand sides of the equations are more

complicated than before, only one differential equation

(corresponding to the relative displacement) includes

the impact-related sum.

3 Analytical approach to the problem

3.1 Analytical approximate solution

Let the mass ratio ε play a role of the small parame-

ter (ε ≪ 1). Some factors within the mechanical sys-

tem, such as damping, elastic coupling and dynamic

excitation, are assumed to be weak, and the rescaled

parameters γ̂1, γ̂3, α̂23, f̂10 are formally introduced:

γ1 = εγ̂1, γ3 = ε2γ̂3, α23 = ε2α̂23, f10 = ε f̂10 .

(7)

Since the construction of a general solution of the non-

smooth dynamical problem is essentially impossible,

certain restrictions on the system’s motion are indis-

pensable. Our considerations are focused on a specific

vibro-impact regime, i.e., the periodic motion with two
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symmetric impacts per cycle, near 1:1 resonance. As

it was indicated by experimental investigations, this

particular type of behavior predominates in dynam-

ics of such vibro-impact systems, and is the most effi-

cient from the perspective of targeted energy transfer

[16,19]. Accordingly, we assume that

Ω1 = 1 + εσ̂1, Ω2
30 = ε(1 + εσ̂30) , (8)

where σ̂1 and σ̂30 are the detuning parameters.

Applying the method of multiple scales [18,24], we

express the approximate solution in terms of two dif-

ferent time scales:

U = U0(τ0, τ1) + εU1(τ0, τ1) ,

W = W0(τ0, τ1) + εW1(τ0, τ1) ,

X3 = X30(τ0, τ1) + εX31(τ0, τ1) ,

(9)

where τk = εkτ for k = 0, 1. Substituting parameters

(8) and (7) as well as expansions (9) into Eqs. (6), and

then equating coefficients of order ε0 leads to

D2
0U0 + U0 = 0 , (10)

D2
0 W0 = −(1 + κ)

∑

j

D0W0 δ(τ0 − τ−
0, j ) − U0 ,

(11)

D2
0 X30 + X30 = 0 , (12)

where Dn
k (•) = ∂n

∂τ n
k
(•). Obviously, the solutions of

Eqs. (10) and (12) can be written as

U0 = B(τ1) sin(τ0 + φ(τ1)) ,

X30 = A3(τ1) sin(τ0 + φ3(τ1)) ,
(13)

while for Eq. (11) we postulate

W0 = B(τ1) sin(τ0 + φ(τ1)) + Z(τ0, τ1), (14)

where Z is the sawtooth function

Z(τ0, τ1) = 2

π
C(τ1) arcsin[cos(τ0 − θ(τ1))]. (15)

Its role is to reflect the non-smooth nature of the solu-

tion as an effect of the cyclic symmetric impacts that

occur at τ0, j = jπ + θ where j = 0, 1, 2, . . .. The

sawtooth function is illustrated in Fig. 2a for constant

C and θ . Expanding the inverses of Eqs. (5)

X1 = U + εW

1 + ε
, X2 = U − W

1 + ε
(16)

in a Taylor series with respect to ε, and keeping terms

up to second order, we obtain

X1 ≈ B sin(τ0 + φ) + ε(1 − ε)
2

π
C arcsin[cos(τ0 − θ)] ,

X2 ≈ −(1 − ε + ε2)
2

π
C arcsin[cos(τ0 − θ)] . (17)

Thus, in the near-resonant case, the block is bounced

against the inner wall of the box (from W0 = −1 to

W0 = 1 and vice versa) whose harmonic motion is

slightly disturbed by the impacts. What is more, B as

well as C multiplied by the ε-related factor play the

role of the amplitudes.

Due to the geometric constraints, B and C are mutu-

ally dependent. As discussed in Refs. [9,10], analysis

of the impact conditions (W0 = 1 at τ0 = θ ) described

by Eq. (11) together with solutions (14) and (13) pro-

duces

B sin(θ + φ) + C = 1 ,

− 4

π
C + (1 + κ)

[
B cos(θ + φ) + 2

π
C

]
= 0 . (18)

Combining these two equations leads to the relation-

ship between the slow-time-scale variables

B2 = 1−2C+(1+ρ2)C2 with ρ = 2(1 − κ)

π(1 + κ)
(19)

which describes the so called slow invariant manifold

(SIM) of the problem. Moreover, the phase angles are

defined by

sin(θ + φ) = 1 − C

B
, cos(θ + φ) = ρC

B
. (20)

Geometrically speaking, the curve B(C) is a set of

points (C, B) corresponding to potential steady-states

of the dynamical system. An exemplary curve B(C) is

shown in Fig. 2b. The minimal possible value of B and

the related value of C are

Bmin = ρ√
1 + ρ2

, Cmin = 1

1 + ρ2
. (21)

Moreover, the relation between ρ and κ is graphically

presented in Fig. 2c. Parameter ρ changes from 2/π to

0 over the whole range of the restitution coefficient.
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Fig. 2 Description of the SIM of the system: a the sawtooth function, b the relation B(C), c the relation ρ(κ)

For the studies of evolution of the system on the

SIM, the equations corresponding to U and X3 at the

ε1 order of approximation are necessary:

D2
0U1 + U1 = f̂10 sin(Ω1τ0)

+U0 − W0 − γ̂1 D0U0 − 2D0 D1U0 ,

D2
0 X31 + X31 = α̂23(U0 − W0 − X30)

−σ̂30 X30 − γ̂3 D0 X30 − 2D0 D1 X30 .

(22)

Function Z involved in W0 can be expanded into a

Fourier series with respect to τ0. Eliminating secular

terms from U1 and X31, we obtain the solvability con-

ditions which form a system of differential equations

for the amplitudes and phases:

D1 B = gB(τ1, B, φ, C, θ) ,

D1φ = gφ(τ1, B, φ, C, θ) ,

D1 A3 = gA3(τ1, φ, A3, φ3, C, θ) ,

D1φ3 = gφ3(τ1, φ, A3, φ3, C, θ) .

(23)

For the sake of brevity, functions gB , gφ , gA3, gφ3 are

not presented in a full detailed form. System (23) can

be transformed into an autonomous one

D1 B = hB(B, ψ, C) ,

D1ψ = hψ (B, ψ, C) ,

D1 A3 = h A3(B, A3, ψ3, C) ,

D1ψ3 = hψ3(B, ψ, A3, ψ3, C)

(24)

by using formulae (20), and introducing the modified

phases

ψ = σ̂1τ1 − φ , ψ3 = φ − φ3 . (25)

The full form of the autonomous system is

D1 B = − γ̂1 B

2
− 4ρC2

π2 B
+ f̂10

2
sin ψ ,

D1ψ = σ̂1 + f̂10

2B
cos ψ + 4C(C − 1)

π2 B2
,

D1 A3 = − γ̂3 A3

2
− 4ρα̂23C2

π2 B
cos ψ3 +

+4α̂23C(C − 1)

π2 B
sin ψ3 ,

D1ψ3 = − α̂23 + σ̂30

2
− 4C(C − 1)

π2 B2
+ f̂10

2
cos ψ +

+4α̂23C(C − 1)

π2 B A3
cos ψ3 + 4ρα̂23C2

π2 B A3
sin ψ3 .

(26)

The steady-state near-resonant motions correspond to

the fixed points of (26). Thus, the set of algebraic equa-

tions must be solved:

hB = 0 , hψ = 0 , h A3 = 0 , hψ3 = 0 . (27)

Eliminating ψ and ψ3, we obtain

64C2[1 − 2C + (1 + ρ2)C2]
π4 f̂ 2

10 B2
+ (γ̂ 2

1 + 4σ̂ 2
1 )B2

f̂ 2
10

+ 16C[(ργ̂1 + 2σ̂1)C − 2σ̂1]
π2 f̂ 2

10

= 1 ,

π4 B2 A2
3(α̂

2
23 + γ̂ 2

3 )

64α̂2
23C2[1 − 2C + (1 + ρ2)C2]

+ π4 B2 A2
3∆σ̂(2α̂23 + ∆σ̂)

64α̂2
23C2[1 − 2C + (1 + ρ2)C2]

= 1 ,

(28)
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where ∆σ̂ = σ̂30 − 2σ̂1. Now, recalling the relation

B(C) given by (19), we determine two solutions for C :

C (1) = p1 − √
p2

q
, C (2) = p1 + √

p2

q
, (29)

where

p1 = 16σ̂1 + π2(γ̂ 2
1 + 4σ̂ 2

1 ) ,

p2 = f̂ 2
10

[
16π2(ργ̂1 + 2σ̂1)+

+π4(ρ2 + 1)(γ̂ 2
1 + 4σ̂ 2

1 ) + 64
]
+

−
[
γ̂1(π

2ργ̂1 + 8) + 4π2ρσ̂ 2
1

]
,

q = 16(ργ̂1 + 2σ̂1) + π2(ρ2 + 1)(γ̂ 2
1 + 4σ̂ 2

1 ) + 64

π2
.

(30)

The dependence of B on C follows from (19), while

amplitude A3 can be written as

A
(s)
3 = 8α̂23C (s)

π2

√
α̂2

23 + γ̂ 2
3 + ∆σ̂(2α̂23 + ∆σ̂)

(31)

for s = 1, 2. Thus, B and C are dependent onρ, f̂10, σ̂1,

γ̂1 whereas A3 is a function of all model parameters.

Projections Ps of the fixed points (B(s), C (s), A(s))

onto the plane (B, C) are schematically shown in

Fig. 2b.

3.2 Classification of periodic solutions

Numerical experiments presented in Sect. 5 are con-

ducted by treating some model coefficients as control

parameters. However, not all of the theoretically possi-

ble responses (14) are admissible. Assessment of the

steady-state periodic solutions will be based on the

three factors:

– geometric constraints,

– stability of fixed points,

– stability of periodic motions.

They will be the source of certain restrictions on values

of amplitude C . In further considerations, the inverse

of relation (19) is used

CL , R = 1∓
√

(1 + ρ2)B2 − ρ2

1 + ρ2
, (32)

where the curve B(C) is divided into the left (L) and

right (R) branches. Moreover, the following set of

dimensionless parameters is treated as the basic one:

ε = 0.1, κ = 0.75, f̂10 = 1.5, σ̂1 = 0.5,

γ̂1 = 0.5, α̂23 = 1, σ̂30 = 0.5, γ̂3 = 1 .
(33)

Firstly, degenerate solutions should be excluded. By

degenerate solutions we mean such functions W that

violate the unilateral geometric constraints |W | ≤ 1,

i.e., the no-penetration condition. As illustrated in

Fig. 3a, negative values of C are not allowed, although

the condition W (τ0, j ) = ±1 is satisfied. On the other

hand, high positive values lead to local extrema which

may exceed the constraints. The maximum in the inter-

val (θ, θ + π) can be easily determined:

Wmax = 2

π
C arcsin

[
cos

(
arccos

2C

π B
+

− arctan
1 − C

ρC

)]
+

√

B2 − 4C2

π2

(34)

and, taking into account relation (32) for the right

branch, the equation Wmax = 1 can be solved numer-

ically for the critical value of B. The geometrically

acceptable range of C is given by

0 < C < CG max(κ) , (35)

where the upper limit as a function of κ is shown in

Fig. 3b. For example, when κ = 0.75, CG max ≈ 6.07

for which B ≈ 5.1.

In the next step, linear stability of the steady-states

corresponding to fixed points Ps should be verified.

The autonomous system (26) in vector notation can be

expressed as follows:

y′ = h(y, C) , (36)

where prime denotes the derivative with respect to τ1,

and

y = [B, ψ, A3, ψ3]T ,

h = [hB, hψ , h A3, hψ3]T .
(37)

Eliminating C through the relations (32), the Jaco-

bian matrix can be evaluated analytically for both the

branches of SIM:
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(a)
(b)

Fig. 3 Geometric restrictions on C : a degenerate (bold black) and non-degenerate (solid and dashed blue) solutions for κ = 0.75, b

the maximal value of C as a function of κ . (Color figure online)

JL = ∂h(y, CL)

∂y
, JR = ∂h(y, CR)

∂y
. (38)

For a given fixed point Ps , the eigenvalues of JL (if

C (s) < Cmin) or JR (if C (s) > Cmin) are calculated

numerically. Classically, the corresponding steady-

state periodic solution is asymptotically stable if all the

eigenvalues have negative real parts [24,30]. The ana-

lytical form of the Jacobian matrix has been reported

in Appendix 1. Unfortunately, its complexity does not

allow to present concise stability conditions in terms of

the model parameters.

Perhaps the most important restrictions imposed

on C can be specified by stability studies of peri-

odic motions of the vibro-impact unit. Such analy-

sis is not an easy task due to the non-smooth char-

acter of the solution. It may be conducted by means

of the method proposed by Masri [19–21]. Similar

approaches to this kind of systems were presented for

example in [6,7,29]. The general idea is to analyze the

propagation of small initial perturbations in the solu-

tion (see Fig. 4a). However, it should be emphasized

that in all of the abovementioned works, the motion

of the main body between impacts was described by

the general solution for a periodically excited lin-

ear oscillator with viscous damping. Then, periodic-

ity conditions were used together with Newton’s resti-

tution rule and the principle of momentum conser-

vation. In the next subsection, we adapt this method

to the form of the presented approximate analytical

solution.

3.3 Stability analysis of the periodic motion

Let us rewrite the approximate periodic solutions (17)

in an equivalent form:

X1 = B sin(τ0 − θ + Φ)+

+ ε(1 − ε)
2

π
C arcsin[cos(τ0 − θ)] ,

X2 = −(1 − ε + ε2)
2

π
C arcsin[cos(τ0 − θ)] ,

(39)

so that Φ = φ+θ is the phase shift between the motion

of the box and the internal block. For the sake of brevity,

the zero subscript of τ is dropped, and τ j denotes the

time instant of the j th impact (τ j = τ0, j ). The dis-

placement and velocity of the box can be expressed

in a piecewise manner for the intervals between the

impacts of number j and ( j + 1) as well as between

the impacts of number ( j + 1) and ( j + 2):

X1 =

⎧
⎪⎪⎨
⎪⎪⎩

B sin(τ − τ j + Φ)+
−εv2(τ − τ j − π/2) , τ j < τ ≤ τ j+1

−B sin(τ − τ j+1 + Φ)+
−εv2(τ − τ j+1 − π/2) , τ j+1 < τ ≤ τ j+2

Ẋ1 =

⎧
⎪⎪⎨
⎪⎪⎩

B cos(τ − τ j + Φ)+
−εv2 , τ j < τ ≤ τ j+1

−B cos(τ − τ j+1 + Φ)+
−εv2 , τ j+1 < τ ≤ τ j+2

(40)

where v2 = Ẋ2 denotes the steady-state absolute veloc-

ity of the block. In the case of the original (unper-
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Fig. 4 Restrictions on C related to the stability of periodic

motions: a relative displacement and velocity—the original (bold

blue) and perturbed (gray) solutions, b absolute displacement

and velocity—X1, Ẋ1 (bold blue) and X2, Ẋ2 perturbed (gray).

(Color figure online)

turbed) motion, we have v2 = ±(1 − ε + ε2) 2
π

C and

τ j+1−τ j = τ j+2−τ j+1 = π . Similarly to the stability

analysis discussed in [19], we initially take

z∗ = [X1, Ẋ1, Φ, Ẋ2]T

as the state vector of the subsystem.

Using formulae (40) for the first interval (with posi-

tive v2, see Fig. 4b), we can describe position and veloc-

ity of the main body immediately after the j th impact

in both the original and disturbed case:

{
d1 = X1(τ

+
j , v2, Φ)

v+
1 = Ẋ1(τ

+
j , v2, Φ)

(41)

{
d̃1 = d1 + ∆ j X1 = X1(τ

+
j , ṽ2, Φ̃)

ṽ+
1 = v+

1 + ∆ j Ẋ1 = Ẋ1(τ
+
j , ṽ2, Φ̃)

(42)

where d1 and v+
1 are the given displacement and veloc-

ity of the box at the impact; the tilde denotes the steady-

state values perturbed by small variations at τ = τ+
j :

ṽ2 = v2 + ∆ j Ẋ2 , Φ̃ = Φ + ∆ jΦ . (43)

Equations (42), and all the subsequent ones describing

the disturbed state, can be linearized near the original

motion (the first-order approximation). Hence, a com-

parison of the unperturbed and perturbed behavior, i.e.,
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Eqs. (41) with (42), provides the relationships between

the deviations:

∆ j X1 = π

2
ε∆ j Ẋ2 + ∆ jΦ B cos Φ ,

∆ j Ẋ1 = −ε∆ j Ẋ2 − ∆ jΦ B sin Φ .

(44)

For the time instant just before the ( j +1)th impact,

we have

{
−d1 = X1(τ

−
j+1, v2, Φ)

v−
1 = Ẋ1(τ

−
j+1, v2, Φ)

(45)

{
−d̃1 = −(d1 + ∆ j+1 X1) = X1(τ

−
j+1, ṽ2, Φ̃)

ṽ−
1 = Ẋ1(τ

−
j+1, ṽ2, Φ̃)

(46)

where

τ̃−
j+1 = τ−

j+1 + ∆τ , ∆τ = ∆ j+1Φ − ∆ jΦ . (47)

Comparing the second equations of (45) and (46) leads

to

ṽ−
1 = −εṽ2 − B(cos Φ − ∆ j+1Φ sin Φ) (48)

The time of the block motion between the stops is

given by

⎧
⎪⎪⎨
⎪⎪⎩

π = l2

v2
= (−d1 + 1) − (d1 − 1)

v2

π + ∆τ = l̃2

ṽ2

(49)

where

l2 = 2d2 ,

l̃2 = [−(d1 + ∆ j+1 X1) + 1] − [(d1 + ∆ j X1) − 1] .

(50)

From Eqs. (49) we obtain

∆τ = ∆ j+1Φ − ∆ jΦ =

= −∆ j X1 + ∆ j+1 X1 + π∆ j Ẋ2

v2
.

(51)

Moreover, using solutions (40) for the second inter-

val (with negative v2), we can describe the motion

immediately after the ( j + 1)th impact:

{
−d1 = X1(τ

+
j+1, −v2, Φ)

−v+
1 = Ẋ1(τ

+
j+1, −v2, Φ)

(52)

{
−d̃1 = −(d1 + ∆ j+1 X1) = X1(τ

+
j+1, −ṽ2, Φ̃)

−ṽ+
1 = Ẋ1(τ

+
j+1, −ṽ2, Φ̃)

(53)

where the perturbed values at τ = τ+
j+1 are

ṽ2 = v2 + ∆ j+1 Ẋ2 , Φ̃ = Φ + ∆ j+1Φ . (54)

Confronting (42) and (53) yields

∆ j+1 X1 = ∆ j X1 + π

2
ε(∆ j+1 Ẋ2 − ∆ j Ẋ2)+

+ ∆τ B cos Φ ,

∆ j+1 Ẋ1 = ∆ j Ẋ1 − ε(∆ j+1 Ẋ2 − ∆ j Ẋ2)+
− ∆τ B sin Φ

(55)

Now, the discontinuities in the velocities should be

described. From Newton’s rule and the momentum con-

servation it follows that

Ẋ−
1, j+1 = κ − ε

κ(1 + ε)
Ẋ+

1, j+1 + ε(1 + κ)

κ(1 + ε)
Ẋ+

2, j+1 ,

Ẋ−
2, j+1 = 1 + κ

κ(1 + ε)
Ẋ+

1, j+1 − 1 − εκ

κ(1 + ε)
Ẋ+

2, j+1 .

(56)

In the unperturbed case, one can put

Ẋ−
1, j+1 = v−

1 , Ẋ−
2, j+1 = v2 ,

Ẋ+
1, j+1 = −v+

1 , Ẋ+
2, j+1 = −v2 ,

(57)

where v−
1 is described by (45). In the disturbed state,

in turn, the velocities should be replaced with their per-

turbed values:

ṽ−
1 , (v2 + ∆ j Ẋ2), −ṽ+

1 , −(v2 + ∆ j+1 Ẋ2) , (58)

where ṽ−
1 is given by (48). Again, by comparing the

original and perturbed motion, we get the new relations:

εκ(1 + ε)∆ j Ẋ2 + (ε − κ)∆ j+1 Ẋ1

−ε(1+κ)∆ j+1 Ẋ2−κ(1 + ε)∆ j+1Φ B sin Φ =0,

κ(1 + ε)∆ j Ẋ2 + (1 + κ)∆ j+1 Ẋ1

−(1 − εκ)∆ j+1 Ẋ2 = 0 . (59)
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As can be seen from Eqs. (44) and (55), the pertur-

bations of the components of z∗ are not mutually inde-

pendent. Thus, it is possible to reduce the state vector

to

z = [Φ, Ẋ2]T .

Substituting (44) and (55) into Eq. (51) gives

π
(

1 + ε

2

)
∆ j Ẋ2 + (−v2 + B cos Φ)∆ jΦ

+ π

2
ε∆ j+1 Ẋ2 + (v2 + B cos Φ)∆ j+1Φ = 0 .

(60)

Again, using (44) and (55) combined with Eqs. (59)

leads to one and the same relation:

(1 + ε)(∆ j+1 Ẋ2 − κ∆ j Ẋ2)+
+ (1 + κ)∆ j+1Φ B sin Φ = 0.

(61)

Finally, Eqs. (60) and (61) form the system of rela-

tionships between the perturbations occurring after the

consecutive impacts:

∆z j+1 = D j∆z j , (62)

where

∆z j = [∆ jΦ, ∆ j Ẋ2]T , (63)

and D j is a kind of transition matrix. Its elements are

dependent on C , κ and ε in the considered problem.

By analogy, this whole procedure can be applied to

the second half period of the analyzed cyclic motion,

which gives

∆z j+2 = D j+1∆z j+1 . (64)

However, the two-impact motion is assumed to be sym-

metric, therefore D j+1 = D j and the final transforma-

tion has the form

∆z j+2 = D ∆z j with D = D j+1D j = D2
j . (65)

Stability of the periodic motion can be determined on

the basis of the eigenvalues r1 and r2 (real or complex)

of constant matrix D. The motion is asymptotically sta-

ble if |ri | < 1 for every i [19,21].

Fig. 5 Restrictions on C related to the stability of periodic

motions: stability regions and stability boundaries for varying

κ and ε

The resulting stability regions on the planes (κ, C)

and (ε, C) are shown in Fig. 5. The acceptable range

of C can be written as

CS min(κ, ε) ≤ C ≤ CS max(κ, ε) . (66)

Although formally the lower boundary depends on both

κ and ε, the dependence on ε is negligible; CS min turns

out to be a monotonically increasing function of κ , and

it practically coincides with Cmin(κ) given by formula

(21). The upper stability boundary, in turn, is weakly

dependent on both the restitution coefficient and small

parameter. When κ = 0.75 and ε = 0.1, the critical

values are CS min ≈ 0.99 and CS max ≈ 1.68.

For comparison with literature results, the stability

region has been plotted on another plane (see Fig. 6),
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Fig. 6 Stability region on the plane (ξ, κ) for ε = 0.05

(a)

(b)

Fig. 7 SIM of the system and different stability regions: a the

regions of stable fixed points (SFP) and stable periodic motions

(SPM), b the stable branch (bold) and two fixed points

in terms of the dimensionless factor

ξ = 2L

F10/k1
= 2

ε f̂10

.

Such a graphical representation of stability boundaries

was shown, for example, by Masri [19,21]. His results

were reported for the mass ratio ε = 0.05 and damping

ratio

ζ = c1

c1cr
= c1

2
√

k1m1

= 0.01 ,

that is ζ = εγ̂1/2 = 0.01. These values have been

taken into account in Fig. 6. A visual comparison of

the results reveals a close similarity of the boundaries

shapes and, above all, a high agreement of the charac-

teristic ξ values at κ = 0 and κ = 1.

The analytical expression for matrix D j as well as

an approximation of CS min and CS max have been pre-

sented in Appendix 1. Unfortunately, the resulting com-

plicated form of the eigenvalues r1 and r2 does not allow

to formulate concise stability conditions.

Figure 7 presents different parts of the SIM related to

the three considered criteria. The geometrically allow-

able solutions can be found along the branch of stable

fixed points (SFP) within the range of stable periodic

motions (SPM, see Fig. 7a). The final stability region

(S) is illustrated in Fig. 7b. For the basic data set (33),

only one fixed point belongs to the stable branch. It is

worth noting that the location and length of the stable

segment of the SIM are comparable with the results

reported in Refs. [13–16].

4 Analytical and numerical results

Let us start with the results of an analytical nature. The

time histories of U , W and X1, X2, X3 correspond-

ing to the stable fixed point P2 (Fig. 7b) are plotted

in Fig. 8a. As can be seen, the effect of collision on

the box motion is hardly visible. Due to the very weak

coupling between the block and the secondary oscilla-

tor, the latter one moves harmonically. The smooth and

non-smooth types of the components behavior can be

better seen in the phase diagrams (Fig. 8b).

The size of the stability zone and the location of fixed

points on the SIM are strongly affected by the model

parameters. For instance, when treating the excitation

amplitude f̂10 as a control parameter, we can observe
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(a)

(b)

Fig. 8 Analytical solutions corresponding to the stable fixed point ( f̂10 = 1.5): a time histories, b phase diagrams

various changes in the existence and stability of the

periodic solutions (see Fig. 9). As f̂10 is decreased to

1.2, points P1 and P2 get closer to each other, and P2

still remains stable. For f̂10 = 0.6, P2 is shifted to the

left branch and becomes unstable. However, increasing

the forcing amplitude from f̂10 = 1.5 to f̂10 = 2.5 also

lead to instability of P2. In the case of two unstable

fixed points, the assumed periodic solution with two

symmetric impacts per cycle is not valid. Therefore,

the actual motion of the mechanical system should be

determined via numerical simulations.

Figure 10 contains the plots of the frequency–

response curves for various values of f̂10 and γ̂1. The

result corresponds only to the right branch of the SIM

(C > CS min). The characteristics resemble the case

of linear system, but they consist of stable and unsta-

ble segments. Functions C(σ̂1) and A3(σ̂1) are mostly

single-valued, since there is no spring-related nonlin-

earity bending the response curves. Only for low forc-

ing amplitudes and small damping, one stable and one

unstable branch occur simultaneously for σ̂1 < 0.

Although the two subsystems are weakly coupled,

amplitude A3 noticeably increases with f̂10. However,

it should be emphasized that A3 is a function of the

parameters that are crucial for stability of the system

as well as the other parameters (α̂23, σ̂30, γ̂3).

The variation of amplitude C with the excitation

amplitude for several values of the detuning parameter

is presented in Fig. 11. Naturally, the curves can also

be divided into stable and unstable segments. Functions

C( f̂10) seem to be linear for σ̂1 > 0, and they take more

complicated shapes for σ̂1 < 0. In the two cases, the

length of the stable branches increases with increasing

|σ̂1|.
In order to get a deeper insight into the effect of var-

ious parameters on the occurrence of the steady-state

periodic response of the system, more systematic calcu-

lations have been conducted. Figure 12 shows several

parameter planes with the regions of existence and sta-

bility of the solutions. The variation ranges and steps of

the parameters are given in Table 1. The domains of one

stable solution are filled with blue. In the gray-shaded

areas the two existing solutions are unstable. The white

areas, in turn, relates to the lack of periodic solutions.

As it could be expected, low amplitudes of the excita-

tion are insufficient to ensure a steady state in the form
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(a) (b) (c)

Fig. 9 Fixed points on the SIM of the system with stable (bold solid) and unstable (dashed) branches: a f̂10 = 1.2, b f̂10 = 0.6,

c f̂10 = 2.5

of two-impact symmetric motion. Such regions and

the stability zones are usually separated by relatively

narrow instability strips. Moreover, unstable regions

arise near the axis σ̂1 = 0. Apart from amplitude f̂10,

the restitution coefficient is crucial for the existence

and stability of the solutions. On the plane (κ, f̂10),

for example, the stable region is bounded from above

and below. Similar effect can be observed for the pair

(γ̂1, f̂10), but the upper critical force level increases

with γ̂1. When it comes to the interplay between κ and

γ̂1, high damping values together with low restitution

coefficient may exclude the occurrence of the periodic

response.

Now let us turn to purely numerical results. It

should be noted that simulation studies of vibro-impact

dynamics can be a challenging task from the computa-

tional viewpoint. Firstly, long-term motion of the sys-

tem should be analyzed to omit the transient response,

which becomes cumbersome in parametric investiga-

tions. Secondly, a special attention must be paid to colli-

sion detection, i.e., a very accurate determination of the

impact time instants. In what follows, Eq. (1) in a non-

dimensional form are integrated numerically between

impacts by using the Runge–Kutta–Fehlberg method

(RKF45). As soon as the unilateral constraints are vio-

lated, the algorithm switches to the classical fourth-

order Runge-Kutta method (RK4) modified with the

concept of time-step bisection.

Numerical solutions for the basic data set as well

as for f̂10 = 0.6 are presented in Fig. 13. In the first

case, function W has a similar shape as the sinusoidal-

sawtooth response given in Fig. 8. The numerically

obtained amplitudes of X1 and X3 are very close to

the analytical ones. Time histories for the unstable case

are shown for a longer time interval. As can be seen,

time history of the relative displacement W is com-

posed of resonant subintervals (two-impact motion)

and shorter episodes of irregular motion. The main

oscillator exhibits the so-called strongly modulated

response (SMR). Such a behavior was reported in

many papers devoted to VI NES of this kind (e.g., see

[9,11,15,16]). What is more, the secondary oscillator

coupled with the colliding block undergoes a similar

beating-like motion, but with a slighter amplitude mod-

ulation. Completely different complexity of the system

behavior in the two cases is also reflected in the phase

portraits.

As a result of parametric studies, the bifurcation dia-

grams of the displacement X2 are shown in Fig. 14a.

The excitation amplitude is the control parameter. The

first diagram was calculated for 0.5 ≤ f̂10 ≤ 5 with

a step ∆ f̂10 = 0.01. The initial nt = 400 excitation

periods were discarded, and then motion of the system

was analyzed for ns = 800 periods. At the beginning

of a new step, the last solution (for the previous value of

f̂10) was used as the initial conditions. Instead of using

the Poincare map, local maxima of X2 were found in

each period [26].

The system dynamics turns out to be regular in a

large part of the analyzed range. The motion is mostly

periodic in the subintervals 0.9 ≤ f̂10 ≤ 2.8, 2.9 ≤
f̂10 ≤ 3.4 and 3.8 ≤ f̂10 ≤ 4. The periodic windows

are surrounded and separated by regions of chaotic

behavior. The relatively narrow smears of points at
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(a)

(b)

Fig. 10 Frequency–response curves of the system: a effect of f̂10, b effect of γ̂1; stable (bold solid) and unstable (dashed) branches

the transition between these two regimes may indicate

quasi-periodic motion. More details of the qualitative

changes in the system dynamics can be seen in the sec-

ond diagram computed with the same technique for

1.9 ≤ f̂10 ≤ 4 with higher resolution: ∆ f̂10 = 0.002.

In order to more precisely specify the character of

vibro-impact motion, spectra of the Lyapunov expo-

nents (LEs) {λ1, λ2, . . . , λ7} of the system were deter-

mined within the same ranges of f̂10. In the procedure

of numerical integration of the variational equations

along with the equations of motion, we have applied

the Müller algorithm for non-smooth dynamical sys-

tems [22] and the Gram-Schmidt reorthonormaliza-

tion [25,26]. The calculations were performed over

nλ = 1500 excitation periods, and were terminated

if the maximal value of standard deviation of the set of

LEs within the last mλ steps decreased below a given

threshold.
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(a) (b)

Fig. 11 Amplitude C as a function of the excitation amplitude f̂10 for positive (a) and negative (b) values of the detuning parameter

σ̂1; stable (bold solid) and unstable (dashed) branches

Fig. 12 The effect of selected pairs of parameters on existence and stability of periodic solutions: no solutions (white), at least one

stable solution (blue), one or two unstable solutions (gray). (Color figure online)
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Table 1 The variation ranges and steps of the model parameters

used in the numerical studies

Parameter Range Step

Detuning parameter, σ̂1 〈−8, 8〉 0.05

Excitation amplitude, f̂10 〈0.1, 5〉 0.05

Damping coefficient, γ̂1 〈0.1, 8〉 0.1

Restitution coefficient, κ 〈0.1, 0.98〉 0.01

The diagrams of the three largest Lyapunov expo-

nents are presented in Fig. 14b. As can be seen, the

ranges of the control parameter where the maximal

exponent λ1 = 0 correspond to the periodic win-

dows. In the regions of chaotic behavior, in turn, λ1

becomes positive and λ2 = 0. Moreover, it seems that

λ1 = λ2 = 0 at some single points. The third LE is

always negative.

Table 2 contains the LE spectra in a numeric form

for selected values of the excitation amplitude. Now

it is clear that when f̂10 increases and the periodic

motion with two symmetric impacts loses its stabil-

ity, the system exhibits a sequence of period-doubling

bifurcations. Next, a relatively narrow range of chaotic

motion arises. Within the next two periodic windows,

this classical route to chaos is not so evident, but it can

be observed that 2T - and 4T -periodic motions predom-

inate. Phase portraits of the periodic and chaotic solu-

tions for f̂10 > 2 are shown in Fig. 15.

(a)
(b)

Fig. 13 Numerical solutions—time histories and phase portraits: a the basic data set with f̂10 = 1.5, b f̂10 = 0.6
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(a)

(b)

Fig. 14 The effect of f̂10 on the system response: a bifurcation diagrams, b diagrams of the three largest Lyapunov exponents

It should be noticed that the bifurcation diagram

based on local maxima can be confronted directly with

the amplitude of the periodic steady-state motion inves-

tigated analytically. According to Eq. (17) the ampli-

tude of X2 is given by A2 = (1−ε+ε2)C . By analogy

to Fig. 11, we can plot A2 as a function of f̂10 when

the other parameters are kept constant. The resulting

force–response curve overlaid on the bifurcation dia-

gram of X2 is depicted in Fig. 16. As can be seen,

there is a quite good agreement between the results. The

amplitude based on the approximate analytical solution

is slightly lower than the numerical values. Moreover,

although the length of the stable periodic range may

seem to be overestimated, it can be observed that the

numerical solutions at f̂10 ≈ 1 and f̂10 ≈ 2.1 are

mostly 1T -periodic.

5 Limitations and extensibility of the approach

The approximate analytical approach can be regarded

as a specific perturbation technique, where the small

parameter, equivalent to the mass ratio, plays the central

role. Usually, in the investigations of various VI NESs

the parameter value is assumed to be very small, i.e.,

ε ≤ 0.02. On the contrary, in our studies, we have taken

ε = 0.1 as the limiting value: the masses m2 and m3

are at least one order of magnitude smaller than m1.

So, a question about sufficiency of this assumption and

accuracy of the solutions arises.

A graphical comparison between the analytical and

numerical time histories of U and W for three val-

ues of ε is shown in Fig. 17a. For the sake of clar-

ity, the plots are focused on one period of the system

motion. Although the vibro-impact behavior reflected

by W (always limited by the values AW = 1 and −1)

is constantly well approximated, the differences for U

increase with ε considerably. Obviously, it has its con-

sequences for solutions X1, X2 and X3 (it is visible,

for example, in Fig. 16). The broader results included

in Fig. 17b indicate that the discrepancies in the ampli-

tudes B, A1, A2 and A3 grow linearly with the small

parameter. When ε = 0.1, the amplitude differences

for B and A1 are about 20% (with reference to the

numerical values), while the differences in the other

amplitudes do not exceed 8%.

123



98 P. Fritzkowski, J. Awrejcewicz

Table 2 The spectra of the Lyapunov exponents for selected values of f̂10

f̂10 λ1 λ2 λ3 λ4 λ5 λ6 λ7 Type of motion Figure

0.6 0.06 0.00 −0.02 −0.05 −0.05 −0.09 −0.15 Chaotic Fig. 13b

1.5 0.00 −0.03 −0.03 −0.05 −0.05 −0.09 −0.10 1T -periodic Fig. 13a

2.2 0.00 −0.03 −0.03 −0.05 −0.05 −0.08 −0.10 1T -periodic Fig. 15a

2.4 0.00 −0.01 −0.02 −0.05 −0.05 −0.10 −0.11 2T -periodic Fig. 15b

2.5 0.00 −0.01 −0.03 −0.03 −0.05 −0.05 −0.18 4T -periodic Fig. 15c

2.523 0.00 −0.01 −0.01 −0.03 −0.05 −0.05 −0.19 8T -periodic Fig. 15d

2.8 0.03 0.00 −0.02 −0.04 −0.05 −0.05 −0.31 Chaotic Fig. 15e

3 0.00 −0.02 −0.03 −0.05 −0.05 −0.05 −0.24 2T -periodic Fig. 15f

3.6 0.15 0.00 −0.02 −0.03 −0.05 −0.05 −0.40 Chaotic Fig. 15g

4.5 0.21 0.00 −0.02 −0.03 −0.05 −0.05 −0.50 Chaotic Fig. 15h

(a) (b) (c)

(e) (f) (g)

(d)

(h)

Fig. 15 Phase portraits of periodic and chaotic solutions: a f̂10 = 2.2, b f̂10 = 2.4, c f̂10 = 2.5, d f̂10 = 2.523, e f̂10 = 2.8, f f̂10 = 3,

g f̂10 = 3.6, h f̂10 = 4.5

It should be noticed that the small parameter is

involved in many stages of the procedure, which leads

to various simplifications. For instance, the assumption

m2/m1 = m3/m1 = ε (i.e., m2 = m3) together with

α23 = ε2α̂23 results in a very specific idealization of

the system. Indeed, the coupling between the colliding

block and the secondary oscillator is weak (of order ε1),

and their interaction is neglected at the first approxima-

tion. Consequently, the stability analysis of the periodic

motion can be restricted to the vibro-impact unit, and

dynamics of the body of mass m3 is considered only in

the stability analysis of the steady states.

Moreover, the analytical approach has been applied

just to the simplest type of the system behavior: the peri-

odic motion with two symmetric impacts per cycle. As

it can be concluded from numerous simulations con-

ducted for this and similar systems, the 2T -, 4T - or

8T -periodic motions do not include simple impacts pat-

terns (e.g., equal time intervals between impacts, only

full-span travels between the stops), which practically
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Fig. 16 Comparison of the analytical and numerical results: the

force-amplitude curve A2( f̂10) overlaid on the bifurcation dia-

gram

makes it impossible to construct analytical solutions to

such vibro-impact problems.

As a potential extension of our considerations, we

will outline the analysis suited to the case when the

assumption m3/m1 = ε is eliminated. So, let m2/m1 =
ε while m3/m1 ≈ 1. Now, the equations of motion are

given by [cf. Eq. (4)]

Ẍ1 + γ1 Ẋ1 + X1 = f10 sin(Ω1τ) +

−ε
1 + κ

1 + ε

∑

j

(Ẋ1 − Ẋ2)δ(τ − τ−
j ) ,

ε Ẍ2 + α23(X2 − X3) =

= ε
1 + κ

1 + ε

∑

j

(Ẋ1 − Ẋ2)δ(τ − τ−
j ) ,

Ẍ3 + γ3 Ẋ3 + Ω2
30 X3 + α32(X3 − X2) = 0 , (67)

where

Ω2
30 = k3

m3ω
2
10

, γ3 = c3

m3ω10
,

α23 = k23

m1ω
2
10

, α32 = k23

m3ω
2
10

.

Let Ω2
30 = 1 + εσ̂30. If α23 = εβ̂2 and α32 = εµ13β̂

2

where µ13 = m1/m3, at the level of the first approx-

imation the vibro-impact motion of the block will be

affected by vibrations of the secondary oscillator (but

not vice versa). After all, the resulting model will be

much more realistic.

For the case of weak damping, Eqs. (10) and (12)

remain unchanged, but Eq. (11) becomes

(a)

(b)

Fig. 17 Comparison of the analytical (solid line) and numerical (markers) results: a steady-state solutions U and W for ε ∈
{0.02, 0.05, 0.1}, b steady-state amplitudes as functions of ε. Results obtained for the basic data set
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Fig. 18 The modified sawtooth function (solid) for β̂ = 1.2 and

the original sawtooth function (dashed)

D2
0 W0 + β̂2W0 = −(1 + κ)

∑

j

D0W0 δ(τ0 − τ−
0, j ) +

−(1 − β̂2)U0 − β̂2 X30 . (68)

The solution of this equation can be written as

W0(τ0, τ1) = B sin(τ0 + φ)+

+ β̂2

1 − β̂2
A3 sin(τ0 + φ3) + Z∗(τ0, τ1) ,

(69)

where Z∗ is the modified sawtooth function [5,8]:

Z∗ = C

sin β̂

⎧
⎨
⎩

− sin
[

2
π
β̂(τ0 − π

2
)
]
, 0 ≤ τ0 ≤ π

sin
[

2
π
β̂(τ0 − 3π

2
)
]
, π ≤ τ0 ≤ 2π

(70)

For computational purposes, Z∗ can be expressed as

a continuous function, by analogy to formula (15). It

should be noticed that Z∗ reduces to Z in the limiting

case for β̂ = 0 (see Fig. 18).

Due to the extended form of W0, the relationship

between the slow-time-scale variables is much more

complicated than before, and involves not only B and

C , but also A3, φ and φ3 [cf. Eq. (19)]:

B2 = 1 − 2C + (1 + w2
1ρ

2)C2+
− w2

3 A2
3 − 2w3 A3 B cos(φ − φ3)

(71)

with

w1 = β̂ cot β̂ , w3 = β̂2

1 − β̂2
.

Therefore, searching for the steady states becomes hin-

dered. Moreover, the stability analysis of the periodic

motions is more difficult, since the spring described by

β̂ participates in the travel of the block between the

stops and this motion is not uniform.

A comparison between the analytical and numerical

solutions to the modified problem is shown in Fig. 19.

The results have been obtained for the following data

set:

ε = 0.1, κ = 0.75, µ13 = 1, f̂10 = 1.5, σ̂1 = 0.5,

γ̂1 = 0.5, β̂ = 0.7, σ̂30 = 0.5, γ̂3 = 1 .

As can be seen, despite the high value of the small

parameter, the discrepancies in the amplitudes obtained

analytically and numerically are relatively small.

6 Conclusions

The three-degree-of-freedom system under a harmonic

force has been considered. The analytical studies

have been restricted to a periodic steady-state motion

with two symmetric impacts per cycle near 1:1 reso-

nance. The multiple scales method combined with the

sawtooth-function-based modelling of the non-smooth

dynamics has been successfully applied to the problem.

Taking into account geometric constraints and sta-

bility criteria, certain restrictions on the amplitudes

have been specified. The central role belongs to the

stability studies of periodic motions. The presented

method is something between the approach involv-

ing the general solution for a periodically excited, vis-

cously damped piecewise linear oscillator [19,29] and

the studies of the Poincaré sections of periodic solu-

tions for discrete dynamical systems (e.g., see [17]).

The approximate analytical approach has allowed us

to determine both the frequency–response and force–

response curves having stable and unstable branches.

Moreover, the interplay between the model parameters

and their effect on the existence and stability of the peri-

odic solutions have been determined on various param-

eter planes. When treating the excitation amplitude as

the control parameter, one can make the system leave

the stability zone. Consequently, the response of the

primary oscillator is strongly modulated. This kind of

motion is largely followed by the secondary oscillator,

in spite of a weak coupling between the subsystems.

The bifurcation diagrams and the Lyapunov expo-

nents spectra have shown that the window of stable

1T -periodic solution is surrounded by the regions of

chaotic motion and period-doubling route to chaos. The
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Fig. 19 Comparison of the analytical (solid line) and numerical (markers) results for the modified vibro-impact problem

theoretical predictions have turned out to be in good

agreement with the purely numerical results.

To sum up, in the area of near-resonant dynamics,

the analytical approach is a useful tool in stability stud-

ies, estimation of the motion amplitudes, and system-

atic parametric studies. However, an extension of the

applicability of the method to more complex problems

with weaker assumptions (e.g., strong and/or nonlinear

coupling, mass ratio of order 1) is highly desirable.
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A Appendix: details of stability analysis

In this appendix, the analytical expressions for the Jaco-

bian matrix J and the transition matrix D, as well as the

approximation of the stability boundaries are reported.

Let

fC (B) =

⎧
⎪⎪⎨
⎪⎪⎩

1 −
√

(1 + ρ2)B2 − ρ2

1 + ρ2
if C(s) < Cmin

1 +
√

(1 + ρ2)B2 − ρ2

1 + ρ2
if C(s) > Cmin

(72)

and f ′
C = d fC/dB. Matrix J for the left (L) and right

(R) branches is

JL , R =

⎡
⎢⎣

J11 · · · J14

...
. . .

...

J41 · · · J44

⎤
⎥⎦ (73)

where

J11 = − γ̂1

2
+ 4ρ fC

π2 B

(
fC

B
− 2 f ′

C

)
,

J12 = f̂10

2
cos ψ ,

J13 = J14 = 0 ,

J21 = − f̂10

2B2
cos ψ + 8

π2 B3
( fC − f 2

C ) +
4 f ′

C

π2 B2
(2 fC − 1) ,

J22 = − f̂10

2B
sin ψ ,

J23 = J24 = 0 ,

J31 = 4α̂23 fC

π2 B2
[ fC (ρ cos ψ3 − sin ψ3) + sin ψ3] +

−
4α̂23 f ′

C

π2 B
[2 fC (ρ cos ψ3 − sin ψ3) + sin ψ3] ,

J32 = 0 ,
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J33 = − γ̂3

2
,

J34 = 4α̂23 fC

π2 B
[ fC (cos ψ3 + ρ sin ψ3) − cos ψ3] ,

J41 = f̂10

2B2
cos ψ − 4 fC

π2 A3 B3
[2A3 − α̂23 B cos ψ3] +

+
4 f 2

C

π2 A3 B3
[2A3 − α̂23 B(cos ψ3 + ρ sin ψ3)] +

+
4 f ′

C

π2 A3 B2
[A3 − α̂23 B cos ψ3] +

−
8 fC f ′

C

π2 A3 B2
[A3 − α̂23 B(cos ψ3 + ρ sin ψ3)] ,

J42 = f̂10

2B
sin ψ ,

J43 = −4α̂23 fC

π2 A2
3 B

[ fC (cos ψ3 + ρ sin ψ3) − cos ψ3] ,

J44 = 4α̂23 fC

π2 A3 B
[ fC (ρ cos ψ3 − sin ψ3) + sin ψ3] .

The transition matrices related to a single impact are

given by

D j = D j+1 = 1

q

[
p11 p12

p21 p22

]
(74)

where

p11 = −4C(1 + ε)(ε − 2κ + εκ) ,

p12 = −π2(1 + ε)(1 + κ)(2 + ε + εκ) ,

p21 = −4C(C − 1)(1 + κ)(ε − 2κ + εκ) ,

p22 = −π2(C − 1)(2 + ε)(1 + κ)2

+ 4C(1 + ε)κ(2 − ε − εκ) ,

q = C
{
ε[π2(1 + κ)2 − 4κ + 4] − 4ε2(1 + κ) + 8

}
+

− π2ε(1 + κ)2

On the basis of the overall matrix D = D j+1D j and

its eigenvalues, the stability boundaries of the periodic

motion can be approximated in the least square sense

with polynomials of κ and ε:

CS min(κ) ≈ 0.7115 + 0.8244κ − 0.7240κ2 − 0.1189κ3+
+ 0.6977κ4 − 0.5357κ5 + 0.1452κ6 ,

CS max(ε) ≈ 1.6815 − 1.1459ε2 − 0.0001ε3+
+ 0.7829ε4 − 0.0162ε5 − 0.4742ε6 .
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