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Near-rings in which each element
is a power of itself

Howard E. Bell

Let if denote a near-ring such that for each x 6 R , there

exists an integer n(x) > 1 for which x ' = x . We show that

the additive group of R is commutative if O.a; = 0 for all

x f i? and every non-trivial homomorphic image R of R

contains a non-zero idempotent e commuting multiplicatively

with all elements of R . As the major consequence, we obtain

the result that if R is distributively-generated, then R is a

ring - a generalization of a recent theorem of Ligh on boolean

near-rings.

1. Introduction

In [6], Ligh proved that a distributlvely-generated boolean near-ring

is a ring and asked whether the same can be said of distributively-

generated near-rings satisfying the identities sP = x and px = 0 ,

where p is a prime. We give here an affirmative answer to this question,

and we obtain some more general results on additive comniutatlvity in

near-rings in which x = x . The major theorems are

THEOREM 1. Let R be a non-trivial near-ring satisfying the

following properties:

(i) 0.x = 0 for all x (. R ;

(ii) for each x (. R , there exists an integer n{x) > 1 suoh that
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(iii) every non-trivial homomorphio image of R contains a non-zero
central idempotent.

Then the additive group of R is commutative.

THEOREM 2. Let R be a distributively-generated near-ring suah
that for each x i. R there is an integer n(x) > 1 for which

x = x . Then R is a commutative ring.

2. Definitions and preliminary results

Our definitions of near-ring, distributive element, distributively-

generated near-ring, and ideal are as in [6]. A near-ring ideal P will

be called completely prime if ab 6 P implies a £ P or b d P . An

element a of the near-ring R will be called central if xa = ax for
a l l x (. R .

The left distributive law implies

(1) x.O = 0 for a l l x (. R

and

(2) x(-y) = -xy for all x, y € R ;

moreover, if d is a distributive element of R , we have

(3) {-x)d = -xd for all x € if .

Property (2) permits left cancellation of elements which are not

zero-divisors; and from (l) it follows that in near-rings satisfying (i),

the notion of nilpotent element may be borrowed from ring theory, with

nilpotent elements behaving as we would expect. In particular, we have

the readily-proved

LEMMA 1. If R is a near-ring satisfying (i) and having no

non-zero nilpotent elements, then ab = 0 implies that ba = 0 and that

arb = 0 for all r £ R .

We shall refer to the second conclusion of this lemma as IFP

(insertion-of-factors property).

The elementary proofs of the "x" = x theorem" for rings use the

fact that in rings with no non-zero nilpotent elements, idempotents are
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central. This result does not extend to near-rings satisfying (i) (note

counterexamples in [2]); however, we obtain a partial generalization as

follows:

LEMMA 2. Let R be a near-ring satisfying (i) and having no

non-zero nilpotent elements. Then we have

(A) every distributive idempotent is central;

(B) for every idempotent e and every element x d R >

ex1 = {ex)2 ;

(c) if R has a multiplicative identity element, then all

idempotents are central.

Proof. We first show that for each x (. R and idempotent e ,

xe = exe . Since e(xe-exe) = 0 , Lemma 1 guarantees that

(xe-exe)e = 0 = {xe-exe)e{-xe) ; hence, we have

(xe-exe)2 = (xe-exe)xe + (xe-exe)(-exe) = 0 , so that xe - exe = 0 .

If e is a distributive idempotent, we also have

(ex-exe)e = exe + (-exe)e ; hence by (3) (ex-exe)e = 0 . It follows

that e(ex-exe) = ex - exe = 0 ; and the proof of (A) is complete.

To establish (B), note that for any idempotent e , xe(x-ex) = 0 ,

so that by IFP we get ex(x-ex) nilpotent and hence zero.

To establish (C), we need only show that if R has 1 , then

ex = exe for all x € R and arbitrary idempotents e . Now

e(l-e) = 0 , so (l-e)e = 0 as well; moreover, e(ex-exe) = ex - exe

and ex(.l-e) = ex - exe . Therefore,

(ex-exe)2 = ex(l-e)e(ex-exe) = 0 - ex - exe .

The standard proofs of the "x = x theorem" for rings involve

ideals which are not easily shown to be normal subgroups of R ; we

overcome this obstacle by use of a kind of annihilator ideal introduced in

LEMMA 3. Let R be a non-trivial near-ring satisfying (i) and

having no non-zero nilpotent elements. Then R contains a family of

completely prime ideals with trivial intersection.

Proof. Since R has no non-zero nilpotent elements, there must
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exist multiplicative subsemigroups which do not contain zero, and an

application of Zorn's Lemma shows that any such subsemigroup is contained

in a subsemigroup maximal with respect to excluding zero. Let M be any

such maximal subsemigroup, and define

A(J4) = {a; f i?| ax = 0 for at least one a t M) .

If u, V € A(M) , there exist a, b € M such that ecu = bv = 0 . By

IFP , we then have abu = 0 , and thus ab{u-v) = 0 ; moreover, for

arbitrary x € R , a(x+u-x) = 0 , so AM is a normal subgroup of if .

Also, if x, y e R , we have axu = 0 and

a[[x+u)y - xy\ = a(x+u)y - axy = {ax+au)y - axy = (ax+0)y - axy = 0 ;

hence A(M) is an ideal.

Wow if x $ M , the multiplicative subsemigroup generated by M and

x must contain 0 ; and since R has no non-zero nilpotent elements,

some finite product containing x as at least one factor and having at

least one factor from M must be zero. Repeated application of IFP

establishes the existence of an m (. M such that mx is nilpotent and

hence 0 . Therefore the set-theoretic complement of A(M) is M , and

A{M) is a completely prime ideal. Clearly every non-zero element of R

is excluded from at least one of the ideals A(M) .

3. Proofs of Theorems 1 and 2 and some corollaries

Proof of Theorem 1. A near-ring satisfying (i) and (ii) obviously

has no non-zero nilpotent elements, hence Lemma 3 applies. For each

P = A(M) , the near-ring R = — satisfies (i) and (ii) , has no

zero-divisors, and contains a non-trivial central idempotent e . From

part (B) of Lemma 2, we see that every idempotent of S is a left identity

element, hence e is the only non-zero idempotent and is an identity

element. Now a = a implies a is idempotent, hence non-zero

elements in R have inverses and R is then a near-field. Thus R has

commutative addition [5, 7]; and additive commutators in R lie in each

of the completely prime ideals A(M) , hence are zero.

Proof of Theorem 2. All distributively-generated near-rings satisfy
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(i). Moreover, if a is a distributive element and an = a , then an~

is a distributive idempotent, which is central by part (A) of Lemma 2.

Thus, by Theorem 1, if is commutative. But by a theorem of Frohlich [3,

p. 93], additive commutativity in a distributively-generated near-ring R

implies that R is a ring. That R is also a commutative ring is the

well-known "xn = x theorem" of Jacobson [4].

Two corollaries of Theorem 1 are

THEOREM 3. Let R be a near-ring with identity satisfying (i) and

(ii). Then R is commutative.

THEOREM 4. Let R be a finite near-ring; and suppose R is

embeddable in a near-ring with identity which satisfies (i) and has no

non-zero nilpotent elements. Then R is commutative.

Theorem 3 is obvious; Theorem 1* follows from Theorem 1 and part (C)

of Lemma 2 once we note that a finite near-ring with (i) and without

nilpotent elements satisfies (ii).

4. Remarks

In the class of near-rings satisfying (i) and (ii), condition (iii)

is sufficient for additive commutativity; but it is not necessary, as we

see by considering [2], example 53 with additive group Zg . Lemma 2 and

Theorems 3 and h point out an apparent difference in behaviour depending

on whether R does or does not have an identity element. This

difference is real, as is'shown by [2], example 3** with additive group
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