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Quantum computing is a game-changing technology for global academia, research centers and industries
including computational science, mathematics, finance, pharmaceutical, materials science, chemistry and cryp-
tography. Although it has seen a major boost in the last decade, we are still a long way from reaching the
maturity of a full-fledged quantum computer. That said, we will be in the Noisy-Intermediate Scale Quantum
(NISQ) era for a long time, working on dozens or even thousands of qubits quantum computing systems. An
outstanding challenge, then, is to come up with an application that can reliably carry out a nontrivial task of in-
terest on the near-term quantum devices with non-negligible quantum noise. To address this challenge, several
near-term quantum computing techniques, including variational quantum algorithms, error mitigation, quantum
circuit compilation and benchmarking protocols, have been proposed to characterize and mitigate errors, and
to implement algorithms with a certain resistance to noise, so as to enhance the capabilities of near-term quan-
tum devices and explore the boundaries of their ability to realize useful applications. Besides, the development
of near-term quantum devices is inseparable from the efficient classical simulation, which plays a vital role in
quantum algorithm design and verification, error-tolerant verification and other applications. This review will
provide a thorough introduction of these near-term quantum computing techniques, report on their progress, and
finally discuss the future prospect of these techniques, which we hope will motivate researchers to undertake
additional studies in this field.

I. INTRODUCTION

Quantum computing is a rapidly emerging new-generation
computing paradigm that harnesses the laws of quantum me-
chanics, offering the potential of exponential speedup over
classical computation for certain problems [1–4]. Over the
last decade, quantum computing technologies have advanced
by leaps and bounds into the NISQ era [5, 6], an important
sign of which is the significant achievement of quantum com-
putational advantage on quantum sampling problems has been
realized in practice [7–12]. The near-term quantum proces-
sors, including superconducting qubits [5, 13, 14], trapped
ions [15, 16], and photons [17–19], etc., produced during this
period contain only a few dozen or even a few thousand qubits,
falling well short of the specifications for fault-tolerant quan-
tum computing [20–24] (see TABLE. I for system parame-
ters of some prototypes). They do, however, serve as fantastic
testing grounds for investigating a variety of applications, in-
cluding machine learning [25], secure cloud quantum comput-
ing [26–30], computational science, and complicated quan-
tum chemistry [31] and many-body quantum systems [32] that
are not feasible to be simulated with the state-of-the-art super-
computers.

To fully exploit the potential of near-term quantum devices,
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algorithms/protocols have to be tailored to the constraint of
present quantum hardware, especially a modest of qubits with
non-negligible errors and limited qubit connectivity. To miti-
gate quantum errors and achieve valid computational results,
several prominent classes of algorithms and tools have been
developed specifically for near-term quantum computers, in-
cluding:

• Variational Quantum Algorithms (VQAs) [33, 34].
VQAs have emerged as one of the leading candidates
to achieve application-oriented quantum computational
advantage on NISQ devices, owing to their hybrid
quantum-classical approach which has potential noise
resilience.

• Quantum Error Mitigation (QEM) [35]. QEM refers to
a series of techniques that allow us to reduce the com-
putational errors and then evaluate accurate results from
noisy quantum circuits, although we still lack practical
quantum error-correction technique.

• Quantum Circuit Compilation (QCC) [36–38]. QCC is
a key technique to transform the nonconforming quan-
tum circuit to an executable circuit on the target quan-
tum platform according to its constraints, including the
native gateset, connectivity and so on.

• Benchmarking Protocols [39, 40]. Quantum bench-
marking helps to evaluate the basic performance of a
quantum computer and even the capacity to solve real-
world problems.
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• Classical Simulation [41–45]. Classical simulation of
quantum circuits is one of the core tools for designing
quantum algorithms and validating quantum devices.

These techniques work together to accomplish computa-
tional tasks rather than independently of each other (see a
rough relationship provided in Fig. 1). For instance, varia-
tional quantum algorithms, quantum error mitigation, quan-
tum circuit compilation, and quantum benchmarking may all
require the help of classical simulation for verification or al-
gorithm design. These near-term quantum computing tech-
niques offer the opportunity to attain practical quantum ad-
vantages that can be applied to significant applications such
as chemistry [46, 47] and machine learning [48–61], and they
also provide a continuous path for the advancement of quan-
tum computing from today’s near-term quantum hardware to
tomorrow’s fault-tolerant quantum computers.

This review aims to present an overview of these crucial
techniques, part of which may serve as a supplement and up-
date to related published review works [33–35, 39], and some
algorithms and protocols are step-by-step taught to help the
reader rapidly understand the specifics. We also discuss the
challenges and opportunities, and offer some insights on po-
tential future advances.

Classical
Simulation

Benchmarking

Error
Mitigation

Circuit
Compilation

Variational Quantum Algorithms

Near-Term
Applications

FIG. 1. Relationship between near-term quantum techniques.
These techniques collaborate to execute various computing tasks.

TABLE I. System parameters of some quantum computing proto-
types that have achieved quantum computational advantage.

Superconducting system Sycamore [7] Zuchongzhi 2.1 [8, 9]
Number of qubits 53 66
Single-qubit gate error 0.16% 0.16%
Two-qubit gate error 0.62% 0.60%
Readout error 3.8% 2.26%
T1 16.04 µs 26.5 µs
Photonic system Jiuzhang 2.0 [11] Borealis [12]
Detected photons 113 219
Interferometer 144-mode 216-mode

II. VARIATIONAL QUANTUM ALGORITHMS

Although some quantum algorithms, such as Shor’s algo-
rithm [3] and Grover’s search algorithm [4], promise to be
much faster than classical algorithms, these algorithms are
unattainable in the NISQ era due to the lack of error correc-
tion capability. Variational quantum algorithms (VQAs) have
been shown to be naturally resistant [62] to, and even ben-
efit from, noise, making them particularly suitable for near-
term quantum devices, and are therefore considered the most
promising route to quantum advantage on practical problems
in the NISQ era [33]. In this section, we will first introduce
the basic concepts, architectures and applications of VQAs,
and then discuss the opportunities and challenges for future
industrial applications or scientific research.

A. Basic concepts

Similar to the classical neural networks, the VQAs is im-
plemented by training a parametrized quantum circuit (PQC)
to minimize a problem-specific cost function. Thus, the basic
components of VQAs include cost function, PQC and opti-
mization algorithms, as shown in Fig. 2.

1. Cost function

The cost function (sometimes referred to as the loss or ob-
jective function) is an integral part of VQAs for encoding
problems, and serves essentially the same role as the cost
function in classical machine learning. During the training
process, the cost function can be considered as a measure of
the performance of a VQA with respect to the given train-
ing samples and the expected output, which helps to find the
global minima. Without loss of generality, the cost function
can be expressed as

C(θ) = f(O(U(θ), ρin)) (1)

where O are a set of observables on the output state obtained
by the input state ρin under the action of the PQC U(θ) with
tunable parameters θ, and f is some function, which is de-
signed according to the specific problem. For example, the
cost function of variational quantum eigensolver is often set
as

〈H〉O(U(θ),ρin), (2)

which is expectation value of qubit Hamiltonian H . In ad-
dition, for quantum machine learning tasks, one can usually
follow the cost functions commonly used in classical commu-
nity, such as using mean squared error (MSE) or cross entropy
as the cost function for the classification task.

The choice of cost function could affect the trainability of
VQAs. Cerezo et al. proved that barren plateaus are cost-
function-dependent in shallow PQCs [63]. Specifically, the
cost function with global observables leads to an exponen-
tially vanishing gradient (i.e., barren plateau), while the gra-
dient vanishes polynomially when the cost function is defined



3

cost 
function

Hybrid

QPU

CPU

parameter
 optimization

gradient 
descent

gradient 
free

Architecture &
 applications

Variational 
quantum 

eigensolver

Combinatorial 
optimization

Machine
 learning

Cryptanalysis

Mathematical 
applications

Many-body 
physics

0.9

1.4 0.65

2.3

1.1

1.6

MaxCut problem

MSE, cross entropy
...

hardware-efficient problem-inspired

H2

quantum natural gradient optimization, 
quantuam analytic descent, 

stochastic gradient descent...

Nelder-Mead, 
evolutionary algorithms, 
reinforcement learning...

Parameterized 
quantum circuit 

Ansatz

FIG. 2. A high-level overview of variational quantum algorithms (VQAs). VQAs are a hybrid quantum-classical optimization algorithm.
During the training procedure, the quantum processing unit (QPU) estimates the cost function via the parameterized quantum circuit (PQC).
Then a classical processing unit (CPU) is employed to implement the parameter optimization. VQAs can be analogous to the quantum
counterpart for deep learning, and thus have the potential to be applied to a range of applications, such as find the ground state, combinatorial
optimization, machine learning, etc.

in terms of local observables. Recently, Liu et al. found a
similar phenomenon in tensor-network based machine learn-
ing [64].

2. Parameterized quantum circuits (PQCs)

PQCs are the main part that differentiates VQAs from
classical neural networks. A PQC consists of a number of
fixed quantum gates and trainable quantum gates, and may
even includes some measurement and feedback operations.
The trainable quantum gate is usually a single-qubit rotation,
Rx(θ), Ry(θ), and Rz(θ) rotations, and the trainable param-
eter is its rotation angle θ. These trainable parameters are
trained to minimize the cost function.

The structure of the variational ansatz plays an essential
role in the performance of VQA, including the convergence
speed and the closeness of the output to the optimal solution
of the problem. The design of an effective structure is a chal-
lenge for VQAs, which requires optimization in many aspects,
such as strong expressibility, shallow circuit depth, and small
number of parameters. In the following, we will present some
common ansatzes.

Problem-inspired ansatzes. The problem-inspired ansatz
is constructed by using knowledge about a specific problem.

A typical example is the quantum approximate optimization
algorithm (QAOA) [65], whose ansatz is set as

U(γ,β) =
∏p

l=1
e−iβlHM e−iγlHC , (3)

where HC is the problem Hamiltonian, HM =
n∑
i=1

σix is the

mixing Hamiltonian, and σix denotes the PauliX operator act-
ing on qubit i. This ansatz is inspired by quantum annealing to
map the initial state to the ground state of the problem Hamil-
tonian HC , by optimizing the parameters γ = (γ1, γ2, ..., γp)
and β = (β1, β2, ..., βp).

The problem-inspired ansatz is also widely used in quantum
chemistry problems. The unitary coupled cluster (UCC) [66]
ansatz is a commonly used structure for variational quantum
eigensolver (VQE). And historically, the first VQE experi-
ment by Peruzzo et al. [67] utilized the UCC with singles
and doubles (UCCSD) ansatz. Subsequently, some improved
ansatzes enable shallower depths and higher accuracy. Lee
et al. proposed the unitary pair coupled cluster with gener-
alized singles and doubles (k-UpCCGSD) method to reduce
circuit depth [68]. The orbital optimized UCC (OO-UCC)
ansatz [69] is another variant of UCC to reduce the number of
parameters and circuit depth, while maintains a similar level
of accuracy to that of UCCSD. Besides reducing circuit depth,
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Metcalf et al. employed the double unitary coupled-cluster
(DUCC) method to effectively reduce the required number of
qubits [70]. Here we only make a list of these ansatzes, more
detailed introduction can be found in the Ref. [71].

In general, the problem-inspired ansatz is designed accord-
ing to the characteristics of the problem, so that the output
has a high accuracy. However, limited by the connectivity of
quantum processors, implementing problem-inspired ansatz
on real quantum devices may necessitate a relatively deep
PQC, which might be a challenge.

Hardware-efficient ansatzes. Unlike the problem-inspired
ansatz, the hardware-efficient ansatz [46] is designed around
properties of quantum hardware, such as the qubit connectiv-
ity and restricted gate sets, to ensure efficient implementation
on near-term quantum devices.

The trainable unitary operator U(θ), represented by the
PQC of this anstz, is composed of L layers and each layer
merges trainable single-qubit gates with a entangling block.
Mathematically, we have U(θ) :=

∏L
l=1(UEUl(θ)), where

Ul(θ) is the l-th trainable layer and UE is the entanglement
layer. In particular, we have Ul(θ) =

⊗N
i=1(US(θ(i,l))),

where θ(i,l) represents the (i, l)-th entry of θ ∈ RN×L, US
is the trainable unitary with US ∈ SU(2), e.g., the rotation
single qubit gates Rx, Ry , and Rz . The entangle layer UE is
constructed from the entanglement operations that the hard-
ware can provide, such as CNOT, CZ gates, iSWAP gate, and
even many-body quantum evolution. These entanglement op-
erations should follow the connectivity of quantum hardware,
such as one-dimensional chains, lattices, etc.

Variable-structure ansatzes. Unlike the problem-inspired
ansatz and hardware-efficient ansatz, which take a fixed struc-
ture, the circuit structure in the variable-structure ansatz is no
longer fixed and trained as a parameter with the aim of further
reducing the circuit depth and the number of gates. A typical
example is ADAPT-VQE [72] and qubit-ADAPT-VQE [73],
which are proposed to optimize the circuit structure of the
ansatz to reduce the circuit depth in quantum chemistry ap-
plications. Zhu et al. also developed an adaptive QAOA for
solving combinatorial problems [74]. Interested readers can
refer to the Refs. [75–81] for other variants or optimizations,
and we will not introduce them one by one.

3. Parameter optimization

The procedure of parameter optimization is implemented
after the cost function and ansatz are determined, to mini-
mize the cost function. An appropriate optimizer should be
determined by considering the requirements of the applica-
tion. There are mainly two classes of optimization methods,
gradient-based and gradient-free methods, which we will in-
troduce below.

Gradient descent methods. Gradient descent is a general-
purpose optimization algorithm for finding a local minimum
of the given cost function. For this purpose, the gradient of
a cost function C(θ) with respect to its parameters θ, i.e.,
∇θC(θ), is calculated to obtain the direction of steepest de-
scent. Then a small updates to the parameters is implemented

according to

θ → θ − η∇θC(θ), (4)

where η is the step size, to iteratively approach the minimum
value of the cost function.

The most commonly used gradient descent method for
VQAs is parameter-shift rule [82–85]. As shown in Eq. 1,
the cost functions are usually phrased in terms of expectation
values of some observables O, evaluated on a output quantum
state ρout of the PQC U(θ). In the case that ρout depends on a
parameter θi that parametrizes a Pauli-rotation gate e−iθiP/2,
where P is a Pauli operator, we can compute the derivative
with respect to θi as

∇θi〈O〉(θi) =
1

2

(
〈O〉(θi +

π

2
)− 〈O〉(θi −

π

2
)
)
. (5)

The original parameter-shift rule is design for single-
parameter gates. Wierichs et al. then extended this method
to be applicable to multi-parameter quantum gates [86].

The gradient descent methods can also be transformed into
the quantum version [87–92]. The quantum versions of the
gradient descent was firstly proposed by Rebentrost et al. for
high-dimensional optimization problems [93]. The gradient
algorithm in Ref. [93] involves phase estimation, which re-
quires substantial circuit depth and is difficult to implement
with current quantum hardwares. Instead of using phase esti-
mation, Li et al. proposed an experimental friendly quantum
gradient algorithm [87] using the linear combination of uni-
taries (LCU).

In addition to above methods, some other gradient descent
methods have been proposed, such as quantum analytic de-
scent [94] and stochastic gradient descent [85, 95, 96], etc.

Gradient-free methods. Similar to the classical machine
learning, gradient-free optimization methods can also be used
to optimize PQCs. The Nelder-Mead method is one of com-
monly used gradient-free optimization for finding a local min-
imum of a function of several variables, and thus is natu-
rally suitable for VQAs as well. Besides, evolutionary algo-
rithms and reinforcement learning can be also used to train
VQAs [97–101]. These optimization methods are standard in
the classical machine learning community and we will not go
into detail in this review.

B. Architectures and applications

VQAs can be applied to a wide range of fields, including
finding ground states of molecules, combinatorial optimiza-
tion, machine learning, etc. Here, we will introduce some
typical applications and their experimental progress.

1. Variational quantum eigensolver (VQE)

The VQE [62, 67] is a flagship algorithm for NISQ ap-
plications. This type of algorithms allows one to find the
ground state of a given Hamiltonian H , which may be used
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for simulating molecules and chemical reactions. Accord-
ing to the Rayliegh-Ritz variational principle [102–104], the
ground state energy E0 associated with this Hamiltonian H is
bounded by

E0 ≤
〈ψ|H|ψ〉
〈ψ|ψ〉

, (6)

where |ψ〉 is a trial quantum state. The original VQE is to
find a quantum state approximating the ground state by train-
ing a PQC, such that the expected value of the Hamiltonian is
constantly approaching the minimum. In addition to its orig-
inal purpose, VQE has been widely extended to other objec-
tives, such as finding excited states or the spectrum of Hamil-
tonian [105–111], nonequilibrium steady state [112–114], and
calculating energy derivatives [115–117]. Recently, Wei et al.
propose a full quantum eigensolver (FQE) [118] which treats
the gradient descent part in a full quantum mechanical man-
ner.

VQE has been demonstrated on various quantum architec-
tures such as superconducting qubits [46, 47, 119–125], pho-
tonic system [67, 126], and trapped ions [127–129]. These
experiments are still boil down to proof-of-principle demon-
strations on small-molecule systems, and thus further ex-
perimental efforts are required to scale up this approach
to larger molecular systems of chemical interest. Mean-
while, the algorithmic approaches also needs to be further
developed to relax the hardware limitation, such as reduc-
ing the number of qubits [69, 73, 105, 130–135] and circuit
depth [73, 136–140], error-mitigation techniques [141–143],
accelerated VQE [144], measurement-based VQE [145] and
so on.

2. Combinatorial optimization

Combinatorial optimization is a promising path to demon-
strating practical quantum advantage on near-term quantum
devices, most notably the QAOA [65, 146] for solving the
combinatorial optimization problem MaxCut. Max-Cut is
the NP-complete problem, which is defined to partition the
nodes of a graph into two distinct sets A and B that maxi-
mizes the number of edges connecting nodes in opposite sets.
It has been shown that to achieve an approximation ratio of
r ≥ 16/17 ≈ 0.9412 for Max-Cut on all graphs is NP-
Hard [147].

Mathematically, consider a graph with m edges and n ver-
tices, we can use bitstring z = z1 . . . zn to represent the as-
signment of vertices to the two sets, where zi = 0 if i-th ver-
tex is belongs to set A and zi = 1 if it belongs to the other
set B. The objective is to maximize the number of edges cut,
denoted as C(z). When implementing the QAOA to find ap-
proximate solutions to the MaxCut problem, we denote the
bitstring using computational basis states |z〉, and define the
objective function to maximize as

C(z) =

m∑
α=1

Cα(z) =

m∑
edge(j,k)

1

2
(1− σjzσkz )|z〉, (7)

where (j, k) vertices connect the α edge. Cα has the value
1 only if the j-th and k-th qubits have different measurement
results on the Z basis, representing separate partitions. The
p-layer QAOA parametered circuit is usually governed by the

problem Hamiltonian HC =
m∑

edge(j,k)

1
2 (1− σjzσkz ) and a mix-

ing Hamiltonian HM =
n∑
i=1

σix alternatively in each layer, as

U(γ,β) =
∏p

l=1
e−iβlHM e−iγlHC , (8)

where γ = (γ1, . . . , γp) and β = (β1, . . . , βp) are varia-
tional parameters. The input state of QAOA circuit is set as an
n-qubit uniform superposition state |+〉n, and the final state
ϕ(γ,β) = U(γ,β)|+〉n is measured to output the bitstring
z. We train the QAOA parametered circuit to evolve from the
initial state into the bitstring z with the maximum partition.

There has been a lot of theoretical works discussing the
performance of QAOA and evaluating the resources needed
to achieve quantum computational supremacy [57, 148–154].
In Ref. [149], Streif et al. presented a comparison between
the QAOA with competing methods, quantum annealing and
simulated annealing. Guerreschi et al. claimed that at least
several hundreds of qubits are required for QAOA to achieve
quantum speed-up [150]. Dalzell et al. concluded that 420
qubits QAOA would be sufficient for quantum computational
supremacy [152]. Furthermore, it was proven that classical
Goemans-Williamson algorithm outperforms the QAOA for
certain instances of MaxCut at any constant level [155]. How-
ever, Bravyi et al. [153] and Egger et al. [154] suggested that
higher-level Recursive-QAOA is competitive (and often bet-
ter than) to best known generic classical algorithm based on
rounding an SDP relaxation. Overall, whether QAOA has
advantages over classical algorithms, and in which issues,
is still a controversial issue that needs more research. Be-
sides, to improve the performance of the QAOA, great ef-
forts have been made, such as finding a good classical opti-
mizer [151, 156–159], ansatz design [74, 160–162], reducing
circuit depth [163, 164] and number of qubits [165, 166], and
so on.

In terms of experimental progress, QAOA has been experi-
mentally implemented in superconducting [56, 167], trapped-
ion [168], and Rydberg atom [55] platform. In particular, in
2021, Harrigan et al. realized the QAOA with up to 23 qubits
on the Google’s Sycamore superconducting quantum proces-
sor [56]. Ebadi et al. experimentally investigated quantum
algorithms for solving the maximum independent set problem
using Rydberg atom arrays with up to 289 qubits in two spatial
dimensions [55].

3. Machine learning

Nowadays, artificial intelligence and machine learning have
become an integral part of modern life. As quantum com-
puting promises to enhance our capacity to do some crucial
computational tasks, it is natural to look for linkages between
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these two cutting-edge techniques in the goal of gaining a va-
riety of advantages. In fact, VQAs can be seen as quantum
analogs of classical neural networks, and thus can easily be
used for various machine learning tasks, such as classification
and generative models.

QCNN. Convolutional neural networks (CNNs) stand out
from other neural networks for their outstanding capabilities
in computer vision [169–172], and natural language process-
ing [173–178]. A CNN usually consists of three main types
of layers: 1) convolutional layer, 2) pooling layer, and 3)
fully-connected layer, where convolutional layers use filters
that perform convolution operations on the input, and pooling
layers are a type of downsampling operation.

Inspired by CNNs, Cong et al. proposed a quantum con-
volutional neural network (QCNN), and showed its ability to
solve quantum many-body problems [48]. In the QCNN ar-
chitecture, the convolutional and pooling layers, as well as
the fully-connected layer, are designed as quantum circuits,
although their actual functions do not correspond exactly to
the classical ones. The analysis by Pesah et al. implied that
QCNNs do not exhibit barren plateaus [179], which are im-
portant for trainability as the system scales. The QCNN has
been realized on a 7-qubit superconducting quantum proces-
sor to identify symmetry-protected topological phases of a
spin model [180]. QCNN is more suitable for quantum prob-
lems, in contrast, the hybrid quantum-classical convolutional
neural network (QCCNN) [50] is specially proposed for real-
world problems. The central idea of QCCNN is to implement
the feature map in the convolutional layer with a PQC, while
other layers remain the classical operation. Such a design not
only introduces a quantum-enhanced feature map, but also
preserves important features of classical CNN, such as non-
linearity and scalability. Numerical experiments on the Tetris
dataset show that QCCNN can accomplish classification tasks
with learning accuracy surpassing that of classical CNN with
the same structure. Besides, Wei et al. proposed a QCNN
framework based on LCU [181, 182] that can transform CNN
to QCNN directly [183].

Quantum GAN. Generative adversarial networks (GANs)
are at the forefront of the generative learning and have been
widely used for image processing, video processing, and
molecule development [184]. GANs exploit a two-player
minimax game between a generator and a discriminator,
where generator aims to output the generated data to fool dis-
criminator, and meanwhile, discriminator tries to distinguish
the true example from generator.

Recently, theoretical works show that quantum generative
models may exhibit an exponential advantage over classical
counterparts [52, 185, 186], arousing extensive research inter-
est in the theory and experiment of quantum GANs [54, 187–
195]. In particular, Huang et al. developed a resource-efficient
quantum GAN, and for the first time accomplished the gen-
erative task of real-world handwritten digit image on a su-
perconducting quantum processor [53]. Being able to han-
dle real-world data generation tasks is an exciting thing for
an “infant” quantum computer. Subsequently, Rudolph et
al. provided an experimental implementation of generating
more high-resolution images of handwritten digits with quan-

tum GAN on an ion-trap quantum computer [54]. Niu et al.
showed that by learning a shallow quantum circuit to gener-
ate a superposition of classical data, their proposed entangling
quantum GAN can be used to create an approximate quantum
random access memory (QRAM) [193].

Quantum kernel estimation. Quantum Kernel estimation
is a common method for supervised learning classification
task on the NISQ device. In Ref. [196], Schuld et al. in-
terpreted the process of encoding classical information into a
quantum state as a nonlinear feature map which assigns data
to the Hilbert space of the quantum system, and then proposed
to use a variational quantum circuit to process the feature vec-
tors. Havlı́ček et al. proposed and experimentally imple-
mented binary classifiers that use the quantum state space as
feature space on a superconducting processor [49], providing
a possible path to quantum advantage.

Quantum auto-encoder. Quantum auto-encoder (QAE)
is an efficient VQA for quantum data compression. QAE
starts from a large-scale quantum state ρAB , utilizes a PQC
U(θ) to encode ρAB into the A subsystem (latent space), and
then recovers the initial state ρAB from this compressed state
with high fidelity via a decoder constructed by another PQC
V (θ′). Usually V is set as V (θ′) = U(θ)†. QAE has re-
cently attracted great attentions [197–202], and its experimen-
tal implementations have been carried out on linear optical
systems [203, 204] and superconducting systems [205].

4. Cryptanalysis

Shor’s integer factorization algorithm is considered to be
one of the most influential algorithms that shape the research
interest in quantum computing today. However, implementing
Shor’s algorithm requires a fault-tolerant quantum computer,
which is far from attainable. Variational Quantum Factoring
(VQF) algorithm is heuristic alternative to Shor’s algorithm
suitable for NISQ devices [206]. It works by reducing the fac-
toring problem to the ground state of the Ising Hamiltonian,
which can then be found using VQA. Karamlou et al. reported
a experimental demonstrations of VQF using a superconduct-
ing quantum processor [207], the integers 1099551473989,
3127, and 6557 are factored with 3, 4, and 5 qubits, respec-
tively. Besides, the performance and resource analysis of VQF
are presented in Refs. [208, 209].

In addition to the factoring task, VQAs can also be used
to attack advanced encryption standard (AES)-like symmet-
ric cryptography [210]. In their simulation results, sometimes
the variational quantum attack algorithm is even faster than
Grover’s algorithm. Moreover, Coyle et al. proposed crypt-
analysis algorithm based on variational quantum cloning (Var-
Qlone), which allows an adversary to obtain optimal approxi-
mate cloning strategies for unknown quantum states with shal-
low quantum circuits [211].
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5. Mathematical applications

Numerical solvers such as solving linear systems, non-
linear differential equations, etc, have a very wide range of
engineering application scenarios. Several classical-quantum
hybrid algorithms derived from VQAs make it possible for
near-term quantum devices to solve large-scale numerical
problems without the use of fault-tolerant quantum comput-
ing.

Variational quantum linear solver. Solving systems of
linear equations is a fundamental computational problem, and
the vast majority of numerical problems in science and engi-
neering boil down to solving systems of linear equations. Un-
like the Harrow-Hassidim-Lloyd (HHL) algorithm [212], the
variational quantum linear solver (VQLS) proposed by Bravo-
Prieto et al. can run on near-term quantum computers [213].
By employing a hybrid quantum-classical algorithm, the goal
of VQLS is to variationally prepare |x〉 such that A|x〉 ∝ |b〉.
The numerical simulations give the evidence that the run time
of VQLS has linear scaling in κ, logarithmic scaling in 1/ε,
and polylogarithmic scaling in N , where κ is the condition
number of a N × N matrix A, and ε is the precision of the
solution. In the same period, Huang et al. [214] and Xu et
al. [215] independently proposed similar quantum algorithms.

Solving nonlinear differential equations. Differential
equations are ubiquitous in various fields of science and engi-
neering. Lubasch et al. first extended the concept of VQAs to
introduce nonlinearity for solving nonlinear problems [216],
such as the nonlinear Schrödinger equation. Subsequently,
several approaches to solve the nonlinear differential equation
using the VQAs were proposed [217–220], and the applica-
tion to computational fluid dynamics was studied [221].

6. Many-body physics

It is more natural to use quantum circuits to process quan-
tum data than to process classical data, because it avoids the
input and output problems of classical-quantum data conver-
sion. VQAs enable us to realize the simulation of many-body
dynamics [222, 223], as well as identifying many-body phase
transition [58, 180, 224, 225]. In particular, Gong et al. pro-
posed a quantum neuronal sensing based on digital-analog
variational quantum circuit, and exprimentally realized this
scheme to classify the ergodic and localized phases of matter
on a 61 qubit superconducting quantum processor [58]. This
experiment demonstrates the experimental feasibility of large-
scale VQAs, and opens new avenues for exploring quantum
many-body phenomena in larger-scale systems.

We noticed that the application fields of VQAs are far more
than those listed above. It can also be applied to finding
quantum error-correcting codes [226], entanglement purifi-
cation [227], amplitude estimation [228], variational Infer-
ence [229], etc., and we will not introduce them one by one.

C. Opportunities and Challenges

Due to their wide applications and noise resistance to NISQ
devices, VQAs have a huge potential to achieve quantum ad-
vantages for practically interesting problems. Over the past
few years, VQAs have received unprecedented attention, and
papers related to VQAs appear on the arXiv website almost
every day. The following points deserve our attention in
advancing VQAs into future industrial applications or truly
meaningful scientific research.

Where is the main advantage? Although VQAs have
been hotly researched for several years, this core question has
never been well answered. Perhaps using VQAs to handle
quantum problems is a natural advantage [58], since either
simulating quantum systems or measuring quantum systems
using classical methods would be exponentially resource-
intensive. However, for real-world problems, it becomes very
tricky to answer why we need VQAs. Does it offer speed or
accuracy advantages over classical neural networks? Maybe
we can try to answer this question in two ways: 1) Find
the provable advantages of VQAs theoretically. This should
be difficult, since today’s machine learning algorithms are
still theoretically difficult to study; 2) Experimentally achieve
milestones that beat current state-of-the-art classical machine
learning in terms of speed or accuracy on large-scale practical
datasets (rather than toy models). Either way, it will take a
huge effort.

I/O problems for real-world data. To fully exploit the
superposition properties of quantum systems, we actually
want the classical data to be encoded into the amplitude
of quantum system. However, this is extremely resource-
intensive, whether using QRAM [230] or pure quantum cir-
cuits [231, 232]. Thus, for real-world applications, perhaps
we need to find some specfic classical problems suitable for
quantum computing. For example, the input to this classical
problem has a certain sparsity or symmetry, which is con-
ducive to being encoded as a quantum state. For the out-
put, in general we need to avoid the exponential consumption
caused by a large number of measurements, which requires us
to extract and analyze only part of the information of the out-
put quantum state, such as the expected value of observables,
principal component analysis [233], etc.

Trainability and training efficiency. Avoiding barren
plateaus is now an important area of research, as barren
plateaus in training landscapes will appear if care is not taken
enough. Some results suggest that the exponential parameter
space, the noise and decoherence, and even entanglement can
induce barren plateaus [234–237]. At present, some methods
have discussed how to mitigate barren plateaus [63, 238–241],
and more research is still needed.

One of the weaknesses of quantum computers compared
to classical computers is quantum noise, which also greatly
affects the training performance. Generally, the resillience
of VQAs exists for a wide class of noise, as analyzed in
Refs. [62, 242, 243]. Yet such noise resillience is highly lim-
ited as the noise level rising. As suggested in Refs. [235, 244–
247], large noise may leads to problems such as performance
degradation or barren plateaus. Some special noises, such as
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leakage error, also have a bad effect on the performance of
VQAs [248]. Thus, the analysis of iteration complexity and
behaviour with noise is necessary [237], and efficient error
mitigation schemes for VQAs need to be developed [249–
252].

Besides, the training process of VQA is very time-
consuming, due to the incompatibility with backpropagation
and the cost of a large number of measurements, posing
a great challenge to the large-scale development of VQAs.
Some approaches try to use multiple QPUs for parallel train-
ing to alleviate this deficiency, such as data parallelism [253]
or parameter parallelism [254]. However, more fundamental
solutions are urgently needed.

Hardware development. For practical NISQ applications,
high-quality quantum processors with more qubits, longer co-
herence times and lower error rates are prerequisites. For
VQAs, iterative training requires frequent interaction between
classical and quantum computers, which imposes some new
demands on the quantum hardware. The cryogenic electronic
control architecture is a hardware-level solution for acceler-
ating classical-quantum interactions [255–259], and also an
advanced technique required for the future development of
quantum computing.

III. QUANTUM ERROR MITIGATION

In the context of current NISQ devices, the impact of noise
remains the greatest challenge for the practical applications
[6]. Although quantum error correction (QEC) promises to
enable quantum computation with arbitrary levels of noise, it
is out of reach for near-term quantum processors. Quantum er-
ror mitigation (QEM) provides us a feasible alternative to mit-
igate errors of near-term quantum processors, and is also the
continuous path that will take us from today’s quantum hard-
ware to tomorrow’s fault-tolerant quantum computers. Instead
of active error-correction, QEM methods usually estimate the
error-free expectation value by classical post-processing of the
noisy measurement results. While it introduces the additional
sampling overhead caused by the increase in the variance of
the mitigated observable, QEM requires fewer qubits and gate
resources and is therefore more suitable for practical NISQ
devices. In recent years, a wide variety of QEM methods have
been proposed [35, 141, 142, 260–263], and we will discuss
some typical QEM techniques in the following subsections.

A. Probabilistic error cancellation

We first introduce probabilistic error cancellation
(PEC) [141, 264]. The key idea of PEC is to apply the
quasi-probability decomposition of the inverse noise process,
leading to a linear combination of a set of noisy circuits. The
implementation of PEC requires the full knowledge of the
noise model in the target circuit and is usually combined with
characterization of the noise process. The PEC method was
first introduced by Temme et al. [264] and further detailed for
a practical scheme by Endo et al. [141]. It has been shown

to mitigate Markovian noise [141] and has been further
generalized to the non-Markovian noise [265]. And it was
experimentally demonstrated on superconducting [266] and
trapped ion [267] quantum computers.

1. Standard PEC with discrete gate-based circuits

Quasi-probability decomposition of inverse noise model.
Suppose we have a noisy quantum gate E ◦U contaminated by
a noise channel E , where U(ρ) = UρU† denotes the noiseless
gate with the ideal operator U and the initial quantum state ρ.
With approaches to accurately characterize the noise channel
E , we can have the mathematical form of the inverse noise
channel E−1, and then apply E−1 after the noisy gate E ◦ U
to recover the ideal gate U = E−1 ◦ E ◦ U . Since the inverse
noise channel E−1 may be unphysical, we need a set of basis
operations {Bk}k to decompose it as

E−1 =
∑
k

qkBk, (9)

where qk is the the combination coefficients, i.e., quasi-
probabilities. So we can estimate the noiseless expectation
value of the observableO using a linear combination of results
obtained from circuits applied by different basis operations

〈O〉PEC =
∑
k

qkTr[Bk ◦ E ◦ U(ρ)]

=QE
∑
k

sgn(qk)
|qk|
QE

Tr[Bk ◦ E ◦ U(ρ)],
(10)

where QE =
∑
k |qk|. Given above quasi-probability de-

composition, we can use the Monte Carlo sampling to ran-
domly apply the basis operation set {Bk}k with the quasi-
probability distribution { |qk|QE

}. Then we multiply the mea-
surement outcome by the corresponding sgn(qk) and weight
the Monte Carlo average by QE . For the general circuit com-
posed of a N -gate sequences U =

∏N
n=1 Un, we can just find

the quasi-probability decomposition for noise process En as-
sociated with each gate

E−1
n =

∑
kn

qknBkn = Qn
∑
kn

sgn(qkn)
|qkn |
Qn
Bkn , (11)

in which Qn =
∑
k |qnk |.

Then we can obtain the error mitigated value in a similar
way

〈O〉PEC =Tr

[
N∏
n

(∑
kn

qknBkn ◦ En ◦ Un

)
(ρ)

]

=QE
∑
~k

sgn(q~k)
|q~k|
QE

Tr

[
N∏
n=1

(Bkn ◦ En ◦ U) (ρ)

]
,

(12)
with ~k = (k1, k2, ..., kN ) for q~k =

∏N
n=1 qkn and QE =∏N

n=1Qn.
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FIG. 3. Summary of popular Quantum Error Mitigation(QEM) methods. Probabilistic error cancellation estimates the noiseless expec-
tation value using a linear combination of expectation values with different noise terms, which is based on the quasi-decomposition. The
data-driven approaches including Zero-noise extrapolation and learning-based methods collect expectation values of circuits with different er-
ror rates, or circuits with similar structure. Purification-based error mitigation schemes use multiple (M ) copies of the noisy state and estimate
Tr(ρMO)

Tr(ρM )
using collective measurements. Verification methods are designed for systems with certain symmetries and combined with classi-

cal post-processing. Quantum subspace expansion also uses post-processing to mitigate errors for some VQE algorithms. Other mitigation
methods for certain noise types, such as measurement error mitigation (for measurement errors) are also widely applied.

Sampling overhead. Note that the total resource over-
head for PEC involves both the characterization cost of the
noise channel, and the sampling overhead to estimate the lin-
ear combinations in Eq 10. Considering that the gate noise
characterization is usually performed during the device cali-
bration stage [268], we here focus on the sampling overhead
for the implementation of PEC.

As for the factor QE multiplied with the averaged expecta-
tion value, the variance is increased by Q2

E = (
∏N
n=1Qn)2.

Therefore, it needs Q2
E times more samples to achieve the

same measurement accuracy as the unmitigated case. The
square of the multiplier Q2

E can be regarded as the sampling
overhead ΥPEC for PEC, which grows exponentially with the
overall gate error εN if we assume Qn = 1 + O(ε) for
stochastic noise process [141]. This sets limitations on the

efficiency of PEC schemes to εN = O(1). Moreover, the the-
oretical analysis of the sample complexity for implementing
PEC has been explored [269, 270] and it has been shown the
optimality of PEC among all strategies in mitigating a certain
type of noise [270].

Approaches to extract error parameters. To implement
the PEC in practice, we need to accurately characterize the
noise model E and obtain the analytical decomposition of the
inverse noise map as Eq. 9 shown.

Gate set tomography. Endo et al. [141] has introduced gate
set tomography (GST) [271, 272] to PEC, which is free from
the SPAM errors. Although GST can reconstruct arbitrary
noise process, the number of samples required for its recon-
struction grows exponentially with the size of the system Nq
and is quite costly. If only specific types of noise are con-
sidered, there are some more efficient characterization proto-
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cols [273–275].
Cycle error reconstruction for Pauli noise. Cycle error re-

construction (CER) is an efficient approach to identify the
Pauli noise in circuits [276, 277]. It utilizes Cycle Bench-
marking [278] to characterize the Pauli noise channel and ex-
tract the Pauli error rates after post-processing. The imple-
mentation of PEC with CER has been shown on a 4-qubit
superconducting processor [279]. Under the Pauli noise as-
sumption, the quasi-probability decomposition can be further
simplified using sparse Pauli-Lindblad models [280]. The
sparse Pauli noise model considers Pauli operators with only
one or two non-trivial terms, but is sufficient to capture the
correlated errors. Moreover, the number of noise parameters
in the sparse model scales polynomially with the system size,
so it remains efficient in large-scale quantum systems. This
approach has been experimentally demonstrated to learn the
noise model on a superconducting quantum processor of up to
20 qubits [280].

2. PEC with continuous time evolutions

The standard PEC scheme we discussed above is based
on the discrete gate-based quantum circuits with the gate-
independent Markovian noise. To overcome this limitation,
the stochastic QEM method [281] is proposed to extend the
standard PEC to more general scenarios that may have strong
gate-dependence and complicated nonlocal effects, and gen-
eral computing models such as analog quantum simulators.

Specifically, the time evolution of a noisy quantum system
can be described by the Lindblad master equation as

∂ρ(t)

∂t
= −i[Hnoisy(t), ρ(t)] + λL[ρ(t)],

L(ρ) =
∑
i

(2LiρL
†
i − L

†
iLiρ− ρL

†
iLi)

(13)

where Hnoisy = H + δH0 (H is the ideal evolution Hamilto-
nian, H0 denotes the coherent errors), and L(ρ) is the noise
Lindblad operator corresponding to the decoherent coupling
with the environment with noise strength λ. We denote the
ideal and noisy process by EI and EN respectively. Given a
small time step δt with a time interval δ, both the ideal and
noisy case of the evolution can be written as

ρi(t+ δ) = Ei(t)ρi(t), (14)

with i = I,N . Similar to the idea of PEC in Eq. 9, we can
find a recovery process EQ satisfying

EI = EQEN +O(δt2) ≈ EQEN ,

EQ =
∑
k

qkBk = Q
∑
k

sgn(qi)
|qi|
Q
,

(15)

with Q =
∑
k |qk|. Given the full evolution time T , we

can apply the Monte Carlo sampling to realize the continu-
ous recovery EQ with a time interval δ at the mitigation cost
of ΥSEM = Q

T
δt [142, 281].

B. Data-driven approaches

We now introduce the data-driven approaches for error mit-
igation, including zero noise extrapolation (ZNE) and error
mitigation with learning process such as Clifford data regres-
sion (CDR). These methods utilize different types of data from
circuits with various error rates (e.g., ZNE), or from near-
Clifford circuits under similar circuit structure (e.g., CDR),
and they can be naturally combined with each other to better
utilize data resources [282, 283].

1. Zero-Noise Extrapolation

ZNE is a typical error mitigation scheme using classi-
cal post-processing. It uses data collected at different er-
ror rates to fit the function of expectation values with re-
spect to the error rates, and then extrapolate to the zero noise
limit [141, 262–264, 282, 284, 285].

Fitting methods of ZNE. The chosen fitting method is es-
sential to the performance of ZNE. A basic fitting method
is the Richardson extrapolation, which utilizes the polyno-
mial relationship between noisy and ideal expectation values
yielded by Tailor expansion when the error rate is low. This
estimation is slightly coarse. More refined models, such as
exponential and poly-exponential fitting functions, can be in-
troduced in the extrapolation method to improve the actual
mitigation performance in specific cases. We discuss these
fitting methods in detail.

Richardson extrapolation. Richardson extrapolation was
the first introduced extrapolation method [263, 264] and
later experimentally demonstrated using superconducting
qubits [120].

Suppose the quantum circuit outputs a noisy Nq-qubit
quantum state ρε, where ε denotes the noise parameter which
characterizes the error rate in the circuit. Then the expecta-
tion value of the target observable O under error rate ε can
be regarded as a function towards ε: 〈O〉(ε) = Tr(ρεO). In
order to evaluate the error-free expectation value 〈O〉(0), we
choose a set of error rates {λ0ε, ..., λnε} with n + 1 differ-
ent coefficients {λi}i=0,...,n(λ0 = 1) , and then run circuits
under these error rates to obtain the set of n + 1 expectation
values {〈O〉(λiε)}i. It is known to be difficult to reduce the
error rate in the circuit, we thus usually boost it with ampli-
fied coefficients 1 = λ0 < λ1 < ... < λn using some noise
scaling methods. Linear spacing of the amplified coefficients
(e.g. {λi = i + 1}i=0,...,n) is commonly used [264, 268] and
some specific spacing methods have been explored for better
performance [286].

The expectation value for λ = 0 (the error-free case) can be
estimated using

〈O〉Rid =

n∑
i=0

γi〈O〉(λiε), (16)

where the fitting coefficients {γi} are chosen to satisfy both∑n
i=0 γi = 1 and

∑n
i=0 γiλ

j
i = 0 for j = 1, ..., n, and the
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solution gives

γi =
∏
i 6=j

λj
λj − λi

. (17)

If the error rate ε is sufficiently low, we can expand the
function 〈O〉(ε) according to the Taylor expansion

〈O〉(ε) = 〈O〉(0) +

n∑
j=1

ajε
j +O(εn+1) (18)

with some constant coefficients aj . Then the Richardson mit-
igated value 〈O〉Rid can be rewritten using Eq. 16 and 18

〈O〉Rid =

n∑
i=0

γi

〈O〉(0) +

n∑
j=1

ajλ
jεj +O(εn+1)


= 〈O〉(0) +

n∑
j=1

(
n∑
i=0

γiλ
j
i

)
εj +O(εn+1)

= 〈O〉(0) +O(εn+1),

Here we use
∑n
i=0 γi = 1 and

∑n
i=0 γiλ

j
i = 0 for j =

1, ..., n. We can see that the error rate is suppressed from the
original ε to the orderO(εn+1), under the weak noise assump-
tion. However, the assumption of a valid Taylor expansion for
low error rate may be inaccurate in the large circuit limit, and
the lack of specific information on the noise channel sets lim-
itation to the efficacy of Richardson extrapolation.

As for the sampling overhead of Richardson extrapolation,
we need to take into account the variance increase introduced
in Eq. 16, which reads [142]

Var(〈O〉Rid) =

n∑
i=0

γ2
i Var(〈O〉λiε). (19)

The variance of estimating 〈O〉Rid is about
∑n
i=0 γ

2
i larger

than evaluating 〈O〉 without error mitigation, so it requires
around ΥRid =

∑n
i=0 γ

2
i more samples as the sampling over-

head of Richardson extrapolation.
Besides, an optimized protocol [286] for the implementa-

tion of Richardson extrapolation has been proposed to further
explore the relevant parameters of Richardson extrapolation.

Exponential Extrapolation. The error rate ε used in
Richardson extrapolation quantifies the local noise strength,
but in the context of NISQ error mitigation, it is more nat-
ural to consider the mean circuit error count [262] µ, where
µ ≈ Nε and N denotes the number of gates in the circuit.
In the large circuit limit when N � 1, the number of errors
happened in the circuit (denoted by k) follows the Poisson
distribution with probability [262]

pk = e−µ
µk

k!
. (20)

Denoting the expectation value with k errors occurred as
〈Ok〉, the expectation value with mean circuit error count µ
is

〈Oµ〉 =

∞∑
k=0

pk〈Ok〉 = e−µ
∞∑
k=0

µk

k!
〈Ok〉, (21)

where the factor e−µ implies an exponential decay with µ of
the expectation value. By simply assuming an exponential
function

〈O〉(µ) = e−fµ〈O〉(0) (22)

with a parameter f which denotes the observable decay rate,
we can then obtain an two-points exponential extrapolation
result with mean circuit error count µ and λµ (λ > 1)

〈O〉exp =

(
〈O〉λ(µ)

〈O〉(λµ)

) 1
λ−1

, (23)

Endo et al. [141] first considered the exponential decay
curve for error extrapolation, where the advantage of expo-
nential extrapolation over Richardson extrapolation has been
numerically demonstrated [141, 284]. And Cai [262] provided
a general multi-exponential extrapolation framework

〈O〉(µ) =
∑
i=1

Ai(e
−fi)µ, and

∑
i=1

Ai = 〈O〉(0), (24)

which achieves a much lower estimation bias in numerical
simulation.

Poly-exponential extrapolation. The poly-exponential ex-
trapolation [284, 287] assumes a more general model that the
exponential decay with the mean circuit error count µ has a
polynomial expansion which can be fitted to the function

〈O〉(µ) = e
∑
i=0 fiµ

i

〈O〉(0). (25)

Then the single-exponential extrapolation modeled by Eq. 22
is a particular case of the more general poly-exponential ex-
trapolation.

Noise scaling methods. The implementation of ZNE, espe-
cially Richardson extrapolation, depends non-trivially on the
ability to boost the error rate ε in the circuit by different ampli-
fied coefficients{λi}i [286]. Next we will introduce a variety
of methods to amplify the error rate in a controlled manner.

Identity insertion [141, 288] is a hardware-agnostic ap-
proach which replaces a particular gate or layer C by C{C†C}n
for non-negative integer n. The circuit after insertion is
logically equivalent to the original circuit but the error rate
is amplified by a factor 2n + 1 as the circuit depth in-
creases. There are many variant identity insertion methods
proposed [289, 290] for ZNE, which explore the trade-off be-
tween the inserted gate number and the required measurement
to achieve the same (or higher) accuracy. And more gen-
eral approaches using unitary folding can obtain an arbitrary
real scaling factor [284]. The limitation of identify insertion
method is that the amplified error rate may arbitrarily deviate
from the desired one [291]. Given a self-adjoint noisy gate
Ũ = E ◦ U , after identity insertion of Ũ†Ũ = Ũ Ũ we have
Ũ Ũ†Ũ = E(UEU)E ◦U = Ẽ ◦U . The actually amplified noise
Ẽ = E(UEU)E is gate-dependent for general noise channel E ,
leading to an unpredictable amplified error rate in the circuit.

Stretching the control pulses in time [120, 264, 291] is also
used to implement circuits under different error rate. Given an
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open quantum system described by the time-dependent multi-
qubit Hamiltonian H(t), the time evolution is

∂

∂t
ρε(t) = −i[H(t), ρε(t)] + εL(ρε(t)), (26)

where ε refers to the error rate in the system, and the noise
term L is a Lindblad operator. Then we rescale the Hamil-
tonian H(t) to 1

λH( tλ ) with a stretched factor λ > 1 and
obtain a new state ρ′ε(t). Under the assumption that the gen-
erator L is invariant after time rescaling, and also independent
from the way the Hamiltonian H(t) is encoded, we can in-
crease the evolution time by a factor λ. Then the error rate
is boosted from ε to λε according to ρ′ε(ct) = ρλε(t). This
method has been experimentally demonstrated on supercon-
ducting processors [120, 291] using up to 26 qubits [291].

Note that two methods above do not require the exact form
of the noise channel, and there are some approaches that uti-
lize the specific structure of certain noise models. Parameter
noise scaling [284] is designed for the pulse error caused by
imperfect control or finite precision of the physical parameters
in the parametric quantum gates. Considering a quantum gate
G(~θ) = exp(−i

∑k
j=1 θjHj) which is parameterized by k

classical control parameters ~θ = (θ1, θ2, ..., θk) with Hamilto-
nian operators H1, H2, ...,Hk, the actually implemented gate
suffered from pulse error is modeled by G(~θ′) with

θ
′

j = θj + ε̂j , for j = 1, 2, ..., k, (27)

where ε̂ is a random variable following Gaussian distribution
with zero mean and variance σ2

j which denotes the effect of
the stochastic calibration noise. Given the value of variance
σ2
j , we can rescale the noise by a factor λ > 1 using

θrej = θj + δ̂j , (28)

here the δ̂j is sampled from a zero-mean Gaussian distribution
with variance (λ − 1)σ2

j . Therefore, the effective parameter
after rescaling is

θ
′

j = θj +
√
λε̂j , for j = 1, 2, ..., k, (29)

which achieves a noise rescaling by a factor λ without knowl-
edge of the Hamiltonian operators Hj .

Pauli twirling techniques [292, 293] focus on the cases that
error rates of single-qubit gates are much lower than those
of two-qubit gates and measurement. By applying randomly
chosen Pauli gates before and after the Clifford two-qubit
gates, arbitrary noise channel can be converted into an effec-
tive stochastic Pauli channel [276, 277]. Then we can use
additional Pauli gates to tune the practical error rate to any
target value [263], but it requires the full knowledge of the ex-
act Pauli noise channel. We can also combine efficient Pauli
error reconstruction methods such as Cycle Error Reconstruc-
tion [277, 278] to amplify the error rate for ZNE [279].

Gate Trotterization [294] is a local noise scaling technique
acting at the level of individual gates. We can replace each
gate U of the circuit with the product of λ equal gates using
the gate Trotterization technique

U → (U
1
λ )λ, λ = 0, 1, 2... . (30)

However, the way the U
1
λ is compiled by the hardware de-

pends on λ, so the circuit depth may not increase by the ex-
pected factor.

Leveraging other error mitigation schemes as a noise scal-
ing tool has also been explored for ZNE [262, 295]. Different
from above tuning approaches which produces boosted error
rate, we can also utilize other error mitigation methods such
as PEC to reduce the error rate [262].

2. Multi-dimensional variant of ZNE

Least square fitting [296] may be regarded as a multi-
dimensional version but not reliant on the Richardson extrap-
olation. It utilizes a hypersurface fit where one axis refers to
the measurement results and the other axes describe the ef-
fect of difference noise parameters. The least square fitting
method has been experimentally demonstrated on Rigetti’s 8-
qubit quantum processor [296].

Considering only one noise parameter ε with k different
noise level ε1, ε2, ..., εk, the polynomial model up to n order
in Eq. 18 can be generalized to a linear equation

1 ε1 · · · εn1
1 ε2 · · · εn2
...

...
. . .

...
1 εk · · · εnk



〈O〉(0)
α1

...
αn

 =


〈O〉(ε1)
〈O〉(ε2)

...
〈O〉(εk)

 . (31)

We can solve this linear equation using standard least-
squares methods and obtain the expansion parameters(
〈O〉(0), α1, · · · , αn

)T
, where 〈O〉(0) is the error-free

expectation value of the observable.
Then we can extend the consideration of one noise param-

eter to the multiple noise parameters. Take the spontaneous
emission rate γ and the pure dephasing rate ζ for example,
suppose we have k different noise level for both γ and ζ which
are denoted by {γ1, γ2, ..., γk} and {ζ1, ζ2, ..., ζk}, respec-
tively. The linear equation in Eq. 31 turns to

1 γ1 ζ1 γ1ζ1 (γ1)2 (ζ1)2

1 γ2 ζ2 γ2ζ2 (γ2)2 (ζ2)2

...
...

. . .
...

1 γk ζk γkζk (γk)2 (ζk)2



〈O〉(0)
α1

...
α5

 =


〈O〉(γ1, ζ1)
〈O〉(γ2, ζ2)

...
〈O〉(γk, ζk)

 .

(32)
Here we truncate the series to the second order of γ and ζ.

3. Error mitigation with learning process

Instead of using the exact knowledge of the noise channel
(such as PEC) or the expectation values at different error rates
(like ZNE), the learning-based error mitigation optimizes the
estimator of the observable’s expectation value using automat-
ical learning process [297–304]. Specifically, the learning-
based error mitigation methods estimate the observable’s ex-
pectation value of the targeted circuit using an ansatz that typ-
ically describes the relationship between the noisy and noise-
less case of the expectation value. The training set fed into the
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ansatz comes from classically simulable quantum circuits, or
measurement results from relevant quantum circuits.

Clifford data regression [297] generates training data
set {Onoisy

i , Oideal
i }i composed of the noisy expectation value

Onoisy
i from real quantum devices and the noiseless expecta-

tion value Oideal
i simulated on the classical computers. To

enable efficient classical simulation, the quantum circuits for
generating training set are replaced with near-Clifford circuits
generated by Markov Chain Monte Carlo sampling method.
We can fit the training data set to a linear ansatz

Oideal = f(Onoisy, ~θ) = θ1O
noisy + θ2, (33)

where the parameters ~θ = (θ1, θ2) are optimized by minimiz-
ing the cost function

C =
∑
i

(
Oideal
i − (θ1O

noisy
i + θ2)

)2

. (34)

CDR has been experimentally demonstrated on a 16-
qubit IBMQ quantum computer and can achieve an order-
of-magnitude improvement for a ground state energy prob-
lem [297], and it also been shown to has the potential to out-
perform other state-of-the-art approaches [283]. CDR can be
further improved by more efficient training set construction
methods and by applying symmetries in certain quantum sys-
tems [305].

Learning-based probabilistic error cancellation [298]
does not depend on the full tomography of the noise
channel as the original PEC does. For a L-layer quan-
tum circuit consisting of single-qubit unitary gates R =
(R1, R2..., RNq(L+1)) and multi-qubits Clifford gate layers
U = (U1, U2, ..., UL), the learning-based PEC applies the
Pauli gates P = (P1, P2, ..., P2Nq(L+1)) as the error miti-
gating gates before and after each single-qubit unitary gates.
It can then establish a circuit configuration where the multi-
qubit Clifford gates are fixed, the other gates (R and P) are
served as variables, and P = I indicates that all error mit-
igating gates are identity gates. Here we denote the noisy
and error-free expectation value by f(R,P) and f ef(R,P).
According to the PEC, the error-mitigated expectation value
f em(R, I) is

f em(R, I) =
∑
R

q(P)f(R,P), (35)

where q(P) is the the combination coefficients, i.e.,
quasiprobabilities. By minimizing the cost function,

C(R) =
1

|S|
∑
R∈S
|f em(R, I)− f ef(R, I)|2, (36)

where a subset of single-qubit Clifford gates S is chosen as the
training set so that the error-free expectation value f ef(R, I)
can be efficiently simulated, we can obtain a optimal distribu-
tion q(P) for the training set S which can also be applied for
the non-Clifford single-qubit gates. This scheme requires that
all the single-qubit gates in the configuration are error-free and

do not rely on the exact error model of the multi-qubit Clif-
ford gates. For practical reasons, since the spaces of R and P
grow exponentially with the system size Nq , we need to trun-
cate the spaces of the training set and error mitigating gates,
or resort to variational optimization approaches [298].

Deep learning method [299, 300, 306] trains a deep neu-
ral network to model a noise channel utilizing the ”black box”
nature of the neural network. The training of the neural net-
work requires the measurement results with both noise and
ideal cases. However, since classical simulations may not
be possible for large-scale non-Clifford quantum circuits, the
training set can only consist of measurement results of spe-
cific quantum circuits whose ideal measurement outcomes are
known [299, 306].

C. Measurement error mitigation

Measurement (or readout) error mitigation (MEM) schemes
are designed to improve the accuracy of the measurement re-
sults obtained from noisy quantum devices.

1. MEM under classical noise assumption

Under the assumption of a classical noise model, MEM is
usually applied via classical post-processing, where measure-
ment error is modeled by a stochastic and invertible response
matrix Λ [307–309].

Classical noise models. The ideal quantum measurement
in the computational basis can be written in terms of positive
operator valued measurement (POVM). For a n-qubit system
ρ, suppose the POVM operator is Πx = |x〉〈x| satisfying
Πx ≥ 0 for ∀x and

∑
xΠx = I, where x ∈ ZNq2 refers

to the POVM outcome. The probability distribution of the
measurement outcome is represented by a vector ~p, where the
x term of ~p is the probability of obtaining the outcome x,
given by p(x|ρ) = Tr(ρΠx) according to the Born’s rule.

If the POVM elements have no non-trivial off-diagonal
terms, we can treat the measurement noise channel as a clas-
sical noise channel, where the transformation between ideal
and noisy measurement probability distributions can be writ-
ten using a response matrix Λ:

~pideal = Λ−1~pnoisy. (37)

Here we use ~pideal and ~pnoisy to represent the ideal and noisy
probability distributions. And the element Λx,y of the re-
sponse matrix Λ is defined as

Λx,y = 〈x|ρ|y〉, x,y ∈ ZNq2 , (38)

which can be estimated directly by preparing the computa-
tional state and measuring it in the computational bases, or
by using some tomographic means, such as quantum detector
tomography (QDT) [307, 310, 311]. The main idea of QDT
is to estimate an unknown set of fixed noisy POVM opera-
tors {Π̂x}x with a set of well-known states {ρi}i. Once the
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noisy POVM operators are reconstructed, we can extract the
response matrix elements using

Π̂x =
∑
y

Λx,yΠy, ∀x, (39)

where Πy denotes the error-free POVM operator.
In practice, however, for non-classical noise, the estimated

measurement probability distribution obtained from ~pest =
Λ−1~pnoisy may be unphysical due to the negative terms of
the vector ~pest. Moreover, the statistical uncertainties in the
response matirx can be amplified through simply inversion,
similar to the challenges faced in high-energy physics. Un-
folding methods are thus introduced to readout error mitiga-
tion [312, 313], which show robustness to some failure cases
of matrix inversion and least-squares.

Simplified classical models. Dealing with the full response
matrix of size 2Nq × 2Nq is not scalable beyond hundreds of
qubits. Therefore, in order to avoid the exponential consump-
tion of measurements, many scalable approaches [308, 314–
316] have been proposed to simplify the response matrix
model.

Tensor Product Noise (TPN) model. The simplest model
assumes that the noise acts independently on each qubit and
is called the Tensor Product Noise (TPN) model [308, 317,
318]. After such a simplification, the response matrix can be
described in terms of the tensor product of Nq single-qubit
response matrix as

ΛTPN =

Nq∏
i=1

(
1− pi qi
pi 1− qi

)
, (40)

where pi and qi denote the single-qubit readout error proba-
bility of 1 → 0 and 0 → 1, respectively. We can see that
the number of measurements required to construct the TPN
response matrix is reduced fromO(2Nq ) toO(Nq). However,
in the TPN model, the multi-qubit readout error correlations
are neglected.

Continuous Time Markov Processes (CPTP) noise model.
Bravyi et al. [308] have extended the TPN model to the CTMP
noise model, which takes the correlated errors into account. It
defines a matrix exponential Λ = eG to describe the response

matrix, and the generatorG =
∑2N2

q

i=1 riGi models the readout
error. Here ri ≥ 0 refers to error rate and Gi represents the
single-qubit or two-qubit readout error. For example, the gen-
erator describing falsely measuring |00〉 to |11〉 on two qubits
is |11〉〈00| − |00〉〈00|. The MEM with the CPTP model has
been experimentally demonstrated on the superconducting de-
vice [308].

Subspace Reduction. When the measured probability dis-
tribution only contains a few principal bit strings with high
probability, we can mitigate readout errors in a renormal-
ized subspace defined by the observed probability distribu-
tion [314, 318]. The subspace reduction of the full 2Nq di-
mensional response matrix efficiently circumvents the original
exponential overhead and avoids matrix inversion by using the
matrix-free iterative methods [314].

Readout symmetrizing. Due to the observation that mis-
measuring |1〉 to |0〉 is more frequent than |0〉 to |1〉, Several

studies symmetrizing the readout with targeted Pauli X̂ gates
are proposed [56, 319–321].

Readout balancing. We can exploit the readout asymmetry
in the practical cases, which aims to rebalance the measure-
ment outcomes by minimizing the expected number of qubits
in the |1〉 state [319].

Bit-flip averaging. Bit-flip averaging [320] reduces the cal-
ibration overhead by an exponential factor without making
any specific assumptions about the classical noise model for
MEM. It applies Pauli X̂ gates on the randomly chosen qubits
before measurements and offsets the effect of X̂ gates using
classical post-processing. This leads to a symmetrized effec-
tive response matrix Λ̂ which contains only O(2Nq ) free pa-
rameters compared toO(22Nq ) in the full matrix. Another in-
dependent work [321] utilizes the same bit-flipping protocol.
It transforms the bias between the ideal and noisy expectation
value to a multiplicative factor, and eliminates it by deviding
the noisy expectation by an estimated factor obtained in the
calibration procedure.

2. Quantum noise model for MEM

Almost all of the readout mitigation approaches discussed
above are applied under the classical noise model assump-
tion. However, quantum measurements inevitably suffer from
the quantum coherent noise [307, 310, 322]. With the pres-
ence of quantum noise, the noisy POVM operators have non-
trivial off-diagonal values, so the classical assumption no
longer holds. Fitting the difference between two specific mea-
surement statistics to the Fourier series can effectively detect
the presence of quantum noise [322]. Meanwhile, many ap-
proaches, such as IZ dephasing [307, 322], can be applied to
eliminate the quantum noise, so that the effective measure-
ment device has only classical noise. Then we can utilize
those MEM methods mentioned above to deal with the classi-
cal noise.

3. MEM combined with other techniques

MEM using QEC. On devices whose readout errors domi-
nate over the entangling gate errors, one can combine readout
error mitigation with quantum error correction to actively re-
duce readout errors on a shot-by-shot basis, called active read-
out error mitigation [323].

Combination with readout compression. The compres-
sion readout compresses the large-scale quantum state into
one qubit and recovers the state amplitude populations from
the one-qubit measurement results [252]. Thus, after appling
the compression readout technique, only single-qubit mea-
surements are performed, so this method is free of correlated
measurement errors and easy to combine with other MEM
methods.

Neural network model for MEM. We can also utilize a
trained artificial neural network to characterize an non-linear
model [324] for measurement noise, which captures both clas-
sical and quantum noise. The neural network model for MEM
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is experimentally performed on the IBM’s 5-qubit quantum
device [324].

D. Purification-based QEM scheme

Recently, a range of purification-based QEM schemes [261,
325–332] have been proposed to extract the ideal state compo-
nent from the noisy state, without any requirements on the pri-
ori knowledge of the quantum noise channel. These schemes
assume that the state of interest is usually a pure state, while
the noise tends to corrupt it into a mixed state.

The two typical methods are Virtual Distillation (VD) [261]
and Error Suppression by Derangement (ESD) [325], which
use multiple copies of the noisy state to reduce the state prepa-
ration error. Given an error-free state |ψ0〉〈ψ0|, the noisy out-
put state ρ can be expressed via the spectral decomposition

ρ = (1− λ)|ψ〉〈ψ|+ λρerr, (41)

where λ ≥ 0 denotes the error rate. The pure state |ψ〉〈ψ|
denotes the dominant eigenvector which may not match the
ideal state |ψ0〉〈ψ0| due to the coherent error [333]. And the
mixed state ρerr refers to the noisy component consisting of the
weighted sum of other eigenvectors in the spectral decomposi-
tion. Using M copies of noisy state, the M -degreed mitigated
expectation value is

〈O〉em =
Tr(ρMO)

Tr(ρM )
=

(1− λ)M 〈ψ|Oψ〉+ λMTr(OρMerr)

(1− λ)M + λMTr(ρMerr)

≈ 〈ψ|Oψ〉+O(λM )
(42)

where O(λM ) is the approximation error which decays expo-
nentially with the number of copies.

(a) (b)

FIG. 4. The illustration of two implementations of virtual dis-
tillation for 2 qubit states. (a) We can apply a layer of diago-
nalization gates Bi to compute Eq. 4, with a joint measurement on
M (here M=2) copies. (b) We can also add an ancilla qubit and use
controlled-SM gates to estimate the expected value Tr(OρM ) using
the probability of measuring the ancilla qubit in the |0〉 state.

We usually don’t need to prepare the exact ρM state to com-
pute the 〈O〉em. An illustration of the implementation of VD
and ESD is given in Fig. 4. They both utilize the cyclic shift
operator (also called derangement operator) S(M) on the sys-
tem with size MNq . Using the property of S(M)

S(M)|ψ1〉|ψ2〉 . . . |ψM 〉 = |ψM 〉|ψ1〉 . . . |ψM−1〉, (43)

we have

Tr(OρM )

Tr(ρM )
=

Tr(OiS(M)ρ⊗M )

Tr(S(M)ρ⊗M )
, (44)

where Oi refers to the observable O acting on an arbitrary
subsystem i. The VD shown in Fig. 4(a) applies a layer of
diagonalization gates Bi to compute Eq. 4, with a joint mea-
surement onM copies. While the ESD given in Fig. 4(b) adds
an ancilla qubit and uses controlled-SM gates to estimate the
expected value Tr(OρM ) (and for Tr(ρM ) setting O = I) by

Tr(OρM ) = 2P0 − 1. (45)

Here we denote the probability of measuring the ancilla qubit
in the |0〉 state by P0.

The VD (or ESD) scheme is subject to some limitations.
First, the coherent dismatch between the target pure state
|ψ0〉〈ψ0| and the dominant eigenvector |ψ〉〈ψ| of the noisy
state contributes to a noise floor regardless of the increasing of
M . Second, the increased overhead of qubits and controlled
gates with large M is hard to afford for the NISQ devices.
Taking these limitations into account, many alternative proto-
cols have been explored.

1. Resource-efficient variants for purification-based schemes

Realization with classical shadows. Classical shad-
ows [334–336] are protocols used to efficiently predict many
different properties, in particular linear functions. Consid-
ering a trade-off between qubits (and controlled gates) and
measurements overhead, many methods implement the VD(or
ESD) scheme with classical shadows [329, 330].

Dual-state purification. This protocol [331] purifies states
using ρρ̄+ρ̄ρ

2 , and the ρ̄ is the dual state of ρ. The ideal expec-
tation value of observable O is estimated as

〈O〉em =
Tr(ρρ̄+ρ̄ρ2 O)

Tr(ρρ̄+ρ̄ρ2 )
. (46)

It works when the noisy state ρ and its dual state ρ̄ share the
same dominant eigenvector in their spectral decompositions.
Dual-state purification is efficient in terms of qubit overhead
since its implementation requires at most one ancilla qubit.

Combination with active qubit resets. The active qubit
reset technique is enabled by major quantum computing ar-
chitectures including superconducting qubit and trapped-ion
devices. With the use of active qubit resets, we can achieve
a similar error suppression using 2N + 1 qubits compared to
MN + 1 qubits with the original VD [332], which shows a
space-time trade-off in the computational resources.

2. Generalized purification methods

In order to deal with the coherent dismatch, we can consider
a general polynomial function f(ρ,M) = c0 + c1ρ+ c2ρ

2 +
... + cMρ

M [329, 337]. Recently Xiong et al. [328] provides
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a more general framework called permutation filters for those
schemes using permutations. It uses a filter

yfilter =
Tr(OF~α(ρ,M))

Tr(F~α(ρ,M))
(47)

to substitute the polynomial Tr(ρMO)
Tr(ρM )

, where F denotes some
complex function and the parameter optimization for ~α is
proven to be an invex problem, which can always converge
to the global optimum.

E. Quantum subspace expansion

Quantum subspace expansion (QSE) is first proposed to ex-
plore the excited states, and it can also contribute to error
mitigation in VQE with additional classical resources [105,
121, 338, 339]. The QSE effectively mitigates coherent errors
due to the imperfect variational optimization. Given a noisy
ground state ρ prepared on the quantum device and the target
Hamiltonian H , we consider a variational subspace spanned
by ρ, as

{ρsub =

M∑
i,j=1

cic
∗
jPiρPj |ci ∈ C, Pi ∈ {I,X, Y, Z}⊗Nq

and Tr(ρsub) = 1},
(48)

where the parameters ~c = (c1, ..., cM ) denote the expansion
coefficients and M refers to the number of expansion terms.
Then, to obtain the error-mitigated value, we need to solve the
following minimization problem

min~c{Tr(ρsubH)}
such that Tr(ρsub) = 1.

(49)

The spectrum of the Hamiltonian within the classically ex-
panded subspace can be calculated as the solution to a gener-
alised eigenvalue problem

Ĥ~c = EB̂~c. (50)

Here, E is a diagonal matrix with elements representing the
eigenenergies. Ĥij = Tr(PiρPjH) and B̂ij = Tr(PiρPj)
both can be efficiently estimated via quantum computers.
With the optimized parameter obtained from minimization,
we can compute the error-mitigated expectation value using

〈O〉em =

M∑
i,j=1

cic
∗
jTr(PiρPjH). (51)

Note that the efficiency of the QSE method depends on the
number of expansion terms M , thus it may not effective in
suppressing stochastic errors due to the requirement on expo-
nential expansion terms to project the noisy state to the error-
free subspace [105, 142, 337]. While when combined with
certain properties of the target state such as symmetry [340],
the QSE can handle stochastic errors more efficiently because

the complexity of constructing the projection subspace is re-
duced. Beside, a generalised framework of QSE [337] has ex-
tended the expansion operators from Pauli operators to more
general operators relevant to the noisy state.

F. Verification methods

Verification methods [338, 340, 341] exploit the knowl-
edge of inherent symmetry within the quantum system,
such as the spin symmetry in quantum many-body physics.
This methods focus on the errors that place state outside the
symmetry-preserving subspace.

The symmetry commonly used is Pauli symmetry Ŝ, which
can be effectively estimated. Suppose the Pauli symmetry of

the system with size n is Ŝ =
M∏
i=1

Ŝi, Ŝi ∈ P⊗Nq , where M

is the number of non-trivial terms in Ŝ, and Pn refers to the
n-qubit Pauli group. The verification of the symmetry can be
achieved by dropping the circuit runs which fail the verifica-
tion or by using the post-processing appraoches, as we will
discuss below.

1. Symmetry verification

(a) (b)

FIG. 5. Symmetry Verification. (a) Symmetry verification circuit.
(b) The low-cost version of symmetry verification circuit.

Symmetry verification [338, 340] discards the circuit runs
failed to pass the verification, which costs additional measure-
ment overhead. It utilizes an ancilla qubit interacting with
each qubit in the system register, which is of the form shown
in Fig. 5(a). The gates {Bi}i=1,2 are the basis transformation
gates that map the eigenstate of symmetry Ŝ with eigenvalue
s to |0〉 state. If the ancilla qubit reads 1, we discard this cir-
cuit run. Note that the circuit can only detect odd number
of error(s). In the low-cost version [340] of symmetry veri-
fication shown in Fig. 5(b), it shuffles the ancilla qubit along
the system register, which needs only local CNOT and SWAP
two-qubits gates.

Both cases require O(M) circuit depth to ensure the en-
tanglement between the ancilla qubit and each register qubit
individually, which is general intractable in quantum circuit.
Moreover, the verification circuit applied on the noisy state
may introduce extra errors, which reduces the reliability of
verification. An alternative way to perform symmetry verifi-
cation will be detailed below.
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2. Symmetry expansion

We can also implement verifications via post-processing
approach [340]. Usually if the target quantum state is the
eigenstate of Ŝ (or in the eigen-subspace) with eigenvalue s,
we can construct projector valued measurement to project the
output state ρ to the Ŝ = s subspace. Suppose the correspond-
ing projector is Π̂s and we have Π̂sΠ̂s = Π̂s. The effective
density matrix after projection is

ρs =
Π̂sρΠ̂s

Tr(Π̂sρΠ̂s)
=

Π̂sρΠ̂s

Tr(Π̂sρ)
. (52)

If we will measure an observable O which commutes with
the symmetry Ŝ and [O, Ŝ] = 0 and [O, Π̂s] = 0. Then the
expectation value under the projected state is

〈O〉em = Tr(Oρs) =
Tr(OΠ̂sρ)

Tr(Π̂sρ)
. (53)

Note that the probability of passing the verification is just the
probability of projecting the noisy state to the Ŝ = s subspace,
which is Tr(Π̂sρ). Hence we need ΥSE = 1

1−Tr(Π̂sρ)
more

measurement shots as the sampling overhead for mitigation.
We can combine the post-processing approaches with QSE

to further improve the efficiency of mitigation, which called
s-QSE [340]. If we choose Π̂s = I+sŜ

2 , we will have

〈O〉em =
Tr(Oρ) + sTr(OΠ̂sρ)

1 + sTr(Π̂sρ)
. (54)

Then the original minimization problem (as we mentioned
in the Section III E) is reformulated to a generalized eigen-
value problem, and the terms Tr(Oρ), Tr(OΠ̂sρ) and Tr(Π̂sρ)
can be efficiently estimated via quantum devices. The s-QSE
method has been experimentally demonstrated to mitigate er-
rors in the VQE of H2 with two transmon qubits [342].

Cai has extended the post-processing approaches to a gen-
eral framework called symmetry expansion [341], which en-
compasses a broader range of symmetry-based error mitiga-
tion methods. For example, VD can be seen as a special case
of symmetry expansion using permutation symmetry. More-
over, the particle number is also applied as symmetry in the
post-processing approach[343].

3. Other verification methods

Verified phase estimation. It applies phase estimation to
estimate expectation values while effectively post-selects for
the system register to be in the starting state [344]. It can also
be adapted to the case without the use of control qubits, which
simplifies the control circuits.

Pauli check sandwiching. The Pauli check sandwiching
scheme [345] applies multiple pairs of Pauli checks to detect
the occurrence of errors, and obtains the mitigated results us-
ing post-selecting. Each pair of Pauli checks uses one ancilla
qubit to detect a component of the error operator.

G. Mitigating the coherent errors

Coherent errors refer to the imperfect or unwanted unitary
rotations acting in the circuits, which can be modeled as

U(~θ) = e−
i
2
~θ·~σ, (55)

where ~θ = (θ1, ..., θ4Nq ) quantifies the strength of the co-
herent error on the 4Nq Pauli bases. Coherent errors map
the noiseless pure states to another pure states, since uni-
tary operators maintain the quantum coherence of the states.
While they are purity-preserving, it can pose a threat to the
reliable multi-qubit quantum computation. Now we will in-
troduce several typical methods for mitigating coherent er-
rors [1, 346].

1. Randomized compiling

Randomized compiling (RC) [276, 277] is designed to tai-
lor coherent errors into stochastic Pauli errors, and we can
combine RC techniques with other QEM schemes [280, 291,
301].

When the two-qubit Clifford gate errors dominant over
other types of error, we can mitigate the coherent error in
the two-qubit gates using RC. After sandwiching each two-
qubit gate between randomly sampled Pauli gates and com-
piling those twirling Pauli gates into the original single-qubit
gates (which can be implemented on the classical computers
in advance), the newly generated circuits are logically equiv-
alent to the bare circuits with the same circuit depth. And
the averaged results over many logically-equivalent circuits is
exactly the desired result with tailored noise.

2. Hidden inverses

Hidden inverses (HI) [347–349] is first introduced to miti-
gate certain coherent errors (such as over-rotations and phase
misalignment) in the trapped-ion quantum computer [347],
and then it has been extended to implement on the supercon-
ducting hardwares [349]. The HI method relies on the self-
adjoint unitary operators satisfying U = U† or self-inverse
unitary operators with U = U−1, such asH andCX . Though
these gates represent the same operation in the error-free case,
they may suffer from noise with different strength in prac-
tice, due to the different compiling ways for U and U†(U−1).
Then we can mitigate coherent errors by a local optimization
which determines to construct the same gate from the origi-
nal elementary gate sequence or the sequence of the inverted
(conjugate) gate.
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H. Combination with quantum error suppression techniques

1. Combination with QEC

Individual error reduction. The individual error reduction
method [350] make sufficient use of the limited QEC tech-
niques which have been well demonstrated on several qubits.
It reduces error on each qubit respectively and obtains the mit-
igated expectation value of the observable by post-processing.
Consider the Lindblad master equation describing the noise
process

∂ρ

∂t
= L(ρ) =

∑
i

Li(ρ), (56)

where the Li denotes the Lindblad operator acting on the sin-
gle qubit. We can give a solution for this equation with the
duration τ of the noise process to the first order approxima-
tion

ρ(t+ τ) = Eτ (ρ(t)),

Eτ (ρ) = e[τL(ρ)] ≈ 1 + τ
∑

iLi(ρ),
(57)

where Eτ is the Lindblad evolution operator. Suppose the error
on the i-th qubit is reduced by a known factor gi via QEC, then
the corresponding Lindblad evolution operator E iτ turns to

E iτ (ρ) ≈ 1 + τ
∑
j 6=i

Lj(ρ) + τ(1− gi)Li(ρ). (58)

Hence, after QEC applied on the i-th qubit, the expectation
value of observable O is 〈O〉i = Tr(ρiO) with the output
density matrix ρi. We can estimate the ideal case of the ex-
pectation value of observable O by a linear combination of
different 〈O〉i:

〈O〉Ind = Tr(ρIndO) = 〈O〉 −
∑
i

1

gi
(〈O〉 − 〈O〉i). (59)

Note that the individual error reduction has suppressed errors
to the first order and can be combined with other error mitiga-
tion methods for higher-order error suppression. However, it
relies on the accurate estimation of the factor gi which results
in extra cost for characterizations. And additional quantum
resources (qubits or gates) are needed to implement QEC on
a single qubit.

Code space projection. The code space projection
method [329, 351] decodes errors on logical qubits via post-
processing, without additional qubits and operations for syn-
drome measurements. To encode k logical qubits with N
physical qubits, we use a stabilizer code [[N, k]] defined by
a stabilizer group S = 〈S1, S2, ..., SN−k〉 with generators
{Si}i. And the code subspace is determined by the projec-
tion operator

Π =

N−k∏
i=1

I + Si
2

=
1

2N−k

∑
j

Mj , (60)

where Mj ∈ S refers to the element in the group. Given a
logical observable O which can be decomposed by Pauli op-
eratorsO =

∑
m γmPm, this method can reduce errors which

take the physical state outside the code space. Then we esti-
mate the ideal expectation value using

〈O〉CS =
1

c2N−k

∑
j,m

γmTr(ρMjPm). (61)

Stochastic and deterministic subspace expansion schemes
have been proposed [351] for estimation of Eq. 61. We can
also realize the code space projection using classical shadow
techniques [329].

2. Dynamic Decoupling

Dynamical decoupling (DD) [352–357] methods are
designed to suppress decoherence caused by system-
environment interaction. The main idea of DD is to apply
specific pulse sequence called DD sequence to the idle qubits,
which keeps the overall logic of the circuit unchanged. Intro-
ducing the DD techniques into the QEM schemes can improve
the circuit performance while it dosen’t result in additional
sampling overhead [291, 358].

3. Single-qubit gate scheduling

Rather than adding additional gates to the circuit as DD
does, single-qubit gate scheduling [359] optimizes circuits
by scheduling within idle windows which are periods of idle
qubit waiting for the next operation. As Late As Possible
(ALAP) scheduling is a typical scheduling technique used as
a default approach in IBM Qiskit [360] to execute the single-
qubit gates at the end of the idle windows. We can also tune
the positions of single-qubit gates within idle windows by cir-
cuit slicing and inverting [359]. A variational QEM method
designed to perform DD and single-gate scheduling within
the VQA framework has been proposed recently [358], which
avoids specific configuration selections for DD sequences and
gate positions.

I. Framework for QEM

Recently, much effort has been devoted to exploring the
unified framework for QEM schemes and the general bounds
for sampling overhead [268–270, 361–363]. Takagi et
al. [270] described the QEM process as the concatenation
of a quantum-classical channel composed of quantum opera-
tions and independent POVM measurements, and a classical-
classical channel for the classical post-processing. They also
introduced the maximum bias to benchmark the worst-case
performance of the QEM strategies for an arbitrary state and
observable, and then derive a general bound on the sampling
overhead based on the maximum bias. And their related
work [363] has showed the explicit universal lower bounds
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on the sampling overhead, which grow exponentially with the
circuit depth, indicating the fundamental limitations for QEM
schemes.

Other metric such as extraction rate was proposed to char-
acterize the cost-effectiveness of QEM schemes within the
linear quantum error mitigation [268] framework, where the
process of error mitigation is regarded as extracting the ef-
fective state out of the unmitigated state. Statistics principles
are also applied into a general QEM formalism [361] where
an approximate quadratic reduction with gate number N has
drawn in error increase.

IV. QUANTUM CIRCUIT COMPILATION

Compilation in the classical computing community is the
process of converting a high-level programming language into
a machine language that the computer can understand and ex-
ecute fluently. Similarly, in the field of quantum computa-
tion, quantum circuit compilation (QCC) is used to transform
a quantum algorithm always in a mathematical form into its
corresponding quantum circuit which can be executed on a
real quantum device.

Usually, QCC includes three stages as follows (see Fig. 6).

1. Decomposion (also referred to as the synthesis). Usu-
ally, a mathematically designed quantum algorithm can
be represented by several n-qubit unitary operators,
such as the Grover iteration in Grover’s algorithm,
the controlled exponentiation in Shor’s algorithm, the
Hamiltonian simulation in HHL algorithm and so on.
However, real quantum devices, especially NISQ de-
vices, usually provide only some elementary quan-
tum gates, such as single-qubit gates and CNOT gates.
Thus, it is one of the most fundamental problems that
how to decompose a specific quantum algorithm or uni-
tary operator into as few the provided elementary quan-
tum gates as possible for implementation.

2. Optimization. Despite the rapid development of quan-
tum hardware, the qubit lifetime of some quantum sys-
tems is still not satisfactory and the quantum noise
is also inevitable [7, 364]. The optimization aims to
further reduce the depth and size of quantum circuits
with the help of auxiliary qubits after the decomposi-
tion process to alleviate the problem of short qubit life-
time. Thus, the optimization seems like a kind of space-
time trade-off, i.e., using ancillary qubits (space) to ef-
ficiently reduce circuit size or depth (time).

3. Mapping (also referred to as the qubit routing, qubit
allocation, quantum circuit transformation). The final
stage is to transform the logical quantum circuit to the
physical quantum circuit which can be operated on a
real quantum device. Actually after decomposition and
optimization, there are only elementary quantum gates
in the logical circuit, and the size and depth of which are
sufficiently optimized. For the quantum hardware with
fully-connected architecture, any logical circuit can be

directly implemented. However, for the quantum hard-
ware with limited connectivity architecture [7, 364], we
should find the correspondence between logical qubits
and physical qubits to complete the transformation.

Although QCC has been separated into the above three
stages, sometimes there is no exact order or boundaries. Alter-
natively, one can perform all the three stages simultaneously
to complete the QCC, such as the works in Refs. [365–367].
QCC is extremely important as a bridge between quantum al-
gorithms and quantum hardware devices, especially for NISQ
devices. There have been a series of results on QCC [364–
409] and we will present them according to the different ap-
proaches of the three stages mentioned above.

A. Decomposition

The first result in the aspect of Decomposition was pub-
lished in 1995, where all n-qubit unitary operators can be ex-
pressed as compositions of a finite numberO(n34n) of single-
qubit gates and CNOT gates exactly [368]. Soon, this upper
bound was lowered to O(n4n) by Knill [369]. Nine years
later, the upper bound for the exact decomposition of n-qubit
unitary operator has been improved to O(4n) [370], which
coincides with the theoretical lower bound [371]. In 2004,
Möttönen et al. came up with Cosine-Sine Decomposition
(CSD), i.e.,

F ln(Ra) =

 Ra(α1)
. . .

Ra(α2n−1)

 . (62)

to express an arbitrary n-qubit unitary operator in terms of
n − 1-qubit unitary operators [372], which further decreased
the upper bound to 4n − 2n+1 CNOT gates. Next in 2005,
Shende et al. applied the NQ matrix decomposition to imple-
ment an arbitrary n-qubit operator only using 1

2 × 4n − 3 ×
2n−1 + 1 CNOT gates [373], where the n-qubit operator can
be implemented by a circuit containing three uniformly con-
trolled rotations and four (n − 1)-qubit operators. And then
in 2006, Möttönen et al. applied CSD recursively to yield a
synthesis algorithm, in which the number of CNOT gates is
23
484n− 3

22n+ 1
3 , which firstly decreased the upper bound less

than 1
24n CNOT gates [374, 375].

The analysis of lower bound was first came up with by
Barenco et al. in [368] as a conjecture, i.e., 1

94n − 1
3n −

1
9 ,

based on dimension counting. In 2004 Shende et al. raised
the lower bound to 1

4 (4n−3n−1) by the technique of param-
eter counting [371], which also implies a depth lower bound
of Ω(4n/n).

We can see that there is a gap on the optimal depth within
the range of [Ω(4n/n), O(4n)] for general n-qubit circuit op-
timization without ancillary qubits. Most recently, based on
Gray code and unary encoding [376], Sun et al. have proved a
fact that any n-qubit unitary operator can be implemented by
a quantum circuit of size

O(4n) (63)
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and depth

O
(
n2n +

4n

m+ n

)
(64)

with m ≤ 2n ancillary qubits [377]. They used CSD re-

peatedly and factored an arbitrary unitary operator into a se-
quence of uniformly controlled gates. Namely, they presented
that any n-qubit unitary operator U can be decomposed as
U = V nn (0) ·

∏2n−1−1
i=1 V nn−ζ(i)(i) · V

n
n (2n−1), where ζ(n)
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is the Ruler function defined as ζ(n) = max{k : 2k−1|n},
V nk denotes an n-qubit uniformly controlled gate whose in-
dex of target qubit is k, and different i in V nk (i) denote dif-
ferent forms of n-qubit uniformly controlled gates despite the
same target qubit k. Combined with their implementation of
any n-qubit uniformly controlled gate, i.e., any n-qubit V nk (i)
can be implemented by a circuit of size O(2n) and depth
O
(
n+ 2n

n+m

)
, they derived the above result. What we should

note is that their size and depth are simultaneously optimized
to asymptotically optimal based on the lower bound in [371].
In specific without any ancillary qubits, the depth can be opti-
mized to O(4n/n), which is exactly the lower bound.

Besides the most general decomposition on n-qubit unitary,
there have already been some results about the special cases.
When the elements of unitary belong to the ring Z[ 1√

2
, i], the

single-qubit unitary can be constructed using H and T gates
only [378], in which the similar n-qubit case was conjectured
to be implemented by the Clifford and T gates. This conjec-
ture has been proved soon afterwards. An n-qubit unitary op-
erator has an exact representation over the Clifford+T gate set
assisted by only one ancilla if and only if its entries are in the
ring Z[ 1√

2
, i], and the total gate count is O(32nnk), where k

is the denominator exponent of the unitary [379]. Besides the
above results on exact decomposition of unitary, there have
already been some works on approximate decomposition.
Based on Solovay-Kitaev theorem, Dawson and Nielsen de-
signed an approximate algorithm, which runs in O(log2.71 1

ε )

time and produces as output a sequence ofO(log3.97 1
ε ) quan-

tum gates including only Hadamard, controlled-not, and π/8
gates [380].

B. Optimization

As seen in the rapid development of quantum hardware, the
number of physical qubits may increase much faster than the
qubit lifetime. Thus, when optimizing quantum circuits, we
can consider how to reduce the circuit depth using auxiliary
qubits.

In 2000, Cleve showed the quantum Fourier transform can
be approximated to the depth of O(log n+ log log(1/ε)) with
sufficient ancillary qubits [381]. Next in 2001, Moore et al.
proved that a circuit of any size on n qubits composed en-
tirely of CNOT gates (CNOT circuit) can be parallelized to
O(log n) depth with O(n2) ancilla qubits [382]. Similarly for
the circuit of controlled-Pauli and H gate, they derived the
same result. And for the Clifford+T circuit, Selinger in 2013
made use of four ancillary qubits to represent Toffoli gate with
a T-depth of 1 and a total depth of 7 [383]. Amy et al. de-
scribed an algorithm to reduce the T -depth for Clifford+T
circuit [384], and it has worst case runtime of cubic in the
number of T gates, qubits and Hadamard gates. Next let us
turn our eyes back to the optimization of CNOT circuit be-
cause of its significance in quantum computation [368, 410].
In 2020, Jiang et al. established an asymptotically optimal
space-depth tradeoff for the design of CNOT circuits, that is,

any n-qubit CNOT circuit can be parallelized to

O(max{log n,
n2

(n+m) log(n+m)
})

depth with m ancillary qubits, where m being any natural
number [385]. Firstly, any n-qubit CNOT circuit can be re-
garded as an invertible matrix M over the finite field Fn×n2 .
Take a three-qubit CNOT circuit shown in Fig. 7 as an ex-
ample, the left circuit can be represented as the right matrix.
Based on the above representation, the CNOT circuit opti-

1

2

3

1 0 1
1 1 0
0 0 1

invertible matrix 

    over 

FIG. 7. The matirx representation of a CNOT circuit.

mization problem will be transformed into a corresponding
parallel Gaussian elimination problem mathematically. Com-
bined with a standard technique in reversible computation,
they firstly constructed two CNOT circuits C1, C2 with 2n
and 3sn qubits respectively, where 1 ≤ s ≤ O(n/ log2 n).
Specifically, for x, j ∈ Fn2 ,

C1|x〉|j〉|0〉⊗3sn = |x〉|j⊕Mx〉|0〉⊗3sn,

C2|x〉|j〉|0〉⊗3sn = |x〉|j⊕M−1x〉|0〉⊗3sn.

Then they applied C1, C2 to transform the initial state
|x〉|0〉⊗n|0〉⊗3sn to the final state |Mx〉 after permuting the
first and second n qubits. This boun d is tight and this al-
gorithm can be directly extended to stabilizer circuits with
the reason that any stabilizer circuit has a canonical form
“H-C-P-C-P-C-H-P-C-P-C”, where H and P are one layer of
Hadamard gates and Phase gates respectively [411].

Near-term quantum devices are limited not only by the
qubit lifetime, but also by the connectivity between qubits.
All the above optimization results focus on the optimal depth,
without considering the constraints on connectivity. Thus, it is
necessary to consider the quantum circuit optimization prob-
lem for the quantum processors with sparsely connected struc-
ture. We should note that the optimization here usually refers
to reducing the circuit depth with the help of ancillary qubits,
which is quite different from the mapping introduced in the
next section, which focuses on reducing the number of SWAP
gates added to realize the logical circuit physically and keep-
ing the number of qubits constant.

Actually there have already existed some results on reduc-
ing the circuit size under the limited connectivity architec-
ture [365–367, 386]. In 2019, based on Gaussian elimination,
Kissinger and Griend presented an algorithm which can ex-
tract any n-qubit CNOT circuit to 2n2-size equivalent CNOT
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circuit if the architecture contains a Hamiltonian path [365].
But if there is no Hamiltonian in the architecture, their opti-
mized size is O(n3). Next in Ref. [366], Nash et al. studied
the CNOT circuit optimization on any connected graph, and
they proposed an algorithm which gives a 4n2-size equivalent
CNOT circuit for any n-qubit CNOT circuit. This bound has
been reduced to 2n2 [367]. Furthermore for size optimiza-
tion, Wu et al. came up with an algorithm, inspired by the re-
sult in [412], which can reduce the size of any n-qubit CNOT
circuit to

O(n2/ log δ)

on any connected graph with δ being the minimum degree,
and this bound is optimal when the limited connectivity archi-
tecture is a regular graph [367]. In addition, they also opti-
mized the depth of CNOT circuit with the assistance of ancil-
lary qubits. Specifically, their algorithm can reduce the depth
of any given n-qubit CNOT circuit to

O(n2/min{m1,m2}),

with 3n ≤ m1m2 ≤ n2 ancillary qubits and the limited con-
nectivity architecture is m1 ×m2 grid graph [367]. And this
bound is asymptotically optimal when m1 × m2 = n. Also
this result can be similarly generalized to any constant dimen-
sional grid graph. Most recently, Maslov and Yang considered
the optimization of Hadamard-free Clifford circuit on Linear
Nearest Neighbor (LNN) [387] qubit connectivity architec-
tures, and derived this circuit can be implemented over LNN
in depth 5n.

C. Mapping

The study of mapping problem firstly focused on its com-
plexity. In 2009, it has been conjectured that mapping a non-
LNN (Linear Nearest Neighbor) circuit into an LNN circuit
is NP-complete [388], because the number of possible com-
binations of all permutations for all two-qubit gates in circuit
is ((n − 1)!)k, where n is the number of qubits and k is the
number of two-qubit gates. Obviously, the number ((n−1)!)k

will become huge with n and k increasing. In 2014, Shafaei
et al. modeled the logical quantum circuit as an interaction
graph and the structure of quantum device as a connectivity
graph. Thus the mapping problem is a standard graph em-
bedding problem with connectivity and interaction graphs as
the host and guest graphs, respectively. And the objective is
then to minimize the total distance between adjacent nodes of
the interaction graph. For a 2D grid connectivity graph, the
mapping problem is NP-complete [389]. In 2018, Siraichi et
al. proved the mapping problem, similar to the classical regis-
ter allocation, is NP-complete in general [373], which is also
derived in [390, 391]. Due to the NP-completeness of map-
ping problem, researchers have taken more attention on how
to reduce the SWAP gates needed approximately. We will in-
troduce and analyze the relevant results in three aspects based
on different approaches to solve the mapping problem.

Mathematical programming. It is a most natural idea to
reformulate the mapping problem on some specific physical

architectures into a corresponding optimisation problem and
to solve it with state-of-the-art tools and solvers [389, 392–
396]. In 2009, Hirata et al. considered a sorting of the initial
qubit order according to a function they defined at first, then
sorted this qubit order to the final one. Thus the objective is
to minimize the sum of SWAP gates of the first and second
step [388]. Next in 2013, Shafaei et al. regarded the mapping
problem as improving locality of a given quantum circuit, i.e.,
the minimum linear arrangement (MinLA) problem in graph
theory, and they showed the effectiveness of this approach for
quantum Fourier transformation and reversible benchmarks
through experimental results [393]. Also they focused on 2D
grid architecture [389] and refactored the mapping problem to
Mixed Integer Programming problem. In 2015, Lye et al. for-
mulated the mapping problem on multi-dimensional quantum
architectures as Pseudo-Boolean Optimization (PBO) prob-
lem, and used a state-of-the-art PBO solver [397] to achieve a
minimal number of SWAP gates [392]. In 2019, Wille et al.
formulated the mapping problem as a symbolic optimization
problem that is solved using reasoning engines like Boolean
satisfiability solvers, and they provided a method that maps
small-size logical circuits to IBM’s QX architectures with a
minimal number of SWAP and H gates [394].

Heuristic algorithms. To adapt real quantum devices with
complex connectivity architectures, a series of heuristic al-
gorithms [364, 398–404] on the mapping problem were de-
veloped. Actually for mapping problem, the most important
thing is to determine how to insert the SWAP gate effectively
and efficiently. Here “effectively” means mapping the logi-
cal quantum circuit to physical quantum circuit and running
that circuit on a quantum hardware device successfully, while
“efficently” means adding as few SWAP gates as possible dur-
ing the mapping procedure. These two aspects correspond to
the two steps in the heuristic algorithm design. The first step
is to determine the candidate SWAP-gate sets at present, and
the second step is to design the evaluation function that can
evaluate the effectiveness of the present SWAP gate.

In 2011, Saeedi et al. proposed two heuristic methods
to determine which qubits should be reordered, a template
matching optimization and an exact synthesis approach [405],
which, from experimental results, improved the quantum cost
by more than 50% on average compared to the naive method.
In 2016, Wille et al. considered the effect of inserting SWAP
gate on the following two-qubit gates and came up with a
look-ahead scheme, which reduced the number of SWAP
gates of 56% in the best experimental evaluation [406]. This
look-ahead scheme also leads to the improvement for 2D ar-
chitectures. In 2019, Zulehner, the first-place winner of IBM
Q Award, devised a much better algorithm in which quan-
tum gates firstly would be partitioned into layers such that
each layer contains only gates acted on distinct sets of qubit.
Then they employed the A∗ algorithm [413] to search and de-
termine how to insert the SWAP gate for the current layer,
which can help to decrease the circuit depth simultaneously.
But this algorithm is not suitable to large-scale logical cir-
cuit because of the space and time cost of A∗ algorithm. In
order to improve the efficiency of the searching algorithm, in
2019, Li et al. proposed a SWAP-based BidiREctional heuris-
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tic search algorithm [398]. Instead of searching for a map-
ping in the full space, they only searched for SWAPs associ-
ated with the qubits and designed a heuristic cost function to
help find the SWAP that can reduce the sum of distances be-
tween each qubit pairs in the front layer. Based on this idea,
in 2020, Zhou et al. calculated the costs of SWAP gates on all
front layers heuristically and chose the one with the minimum
cost [399], which would further reduce the complexity in time
polynomial in all parameters. Most recently, they proposed
a Monte Carlo Tree Search framework to tackle the mapping
problem [400], which enabled the search process to go much
deeper.

Machine learning techniques. Machine learning tech-
niques have also been exploited to provide a more precise
evaluation tool for mapping problem [402–404], as they can
provide a more precise assessment of the effects of the present
SWAP gate. In 2020, Pozzi et al. framed the mapping prob-
lem as a reinforcement learning problem, then applied the
combinatorial optimization techniques to search for the action
leading to the highest-quality under their defined quality func-
tion, and finally scheduled SWAP gates [401]. In Ref. [402],
graph neural networks were used as an improved architecture
to help guide the tree search used to find an optimal set of
SWAP gates, then they used an array of mutex locks to rep-
resent the current parallelization state to help to reduce the
depth of the output circuits. In Ref. [403], Zhou et al. took
both short- and long-term rewards into consideration to design
a scoring mechanism, and proposed a search algorithm which
is polynomial in all relevant parameters.

V. BENCHMARKING PROTOCOLS

Benchmarking is a technique to assess the performance and
capabilities of quantum devices, and is therefore critical to ac-
celerating progress in quantum computing. Design a “good”
benchmarking protocol for quantum devices is complicated
for the following reasons: 1) There are different physical ways
to implement quantum computing, such as ion traps, pho-
tons, superconducting, etc, and each has its own strengths and
weaknesses. It is difficult for us to design a comprehensive
protocol that can evaluate the performance of each physical
system well. 2) Different types of applications may have dif-
ferent forms of assessment and core metrics. 3) When the
benchmarking protocol is applied to large-scale systems, sig-
nificant resource consumption may be required.

To date, a number of benchmarking protocols have been
proposed and widely used in experiments. These benchmark-
ing protocols can be broadly divided into two major cate-
gories, gate-level benchmarking and circuit-level benchmark-
ing, which will be introduced in this section.

A. Gate-level benchmarking

1. Randomized benchmarking (RB)

Quantum process tomography (QPT) is a standard approach
to fully characterizing quantum process, but it is sensitive to
the state preparation and measurement (SPAM) errors and in-
feasible for large systems. RB is a technique for estimating
the average fidelity of a set of quantum gates without relying
on accurate SPAM [414, 415].

RB is originally proposed for random unitary gates [414,
416, 417], and now is developed as a widely used experimen-
tal technique for characterizing the average error of quantum
operations. Typically, RB is executed with gates from the Clif-
ford group, which is referred to Clifford randomized bench-
marking (CRB) [40, 415, 418, 419]. A CRB protocol consists
of the following steps:

Step 1: Generate RB sequences. First randomly sample a
sequence of gates of a fixed length m from the Clifford group
G on n-qubits, and then a global inversion gate is added to
return the qubits to the initial state in the ideal case without
noise. For each length m, we choose Km RB sequences.

Step 2: Execute the RB sequences on the noisy quantum
devices. Measure the output state to estimate its overlap with
the initial state, which is named as survival probability αm.
Repeat Km sequences to obtain the a single average survival
probability αm.

Step 3: Fit the results. Repeat Steps 2 for various sequence
lengths m to produce a list of average survival probabilities
{αm}m, and then fit {αm}m to the a single exponential decay
model:

αm = A0p
m +B0 (65)

where A0 and B0 absorb state preparation and measurement
errors as well as an edge effect from the error on the final gate.
The quality parameter p determines the average error-rate r
according to the relation

r =
2n − 1

2n
(1− p). (66)

The RB protocol has been extensively developed in recent
years. It has been extended for other finite groups [278, 420–
427], and it has been also extensively experimentally stud-
ied [40, 428–431]. More recently, a general framework for
randomized benchmarking has been discussed [432].

2. Cross-entropy benchmarking (XEB)

Linear XEB is a sampling-based approach to character-
ize an arbitrary quantum gate [433–435], and is experimen-
tally friendly for large-scale quantum devices with dozens of
qubits. In particular, XEB provides a measure to approximate
the fidelity of random quantum circuit (RQC) in the quantum
computational advantage experiments with limited bitstring
samples [7–9].
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For single-qubit gates XEB, the steps are:
Step 1: Generate XEB sequences. First randomly sample

a sequence of gates of a fixed length m from the single-qubit
gateset formed by the eight π/2 rotations along the following
axes in the Bloch sphere representation: ±X ,±Y , and±(X±
Y ) on a single-qubit, and then end with a final random single-
qubit gate and measurement. For each length m, we choose
Km XEB sequences.

Step 2: Execute the XEB sequences on the noisy quantum
devices. By comparing the measured state probabilities with
the ideal ones, we can calculate the relative cross-entropy dif-
ferences between probability distributions [434],

α=
Huniform,ideal −Hexperiment,ideal

Huniform,ideal −Hideal
(67)

where H = −
∑
i pi log(qi) is the cross entropy between

two probability distributions {pi} and {qi}, and Huniform,ideal
is the cross-entropy between the uniform and ideal distribu-
tions, Hexperiment,ideal is the cross-entropy between the exper-
imentally measured and ideal distributions, and Hideal is the
self-entropy of the ideal distribution. Repeat Km sequences
to obtain the a single average survival probability αm.

Step 3: Fit the results. Repeat Steps 2 for various sequence
lengths m produces a list of average survival probabilities
{αm}m, and then fit {αm}m to the a single exponential decay

model:

αm = A0p
m +B0 (68)

where A0 and B0 absorb state preparation and measurement
errors. The decay parameter p can be converted to the average
error r and Pauli error rP ,

r =
N − 1

N
(1− p) (69)

rP =
N − 1

N
(r) (70)

with N = 2n the dimensionality of the system having n
qubits.

The procedure of characterizing two-qubit gates using XEB
is similar to that of single-qubit gates, except that the cir-
cuit sequence generated in Step 1 is different. Specifically,
each cycle of the XEB circuit consisting of a layer of random
single-qubit gates and the two-qubit gate, with a final round of
random single-qubit gates appended at the end, where single-
qubit gate set is still±X ,±Y , and±(X±Y ). Finally, divide
the Pauli fidelity of the cycle by the Pauli fidelity of the two
single-qubit gates to obtain the Pauli fidelity of the two two-
qubit gates.
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XEB is a powerful calibration tool for near-term quantum
devices. Some works have attempted to analyze how to spoof
linear XEB, an important topic related to the quantum compu-
tational advantage experiments [436, 437]. In addition, Chen
et al. proposed the Clifford XEB [438], which replaces the
random circuits with Clifford circuits, to enable the character-
ization of large-scale quantum systems, since Clifford circuits
can be simulated in polynomial time.

B. Circuit-level benchmarking

1. Random Quantum Circuit (RQC) Sampling

RQC sampling is outstanding candidate to demonstrate
quantum computational advantages, and also a tool to charac-
terize the overall performance of the quantum processor. The
steps of RQC sampling are:

Step 1: Generate RQC. Each RQC is composed of m
cycles, and each cycle is composed of a single-qubit gate
layer and a two-qubit gate layer. In the single-qubit gate
layer, single-qubit gates are applied on all qubits and cho-
sen randomly from the set of {

√
X,
√
Y ,
√
W}, where√

X=RX(π/2),
√
Y=RY (π/2), and

√
W=R(X+Y )(π/2)

are π/2-rotation around specific axis. Each single-qubit gate
on a qubit in subsequent cycle is independently and randomly
chosen from the subset of {

√
X,
√
Y ,
√
W}, which does not

include the single-qubit gate to this qubit in the preceding cy-
cle. In the two-qubit gate layer, two-qubit gates are applied
according to a specified pattern, labeled by A, B, C, and D,
in sequence of ABCDCDAB. By executing the four-cycle se-
quence ABCD once, the two-qubit gate between all qubits can
be executed exactly once. Finally, an additional single-qubit
gate layer is applied after m cycles and before measurement.

Step 2: Execute the RQC on the noisy quantum devices and
collect the measured bitstrings {xi}.

Step 3: Compute the linear cross-entropy benchmarking fi-
delity,

FXEB = 2n〈p(xi)〉i − 1 (71)

where n is the number of qubits, p(xi) is the probability of
bitstring xi calculated for the ideal quantum circuit.

2. Quantum volume (QV) and circuit layer operations per second
(CLOPS)

QV is a single-number metric for quantifying the compu-
tational power of a near-term quantum computers of modest
size [439]. In general, to achieve higher QVs, quantum com-
puting systems not only require more qubits, but also to main-
tain high-fidelity operations, high qubit connectivity, high gate
parallelism, as well as high-performance circuit compilation
techniques.

A QV benchmark procedure is as follows:
Step 1: Generate QV circuits. The circuits U consist of d

sequential layers that act on m qubits. Each layer consists

of a random permutation of the qubits, followed by Haar-
random two-qubit gates (from SU(4)) performed on neigh-
bouring pairs of qubits.

Step 2: Execute the QV protocol on the noisy quantum de-
vices. If we cannot execute circuit U perfectly or efficiently
with the provided gate set provided by the target system, then
we need to resort to a circuit-to-circuit transpiler to find an
approximate U ′ with infidelity 1− Favg(U,U ′) ≤ 1, where

Favg(U,U ′) =
|Tr(U†U ′)|2/2m + 1

2m + 1
(72)

is the average gate fidelity [440] between m-qubit unitaries U
and U ′. Arbitrary circuit transpiler techniques can be used to
facilitate efficient execution on hardware. Finally, observe the
distribution qU (x) for the implementation U ′.

Step 3: Determine whether the result satisfies the heavy
output. Calculate the ideal output distribution pU (x) =
|〈x|U |0〉|2 of the circuit U , and sort it in ascending order
p0 ≤ p1 ≤ · · · ≤ p2m−1, where x ∈ {0, 1}m is an observable
bit-string. The heavy HU outputs are

HU = {x ∈ {0, 1}}m such that pU (x) > pmed}, (73)

where pmed = (p2(m−1)+p2(m−1)−1)/2 is the median of the set
of probability. The probability that the experimental sampling
satisfies the heavy output is:

hU =
∑
x∈HU

qU (x) (74)

If hU > 2/3, the test is passed.
Step 4: Calculate the QV. For m-qubit quantum system,

repeat steps 1-3 to get the largest achievable depth d(m) such
that

h1, h2, . . . , hd(m) > 2/3 and hd(m)+1 ≤ 2/3. (75)

By increasing the system size until d(m) < m, we then get
the QV VQ, which is defined as

log2VQ = arg max
m

min(m, d(m)) (76)

QV has become a widely used benchmarking tool as it re-
flects the comprehensive performance of quantum devices.
Recently, Quantinuum claimed a 8,192 QV is measured on
their trapped-ion quantum computing [441]. IBM Quantum
has has achieved a 256 QV on their superconducting quantum
processor Falcon r10 [442].

CLOPS [443] is a measure correlated with how many QV
circuits a QPU can execute per unit of time, and it is a speed
benchmark that serves as a complement to QV. Thus, IBM
Quantum team take the number of qubits, QV, and CLOPS as
three key attributes to measure the performance of near-term
quantum computers, in terms of scale, quality, and speed.

3. Mirror Circuits

Both QV and RQC sampling require predicting the ideal
outcomes, whose classical complexity grows exponentially.
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Mirror circuits – quantum circuits with a reflection structure –
is an efficiently verifiable benchmarking method [444], which
does not require huge classical computing resources. Specif-
ically, a mirror circuit consists of: 1) A layer to prepare each
qubit in a randomized Pauli eigenstate; 2) The layer of quan-
tum circuit C; 3) A randomly chosen Pauli layer Q; 3) The
‘quasi-inverse’ circuit C−1 so that C−1QC is a Pauli opera-
tion. By construction, every mirror circuit has a unique and
easy-to-calculate outcome bitstring in the ideal case without
noise.

Run the mirror circuit on the noisy quantum devices, and
observe the probability S of the bitstring that should be output
theoretically. Calculate the polarization

p = (S − 1/2w)/(1− 1/2w), (77)

which is a metric represents performance on C, where w is
the number of qubits.

4. Application-Oriented Benchmarks

Application-oriented benchmarks aim to measure the use-
fulness of quantum system at handling actual problems, rather
than simply measuring its theoretical performance. Recently,
various application-oriented benchmarks have been intro-
duced [445–449]. These benchmarks deal with different prac-
tical problems. Inspired by the classical LINPACK bench-
mark, the quantum LINPACK benchmark [445] is to measure
the performance of quantum computers for scientific comput-
ing applications by considering the problem of solving quan-
tum linear system problem. The Q-score metric [447] is de-
fined as the size of the largest graph for which the quantum
device can approximately solve the Max-Cut problem with a
solution that significantly outperforms a random guessing al-
gorithm. While, the SupermarQ [446], QED-C’s application-
oriented benchmarks [448], and algorithmic qubits [449] are
more integrated by executing a series of common quantum al-
gorithms and programs.

VI. CLASSICAL SIMULATION

In the NISQ era, classical simulators for quantum algo-
rithms are particularly important. On one hand, classical sim-
ulators are perfect benchmarking baselines for noisy quan-
tum computers. As an example, classical simulators have
been extensively used in RQC sampling experiments, rang-
ing from calibrating the gate-level fidelities and the circuit-
level fidelities, to estimating the fidelities of the hardest RQC
sampling experiments [7–9]. Moreover, the claim of quantum
supremacy for RQC sampling also requires an efficient classi-
cal simulator to set the performance baseline for a fair compar-
ison. On the other hand, the classical simulators also provide
an alternative platform for running quantum algorithms with-
out resorting to an actual quantum computer, which could be
very helpful, for example, for exploring near-term quantum
algorithms such as VQE, or for testing quantum noise models
or quantum error mitigation schemes.

In this section we will first review several important classi-
cal algorithms used to implement classical simulators for both
noiseless and noisy quantum circuits, and then we will briefly
review different ways to compute the gradients of parametric
quantum circuits on classical computers.

A. Simulating noiseless quantum circuits

Here we introduce some definitions and notations which
will be used throughout this section. Mathematically, an n-
qubit pure quantum state |φ〉 can be written as

|φ〉 =
∑

σ1,σ2,...,σn

cσ1,σ2,...,σn |σ1, σ2, . . . , σn〉, (78)

where |σ1, σ2, . . . , σn〉 represents a specific computational
basis and cσ1,σ2,...,σn is the coefficient (amplitude) for it. All
the coefficients constitute a rank-n tensor, which contains 2n

complex numbers since each σl can be 0 or 1. The coefficient
tensor is usually equivalently viewed as a long state vector of
length 2n.

Generally, a quantum algorithm starts by initializing the n-
qubit quantum register in a particular state |0⊗n〉 where all the
qubits are set to state |0〉. Then one applies a series of quan-
tum gate operations onto the initial state to obtain the final
quantum state |ψ〉:

|ψ〉 = Ĉ|0⊗n〉 = Q̂m · · · Q̂1|0⊗n〉, (79)

where Q̂j denotes the j-th quantum gate operation, m is the
total number of gates and Ĉ is an abbreviation for all the gate
operations. We will also use Q to denote the tensor which
corresponds to the quantum operator Q̂. Finally, a quantum
algorithm usually ends by measuring the final quantum state
|ψ〉 to obtain the measurement outcomes in the form of bit-
strings, which are either used as the final outputs or used to
further compute the expectation values of some quantum ob-
servables depending on the specific quantum algorithms. We
note that a general quantum algorithm could also allow quan-
tum measurements to be performed in between the quantum
gate operations, which however adds no difficulty for classi-
cal simulators as long as each elementary quantum operation
could be simulated.

For classical simulators, one could usually perform more
flexible “measurements” compared to quantum computers
since the quantum state is often stored in a certain data struc-
ture on classical computers which can be easily copied and
reused. We will primarily focus on the following three types
of measurements that can be performed using classical sim-
ulators: 1) computing the amplitude of a given bitstring ~b =
{b1, b2, . . . , bn}, which is useful to verify the fidelity of the
measured bitstrings by noisy quantum computers (the XEB
test is one such example); 2) simulating the sampling pro-
cess, namely generating a number of samples (bitstrings), this
could be done as long as one can compute amplitudes for any
given bitstrings, for example one could first generate a num-
ber of random bitstrings and then perform a rejective sam-
pling to select a subset of them as samples according to their
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FIG. 9. Classical algorithms for simulating quantum circuits. The Schrödinger simulator directly stores the quantum state as a state
vector and its memory requirement grows exponentially with the system size. The Schrödinger-Feynman simulator divides the system into
two subsystems and store the two smaller quantum states accordingly, the complexity of which grows exponentially with the number of “cross
gates” acting on both subsystems simultaneously. In tensor network based algorithms the quantum state (and the quantum circuit) are indirectly
stored as a tensor network. Concretely, the matrix product states based simulator represents the quantum state as an MPS, which is a special
instance of the one-dimensional tensor network. The tensor network contraction algorithm represents the quantum state together with the
quantum circuit as a whole tensor network. Pre-contracting the tensor network formed in the TNC algorithm in the time direction will result
in a projected-entangled pair state (assuming that the underlying quantum circuit has a clear two-dimensional structure, which are physically
motivated by the geometry of the current quantum processors).

amplitudes [450]; and 3) computing the expectation values of
some quantum observables (Pauli strings for example). We
note that although expectation values could be computed in a
similar way to quantum computers as long as one can generate
samples, for classical simulators there often exist shortcuts in
which they can be directly computed without sampling errors,
and these exact expectation values could be used as perfect
references for noisy quantum computers.

1. Schrödinger simulator

The most straightforward approach to simulate quantum
circuits is the so-called Schrödinger algorithm, which stores
a quantum state |φ〉 on a classical computer by directly stor-
ing its coefficient tensor cσ1,σ2,...,σn as a state vector [451–
454]. As a result the amount of memory required to store an
n-qubit quantum state grows exponentially with n. To given
some explicit numbers of the memory complexity using the
Schrödinger simulator (we assume that single precision com-
plex numbers are used), it takes around 1 GB memory for
n = 27, around 0.5 TB memory for n = 36, and around 2
PB memory for n = 48 which is already beyond the reach of
most of the existing supercomputers in the world! In fact till

now the largest classical simulation based on the Schrödinger
simulator has only reached 45 qubits which uses about 0.5 PB
memory [453].

For the Schrödinger simulator, the initialization is straight-
forward since the full quantum state is stored in memory. One
can simply set the amplitude corresponding to the computa-
tional basis |0, . . . , 0〉 to 1 and the amplitudes for the rest to
be 0. The quantum gate operations on the state vector can
be simulated by following their mathematical definitions. For
example a single-qubit gate operation acting on the i-th qubit,
denoted as Qσ

′
i
σi , can be simulated as

cσ1,...,σ′i,...,σn
=
∑
σi

Q
σ′i
σicσ1,...,σi,...,σn , (80)

and a two-qubit gate operation acting on the two qubits i and
j (1 ≤ i < j ≤ n), denoted as Q

σi′ ,σj′
σi,σj , can be simulated as

cσ1,...,σ′i,...,σ
′
j ,...,σn

=
∑
σi,σj

Q
σ′i,σ

′
j

σi,σjcσ1,...,σi,...,σj ,...,σn . (81)

Eqs.(80,81) are simply tensor contractions. However, directly
implementing them as tensor contractions on classical com-
puters would be extremely slow for large n since tensor con-
traction would generally involve copies of the tensors (a stan-
dard implementation for tensor contraction is to first permute
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the tensor indices of each tensors and then do matrix multipli-
cation, where the tensors will be copied during the tensor in-
dex permutation). Additionally, in actual implementation one
usually prefers to implement the gate operations in an inplace
fashion to reduce the memory usage, namely one directly uses
the result to overwrite the input tensor for the quantum state
instead of generating a new one.

The memory-efficient way to implement Eqs.(80,81) is to
directly follow the definition of tensor contraction, that is, it-
erating over all the uncontracted indices and performing in-
place operations for the contracted indices inside each iter-
ation. Taking the two-qubit gate operation in Eq.(81) as a
concrete example, one could first group all the uncontracted
indices into three contiguous sets to reduce the number of for
loops, which results in a rank-5 tensor denoted as c̃:

c̃(σ1,...,σi−1),σi,(σi+1,...,σj−1),σj ,(σj+1,...,σn) = cσ1,...,σn ,

(82)

where the set of indices insider the parentheses mean that they
are treated together as a single index. We note that in real cod-
ing nothing needs to be done in Eq.(82), it is just an equivalent
way to view the same state vector. The tensor c̃ have a shape
2i−1 × 2 × 2j−i−1 × 2 × 2n−j , and Q

σi′ ,σj′
σi,σj can be applied

onto c̃ using three for loops as shown in Algorithm. 1.

Algorithm 1 Implementation of a two-qubit gate operation
Q
σi′ ,σj′
σi,σj on an n-qubit quantum state stored as a state vector.

Column-major storage and zero-based indexing are assumed
for all the tensors.

1: for s3 = 0 : 2n−j − 1 do
2: for s2 = 0 : 2j−i−1 − 1 do
3: for s1 = 0 : 2i−1 − 1 do
4: c̃[s1, σ

′
i, s2, σ

′
j , s3] =

∑
σi,σj

Q
σi′ ,σj′
σi,σj ×

c̃[s1, σi, s2, σj , s3]
5: end for
6: end for
7: end for

We note that the operation inside the for loops of Algo-
rithm. 1 is simply a 4 × 4 matrix times a vector of size 4.
The overall floating number operations in Algorithm. 1 is thus
O(4 × 2n). At the same time one needs to fetch all the el-
ements of the state vector from the main memory into the
CPU cache and then send the results back after the compu-
tation for at least once, namely the amount of memory ac-
cess is O(2 × 2n). As a result the number of memory ac-
cess compared to the number of floating point arithmetic is
roughly 1/2, while for modern classical computing hardware
the memory bandwidth is usually much lower compared to the
Flops efficiency. For example the V100 GPU has a memory
bandwidth of 1.9 TB/s but has a single-precision performance
of 19.5 TFlops (the former is only about 10% of the latter).
Therefore the efficiency of the Schrödinger simulator is essen-
tially bounded by the memory bandwidth. Nevertheless, one
could slightly increase the compute density by unrolling the
inner most for loop such that several vectors of size 4 are pro-
cessed simultaneously, that is, several matrix-vector multipli-
cations are grouped together into a single matrix-matrix mul-

tiplication to optimize the usage the CPU cache (one would
also make sure that the sizes of the matrices exactly fit into the
CPU cache size for the best performance). The loop unrolling
will also have an another advantage that one could fetch a
bunch of numbers which are contiguous in memory simul-
taneously, which is an operation that is vectorized by most
modern computing hardware. Additionally, the two outer for
loops in Algorithm. 1 can be parallelized straightforwardly on
a shared-memory architecture. The sparsity of gate operations
could also be explored to further speed up the calculation, for
example, the control-control-Z gate would only have a single
non-trivial operation for its inner matrix-vector multiplication,
which means that applying such a three-qubit gate would have
a complexity which is only 1/8 of the complexity of a dense
single-qubit gate operation.

After all the gate operations have been performed, one ob-
tains the final state |ψ〉 in the form of a state vector. No addi-
tional computations need to be done to obtain the amplitudes
since they have been directly stored. The expectation value of
a local observable Ôi on the i-th qubit, whose corresponding
tensor is Oσ

′
i
σi , can be computed as

〈ψ|Ôi|ψ〉 =
∑

σ1,...,σi−1,σi,σ′i,σi+1,...,σn

cσ1,...,σi,...,σn

×Oσ
′
i
σic
∗
σ1,...,σ′i,...,σn

. (83)

One way to implement Eq.(83) is to treat Ôi as a single-qubit
operator and apply it onto |ψ〉 to obtain Ôi|ψ〉, and then com-
pute the dot product between |ψ〉 and Ôi|ψ〉. The advantage
of this approach is that it could easily be generalized to more
general observables such as a general Pauli string written as

P̂ = M1 ⊗M2 ⊗ · · · ⊗Mn, (84)

where each M j ∈ {X,Y, Z, I2} (X , Y , Z are Pauli matrices
and I2 is the 2× 2 identity matrix) is a local matrix, for which
one can simply applyM j sequentially onto |ψ〉 to obtain P̂ |ψ〉
and then compute the dot product between |ψ〉 and P̂ |ψ〉. The
disadvantage is that one has to use an additional copy of the
quantum state to store the intermediate state Ôi|ψ〉 or P̂ |ψ〉.
A better approach to take is to directly evaluate Eq.(83) using
several for loops similar to Algorithm. 1, for which no copy
of the quantum state is required, however for a general Pauli
string this approach would require n for loops which is likely
to be less efficient.

As long as one can compute the expectation of a local ob-
servable and can apply gate operations onto the quantum state
for some classical simulator, one is able to faithfully simulate
the quantum measurement process (the following procedures
to simulate quantum measurement are valid for all classical
simulators which support those operations). Assuming that
one wants to simulate a local quantum measurement on the i-
th qubit, one can first compute the expectation value of the lo-
cal operator |1i〉〈1i|which is the probability that the i-th qubit
is in state 1, then one generates a random number p according
to the uniform distribution and outputs 1 if p < 〈ψ|1i〉〈1i|ψ〉
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and outputs 0 otherwise. The “collapse” the quantum state af-
ter measurement can be simulated by applying a local opera-
tor |1i〉〈1i| onto |ψ〉 if 1 is obtained from the measurement, or
applying |0i〉〈0i| if 0 is obtained (the resulting quantum state
should also be normalized by the corresponding probability).

An important advantage of the Schrödinger simulator is that
its computational time scales strictly linearly against the num-
ber of gate operations (therefore it would also be beneficial to
perform gate fusion at the beginning to absorb smaller gates
into larger ones to reduce the total number of gate operations).
There already exists several excellent libraries which are
based on the Schrödinger simulator, such as ProjectQ [455],
Yao [456], Qiskit [360], Quest [457], Qulacs [458].

2. Schrödinger-Feynman simulator

In the Schrödinger algorithm the whole quantum state is
directly stored in memory. There is another extreme, the path-
integral (Feynman) algorithm, which does not store any quan-
tum state at all. In the Feynman algorithm, the amplitude of a
specific bitstring~b is computed as

〈~b|ψ〉 = 〈~b|Q̂m . . . Q̂1|0⊗n〉

=
∑

~x1,...,~xm−1

〈~b|Q̂m|~xm−1〉〈~xm−1| . . . |~x1〉〈~x1|Q̂1|0⊗n〉,

(85)

where each ~xj denotes a specific computational basis. To eval-
uate Eq.(85), all one needs are terms 〈xj |Q̂j |xj−1〉 which are
simply the entries of the tensor Qj . Therefore the quantum
state is never explicitly stored in the Feynman algorithm. Each
combination {~x1, . . . , ~xm−1} specifies a particular path and
the total number of different paths (thus the time complexity)
scales exponentially with the number of gate operations m,
while in the meantime the memory complexity is negligible.
The Feynman algorithm is of course impractical for any quan-
tum circuit containing a few hundreds of gate operations due
to its scaring time complexity.

The Schrödinger-Feynman algorithm aims to take advan-
tages of both the Schrödinger algorithm and the Feynman al-
gorithm [450]. Concretely, it divides the whole system into
two subsystems and stores two quantum states corresponding
to the two subsystems instead of storing the global quantum
state. For the Sycamore quantum processor with 53 qubits,
one only needs to store two quantum states of 26 and 27 qubits
respectively (one could of source increase the number of sub-
systems if there is not enough memory on the classical com-
puter to store the quantum states of the subsystems). Once the
partition is fixed, the gate operations acting on qubits which
belong to one subsystem can be simply applied onto the quan-
tum state corresponding to this subsystem. For gate opera-
tions which act on qubits from both subsystems, denoted as
Q̂gl (1 ≤ l ≤ mc with mc the total number of such cross
gates), one could first decompose it into the following tensor
product form (the details of the decomposition will be shown

later)

Q̂gl =
∑
sl

Ûglsl ⊗ V̂
gl
sl
, (86)

where the operators Ûglsl and V̂ glsl act on the two subsystems
respectively for each sl, then the amplitude in Eq.(85) can be
computed as

〈~b|ψ〉 =
∑

s1,...,smc

〈~b| . . . Ûg2s2 V̂
g2
s2 (Q̂g2−1 . . . Q̂g1+1)×

× Ûg1s1 V̂
g1
s1 (Q̂g1−1 . . . Q̂1)|0⊗n〉. (87)

The operators in the summand of Eq.(87) act either on one
subsystem or the other subsystem, therefore one only needs
to store the two quantum states of the two subsystems. Com-
pared to Eq.(85), the total number of paths in Eq.(87) will only
grow exponentially against the total number of cross gates,
namely mc, instead of m. One could also evaluate the expec-
tation values of observables (local operators or Pauli strings)
similar to Eq.(87), however the number of possible paths will
generally be squared.

From Eq.(87), the different paths specified by
{s1, . . . , smc} can be computed in parallel with no data
communication, therefore the Schrödinger-Feynman algo-
rithm is extremely friendly for large-scale parallelization on
distributed architectures. Moreover, one could easily use the
Schrödinger-Feynman algorithm to simulate the simplified
quantum circuits by removing a number of cross gates from
the original quantum circuit. For these reasons it is used
as the first classical benchmarking baseline to characterize
quantum supremacy for the Sycamore quantum processor [7].

3. Matrix product state based simulator

Tensor network states based algorithms belong to an im-
portant class of algorithms which could often leverage the
exponential memory requirement when simulating quantum
algorithms. Generally, in tensor network states based simu-
lators one represents the underlying quantum state as a ten-
sor network which only consists of low-rank tensors, then the
gate operations are simulated by updating the local tensors of
the tensor network been acted on and quantum measurements
could be simulated by contracting some tensor network.

Tensor network states are originally introduced to solve
quantum many-body problems, which are mostly used to
approximate the low-energy states of quantum many-body
Hamiltonians [459]. Depending on the structure of the physi-
cal problem, various tensor network ansatz have been used to
represent the underlying quantum state, such as matrix prod-
uct states (MPS) [460–462], projected entangled pair states
(PEPS) [463], tree tensor network (TTN) [464], multiscale
entanglement renormalization ansatz (MERA) [465]. In par-
ticular, MPS and PEPS are designed for one-dimensional
and two-dimensional quantum many-body systems respec-
tively [459, 466], and have achieved great success therein for
the past thirty years.



30

Out of all tensor network states, MPS is a very special and
important one, mostly because that the errors in MPS based
algorithms can be often well controlled and that it allows
very efficient and stable ground state searching [467, 468]
and time evolution algorithms [460–462]. Therefore although
MPS is mostly designed to represent the ground states of one-
dimensional quantum many-body systems, it could also be
used as a general-purpose ansatz similar to the state vector
for arbitrary quantum states (in the general case the cost of
MPS could also grow exponentially) [469]. MPS based sim-
ulator has been used to simulate Shor’s algorithm up to 60
qubits [470, 471], to simulate (noisy) optical quantum cir-
cuits [472], to simulate the Sycamore RQCs [473], and to sim-
ulate VQE algorithms for quantum chemistry problems with
up to 100 qubits [474]. Some typical simulations of VQE us-
ing the Schrödinger simulator and the MPS based simulator
are listed in TABLE. II.

TABLE II. Typical simulations of molecular systems with classi-
cal simulators. The number of atoms (Na), number of qubits (Nq),
the estimated number of CNOT gates (NCNOT), and the algorithms
(Alg.) used are listed for comparison. SA is a shorthand for the
Schrödinger algorithm.

Work System Na Nq NCNOT Alg.
Microsoft QDK [475] H2 2 4 64

SA

Cirq [476] CH2O 4 6 272
Qulacs [477] He crystal 1 8 1.6× 103

Qiskit [478] N2 2 16 2.7× 104

Yao.jl [479] C18 18 16 5.4× 104

VQEChem [480] H chain 2 16 5.4× 104

QCQC [481] Si crystal 2 16 1.1× 105

Tequlia [482] BH 2 22 1.6× 105

HiQ [483] C2H4 6 28 8.6× 105

iQCC-VQE [484] Ir(ppy)3 61 56 ∼ 60
Differentiable MPS [485] CO2 3 30 3.7× 104

MPS-VQE [474] H2 2 92 1.4× 105

MPS
MPS-VQE [474] C2H6 8 32 4.4× 105

To simulate quantum circuits based on the MPS represen-
tation of the quantum state, one could directly use an MPS
based time evolution algorithm such as time evolving block
decimation (TEBD) [461]. In the following we will introduce
a variant of TEBD to enhance the stability of the algorithm.
MPS rewrites the rank-n coefficient tensor cσ1,...,σn in Eq.(78)
as the product of a chain of rank-3 tensors as

cσ1,σ2,...,σn =
∑

a0,...,an

Bσ1
a0,a1B

σ2
a1,a2 . . . B

σn
an−1,an , (88)

where σj ∈ {0, 1} is the “physical” index and aj the “auxil-
iary” index. The indices a0 and an at the boundaries are trivial
indices added for notational convenience. The size of an MPS
can be conveniently characterized by the largest size of the
auxiliary indices

D = max
1≤j≤n−1

(dim(aj)) , (89)

which is usually referred to as the bond dimension of MPS.
In principle, Eq.(88) is able to represent any quantum states
exactly if D increases exponentially. A quantum state is said
to be efficiently representable as an MPS if D is nearly a con-
stant as n grows. Generally, for MPS based algorithms the
memory complexity scales as O(nD2) and the computational
complexity scales as O(nD3).

Slightly different from the TEBD algorithm, we assume
that the MPS is prepared in a right-canonical form, where each
site tensor satisfies the right-canonical condition∑

σj ,aj

(B
σj
a′j−1,aj

)∗Bσjaj−1,aj = δaj−1,a′j−1
. (90)

We also assume that the bipartition singular vectors, denoted
as λaj , which are the Schmidt numbers when splitting the sys-
tem into two subsystems from qubits 1 to j and from qubits
j+1 to n, are also stored. The initial state |0⊗n〉 can be easily
written as an MPS with D = 1, for which each site tensor
satisfies

B
σj=0
aj−1=0,aj=0 = 1, B

σj=1
aj−1=0,aj=0 = 0, (91)

(In fact any separable state can be written as an MPS with
D = 1 similarly). The corresponding singular vectors are
simply initialized as λaj=0 = 1. It is straightforward to verify
that the site tensors initialized in this way satisfy Eq.(90) and
that the singular vectors are the correct Schmidt numbers. The
gate operations are then applied sequentially onto the MPS. A
single-qubit gate operation acting on the j-th qubit, denoted

as Q
σ′j
σj , changes the j-th site tensor of the MPS as

B̃
σ′j
aj−1,aj =

∑
σj

Q
σ′j
σjB

σj
aj−1,aj . (92)

Since Q
σ′j
σj is unitary, it is straightforward to verify that

B̃
σ′j
aj−1,aj will satisfy Eq.(90) as long as Bσjaj−1,aj does. For

a nearest-neighbour two-qubit gate Q
σ′j ,σ

′
j+1

σj ,σj+1 acting on two
qubits j and j+1 (the j-th bond), it will change the both the j
and j + 1-th site tensors of the MPS. To simulate a two-qubit
gate operation while preserving the right canonical property
of the underlying MPS, we use the technique first introduced
in Ref. [486], which is shown as follows. First we contract the
two site tensors Bσjaj−1,aj and Bσj+1

aj ,aj+1 with Q
σ′j ,σ

′
j+1

σj ,σj+1 to get a
two-site tensor

C
σ′j ,σ

′
j+1

aj−1,aj+1 =
∑

aj ,σj ,σj+1

Q
σ′j ,σ

′
j+1

σj ,σj+1B
σj
aj−1,ajB

σj+1
aj ,aj+1

. (93)

Then we contract C
σ′j ,σ

′
j+1

aj−1,aj+1 with the singular vector λaj−1 at
the j − 1-th bond to get a new two-site tensor as

C̃
σ′j ,σ

′
j+1

aj−1,aj+1 = λaj−1
C
σ′j ,σ

′
j+1

aj−1,aj+1 . (94)

Now we perform singular value decomposition (SVD) on the

tensor C̃
σ′j ,σ

′
j+1

aj−1,aj+1 and get

SVD(C̃
σ′j ,σ

′
j+1

aj−1,aj+1) =
∑
aj

U
σ′j
aj−1,aj λ̃ajV

σ′j+1
aj ,aj+1 , (95)
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during which we will also truncate the small singular values
below a certain threshold ε or simply reserve the D largest
singular values if the singular values larger than ε is more than
D. Here we note that this truncation step is the only step that
would introduce errors in the algorithm, and such errors could
be made arbitrarily small in principle if one sets ε to be very
small and D to be very large (the actual size of D required
is of course problem-dependent). After the SVD, the updated

site tensors B̃
σ′j
aj−1,aj and B̃

σ′j+1
aj ,aj+1 can be obtained as

B̃
σ′j
aj−1,aj =

∑
σ′j+1,aj+1

C
σ′j ,σ

′
j+1

aj−1,aj+1

(
V
σ′j+1
aj ,aj+1

)∗
; (96)

B̃
σ′j+1
aj ,aj+1 = V

σ′j+1
aj ,aj+1 . (97)

To verify that B̃
σ′j
aj−1,aj and B̃

σ′j+1
aj ,aj+1 are indeed the solu-

tions, we can see that
∑
aj
B̃
σ′j
aj−1,aj B̃

σ′j+1
aj ,aj+1 = C

σ′j ,σ
′
j+1

aj−1,aj+1

up to truncation errors. The reason that one does not di-

rectly do SVD on C
σ′j ,σ

′
j+1

aj−1,aj+1 to get the updated site tensors
is to preserve the right canonical properties of the solutions,

in fact it could be verified that B̃
σ′j
aj−1,aj and B̃

σ′j+1
aj ,aj+1 both sat-

isfy Eq.(90) (B̃
σ′j+1
aj ,aj+1 is right canonical by construction from

Eq.(95)). The new singular vector λ̃αj contains the correct
Schmidt numbers on bond j of the updated MPS and is used
to replace the old λαj . Similar to the Schrödinger simulator,
one can also absorb the single-qubit gate operations into two-
qubit gate operations before hand, but the speedup will not be
as significant since the complexity of a single-qubit gate op-
erations is negligible compared to a two-qubit gate for MPS
based simulator. A three-qubit gate which acts on three con-
tiguous qubits could also be simulated similarly, where the
three site tensors as well as the two singular vectors in be-
tween will be updated. A non-nearest-neighbour gate oper-
ation could be simulated by decomposing it into a series of
nearest-neighbour gate operations using the SWAP gate.

With a right-canonical MPS, there is a very efficient way to
compute the expectation of a local operator or a Pauli string.
For example, the expectation value of a single-qubit observ-
able Ôj on the j-th qubit can be simply computed as

〈ψ|Ôj |ψ〉 =
∑

aj−1,aj ,σj ,σ′j

λ2
aj−1

O
σ′j
σjB

σ′j
aj−1,aj (B

σj
aj−1,aj )

∗,

(98)

and the expectation value of a generic two-qubit observable
Ôi,j on the i and j-th qubits (i < j) can be computed as

〈ψ|Ôi,j |ψ〉 =
∑

aj:i−1,σj:i,σ′j:i

λ2
ai−1

O
σ′i,σ

′
j

σi,σjB
σ′i
ai−1,ai(B

σi
ai−1,ai)

∗×

· · · ×Bσ
′
j
aj−1,aj (B

σj
aj−1,aj )

∗,

(99)

where we have used xj:i = {xi, xi+1, . . . , xj} as an abbrevi-
ation for a list of indices. The expectation value of a general

n-qubit Pauli string could be computed similarly, with a com-
plexity that scales as O(nD3).

After one obtains the quantum state |ψ〉 in MPS form, the
amplitude of a given bitstring~b can be computed as

〈~b|ψ〉 =
∑

a0,...,an

Bσ1=b1
a0,a1 B

σ2=b2
a1,a2 . . . Bσn=bn

an−1,an , (100)

for which only O(n) matrix-vector multiplications need to be
performed. Given the ability to efficiently compute the ampli-
tude, one could also simulate the sampling problem by further
using a sampling algorithm. However, sampling an MPS can
be done exactly and more efficiently [487]. Given an MPS
in the right-canonical form as in Eq.(88), the reduced density
matrix for qubits from 1 to j can be simply computed as

ρ
σ′1,...,σ

′
j

σ1,...,σj =
∑

aj−1:0,a′j−1:0,aj

(B
σ′1
a′0,a

′
1
)∗Bσ1

a0,a1 × · · ·

× (B
σ′j−1

a′j−2,a
′
j−1

)∗Bσj−1
aj−2,aj−1

(B
σ′j
a′j−1,aj

)∗Bσjaj−1,aj .

(101)

To generate a single sample (bitstring), one could first com-
pute the reduced density matrix of the first qubit, ρσ

′
1
σ1 , using

Eq.(101), and then one could perform a local sampling on ρσ
′
1
σ1

to get the sampling output for the first qubit, denoted as ν1.
After that, the reduced density matrix of the second qubit con-
ditioned on the sampling outcome of the first qubit, denoted
as ρσ

′
2
σ2 |ν1 , can be computed as

ρ
σ′2
σ2 |ν1 =

1

p(ν1)

∑
a1:0,a′1:0,a2

(B
σ′1=ν1
a′0,a

′
1

)∗Bσ1=ν1
a0,a1 (B

σ′2
a′1,a2

)∗Bσ2
a1,a2 ,

(102)

where p(ν1) = ρ
σ′1=ν1
σ1=ν1 is the probability to get ν1 when mea-

suring the first qubit. By a local sampling on ρ̂σ
′
2
σ2 |ν1 on could

obtain the sampling outcome of the second qubit, denoted as
ν2. Repeating this process from left to right, one can obtain
one sample ~ν = {ν1, . . . , νn}. The complexities of comput-
ing one amplitude and generating one sample both scale as
O(nD2).

4. Projected entangled pair states based simulator

PEPS is a natural extension of MPS to two-dimensional
systems [463]. Currently, the mainstream quantum processors
all have a two-dimensional geometry, therefore PEPS could
be a natural tensor network ansatz to represent quantum states
generated on those quantum processors. A PEPS on a square
lattice can be written as

|ψ〉 =
∑

σ1,σ2,...,σn

F(Aσ1
1 Aσ2

2 . . . Aσnn )|σ1, σ2, . . . , σn〉,

(103)

where each A
σj
j is a short hand for the rank-5 site tensor

A
σj
l,r,u,d with a physical index σj and 4 auxiliary indices



32

l, r, u, d representing the connecting of this tensor with the
ones on the left, right, upper and lower respectively. F(. . . )
means to contract the pairs of connected auxiliary indices.
Similar to MPS, the size of a PEPS can also be characterized
by its bond dimension defined as the largest size of its aux-
iliary indices, which we will still denote as D. The memory
complexity to store a PEPS scales as O(nD4).

The initial state |0⊗n〉 can be easily constructed as a PEPS
with D = 1, with site tensors satisfying

A
σj=0
l=0,r=0,u=0,d=0 = 1, A

σj=1
l=0,r=0,u=0,d=0 = 0. (104)

To simulate the gate operations on a PEPS, one needs to prop-
erly update the site tensors of the PEPS. However for a PEPS
the updating is much less straightforward than for an MPS.
In the context of quantum many-body physics, many sophis-
ticated methods have been proposed to approximately update
the site tensors of a PEPS after a gate operation has been ap-
plied on the PEPS, such that the bond dimension of the up-
dated PEPS is bounded by a given bond dimension D [488–
491]. Here we will only present the method used in Ref. [41]
to simulate RQCs, which allows D to grow after each gate
operation and is essentially exact.

For single-qubit gate operationQ
σ′j
σj acting on the j-th qubit,

it only updates the j-th site tensor of the PEPS as

Ã
σj
l,r,u,d =

∑
σ′j

Q
σ′j
σjA

σ′j
l,r,u,d. (105)

For a two-qubit gate operation Q
σ′i,σ

′
j

σi,σj , one first splits it into
the product of two rank-3 tensors using SVD as in Eq.(86).
Concretely, this can be done by first decomposing it as

SVD(Q
σ′i,σ

′
j

σi,σj ) =
∑
s

Ũ
σ′i
σi,sλsṼ

σ′j
s,σj , (106)

then Eq.(86) can be satisfied by choosing the tensors U and V
as

U
σ′i
σi,s =

∑
s

Ũ
σ′i
σi,s

√
λs; (107)

V
σ′j
s,σj =

∑
s

√
λsṼ

σ′j
s,σj . (108)

Assuming that the qubits i and j are a pair of nearest-
neighbour qubits in the horizontal direction, then the site ten-
sors Aσii and Aσjj can be updated as

Ã
σ′i
l,r′,u,d =

∑
σi

U
σ′i
σi,sA

σi
l,r,u,d; (109)

Ã
σ′j
l′,r,u,d =

∑
σj

V
σ′j
s,σjA

σj
l,r,u,d, (110)

where we have used r′ = (r, s) and l′ = (s, l). We note that
the size of the right auxiliary index of the site tensor Aσii (and
the left auxiliary index of the site tensor Aσjj ) will be enlarged
by χ times after updating where χ is the number of nonzero

Schmidt number in Eq.(106). A two-qubit gate operation on
a vertical pair of qubits can be done similarly by updating the
auxiliary indices in the vertical directions (d and u) instead.

After one obtains the final quantum state |ψ〉 as a PEPS, the
amplitude of a specific bitstring~b can be computed as

〈~b|ψ〉 = F(Aσ1=b1
1 Aσ1=b2

2 · · ·Aσn=bn
n ), (111)

which amounts to contracting a two-dimensional tensor net-
work with no output indices. For an arbitrary PEPS, the con-
traction of Eq.(111) is a hard problem. Nevertheless in the
context of quantum many-body physics there has been quite a
few approximate methods to contract a two-dimensional ten-
sor network similar to Eq.(111), which are fairly efficient and
accurate [490, 492–497]. However the two dimensional ten-
sor networks formed in quantum many-body problems usu-
ally has a much clear physical origin, such as resulting from
computing a local observable on a PEPS which represents
the ground state of a local Hamiltonian. When applied to
computing amplitudes of RQCs, the physical context is not
as clear, and the approximate methods to contract Eq.(111)
could easily result in significant errors. Therefore in Ref. [41]
Eq.(111) is contracted exactly. For a rectangular lattice with
size nh × nv , it is estimated that the time complexity Ct of
directly contracting Eq.(111) is

Ct = (nh − 2)(nv − 2)Dmin(nh,nv)+3. (112)

One could also compute local observables similar to Eq.(111),
however the resulting two-dimensional tensor network will
have a bond dimension D2 instead, for which one may have
to resort to those approximate methods. The PEPS simulator
could also be easily adapted for other two-dimensional ge-
ometries [42]. Additionally, the algorithms used in Ref. [498,
499] are essentially equivalent to the PEPS algorithm pre-
sented here, although they are not presented using the PEPS
language.

Currently, PEPS based simulator has only been applied to
simulate the RQC sampling problem. For RQC on a square
lattice, the largest simulation scale till now is reached by using
the PEPS based simulator, where one amplitude of a 10 × 10
RQC with depth 40 is computed within 60 hours [43].

Besides the RQC sampling problem, PEPS based simula-
tor is also promising for simulating other quantum algorithms
which are designed for two-dimensional architectures, such as
VQE which uses a physically motivated ansatz. In such situa-
tions one may also explore those approximate PEPS updating
and contraction algorithms to significantly speedup the calcu-
lations.

5. Tensor network contraction based simulator

Instead of representing the quantum state as a tensor net-
work state and then applying the gate operations sequentially
onto it, the quantum circuit itself, as in Eq.(79), can be nat-
urally viewed as a large tensor network, in which the ini-
tial state |0⊗n〉 is simply the tensor product of n vectors
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|0〉 = [1, 0], each single-qubit gate operation is a rank-2 ten-
sor and each two-qubit gate operation is a rank-4 tensor [500].
There are n uncontracted (output) indices in the end of the
tensor network which correspond to the final quantum state.
Contracting this tensor network one would directly obtain the
final quantum state |ψ〉 as a state vector, which is of source
only feasible for very small problems. Depending on the
specific task to do, the tensor network could be simplified.
For example for computing the amplitude of a bitstring, one
would project each output index into a particular qubit state
of the bitstring, resulting in a new tensor network with no out-
put indices. For computing a local observables, one needs to
contract a new tensor network where the observable is sand-
wiched between the two tensor networks formed by |ψ〉 and
its conjugate 〈ψ|. In either case, the solution of the problem
could be obtained by contracting a large tensor network with
no or very few output indices.

Once the problem has been equivalently transformed into
a tensor network contraction (TNC) problem, the key for the
performance is to identify a near optimal tensor network con-
traction order (TNCO). Here we note that there is an impor-
tant difference between the TNC algorithm and the tensor net-
work states based algorithms for simulating quantum circuits,
although in both cases the target problem will eventually be
converted into the problem of contracting a tensor network.
Taking the task of computing one amplitude as an example,
for a quantum circuit which only contains single-qubit and
two-qubit gate operations, the total number of tensors of the
tensor network formed in the TNC algorithm will be approx-
imately equal to the number of two-qubit gates, while for
MPS or PEPS algorithms the number of tensors in the final
tensor network is strictly equal to the total number of qubits
(but in the latter case each tensor could be very large). In
fact, the PEPS algorithm can also be viewed as a special-
ized instance of the TNC algorithm by choosing a particular
TNCO: one first contracts all the tensors in the time direc-
tion, which results in a two-dimensional tensor network in the
spatial directions (assuming that the quantum processor has
a two-dimensional geometry), and then contracts the result-
ing two-dimensional tensor network. For PEPS based simu-
lator since the resulting two-dimensional tensor network has
a much smaller number of tensors and also has a very regular
structure, one could easily identify an optimal TNCO. There-
fore when the tensor network is contracted exactly, the TNC
based simulator has the maximum flexibility to choose an op-
timal TNCO which can result in lower computational com-
plexity compared to the PEPS based simulator in principle.

The TNC algorithm is powered by the highly efficient
heuristic methods to search for near optimal TNCOs devel-
oped in recent years [44, 501, 502]. When applied to RQCs
on Sycamore(-like) quantum processors, the TNC algorithm
gives much lower computational complexity than PEPS. The
central idea of those heuristic methods is to use existing graph
partitioning methods to first divide the large tensor network
with hundreds of tensors (corresponding to a graph with hun-
dreds of nodes) into many smaller tensor networks such that
one could easily compute the TNCO for each smaller tensor
network and then assembly then together into a large TNCO

for the original tensor network [501]. For very large tensor
networks, slicing is also an indispensable technique which
“cuts” a number of edges in the original tensor network such
that the original tensor network is transformed into the sum of
many smaller tensor networks with fewer edges. The slicing
technique could significantly reduce the memory usage since
only simpler tensor networks are being contracted, and if used
properly, it could only result in moderate computational over-
head compared to directly contracting the original tensor net-
work [502]. By understanding the mechanism for the compu-
tational overhead induced by slicing, a lifetime based heuristic
method is proposed to systematically find a near optimal slic-
ing scheme [503].

For the task of computing one amplitude or a correlated
batch of amplitudes for the hardest Sycamore RQC (with a cir-
cuit depth 20), various works have all given a computational
complexity of the order O(1018). While such a complex-
ity scale can be accomplished on a exascale supercomputer
within seconds in principle, the fastest record till now takes
around 150 seconds to compute a batch of correlated ampli-
tudes [503]. For computing a number of uncorrelated am-
plitudes (or generating uncorrelated samples), a recent work
develops a multiple-amplitude TNC algorithm which caches
intermediate computations to reduce the overall complexity,
and based on this method millions of uncorrelated amplitudes
for the Sycamore RQCs with depths up to 16 are success-
fully computed [504]. A sparse-state method is also proposed
to compute a large number of amplitudes with a limited fi-
delity, which is used to generate one million uncorrelated sam-
ples for the hardest Sycamore RQC using 512 GPUs for 15
hours, with a higher fidelity than in the quantum supremacy
experiment [45]. For RQC on a square lattice the largest re-
ported simulation scale using the TNC algorithm reaches 9×9
qubits with a circuit depth 40 [505]. Typical large-scale clas-
sical simulations of RQCs have also been summarized in TA-
BLE. III.

B. Simulating noisy quantum circuits

In certain situations it is also important to simulate noisy
quantum circuits, for example, to understand the behaviors of
quantum algorithms under certain level of noises, to test quan-
tum noise models for quantum computers or to test quantum
error mitigations schemes.

In a noisy quantum circuit, the underlying quantum state
should be represented as a mixed state (density operator), and
the quantum gate operations should be generalized to quan-
tum channels which are super operators acting on the density
operator. To simulate a noisy quantum circuit classically, two
very different but in principle equivalent approaches can be
used. In the first approach, one simply inserts random Pauli
errors into the original noiseless quantum circuit with certain
probabilities [1]. By averaging the results over a large num-
ber of error realizations, one could reproduce the result of a
noisy quantum circuit. Since for each noise realization one
only needs to deal with a quantum circuit which only contains
unitary quantum gate operations, the classical simulators for
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TABLE III. Typical large-scale classical simulations of random quantum circuits, where the results for two different circuit geometries,
rectangular (Rect.) lattice and Sycamore are listed. For rectangular lattice the circuit size is shown by height × width. The column
#Amplitudes show that number of amplitudes been computed. QTIA is a shorthand for a quantum teleportation inspired algorithm used in
Ref. [506].

Hardware RQC (Two-qubit gate) Circuit Size (depth) Time Fidelity #Amplitudes Algorithm
8, 192 nodes of Cori II [453] Rect. (CZ) 5× 9 (1+25+1) 10 minutes 100% all SA
4, 096 nodes of Blue Gene/Q [454] Rect. (CZ) 7× 7 (1+27+1) 2 days 100% 1 SA
32, 768 nodes of Sunway TaihuLight [507] Rect. (CZ) 7× 7 (1+39+1) 4.2 hours 100% all TNC
4, 600 Summit [499] Rect. (CZ) 7× 7 (1+40+1) 2.4 hours 0.5% 1.01× 106 PEPS
4, 096 nodes of Tianhe-2A [41] Rect. (CZ) 7× 7 (1+40+1) 31 minutes 100% 1 PEPS
131, 072 nodes of Alibaba [505] Rect. (CZ) 9× 9 (40) 13 hours 100% 1 TNC
16, 384 nodes of Sunway TaihuLight [506] Rect. (CZ) 8× 125 (1+40+1) 131.6 minutes 100% 1 QTIA
60 GPUs [44] Sycamore (FSIM) 53 (20) 5 days 100% 1 TNC
512 GPUs [45] Sycamore (FSIM) 53 (20) 15 hours 0.37% 106 TNC
107, 520 nodes of New Sunway [43] Sycamore (FSIM) 53 (20) 304 seconds 100% 1 TNC
107, 520 nodes of New Sunway [43] Rect. (CZ) 10× 10 (1+40+1) 60 hours 100% 1 PEPS

noiseless quantum circuits can be directly used.
In the second approach, one directly simulates the noisy

quantum circuit by representing the quantum state as a den-
sity operator, then one applies the quantum channels onto the
density operator and performs quantum measurements based
on the density operator in the end. Compared to the first ap-
proach, the second approach is free of the errors resulting from
a finite number of noise realizations. However, the memory
cost of the second approach could be significantly larger since
the size of a density operator is the square of a pure state in
general. Although a noisy quantum circuit seems very differ-
ent from a noiseless one mathematically, one can equivalently
map it into a problem which is very similar to the noiseless
case, after which one could directly make use of all the classi-
cal algorithms used for simulating noiseless quantum circuits.
This mapping is demonstrated as follows, which is described
mostly based on the state vector representation of the quantum
state but is completely general for all the classical simulators
we have mentioned.

First we map the density operator into an enlarged “pure
state”. Mathematically, a density operator ρ̂ for an n-qubit
quantum system can be denoted as

ρ̂ =
∑

σn:1,σ′n:1

ρ
σ′1,...,σ

′
n

σ1,...,σn |σ1, . . . , σn〉〈σ′1, . . . , σ′n|, (113)

where ρσ
′
1,...,σ

′
n

σ1,...,σn is the rank-2n coefficient tensor (density ma-
trix). One can equivalently view the density operator ρ̂ as a
pure state with 2n qubits as

|ρ̂〉 =
∑

σn:1,σ′n:1

ρ̃σ1,...,σn,σ′1,...,σ
′
n
|σ1, . . . , σn, σ

′
1, . . . , σ

′
n〉,

(114)

where ρ̃σ1,...,σn,σ′1,...,σ
′
n

is similar to cσ1,...,σn in the noiseless
case. Again in the mapping of the coefficient tensor from ρ
to ρ̃, nothing needs to be done actually, it is just a different
way to view the same tensor. We will also refer to ρ̃ as the
squashed state vector.

The quantum channel is defined as a super operator acting
on the density operator ρ̂. In the squashed state vector rep-
resentation, the quantum channel will be a normal quantum

operator acting on |ρ̂〉 instead. Taking the case of a single-
qubit quantum channel for example, which is denoted as K
and acts on the j-th qubit, we assume that it is written in the
standard Sudarshan-Kraus-Choi form as [508–510]

K(ρ) =
∑

s,σj ,σ′j

Ks
τ ′j ,σ

′
j
ρ
σ′1,...,σ

′
n

σ1,...,σn(Ks
τj ,σj )

∗. (115)

In the squashed state vector representation, the quantum chan-
nel K will be mapped into a normal operator acting on ρ̃, de-
noted as K̃, which can be writen as

K̃(ρ̃) =
∑

s,σj ,σ′j

Ks
τ ′j ,σ

′
j
(Ks

τj ,σj )
∗ρ̃σ1,...,σn,σ′1,...,σ

′
n

= M
τj ,τ

′
j

σj ,σ′j
ρ̃σ1,...,σn,σ′1,...,σ

′
n
, (116)

where in the second line we have defined

M
τj ,τ

′
j

σj ,σ′j
=
∑
s

Ks
τ ′j ,σ

′
j
(Ks

τj ,σj )
∗. (117)

We can see from Eq.(116) that the effect of a single-qubit
quantum channel acting on ρ̂ is exactly equivalent to a two-
qubit “gate operation” acting on |ρ̂〉. Similarly any the l-qubit
quantum channel acting on ρ̂ can be mapped to a 2l-qubit gate
operation on |ρ̂〉. Thus all the quantum channels can be ap-
plied onto the squashed state vector using the same algorithm
which applies unitary quantum gate operations onto a state
vector.

For a density operator, the amplitude of a given bitstring ~b
is not well defined, but one can compute the probability of ~b
instead, which is

〈~b|ρ̂|~b〉 = ρ
σ′1=b1,...,σ

′
n=bn

σ1=b1,...,σn=bn

= ρ̃σ1=b1,...,σn=bn,σ′1=b1,...,σ′n=bn . (118)

Therefore the probability 〈~b|ρ̂|~b〉 can be computed by comput-
ing the “amplitude” of the squashed state vector |ρ̂〉 on an en-
larged bitstring {b1, . . . , bn, b1, . . . , bn}. A local observable



35

Ôj acting on the j-th qubit is by definition

tr(Ôj ρ̂) =
∑

σj−1:1,σn:j+1,σj ,σ′j

O
σ′j
σj ρ

σ1,...,σ
′
j ,...,σn

σ1,...,σj ,...,σn , (119)

which can be computed by applying a two-qubit gate opera-
tion on |ρ̂〉, and then view |ρ̂〉 as a density operator again and
take the trace of it (instead of taking the dot product between
two state vectors as in the noiseless case).

Therefore we can see that the second approach to simulate
a noisy quantum circuit could be equivalently mapped into
simulating a noiseless quantum circuit, with some minor dif-
ferences that the effective number of qubits is doubled and
that one may need to slightly adapt the algorithms used to
simulate quantum measurements. There is another subtle dif-
ference that in case of noisy quantum circuits the “gate op-
erations” on the squashed state vector are no longer unitary,
which would affect the classical simulators which explicitly
make use of this property. For the classical simulators that we
have introduced, only the MPS based simulator has explicitly
used the unitary property to preserve the right canonical form
of MPS. In the noisy case, the gate operation algorithms based
on MPS can still be used for |ρ̂〉 in principle if the truncation
error is set to be very small. However it could be less ac-
curate and less stable compared to the unitary case since the
singular values being truncated no longer correspond to the
correct Schmidt numbers. The non-unitarity of noisy quan-
tum circuits could also affect the stability of the PEPS based
simulator if the gate operation and the tensor network contrac-
tion are not performed exactly. The density operator based
approach for noisy quantum circuits has been implemented in
Qiskit [360], Quest [457], Qulacs [458], TensorCircuit [511],
which mostly uses the Schrödinger algorithm.

C. Computing gradients for parametric quantum circuits

In the VQE algorithm, the quantum circuit often contains a
number of tunable parameters, and the solution is approached
by iteratively updating those parameters. To accelerate con-
vergence, a gradient-based optimization algorithm is usually
preferred, especially when there is a large number of param-
eters. To simulate VQE on a classical computer, it would
also be helpful to efficiently compute the gradients on clas-
sical computers. Compared to quantum computers, comput-
ing gradients on classical computers is much more flexible.
In the following we will show several different approaches to
compute the gradients of parametric quantum circuits, which
could be useful in different situations.

We assume that the quantum circuit which is parameterized
by a list of parameters ~θ = {θ1, θ2, . . . , θm}, denoted as Ĉ(~θ).
We also assume that Ĉ(~θ) can be written as

Ĉ(~θ) = Q̂(θm) · · · Q̂(θ2)Q̂(θ1) (120)

where each parametric gate Q̂(θj) contains a single parameter
θj (the case that there exists several parameters in one gate
could be analyzed similarly). A quite generic task to do using

parametric quantum circuits is to minimize some loss function
in the form

L(~θ) = 〈0⊗n|Ĉ†(~θ)Ĥ Ĉ(~θ)|0⊗n〉, (121)

where Ĥ is a Hermitian quantum operator (which does not
have to be local).

The most straightforward approach to compute the gradient
of the loss function in Eq.(121) is the finite difference method,
in which the gradient with respect to one parameter θj is eval-
uated as

∂L(~θ)

∂θj
≈ L(. . . , θj + δ, . . . )− L(~θ)

δ
, (122)

with δ a small positive number. Denoting the complexity of
evaluating Eq.(121) as S, we can see that the complexity of
evaluating the gradients with respect to all the parameters us-
ing Eq.(122) is O(mS) with m the total number of param-
eters. Eq.(122) evaluates the first-order derivative against δ,
which can be slightly modified to be second-order:

∂L(~θ)

∂θj
≈ L(. . . , θj + δ, . . . )− L(. . . , θj − δ, . . . )

2δ
. (123)

The complexity of evaluating Eq.(123) isO(2mS). One could
also use a higher-order finite-difference method for computing
the gradients, which would in general be more accurate by
also incur higher computational cost.

For gradient-based algorithms one often wants to obtain
gradients which are numerically exact. For those paramet-
ric quantum circuits whose parameters are all encoded in the
single-qubit rotational gates Rx, Ry , Rz defined as

Rx(θ) =

[
cos( θ2 ) −i sin( θ2 )
−i sin( θ2 ) cos( θ2 )

]
; (124)

Ry(θ) =

[
cos( θ2 ) − sin( θ2 )
sin( θ2 ) cos( θ2 )

]
; (125)

Rz(θ) =

[
e−i θ2 0

0 ei θ2

]
, (126)

the exact gradients can be computed using the parameter shift
rule as [83]

∂L(~θ)

∂θj
= L(. . . , θj +

π

2
, . . . )− L(. . . , θj −

π

2
, . . . ).

(127)

We can see that the complexity of evaluating Eq.(127) is the
same to Eq.(123). For more general parametric quantum gate
operations Eq.(127) may not hold, nevertheless more sophisti-
cated methods have been proposed evaluate the gradients ex-
actly [84]. Importantly, Eqs.(122,123,127) can all be evalu-
ated on quantum computers, since they only require the ability
for forward evaluation of the loss function in Eq.(121).

Similar to computing the expectation values, for classical
simulators there often exists shortcuts to evaluate the gradi-
ents. In fact the key for the success of classical deep learn-
ing is the automatic differentiation algorithm which allows to
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compute the gradients very efficiently as evaluating the loss
function itself [512]. Since for classical simulators the loss
function only runs on a classical computer, in principle one
can also benefit from the automatic differentiation algorithm
by generalizing it to complex numbers [513]. However, if one
directly applies the automatic differentiation algorithm in the
classical simulator, then the intermediate outputs after apply-
ing each Q̂(θj) onto the quantum state have to be cached so as
to enable efficient back propagation, namely one has to store
at leastm copies of the quantum state. This would be impossi-
ble (or highly inefficient) even for moderate values ofm. Nev-
ertheless, by exploring the reversibility of the quantum circuit,
one could use a memory efficient back propagation algorithm
for parametric quantum circuits where only two copies of the
quantum state have to be used at least. The algorithm is shown
in the following based on the Schrödinger simulator.

Taking the partial derivative of Eq.(121) with respect to one
of the parameters, θj , we get

∂L(~θ)

∂θj
= 〈ψ(~θ)|Ĥ Ĉm:j+1

dQ̂(θj)

dθj
Ĉj−1:1|0⊗n〉+ H.c.,

(128)

where we have used |ψ(~θ)〉 = Ĉ(~θ)|0⊗n〉 and Ĉb:a =

Q̂(θb)Q̂(θb−1) · · · Q̂(θa). Now we define

|Φj〉 = Ĉj:1|0⊗n〉; (129)

|Ψj〉 = Ĉ†m:j+1Ĥ|ψ(~θ)〉, (130)

then Eq.(128) can be rewritten as

∂L(~θ)

∂θj
= 〈Ψj |

dQ̂(θj)

dθj
|Φj−1〉+ H.c.. (131)

Now the memory efficient back propagation algorithm to
compute all the partial derivatives runs as follows. First we
run a forward evaluation of Eq.(121), during which the two
intermediate states |Φm〉 = |ψ(~θ)〉 and |Ψm〉 = Ĥ|ψ(~θ)〉
are both saved. Then we do a backward evolution of the two
states |Φm〉 and |Ψm〉 by applying each of the gate operations
in Ĉ†(~θ) onto them. The details of the backward evolution
algorithm is shown in Algorithm. 2.

Algorithm 2 Memory-efficient back propagation algorithm
for computing the gradient of a parametric quantum circuit,
where |Φm〉 and |Ψm〉 are produced during the forward eval-
uation.

1: grads = zeros(m)
2: for j = m− 1 : −1 : 0 do
3: |Φj〉 = Q̂(θj+1)†|Φj+1〉
4: grads[j] = 2Re(〈Ψj+1| dQ̂(θj)

dθj
|Φj〉)

5: |Ψj〉 = Q̂(θj+1)†|Ψj+1〉
6: end for
7: Return grads

We can see that in Algorithm. 2 no additional memory
needs to be allocated in principle, since the gate operations

can be done in an inplace fashion, and the “expectation value”
on two different states as in Eq.(131) can also be implemented
without allocating new memory. Therefore only two copies of
the quantum states are required. We can also see that the time
complexity of Algorithm. 2 is approximately two times the
complexity of the forward evaluation, namely O(2S), since
one needs to (backward) evolve the two states |Φm〉 and |Ψm〉
.

To this end we stress that the O(2S) scaling for Algo-
rithm. 2 is only an ideal estimation, in which we have im-
plicitly assumed that the complexity of the state |Ψj〉 is equal
to |Φm〉 (|Ψj〉 is not a proper quantum state since Ĥ may not
be unitary in general), which is true for the Schrödinger simu-
lator but may not be true for other classical simulators. Taking
the MPS based simulator for example, the state |Ψm〉 requires
to apply Ĥ onto |ψ(~θ)〉, however, since Ĥ could be a complex
summation of a large number of Pauli strings, the |Ψm〉would
have a much larger bond dimension than |ψ(~θ)〉 if this opera-
tion is performed accurately and the gate operations on |Ψm〉
has to be simulated with higher complexity. The integration
of the MPS based simulator into the automatic differentiation
framework has been proposed and implemented in Ref. [485],
referred to as the differentiable MPS. It is also possible to gen-
eralize Algorithm. 2 to compute the gradients of noisy para-
metric quantum circuits (but the details of the algorithm have
to be significantly modified), as long as the quantum channels
are reversible.

VII. CONCLUSION AND OUTLOOK

This review comprehensively summarizes near-term quan-
tum computing techniques, including variational quantum al-
gorithms, quantum error mitigation, quantum circuit compila-
tion, benchmarking protocols, and classical simulation, from
basic concepts to current progress. To develop a practical
near-term quantum computing system, a high level of interac-
tion and collaboration between quantum hardware and these
near-term quantum computing techniques is required. Over
the last years, crucial theoretical and experimental advance-
ments have been made. To realize the leap from the quantum
computational advantage for the sampling task without too
much practical use to the application-oriented quantum com-
putational advantage, however, greater efforts are required.

First, more profound research are required to fully grasp
the potential of NISQ devices and what is the right goal for
the NISQ era. Fortunately, we have seen a shift in the focus of
research from an initial blind pursuit to serious consideration
of these issues [514]. We need to find the “killer apps” for
NISQ, evaluate the resources they consume, and determine
whether they can provide us with speed, accuracy or other
advantages (especially whether it will be de quantized [515–
517]), to fully unleash the power of the near-term quantum
computing systems.

Second, to continually enhance the capabilities quantum
computing hardware, and make it grow massively, a large
number of cutting-edge experimental techniques should be
conquered. For example, advanced processes, materials and
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designs are required for the fabrication of quantum computing
processors; Dilution refrigerators with larger space and higher
cooling power; Cryogenic electronic control techniques; and
so on. We believe that the influx of more companies will
be of great help to the benign development of the quantum
computing industry. Besides, the deep integration of classi-
cal and quantum computing is also a preferable way to further
enhance the computational power, such as the circuit-cutting
method [518, 519].

The future quantum computers may shape our daily lives
and science and technology in ways that we cannot currently
foresee. Near-term quantum computing techniques are cru-
cial to the entire development stage of quantum computing,
serving as an enabler from proof-of-principle demonstrations
to engineering scaling. In addition, the available NISQ era
cloud-based platforms provide great convenience for explor-
ing and developing practical quantum computing algorithms
and methods [28, 520]. We expect more young, bright, ener-
getic people entering this field to accelerate the pace of real-
izing the full promise of quantum computing.
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[154] D. J. Egger, J. Mareček, and S. Woerner, Quantum 5, 479

(2021).
[155] S. Bravyi, A. Kliesch, R. Koenig, and E. Tang,

arXiv:1910.08980 (1910).
[156] Z.-C. Yang, A. Rahmani, A. Shabani, H. Neven, and C. Cha-

mon, Physical Review X 7, 021027 (2017).
[157] D. Wecker, M. B. Hastings, and M. Troyer, Physical Review

A 94, 022309 (2016).
[158] S. Khairy, R. Shaydulin, L. Cincio, Y. Alexeev, and P. Bal-

aprakash, in Proceedings of the AAAI conference on artificial
intelligence, Vol. 34 (2020) pp. 2367–2375.

[159] M. Cain, E. Farhi, S. Gutmann, D. Ranard, and E. Tang,
arXiv:2207.05089 (2022).

[160] B. Tan and J. Cong, in 2020 IEEE/ACM International Confer-
ence On Computer Aided Design (ICCAD) (IEEE, 2020) pp.
1–9.

[161] Y. J. Patel, S. Jerbi, T. Bäck, and V. Dunjko,
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