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Abstract: Near-surface structure investigation plays an important role in studying shallow active
faults and has various engineering applications. Therefore, we developed a near-surface structure
investigation method using ambient noise in a water environment. This newly developed seismic
acquisition technology, fiber-optic distributed acoustic sensing (DAS), was used to acquire ambient
noise from the Yangtze River. The recorded data were processed to reconstruct surface waves based
on the theory of seismic interferometry. The fundamental-mode dispersion curves were extracted
and inverted to obtain a shear-wave velocity model below the DAS line. We compared the inverted
velocity model with the subsurface geological information from near the study area. The results
from the inverted model were consistent with the prior geological information. Therefore, ambient
noise in the water environment can be combined with DAS technology to effectively investigate
near-surface structures.

Keywords: distributed acoustic sensing (DAS); ambient noise in shallow water; near-surface structure;
surface wave

1. Introduction

In recent years, ambient noise tomography has been widely used in many fields, such
as seismology, ultrasonics, and underwater acoustics, to obtain subsurface structures [1–4].
In contrast to active seismic methods, ambient noise tomography is a passive seismic
method that obtains subsurface structures using data from ambient noise caused by natural
and anthropogenic activities. Therefore, ambient noise sources are readily available and
less damaging to the environment than active sources such as an explosive source. These
advantages make it a powerful tool for near-surface structure investigation, especially in
areas with challenging terrains for active source data acquisition.

The ambient noise tomography method is based on seismic interferometry. It extracts
seismic surface waves or body waves at one receiver from a virtual source at another
receiver by cross-correlation and the summation of the ambient noise between the two
receivers. In recent years, ambient noise from anthropogenic activities has been extensively
studied and used in subsurface structure investigation [5,6]. Traffic noise from vehicles
or trains in urban areas is one of the most widely used sources. Quiros et al. recovered
body and surface waves from train-generated noise and further inverted the geological
structure beneath a railway using the recovered wavefields [7]. The results confirmed that
trains are practical sources for obtaining high-resolution subsurface structures. Zhang et al.
investigated near-surface structures using vehicle-generated noise in an urban city and
demonstrated that a short acquisition time of 15 min was sufficient to obtain accurate and
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stable results [8]. Brenguier et al. showed that train-generated ambient noise is a powerful
source for active fault monitoring [9].

The water environment has abundant ambient noise from various sources, such as
shipping and wind-generated, river-current-generated, and biological noise [10,11]. When
acquiring data near a main ship channel, shipping noise is the primary source of ambient
noise in the water environment, particularly with the increased shipping activities caused
by globalization and global cargo flows [12]. Shipping noise originates from multiple
mechanisms, including propeller, auxiliary, and hull movements through the water. These
sources are located near the surface and are distributed along shipping channels. Shipping
noise can travel tens or hundreds of kilometers and ranges from frequencies as low as a
few hertz to as high as several kilohertz, depending on the ship size and speed. Therefore,
shipping noise is a powerful source for subsurface structure investigation in the water
environment. Li et al. inverted sound speed profiles in shallow water based on wavefields
extracted from ambient noise, including shipping noise [13]. Tan et al. demonstrated
the feasibility of seafloor characterization using ambient and shipping noises in shallow
water [14]. Their method first calculated the cross-correlation of noise data to extract an
effective wavefield. Then, a time-warping transform was applied to the extracted wavefield
to obtain the dispersion curves. Finally, the sediment layer thickness and speed of sound
were inverted from the measured dispersion curves. Most recent studies acquired shipping
noise data using hydrophones that are typically moored in the water. The positions of
hydrophones are unstable owing to mooring motion, which can reduce the coherence of
the extracted wavefields via cross-correlations [15]. In addition, data are usually acquired
by using a limited number of hydrophones with large spatial sampling intervals, making it
impossible to reliably resolve subsurface structures.

The newly developed fiber-optic distributed acoustic sensing (DAS) technology uses
an optical fiber cable as a sensor and measures vibrations along the entire cable. Compared
to traditional hydrophones, DAS is a promising tool because of its low cost, real-time
operation, and dense sampling. Most DAS systems are built based on the principle of
coherent optical time-domain reflectometry (COTDR) [16,17]. Laser light is pulsed into the
optical fiber from the interrogation units. When the optical probe pulse travels through the
optical fiber, some of it is backscattered due to microscopic imperfections in the fiber. After
all the backscattered light generated from the previous optical probe pulse is received by
the interrogator, the system calculates the stretches of the optical fiber caused by external
vibrations by comparing the measurements between the two pulses. The potential of
DAS was tested and verified in oil and gas exploration [18,19], seismological research [20],
microseismic monitoring [21,22], and ambient noise-based seismic monitoring [23–25].

This study investigated the feasibility of near-surface structure investigation using
ambient noise in a water environment recorded using DAS. First, we introduced the
DAS data acquisition and analyzed the characteristics of the raw ambient noise data.
Subsequently, the surface waves were reconstructed from the acquired ambient noise data,
from which the fundamental-mode dispersion curves were extracted. Finally, the shear-
wave velocity model was inverted based on the dispersion curves. The velocity model
obtained was consistent with the prior information from near the study area. Our results
confirm the effectiveness of near-surface structure investigation using ambient noise in a
water environment recorded using DAS.

2. Method
2.1. Surface Waves Reconstruction Using Seismic Interferometry

Surface waves were reconstructed from ambient noise in a water environment based
on the theory of seismic interferometry. The noise at the two receivers was cross-correlated
and summed to calculate a virtual wavefield recorded at one receiver with the virtual
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source at the other receiver. The governing equation for seismic interferometry [26,27] in
the frequency-space domain is as follows:

A, B ∈ S′0; G(B
∣∣A, ω)− G (A|B, ω) ∗

=
∫

S0+S∞

[G (B|x, ω) ∗ ∂G(A|x,ω)
∂n −G (A|x, ω) ∂G (B|x,ω) ∗

∂n ]d2x

≈
∫
S0

[G (B|x, ω) ∗ ∂G(A|x,ω)
∂n −G (A|x, ω) ∂G (B|x,ω) ∗

∂n ]d2x

(1)

where S0 is the ship channel, S′0 is the DAS cable, and S∞ is the boundary at infinity.
G(A|x, ω) and G(B|x, ω) denote the Green’s functions received at A and B with a source
excited at x, respectively. ω denotes the angular frequency. ∗ is the complex conjugate, and
n is the normal direction. All the sources in Equation (1) are assumed to come from the ship
channel. Since the ship channel is parallel to the DAS cable, the stationary points in the
ship channel lie far away from the receivers A and B, as shown in Figure 1. The geometry
in Figure 1 is similar to the field case described in this study. A linear DAS array records
noises originating from a parallel ship channel. The stationary regions are indicated by the
grey area for the two receiving locations, A and B in this context. When considering the
far-field approximation, Equation (1) is simplified as follows:

A, B ∈ S′0; G (B|A, ω) − G (A|B, ω) ∗ ≈ 2ik
∫
S0

G (B|x, ω) ∗G(A
∣∣x, ω)d2x (2)

where k = ω/c denotes the wavenumber, and c denotes the propagation velocity.
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Figure 1. Stationary regions for the linear geometry. The grey area indicates the stationary regions
for two receiving locations A and B.

We defined the noise source at x as N(x, t). The noise sources at all different locations
were assumed to be uncorrelated, such that〈

N(x, ω)∗N(x′ , ω)
〉
= δ(x− x′ )S(ω) (3)

where 〈·〉 denotes the spatial ensemble average, and S(ω) is the power spectrum of the
source wavelet. The observed noise wavefields at A and B in the frequency domain are

P(A, ω) =
∫
S0

G(A|x, ω)N(x, ω)d2x (4)

P(B, ω) =
∫
S0

G(B|x′ , ω)N(x′ , ω)d2x′ (5)

According to Equations (3)–(5), the cross-correlation of the noise wavefield, P(A, ω)
and P(B, ω), is shown as follows:
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〈
P(A, ω)∗P(B, ω)

〉
=
∫
S0

G (A|x, ω) ∗G(B
∣∣x, ω)S(ω)d2x (6)

Combining Equation (6) with Equation (2) gives

A, B ∈ S′0; [G(B
∣∣∣A, ω)− G (A|B, ω) ∗]S(ω) ≈ 2i

ω

c
〈

P(A, ω)∗P(B, ω)
〉

(7)

Finally, Equation (7) is transformed into the time-space domain as follows:

A, B ∈ S′0;
∞∫
−∞

{G(B|A, t′ )− G(A|B,−t′ )}S(t− t′ )dt′ ≈ 2
c

∂t


〈 ∞∫
−∞

P(A, t′ )P(B, t + t′ )dt′
〉 (8)

where G(B|A, t) is the causal wavefield received at B with a source excited at A. G(A|B,−t)
is the noncausal wavefield received at A with a source excited at B. As shown in Equation (8),
a virtual trace is obtained by cross-correlating the traces recorded at A and B. This process
was repeated until a virtual shot gather was determined for each recording location in the
DAS array.

2.2. Shear-Wave Velocity Inversion Using the Multichannel Analysis of Surface Waves

Surface waves are the main components of ambient noise and have dispersion proper-
ties. Different frequency components of surface waves travel at different velocities. The
dispersion of surface waves is usually used for near-surface characterization. Therefore, the
dispersion curves, describing the relationship between velocity and frequency, need to be
extracted first. They were then inverted to obtain the near-surface shear-wave velocity. This
study used the multichannel analysis of the surface waves (MASW) method [28], extracting
a dispersion curve from a multichannel record using different methods such as the phase-
shift [29], frequency-wavenumber transform [30], and slowness frequency methods [31].
We used the phase-shift method because of its robustness and computational efficiency.

The virtual shot gather by seismic interferometry is represented by d(xj, t), j = 1, 2, · · · , N,
where N is the total number of traces in the shot gather. The expression for the virtual trace,
d(xj, t), is given in the left-hand side of Equation (8). According to the phase-shift method,
each trace d(xj, t) in the multichannel record was first transformed into the frequency
domain using the Fourier transform. The transformed record, d(xj, ω), can be expressed by
multiplying the amplitude, A(xj, ω), and the phase spectrum, P(xj, ω). For example,

d(xj, ω) = A(xj, ω)P(xj, ω) = e−iΦxj A(xj, ω) (9)

where Φ = ω/cω is related to the real phase velocity, cω, to be determined from the
virtual shot gathers. The transformed record was then normalized to remove the effects
of geometrical spreading and attenuation on the amplitude. Finally, the dispersion image,
V(ω, φ), was calculated by summing the traces at different offsets after applying a phase-
shift, φ, determined by an assumed phase velocity, c′ω = ω/φ.

V(ω, φ) =
N
∑

j=1
eiφxj d(xj ,ω)

|d(xj ,ω)|

=
N
∑

j=1
e−i(Φ−φ)xj A(xj ,ω)

|A(xj ,ω)|

(10)

When the assumed phase velocity, c′ω, was equal to the real phase velocity, cω, con-
structive superposition occurred, and a maximum was observed in the dispersion image.
Otherwise, the summation process generated a destructive superposition. After calculating
the dispersion image, the dispersion curve was extracted by picking the maximum at
each frequency.
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The shear-wave velocity was inverted by iteratively comparing the theoretical dis-
persion curve with the observed curve. The theoretical dispersion curve was calculated
using the stiffness matrix method [32], which assumed a layered subsurface medium model.
The Bayesian Markov chain Monte Carlo inversion method [33] was applied to solve the
inversion problem. According to the Bayesian theory, the posterior distribution for the
shear velocity model, p(v|m) , is computed from the prior probability density, p(v), and
the likelihood function, p(m|v) :

p(v|m) ∝ p(v)p(m|v) (11)

where v represents the model to be inverted, and v = [vs, h] is composed of the shear-wave
velocity, vs, and thickness, h, for each layer. m represents the extracted dispersion curve.

The prior probability density, p(v), in Equation (11) describes the prior knowledge of
the shear-wave velocity model. Assuming that the shear-wave velocity model is uniformly
distributed over a fixed range, the prior probability density is expressed as follows:

p(v) ∝


M
∏
i=1

(v+i − v−i )
−1 v+i ≤ vi ≤ v−i , i = 1, . . . , M

0 otherwise
(12)

where v+i and v−i denote the upper and lower boundaries, respectively, of the ith model
vi. The likelihood function, p(m|v) , in Equation (11) is related to the misfit between the
forward and observed dispersion curves and is defined as follows:

p(m
∣∣∣v) ∝ exp[−(m−m′ )2] (13)

where m′ is the theoretical dispersion curve. After the posterior probability density was
calculated by Equations (11)–(13), the Markov chain Monte Carlo algorithm was used to
solve the shear-wave velocity model.The inversion algorithm is performed for each virtual
shot gathers. The inverted velocities from all the virtual shot gathers are assembled to
obtain the pseudo 2D velocity profile. Finally, the inversion result at each location are
linearly interpolated at an interval less than the trace interval. A Gaussian filter G(x) was
applied to the interpolated data for lateral smoothing.

G(x) =
1√
2πσ

e−
x2

2σ2 (14)

where σ is standard deviation. The value of σ is in grid points. The half width of gaussian
filter is three times the sigma. The filter parameter σ is set in a trial-and-error way to smooth
out the unrealistic discontinuities between the different locations while maintaining as
many characteristics as possible at each position. Figure 2 shows a Gaussian filter with the
sigma of 6. The half width of gaussian filter is three times the sigma, i.e., 18 grid points.
When the interval between grid points is 0.2 m, the smoothing width of the gaussian filter
is 7.2 m:3.6 m to the left and 3.6 m to the right of the current data point.
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3. Data and Results
3.1. DAS Data Acquisition and Analysis

The experiment was conducted along a floodplain in the lower reaches of the Yangtze
River in China, as shown in Figure 3. Business shipping channels were used for cargo
transportation at the study site. Many ships travel daily through these shipping channels.
Therefore, the acquired ambient noise data were significantly affected by traveling ships
and contained much shipping noise. The DAS instrument was placed on a floating dock. A
common underground communication optical fiber cable was deployed along the riverside,
parallel to the shipping channels, as shown in Figure 4. The optical fiber cable was buried
at a depth of approximately 10 cm to ensure good coupling between the cable and the
ground. The distance between the DAS line and the shipping lane nearest to the riverside
was approximately 100 m. The DAS line was 210 m long. Data were recorded at a trace
interval of 1 m and a temporal sampling interval of 1 ms. The gauge length was set to 10 m.
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Since the raw DAS data were contaminated by abnormal optical noise, a bandpass
filter with cut-off frequencies of 0.5 Hz and 25 Hz was applied to the raw data to remove
the noise and clearly show the ship-related data. Figure 5a shows the filtered DAS data
of two minutes, during which one ship passed through the DAS line. The horizontal axis
represents the distance along the optical fiber cable. The black arrow indicates a linear event,
when the ship passed through the DAS line. As seen from the zoom-in view in Figure 5b,
the ship was traveling from left to right. The FK spectrum of the DAS data in Figure 5a is
shown in Figure 5c. Figure 6 shows the waveform and its amplitude spectrum when a ship
passed through and was far from the DAS line. Figure 6a shows the waveform indicated
by the yellow line in Figure 5a and the corresponding amplitude spectrum. Figure 6a
shows the strong amplitude vibrations when the ship passed through the DAS line. The
amplitude spectrum was distributed in a frequency ranging from 0.5 to 6 Hz. A significant
component of the signal was observed at frequencies near 2.7 Hz. On the other hand, the
data from the period in the vicinity of the passage of the ship (indicated by the green line
in Figure 5a) had weak energy, as shown in Figure 6b. However, they showed a frequency
band (0.5–6 Hz) similar to that of the ship-related data.
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3.2. Surface Waves Reconstruction and Inversion

The DAS data were processed according to the workflow shown in Figure 7. Various
preprocessing methods [34] were first applied to the raw noise data before the surface
wave reconstruction. One hour of continuous data was cut to a length of one minute.
Since there was heavy shipping traffic in the study area, one hour of data was enough
to obtain a good virtual shot gather. Since ambient noise was distributed below 6 Hz,
the data were bandpass-filtered to 0.5–6 Hz. Finally, time-domain one-bit normalization
and spectral whitening were applied to remove the interference of the transient signal.
After several preprocessing steps, seismic interferometry was performed to reconstruct
the virtual shot gathers. Cross-correlation was first performed for each minute of data.
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The cross-correlated data were then stacked using the phase-weighted stacking (PWS)
method [35]. Compared with the commonly used linear stacking method, the PWS method
can improve the signal-to-noise (SNR) ratio of a virtual shot gather by using the phase
coherence among the stacked signals. In addition, the causal and noncausal parts of the
virtual shot gather were stacked to further improve the signal. Figure 8 shows the final
virtual shot gathers at different locations. As shown in Figure 8, coherent surface wave
signals were clearly reconstructed from the noise record.
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Figure 8. The virtual shot gathers with a virtual source at (a) 0 m, (b) 50 m, and (c) 140 m. The
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As shown in Figure 8, the SNR at the far offset was low. Therefore, the dispersion image
was calculated from the data at the near offset (a maximum offset of 100 m from the shot
point). The fundamental-mode dispersion curves were obtained from the reconstructed
surface waves, as indicated by the black open circles in Figure 9. The dispersion curves
picked from the virtual shot gathers at different locations had similar shapes, which
effectively verified the correctness of the identified surface waves. The 1D shear-wave
velocities were then inverted from the selected dispersion curves, as shown in Figure 10.
During the inversion process, the number of layers was set to seven according to the prior
information from near the study area. The velocity and thickness ranges for each layer
were set wide enough. The upper and lower velocity boundaries of each layer were 50 m/s
and 500 m/s, respectively. The upper and lower thickness boundaries of each layer were
0 m and 5 m, respectively. The red dashed line in Figure 10 indicates the initial shear-wave
velocity model. The blue lines indicate the inverted velocities when the corresponding
dispersion curves deviate by less than 1% from the synthetic curves. The red solid line
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indicates the final inverted velocity at which the corresponding dispersion curve best fits
the synthetic curve. Figure 11 shows the fitting of the observed dispersion curve to the
synthetic curve using the final inverted velocity (solid red line in Figure 10). However,
Figure 11 does not prove the inversion results. The inverted velocities from all the virtual
shot gathers were assembled to obtain the pseudo 2D velocity profile. Finally, the inversion
result at an interval of 1 m was linearly interpolated at an interval of 0.2 m. A Gaussian
filter was applied to the interpolated data for lateral smoothing. The filter is shown in
Figure 2. The final inversion result is shown in Figure 12.
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To validate the shear-wave velocity model inverted from the ambient noise data, we
compared the obtained results with the prior information from near the study area. A
previous study [36] showed that silted floodplains are widespread at the study site, where
the stratigraphy is composed of thinly bedded deposits of clay, silty clay, silty sand, and
sand. Holocene sediments consist of silty clay and mucky silty clay within a depth range of
approximately 0–12m. Holocene sediments at a depth of approximately 12–30 m consist of
silty sand and silty clay, which is consistent with the results shown in Figure 12, where an
evident velocity variation occurred at a depth of approximately 12 m.

4. Discussion

We have verified the feasibility of near-surface structure investigation using ambient
noise in a water environment. Surface waves were first reconstructed from ambient noise
data based on the theory of seismic interferometry. Then, the fundamental-mode dispersion
curves were extracted and inverted for the shear-wave velocity model. The quality of the
reconstructed surface wave data is crucial for accurate shear-wave velocity inversion. In
fact, the distribution of ambient noise sources affects the quality of reconstructed surface
waves. Seismic interferometry requires that the noise sources are equally distributed
in azimuth or are all aligned to the receiver array [37,38]. When a strongly directional
source appears, the accuracy of the reconstructed surface waves decreases, thus leading
to incorrected inversion results. In addition, DAS has limited sensitivity toward particle
motion direction compared to a geophone. It is the most sensitive to waves propagating
along the fiber. Therefore, the directionality of ambient source and the directional sensitivity
of DAS both have an effect on the reconstructed surface waves.

In this study, the ambient sources were assumed to come from the ship channel. A
linear DAS array was deployed parallel to the ship channel. We used a linear array because
of its simplicity and the field site limitations. In this context, distant noise sources (ships) are
almost aligned to the DAS array and can contribute to the proper reconstruction of surface
waves [39]. Channel-parallel DAS can receive a wave from a variety of azimuths [25]. This
is demonstrated by the FK spectrum shown in Figure 5c, where the spread-out spectral
energy is distributed in both positive and negative wavenumbers. The noise propagating
along the fiber axis is preferred for the seismic interferometry with a linear array. The noise
propagating in other directions decreases the SNR of the reconstructed surface waves. Since
only data with a high SNR are used to calculate the dispersion curve, these low SNR data
in the virtual gathers do not greatly affect the final inversion result.

5. Conclusions

This study introduces a near-surface structure investigation method using ambient
noise in a water environment recorded using fiber-optic distributed acoustic sensing (DAS).
The DAS line was deployed along the Yangtze River floodplain in China. Large amounts of
water traffic were present in the study area. The ambient noise data acquired in the water
environment were concentrated in the frequency band ranging from 0.5 to 6 Hz. Based on
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the theory of seismic interferometry, the surface waves were reconstructed from the ambient
noise data. Finally, the shear-wave velocity along the DAS line was obtained by inverting
the fundamental-mode dispersion curves extracted from the surface waves. The calculated
shear-wave velocity was consistent with the geological information from near the study
area. These results demonstrate that ambient noise in the water environment can provide
useful information for near-surface structure investigations. In addition, the use of DAS
provides a low-cost, high-efficiency, and high-density field acquisition compared to that of
conventional hydrophones, making it a promising tool for near-surface investigations in
the future.
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