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School of Aeronautics, U. Politécnica de Madrid, 28040 Madrid, Spain

(Received 1 July 2013; accepted 13 September 2013; published online 23 October 2013)

The current state of knowledge about the structure of wall-bounded turbulent flows is

reviewed, with emphasis on the layers near the wall in which shear is dominant, and

particularly on the logarithmic layer. It is shown that the shear interacts with scales

whose size is larger than about one third of their distance to the wall, but that smaller

ones, and in particular the vorticity, decouple from the shear and become roughly

isotropic away from the wall. In the buffer and viscous layers, the dominant struc-

tures carrying turbulent energy are the streamwise velocity streaks, and the vortices

organize both the dissipation and the momentum transfer. Farther from the wall, the

velocity remains organized in streaks, although much larger ones than in the buffer

layer, but the vortices lose their role regarding the Reynolds stresses. That function is

taken over by wall-attached turbulent eddies with sizes and lifetimes proportional to

their heights. Two kinds of eddies have been studied in some detail: vortex clusters,

and ejections and sweeps. Both can be classified into a detached background, and

a geometrically self-similar wall-attached family. The latter is responsible for most

of the momentum transfer, and is organized into composite structures that can be

used as models for the attached-eddy hierarchy hypothesized by Townsend [“Equi-

librium layers and wall turbulence,” J. Fluid Mech. 11, 97–120 (1961)]. The detached

component seems to be common to many turbulent flows, and is roughly isotropic.

Using a variety of techniques, including direct tracking of the structures, it is shown

that an important characteristic of wall-bounded turbulence is temporally intermittent

bursting, which is present at all distances from the wall, and in other shear flows. Its

properties and time scales are reviewed, and it is shown that bursting is an important

part of the production of turbulent energy from the mean shear. It is also shown that

a linearized model captures many of its characteristics. C© 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4824988]

I. INTRODUCTION

A recurrent theme of turbulence research is the relationship between structure and statistics.

Thus, while Richardson2 framed the multiscale nature of turbulence in terms of “little and big

whorls,” the older decomposition of Reynolds3 centered on the statistics of the fluctuations, and

proved to be more fruitful for practical applications. Even the classical paper of Kolmogorov,4 which

is usually credited with introducing the concept of a turbulent cascade, is a statistical description of

the fluctuation intensity versus scale, and it was only the slightly less famous companion paper by

Obukhov5 that put it in terms of interactions among eddies.

Up to the second part of the 20th century, the statistical approach was probably inevitable,

because it is difficult to extract structural information from single-point measurements. It was not

until the visualizations of large coherent structures in free-shear layers by Brown and Roshko,6

and of sublayer streaks and ejections in boundary layers by Kline et al.,7 and in pipes by Corino

and Brodkey,8 that the structural point of view began to gain modern acceptance. It was only after

probe rakes, numerical simulations, and particle image velocimetry experiments started to routinely

provide multidimensional flow fields that it became fully established. In the same way, the recent

introduction of time-resolved three-dimensional flow information, currently almost exclusively from

simulations,9–11 promises a new impulse to structural turbulence dynamics.
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The outlook of this paper is structural, treating turbulence as a property of deterministic so-

lutions of the Navier–Stokes equations rather than as a stochastic process. As such, although it

incorporates experimental data whenever available, it relies heavily on numerical results, not only

because they usually provide more complete information than experiments, but for their ability to

manipulate the equations of motion in ways that are not necessarily realizable in a laboratory.12

Those conceptual methods have a long tradition in physics, where some of the most powerful

tools have always relied on “thought” experiments involving “unphysical” concepts, for example,

point masses. In simple dynamical situations, the outcome of such exercises can often be guessed

and used to judge the soundness of a particular model, but in complex cases such as turbulence,

the guessing almost always has to be substituted by the numerical simulation of the modified

system.

The emphasis on structure does not reduce the importance of statistics. We said at the beginning

that the statistical Reynolds3 decomposition proved to be more practical in applications than earlier

structural approaches, and it cannot be forgotten that turbulence is as important for engineering

as it is for science. Moreover, statistics are required even when analyzing structure. Turbulent

flows are chaotic and high-dimensional,13, 14 and even if dissipation probably restricts them to a

finite-dimensional attractor in phase space,15 important aspects such as the inertial energy cascade

are inviscid, and approximately conserve phase volume.16, 17 Such systems explore their phase

space uniformly and, in essence, anything that is not strictly inconsistent with the equations of

motion is bound to occasionally happen. It is therefore important to approach structure identification

statistically, and to make sure that any phenomenon that is observed, even if intellectually appealing,

occurs often enough to be relevant to the overall dynamics of the flow. On the other hand, rare events

can be important if they can be exploited for control purposes,18 and turbulence, as a prime example

of macroscopic chaos, may be one of the first systems in which we may hope for the engineering

implementation of a “Maxwell demon,” in the sense of extracting useful work from apparently

random fluctuations.

In this paper, we are primarily interested in wall-bounded turbulent flows, particularly in those

layers near the wall that are dominated by the shear. We will restrict ourselves to pipes, channels,

and boundary layers with little or no longitudinal pressure gradients, since otherwise the flow tends

to laminarize or to separate, and changes character. Wall-bounded flows are inhomogeneous and

anisotropic and, even if turbulence was first studied scientifically in them,19, 20 they remain in many

ways worse understood than their homogeneous or free-shear counterparts.

On the other hand, some processes are easier to analyze in wall turbulence than in other

apparently simpler cases. In the classical conceptual model for isotropic turbulence, energy resides

in the largest eddies and is dissipated in smaller viscous scales of the order of the Kolmogorov length,

to where it is transferred by a self-similar “inertial” cascade.2, 4 The resulting energy spectrum closely

approximates the experimental observations, not only for isotropic turbulence, but for small-scale

turbulence in general. Unfortunately, isotropic theory gives no indication of how energy enters the

turbulent cascade, and isotropic flows have no preferred spatial orientation to assist in organizing

their study. In shear flows, the energy source is the gradient of the mean velocity, and energy enters

turbulence through the interaction of that gradient with the transverse velocity fluctuations.13 That

generally provides a well-defined scale for the energy-containing eddies, as well as a spatial direction

along which some properties are transferred, usually momentum. In addition, wall-bounded flows are

inhomogeneous, and their eddy sizes are organized in terms of their distance to the wall. The result

is that different eddies can be studied in relative isolation from one another. Moreover, momentum is

injected away from the wall, usually by a pressure gradient, and removed at the wall by friction, while

the scale stratification just mentioned requires that the structures have to change size as they transfer

momentum between those two locations. Thus, wall-bounded turbulence provides an example of a

multiscale “cascade” in which the locations of the sources and the sinks are known and spatially

distinct. In that sense, and in spite of its apparent complication, it is probably a simpler system

to analyze than other flows, and it may be our best current hope of fully describing a multiscale

turbulent process.

Wall-bounded turbulence is also of huge technological importance. About 25% of the energy

used by industry and commerce is spent in moving fluids along pipes and canals, or vehicles
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through air or water,21 and about one quarter of that energy is dissipated by turbulence in the

immediate vicinity of walls. In terms of a quantity of current topical interest, shear-dominated

wall-bounded turbulence is responsible for about 5% of the CO2 dumped by mankind into the

atmosphere.

We denote by x, y, and z the streamwise, wall-normal, and spanwise coordinates, respectively,

and the corresponding velocity components by u, v, and w. Repeated indices imply summation

from x to z. If we conceptually define the average 〈 〉 over an ensemble of equivalent independent

experiments, capitals are used for mean values, such as in U = 〈u〉, tildes denote fluctuations with

respect to those means, ũ = u − U , and primes are root-mean-squared fluctuation intensities. We

use δ for the 99% thickness of boundary layers, for the half-width of channels, and for the radius

of pipes. “Wall” units are constructed with the kinematic viscosity ν and with the friction velocity

uτ = (τw/ρ)1/2, defined in terms of the shear stress τw at the wall and of the fluid density ρ.

Magnitudes expressed in those units are denoted by “+” superscripts. We will always assume that

the fluid density is ρ = 1, and drop it from the equations. Our primary Reynolds number is δ+, which

measures the ratio between the length scales of the largest structures of the outer flow and those of

the viscous eddies near the wall.

Recent reviews of particular aspects of wall-bounded turbulence related to the ones discussed

here can be found in Refs. 22–27. In our case, and given our intended use of numerical results, it

may be useful to add a few words on the present status of simulations of wall-bounded turbulence.

The first direct numerical simulations (DNS) of turbulent channels28 appeared soon after comput-

ers became powerful enough to allow the simulation of turbulence in general,29, 30 although their

Reynolds numbers, δ+ ≈ 180, initially provided a very limited range of scales. However, Reynolds

numbers steadily increased with the advent of more powerful computers, and recent numerical

channels,31–33 boundary layers,34–40 and pipes,41–43 with δ+ ≈ 1000 − 2000, are comparable to

most well-resolved experiments, and have a full decade of scale disparity. The next generation of

simulations is beginning to appear. We use in this paper a numerical channel at δ+ ≈ 4200, computed

in a medium-sized box (Lx = 2πδ, Lz = πδ)44 using the same code as in Ref. 33, which is useful

for many particular purposes. A compressible boundary layer at roughly the same Reynolds number

was recently published,45 and simulations of pipes at δ+ = 1800 from the group at Delft, and at

δ+ = 3000 from the one at KAIST in Seoul, have recently been presented at conferences. Two

simulations of reasonably large channels in the range δ+ ≈ 4000 − 5000, from the groups at the

University of la Sapienza in Rome and at the University of Texas in Austin, are currently at different

stages of execution. Most of these simulations will probably become available within the coming

year.

It is important to realize that the process of increasing the Reynolds number need not be

open-ended. The goal of turbulence theory, and of the supporting simulations and experiments,

should not be to reach ever increasing Reynolds numbers, but to describe turbulence well enough

to make useful predictions. It is probably true that, if we could compile a detailed database of

the space-time evolution of enough flows with a reasonably wide range of scales, such a database

would contain all the information required to formulate a theory of turbulence. Of course, such a

data set would not be a theory, but it is doubtful whether further increasing the Reynolds number

of the simulations, or of the experiments, would provide much additional help in formulating

one.24

It is difficult to say a priori when that stage will be reached, since there may be

Reynolds number effects about which we know nothing at present, but it is probably true that

δ+ = 10 000 − 20 000, with a range of scales close to 100, would provide all the information

required to understand most of the dynamical aspects of wall-bounded turbulence. Using the usual

estimate of δ+3 for the cost of simulations, and the present rate of increase in computer speed of 103

per decade, it should be possible to compile such a database within the next decade.46

The organization of this paper is as follows. Section II reviews the classical theory of wall

turbulence, defines the different regions of the flow, and summarizes how turbulence interacts with

the mean shear. Section III reviews the kinematics of the structures and eddies of the shear-dominated

layers, and Sec. IV studies their dynamics. Each of these last two sections is divided into subsections

for the buffer and for the logarithmic layers. Section V concludes.
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II. THE CLASSICAL THEORY

Wall-bounded turbulence over smooth walls can be described by two sets of scaling parameters.13

In flows with a moderate pressure gradient, the friction velocity remains the characteristic velocity

across the flow, because the momentum balance requires that the tangential Reynolds stress −〈uv〉

remains approximately equal to τw = u2
τ . As a consequence, u′ ∝ v′ ∝ uτ unless the two velocity

components decorrelate from one another.13 The relevant outer length scale is the flow thickness δ,

but the momentum-carrying structures near the wall are limited to sizes of the order of the viscous

length scale, ν/uτ , or of some other length connected, for example, with roughness. In both cases,

the defining characteristic of attached wall-bounded turbulent flows is a uniform velocity scale, and

distinct inner and outer lengths whose ratio plays the role of a Reynolds number. Here, we will

center on the smooth-walled case in which the relevant Reynolds number is δ+ = uτ δ/ν. It varies

from a few hundreds for barely turbulent flows, to 106 in big ships, in the atmosphere, or in large

pipelines.

Figure 1(a) displays the premultiplied spectra of the wall-normal velocity and of the enstrophy,

used as a surrogate for dissipation, as functions of the distance to the wall and of the spanwise

wavelength, defined in terms of the wavenumber as λz = 2π /kz. As usual, the velocities and the

kinetic energy reside in long wavelengths, and dissipation in short ones, with an inertial range in

which both are small, but where the inter-scale energy flux is expected to take place.4 The result

of the disparity of the inner and outer length scales is that the length of the inertial range changes

with the distance to the wall, dividing the flow into distinct layers. Near the wall, the lengths and

velocities scale in wall units, and Figure 1(a) shows that the energy and the dissipation are at similar

sizes. Although we will see later that some large but flat eddies exist in this region, most large eddies

are excluded by the impermeable wall, which inhibits wall-normal velocity. Because of the latter,

there are no tangential Reynolds stresses in this layer, and the shear has to be strong for viscosity to

carry all the tangential stress. This introduces a fast time scale, of the order of the viscous one, that

prevents eddies from growing. If y is the distance to the wall, y+ is a Reynolds number for the size of

the structures, and it is never large within this viscous layer, implying that the eddies in this region

are relatively smooth and can be described as simple structures.25 This layer is typically defined at

most as y+ � 150,48 although the precise limit depends on the application, and has been drawn in

Figure 1(a) at y+ = 80. It is conventionally divided into a viscous sublayer, y+ � 5, where viscosity

is dominant, and a “buffer” layer in which both viscosity and inertial effects should be taken into

account.
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FIG. 1. (a) One-dimensional premultiplied spectra of the wall-normal velocity kz E
(1)
vv (kz) (shaded) and of the surrogate

energy dissipation kz E
(1)
ωω(kz) (contours), as functions of the spanwise wavelength, λz = 2π /kz, and of the distance to the wall.

Channel at δ+ = 4200.44 The two dashed horizontal lines are y+ = 80 and y/δ = 0.2, representing conventional limits for the

logarithmic layer. The dashed diagonal through the velocity spectrum is λz = 2y, and the one through the dissipation spectrum

is λz = 40η. (b) Spectra of the longitudinal velocity gradients, in Kolmogorov scaling. The symbols are premultiplied spectra

of ∂xu in a variety of experimental flows with Reλ = 50 − 3000, extracted from Figure 9 in Ref. 47. The solid line is the

spectrum of ∂xu in the same channel as in (a), at y+ = 1250 (Reλ ≈ 250). The dashed line is ∂zw. The vertical dashed line is

40η.
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Farther away from the wall, where y+ ≫ 1 and y ≪ δ, neither the wall thickness nor the viscosity

are relevant, and the only available length scale is the wall distance y.49 How far this region extends

into the flow depends on the variable being considered and on the type of flow. In the particular case

of the wall-normal velocity in Figure 1(a), the wavelength of the spectral peak stays proportional to

y across most of the flow, but a more conventional limit is y/δ = 0.15 − 0.2.

Both the constant velocity scale across the intermediate region, and the absence of a length scale

other than y, are only approximations but, if they are accepted as the first terms of a higher-order

asymptotic expansion,50–52 dimensional analysis implies that the mean shear has the form S ≡ ∂yU

= uτ /κy, where the Kármán constant κ ≈ 0.4 is approximately universal.13, 49 That equation can be

integrated to give a logarithmic profile for the mean velocity,

U+ = κ−1 log y+ + A, (1)

which gives the overlap layer its name, and agrees reasonably well with experimental evidence.48, 53

Note, however, that the logarithmic layer is defined by the linear dependence of the length scale with

y, rather than by (1).13, 49 Neither that linear dependence, nor the logarithmic profile, extend all the

way to the wall, so that the intercept constant A acts as an inner boundary condition that depends on

the details of the near-wall region. For smooth walls, A ≈ 5.

The behavior of the small-scale end of the turbulent spectrum is closer to that of turbulence in

general. Figure 1(a) shows that the vorticity resides near λz ≈ 40η, where the Kolmogorov length is

defined from the kinetic-energy dissipation ε as η = (ν3/ε)1/4, and we have disregarded the effect of

anisotropy because it will be seen below that the vorticity tends to become isotropic as y+ increases.

In the same way, we define an isotropic microscale Reynolds number Reλ = q2(5/3νε)1/2, where

q2 = u′
j u

′
j is the magnitude of the velocity fluctuations.54 If we assume that q ≈ uτ , and that the

dissipation is roughly equal to the energy production per unit mass, which in the logarithmic layer

is −〈uv〉S ≈ u3
τ/κy, the microscale Reynolds number is O(y+1/2). A very rough approximation is

Reλ = 7y+1/2, and the edge of the buffer layer, at y+ ≈ 100, corresponds to Reλ ≈ 70.

The length scale of the velocity gradients is tested in Figure 1(b) for a wide variety of flows

with Reλ = 50 − 3000. That figure uses spectra of the longitudinal velocity gradient, ∂xu, which

is available from experiments, and the normalization is done with the one-dimensional surrogate

dissipation ε1 = 15〈(∂xu)2〉, which is also the one used in experiments. In numerical channels,

ε1 underestimates the true dissipation by 10%–30% depending of y+, but it has been kept for

consistency. The wall distance chosen for the comparison, y/δ = 0.3, is representative of the outer

logarithmic layer, and corresponds to the maximum Reλ. The agreement is excellent, suggesting that

the small scales of wall turbulence are essentially similar to those of isotropic or free-shear flows.47

Note that the figure includes the spectra of both ∂xu and ∂zw for the channel, and that they agree well,

suggesting that the velocity gradients are very close to being isotropic in the wall-parallel directions.

A. The shear-dominated layers

Because the shear decays with the distance to the wall, the viscous, buffer, and logarithmic

layers are the most characteristic features of wall-bounded flows, and account for a major part of the

total energy production and dissipation, even if they are geometrically thin.

If we assume that the buffer layer extends to y+ ≈ 100, its fraction of the total thickness,

O(100/δ+), becomes negligible as the Reynolds number increases, while the logarithmic layer is

always defined as about 20% of the boundary layer. On the other hand, we saw above that the energy

production and dissipation above the buffer layer diverge towards the wall as u3
τ/y, so that their

integral up to a given height is
∫ y

ε dy ∼ u3
τ log(y+). The result of this logarithmic behavior is that

the fraction of the dissipation that takes place within the buffer layer decreases only logarithmically

with the Reynolds number, while the one below the upper edge of the logarithmic layer increases

logarithmically to unity as δ+ increases. Once the empirical constants of those two logarithmic

trends are adjusted to experiments, it turns out that, even at the highest realistic Reynolds numbers

δ+ = O(106), the total dissipation within the buffer layer is 25% of the total, while most of the rest

takes place within the logarithmic layer. In the limit of infinite Reynolds number, all the dissipation

would be in the logarithmic layer.
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FIG. 2. (a) Shear parameter in wall-bounded turbulent flows, as a function of the distance to the wall. The inset is a detail

in the buffer layer, in wall scaling. (b) Reynolds-stress anisotropy versus the shear parameter; see (2). The inset includes

most of the channel below y/δ = 0.8, while the larger plot is a magnification of the region including the logarithmic layer.

(c) Shear-to-vorticity ratio, as a function of the wall distance. The thick dashed line is (3). (d) Vorticity anisotropy versus the

shear-to-vorticity ratio; see (4). The thick dashed line is V2 = 1.2S/ω′. Channels: – – –, δ+ = 934;31 – · – · –, 2003;33 ——,

4200.44
△, High-Reynolds-number boundary layer,47 y+ = 3 × 103 − 6 × 104. Statistically steady homogeneous shear: �,

Reλ = 50 − 90;55 �, Reλ = 50 − 120.56 The open and closed circles in all figures are, respectively, y+ = 50 and y/δ = 0.6,

and are intended to represent limits for the region of constant S∗.

An interesting question is how similar is wall-bounded turbulence to other shear flows. A

measure of the importance of the interaction of the shear with the energy-containing eddies is the

parameter S∗ = Sq2/ε, which was introduced by Corrsin57 to measure the ratio between the energy-

decay time, q2/ε, and the shear deformation time 1/S. If S∗ ≫ 1, the mean shear dominates, and the

evolution of the turbulent scales can be approximated as being controlled by the mean flow,58 while

S∗ � O(1) implies that turbulence can decouple from the shear, and nonlinearity prevails.

Figure 2(a) displays S∗ as a function of the wall distance for boundary layers and channels.

The flow can be divided into three parts. In the viscous layer below y+ ≈ 50, S∗ reaches up to

approximately 40, and the flow shares many of the characteristics of linearized rapid-distortion

theory.59 Above y/δ ≈ 0.6, S∗ decreases towards zero, and shear is unlikely to play a major role. In

between those limits, roughly coinciding with the extent of the logarithmic layer, S∗ ≈ 10 remains

large and constant, and shear can be expected to be significant for the flow dynamics.58

A simple way to quantify the effect of the shear on a given range of scales is to measure

their anisotropy. For the energy-containing eddies, a convenient measure is the second invariant

B2 = (3bijbij/2)1/2 of the Reynolds-stress anisotropy tensor,60

bi j =
〈ui u j 〉

|u|2
−

1

3
δi j , (2)

where the subindices range from x to z, and δij is Kronecker’s delta. The anisotropy B2 ranges from

unity for velocities which are perfectly aligned to some direction, to zero for completely isotropic

ones,60, 61 and is plotted against the shear parameter in Figure 2(b). Points in the buffer layer are in

the upper-right part of the figure, and the distance to the wall increases towards the lower-left corner.
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The logarithmic layer is represented by the central part, where S∗ ≈ 7 − 10. The different Reynolds

numbers collapse well near the wall, corresponding to the upper branch in the inset, but they diverge

as they move away from it, and the behavior in the logarithmic layer is only universal in the roughest

sense. In particular, there is no clear tendency to a limit as δ+ increases, and the anisotropy in the

logarithmic layer actually appears to increase with the Reynolds number (for example, see the open

circles at constant y+). The figure includes some data from homogeneous shear. Homogeneous shear

turbulence is not statistically steady,62 but it reaches a statistically steady state when simulated in

a finite box that limits the growth of the integral scale.55, 56 Some of those cases are included in

Figure 2(b) and fall in the same region as the logarithmic layer, especially for the higher Reynolds

numbers, but the agreement is again only approximate. Although not included in Figure 2(b) to

avoid clutter, points from the centerline of plane shear layers cluster near the lower-right corner of

the figure, underscoring the differences mentioned in the Introduction between shear flows whose

mean velocity profiles are linearly stable or unstable.

The previous analysis only applies to the largest scales. Shear is important for structures of

characteristic velocity uℓ and size ℓ if their time scale, O(ℓ/uℓ), is slow compared to the mean shear

S. If we assume the inertial relation,4 uℓ ≈ (εℓ)1/3, that condition becomes ℓ > Lc = (ε/S3)1/2, where

the length Lc was introduced by Corrsin57 as an upper limit for the isotropy of the small scales. It

was later confirmed experimentally for boundary layers.47 If we assume an equilibrium shear flow

in which ε ≈ q2S, the Corrsin length, Lc = Lε/S∗3/2, becomes proportional to the integral energy

scale Lε = q3/ε. In the logarithmic layer, Lc ≈ 0.3y.

The smaller scales, and in particular the vorticity that resides in them, therefore tend to become

independent of the shear above the buffer layer. If we assume that ε ≈ νω′2, it follows from the

previous estimates that

S/ω′ ≈ (κy+)−1/2. (3)

This approximation is tested in Figure 2(c), and works well in the logarithmic layer. It is known that

vortices in a shear tend to orient along the most extensive strain direction at 45◦ to the stream,62, 63 but,

if S becomes much smaller than ω′, it is reasonable to expect that the vortices eventually decouple

from the mean flow, and become roughly isotropic. For example, it is known that the magnitudes

of the three vorticity components become approximately equal above y+ ≈ 50,28 and we saw above

that the spectra of the longitudinal velocity gradients also become isotropic in wall-parallel planes.

A more complete measure of the isotropy of the orientation of the vorticity is the second invariant

V2 = (3vi jvi j/2)1/2 of the anisotropy tensor,55

vi j =
〈ωiω j 〉

|ω|2
−

1

3
δi j , (4)

similar to the Reynolds-stress anisotropy used above. It can be expected that V2 is proportional to

S/ω′ for weakly sheared flows,64, 65 and Figure 2(d) shows that this is true. The open and closed circles

in Figure 2(d) mark the approximate lower and upper edges of the logarithmic layer, suggesting

that the vortex alignment to the shear is essentially a low-Reynolds-number effect that disappears

far from the wall. As δ+ increases, the vorticity in the upper logarithmic layer becomes essentially

isotropic, and is unlikely to play any role in interactions involving the shear, for example, momentum

transfer. Note that the homogeneous shear flows,55, 56 included in Figures 2(b) and 2(d) agree with

the channel data much better in the case of the vorticity than in the Reynolds stresses, in agreement

with the intuitive idea that turbulence becomes more universal as the cascade progresses towards

smaller scales.

In summary, the general picture from this section is that the buffer and logarithmic layers are

shear-driven flows whose large scales interact strongly with the local shear, in a manner that can

be only approximately modeled by the behavior of other shear flows. On the other hand, the small

scales, including the vorticity, behave as in a slightly anisotropic homogeneous shear, and become

increasingly uncoupled from the shear as the value of y+ at the top of the logarithmic layer increases

with increasing δ+. In the rest of the paper, we will be mostly interested in the behavior of the larger

scales, especially in the logarithmic layer, and in how they extract energy from the mean shear and
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FIG. 3. Streamwise velocity in a wall-parallel plane in the buffer layer, y+ = 15. Channel at δ+ = 2003.33 The flow is from

left to right, and the plane is approximately 3 × 104 by 1.5 × 104 wall units. Colors range from dark for U+ = 4.5 to white

for U+ = 17. The small red rectangle (circled for clarity) is a minimal box of size 500 × 100 wall units. The larger rectangle

is 10δ × 1.5δ.

transmit momentum across the variation of the integral length scale as a function of the distance to

the wall.

III. STRUCTURES

A. The distribution of length scales

The spectra in Figure 1 do not represent the full complexity of the distribution of length scales,

which depend on the variable involved. Consider first the buffer layer, whose streamwise velocity

at the location of maximum fluctuation intensity is pictured in Figure 3. Its spectral energy density,

φuu ≡ kxkzEuu(kx, kz), is given at the bottom plane of Figure 4(a). It has two well-defined parts.

The first one is the roughly elliptical region centered at λ+
x × λ+

z ≈ 500 × 100, which is known to

be very approximately independent of the Reynolds number.33 It is dominated by coherent streaks

of the streamwise velocity and by quasi-streamwise vortices. The former are an irregular array of

long (x+ ≈ 103–104) sinuous alternating streamwise jets superimposed on the mean shear, with an

average spanwise separation of the order of z+ ≈ 100.66–68 They are the thinnest dark (low-velocity)

lines in Figure 3. The quasi-streamwise vortices are slightly inclined away from the wall, and only

stay in the buffer layer for lengths of the order of x+ ≈ 100, after which they merge into more

disorganized vorticity away from the wall.69 Several vortices are associated with each streak,70

with a longitudinal spacing of the order of x+ ≈ 300. In Figure 3, they are represented by the white

“speckle” of high-speed regions created by the downwash from individual vortices. Because vortices

of different signs are, on average, staggered on opposite sides of the streaks,71 they are responsible

for the sinuous meandering that defines the streamwise wavelength of the maximum of φuu. In fact,

it can be shown that the near-wall low-velocity streaks are wavy cylinders with a cross-section of

aspect ratio roughly equal to one, and that even the longest ones are seldom wider70 or taller27 than

50 wall units. Meandering, as well as a certain amount of branching, is apparent in Figure 3, and has

also been documented for the wider streaks of the logarithmic layer.72

The second important part of the spectrum is the diagonal “handle” in the far corner of the bottom

spectral plane in Figure 4(a), which represents long and wide structures. This handle lies roughly

along λz = 0.15λx, and gets longer as the Reynolds number increases.33 The extra energy contained

in it is responsible for the logarithmic growth with δ+ of the streamwise velocity fluctuation intensity

in the buffer layer.33, 73–78 Although it is not clear whether there is an upper bound for the length of

this large-scale spectral handle, other than the length of the simulation box or of the experimental
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FIG. 4. Channel at δ+ = 2003.33 (a) The bottom plane is y+ = 15, and the diagonal wall-normal one is λz = 0.15λx. The

contours in both planes are the two-dimensional spectral energy density φuu = kxkzEuu(kx, kz) of the streamwise velocity,

in terms of the streamwise and spanwise wavelengths, and of y. The contours are (0.1, 0.2, 0.3, 0.8) times the maximum

of the spectrum at y+ = 15. The shaded area in the diagonal plane is the premultiplied cospectrum of the tangential

Reynolds stresses, φuv = −kx kz Euv > 0.1, normalized with its maximum. The dashed diagonal is λz = 2y, as in Figure 1(a).

(b) The wall-parallel shaded contours are φuu = 0.3(0.2)0.9 at y/δ = 0.075 (y+ = 150), normalized with its maximum. The

wall-normal planes are λx/δ = (0.28, 1.2, 4.6, 25). The line contours in those planes are φuu, normalized as in the wall-parallel

plane. The shaded ones are the same isocontours for the cospectra, normalized with their individual maxima.

record,79 a representative limit for the available data in channels is λx × λz = 10δ × 1.5δ.33 A

rectangle with those dimensions has been added to Figure 3, where the large-scale modulation of the

flow can be easily seen. Note the difference between these large-scale features and the dimensions

of the individual streak/vortex units, whose characteristic size, λ+
x × λ+

z = 500 × 100, has also been

added as a rectangle to Figure 3, highlighted by a circle to improve visibility. The large scales of

boundary layers are shorter and narrower than in channels (4δ × δ),36, 80, 81 and the available data

appear to be sufficient to rule out infinitely long structures in that case.

Mathis, Hutchins, and Marusic82 noted that the coupling of the large-scale modulation with the

near-wall structures is stronger than a simple linear superposition of the different spectral modes, and

proposed a model in which the large scales act as a multiplicative factor for the small ones. It turns

out that most of this coupling can be absorbed into the variability of the local friction velocity, which

is modulated from place to place by the overlying large scales.24 That makes sense, because Figure 3

shows that the sizes of the two kinds of structures are different enough for the elementary structures

of the viscous layer to spend most of their “lives” in an environment defined by a single large-scale

modulation. In fact, models with a variable friction velocity depending on the larger scales of the

logarithmic layer have long been used as wall boundary conditions for large-eddy simulations, with

relative success.83–85

That the large-scale modulation is associated with outer structures is shown by the diagonal

wall-normal plane in Figure 4(a), which is a section through the premultiplied spectrum considered

as a function of the two wall-parallel wavelengths and y. The spectrum of u is restricted to a

roughly triangular “wedge” below λx ≈ 5y, containing long and tall structures, at least some of

which extend from their maximum height down to the wall. Those are the structures denoted by

Townsend1 as “attached.” His argument was that, since turbulent energy resides in the largest scales

of the spectrum, and the only obvious limiting mechanism for the size of those structures is the

presence of the wall, the largest eddies would grow until becoming attached. Townsend1 also noted

that not all the flow variables can have attached structures, since the impermeability condition and
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the resulting pressure effects prevent the wall-normal velocity of the large-scales from extending all

the way to the wall. This is shown in the diagonal plane in Figure 4(a), where the cospectrum of

the tangential Reynolds stresses is the shaded region restricted to a diagonal band away from the

wall, approximately coinciding with the φ(1)
vv spectrum in Figure 1(a). In general, the wall-parallel

velocities and the pressure are attached, while the wall-normal velocity and the tangential Reynolds

stress are detached.

A clearer representation of the structure of the spectra far from the wall is Figure 4(b), which

centers on a wall-parallel section of φuu along a plane in the logarithmic layer. A dimensional ar-

gument similar to the one for the logarithmic mean velocity profile shows that neither y nor δ can

be used to scale the energy spectrum for wavelengths that are much larger than y and much smaller

than δ. If there is energy at those scales, the only possibility is that φuu and its one-dimensional

analog φ(1)
uu = kx E (1)

uu (kx ) are independent of the wavelength, and proportional to u2
τ . Equivalently,

the one-dimensional spectrum should be E (1)
uu ∼ u2

τ k−1
x .86, 87 This is confirmed by the plateau in

the horizontal section of φuu in Figure 4(b). The axis of that plateau, λz ∼ (yλx)1/2, can be inter-

preted as a self-similar conical structure of the velocity statistics,31 agreeing with older theoretical

models.1, 88

Note that only attached variables have k−1
x spectra, because detached ones have no energy in

wavelengths satisfying the above criteria. The vertical structure of the spectrum is represented in

the several cross sections along the length of Figure 4(b), which show that φuu is indeed roughly

independent of y near the wall, but that the cospectrum is detached, and stays bounded away

from the wall, both for wide scales at any length, and for all the scales that are long and wide

enough.

The structure just discussed for the spectrum implies that the near-wall roots of the large

structures of u do not contain tangential Reynolds stresses, which is why they were described by

Townsend88 as “inactive.” An interesting consequence is that, since the argument given above for the

scaling of the velocity fluctuations with the friction velocity rests on the magnitude of the tangential

Reynolds stress, the only part of the structures whose velocity is thus constrained is the active core

at y ∼ |λ|. The velocity scaling of the inactive roots can only be determined by their active cores,

from where it is transmitted by the magnitude of the pressure fluctuations.89 Indeed, in a numerical

experiment in which the friction velocity was made to vary with height by the introduction of

artificial volume forces,90 the spectrum in the inactive wedge was found to scale with the friction

velocity at the wall distance corresponding to the active structures with the particular wavelengths

involved, rather than by the friction velocity at the wall.

Another consequence of the spectral structure just described is that the fluctuation profiles

of the attached flow variables depend logarithmically on the distance to wall.1, 88 This has often

been discussed in terms of particular models for the flow structure, usually a forest of vortex

hairpins,68, 87, 91 but it is a more general property that follows directly from integrating the spectrum

over the attached wedge discussed above as a dimensional necessity. For example, consider the

premultiplied spectrum of u represented by the horizontal cross section in Figure 4(b). It can

be approximated by a one-dimensional plateau of magnitude proportional to u2
τ , extending from

λx ≈ 10y to λx ≈ 25δ. The velocity intensity follows by integration

u′2 =

∫
E (1)

uu dkx =

∫
φ(1)

uu d log λx ∝ u2
τ log(δ/y). (5)

This conclusion could not be confirmed experimentally for the streamwise velocity until

recently,68, 92, 93 probably because the strong signal from the streaks of the buffer layer requires very

high Reynolds numbers before the logarithmic trend emerges. On the other hand, the logarithmic

fluctuation profiles of the spanwise velocity and of the pressure are clear at more moderate Reynolds

numbers, and were actually first documented in simulations.36, 79, 94 The example of channels is given

in Figure 5(a). The maximum of each quantity is reached at some fixed y+, approximately indepen-

dent of the Reynolds number, implying that the maximum intensity increases logarithmically with

δ+,79 but the argument rests on the integration in (5), which includes the flow-dependent longest and

tallest scales. The result is that the maximum value near the wall also depends on the type of flow.
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FIG. 5. Logarithmic profile of the fluctuation intensities in numerical channels, δ+ = 180 − 4200, increasing in the direction

of the arrows. (a) Spanwise velocity. The dashed line is w′2+
= 0.9 − 0.45 log(y/δ). (b) Pressure. The dashed line is

p′2+ = 0.5 − 2.75 log (y/δ).

That is particularly noticeable for the pressure fluctuations at the wall, as shown in Refs. 36 and 94,

although Figure 5 only includes channels to avoid clutter.

B. The structures of the logarithmic layer

The structure of the flow becomes more complicated above the buffer layer, mainly because

of the coexistence of multiple scales. We saw in Figure 1 that the scales of the vorticity and of the

velocity diverge above y+ = 100, and in Figure 3 that the difference between the scales of different

parts of the flow can be considerable. Figure 6, which shows mostly structures reaching to the center

of the channel, displays graphically the different organization of the velocity and of the vorticity.

The streamwise velocity is organized into streamwise streaks, as in the buffer layer, but they are

(a)

(b)

FIG. 6. Instantaneous snapshots of (a) low streamwise velocity; ũ < −1.5u′. (b) Discriminant of the velocity gradient; D

> 0.02D′.95 Numerical channel at δ+ = 2000.44 Flow is from bottom-left to top right, and the box is 2πδ × δ × πδ,

approximately 12000 × 2000 × 6000 wall units.
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now much larger. The width of the single large low-velocity streak in Figure 6(a) is z+ ≈ 3000 (z/δ

≈ 1.5) rather than z+ = 50, and it crosses the whole length of the simulation box. On the other

hand, the organization of the vortices in Figure 6(b) is very different from those in the buffer layer

(see, for example, any of the lower panels in Figure 10(b)). We saw in Sec. II A that vorticity tends

to become more isotropic far from the wall, and Figure 6(b) confirms that it is difficult to discern

any particular orientation or geometry of the individual vortices. As a consequence, the role of the

vortices changes as we move away from the wall. As is true of all gradients, vorticity resides in

the short end of the spectrum,4 and shares the scales of the dissipation. In the buffer layer, because

the vortices are mostly oriented streamwise, the up- and down-wash from individual vortices is also

responsible for the tangential Reynolds stress. Above the buffer layer, the role of organizing the

Reynolds stresses has to be taken over by other structures with sizes proportional to y rather than to

η (see Figure 4(a)). We will refer to those larger structures as eddies.

The concept of eddy is linked to the structural rather than to the statistical approach to fluid

mechanics. The general idea is that scales are localized in Fourier space, while eddies are localized

in physical space. Tennekes and Lumley13 proposed a kinematic definition of an eddy as an object

with some localization in both spaces, somewhat similar to what we would now call an intense

wavelet.96, 97 That point of view is similar to the one used by Obukhov5 for his cascade scenario,

where eddies are little more than Lagrangian fluid blobs, expected to remain coherent over turnover

times defined from their dimensions and from their internal velocity differences. Later use of the

word tended to refer to structures with longer coherence times, such as the kinetic-energy structures

of free-shear flows,6, 98 or the intense vorticity structures of small-scale turbulence.99–101 We will

use the term here with the slightly different meaning of a spatially localized structure carrying some

particularly interesting fluid property.

Two kinds of eddies have been studied in some detail for the logarithmic layer. The first ones

are large-scale vorticity structures. The vorticity spectrum is localized at small scales, and it has

been shown for a variety of flows that individual vortices have diameters of the order of a few

Kolmogorov units.101, 104–107 However, vortices are not uniformly distributed,101 and they cluster

more strongly than what would be expected from purely Poisson statistics.108 Vortex clusters in

wall-bounded flows exist for all sizes, from the Kolmogorov to the integral scale,95, 103, 109 and the

larger ones are disorganized objects with no clear internal structure. They have fractal dimensions of

the order of DF = 2, which are different from those of the individual line-like vortices,99–101 whose

fractal dimension is DF ≈ 1.108 This suggests that, statistically, they are shell-like aggregations of

individual vortices, in agreement with qualitative visual observations.101 An example of a cluster of

roughly integral scale is Figure 7(a).

The second kind of eddies that have been studied in wall turbulence are Reynolds-stress struc-

tures (or “Q”s, for quadrant), which are three-dimensional analogs of the classical quadrant analysis

(a)

xz

y

(b)

x/δ

z/δ

y/δ

FIG. 7. (a) The solid object is a connected vortex cluster in a channel at δ+ = 550,102 defined by a variable threshold of

the discriminant of the velocity gradient.95 Translucent objects are other vortices not in the cluster. The box is 2.7δ × 1.8δ

× 0.9δ, or approximately 1500 × 1000 × 500 wall units. (b) The lighter large objects are sweeps (yellow, darker) and

ejections (gray, lighter), defined by −uv > Hu′v′, with H = 1.75.103 The dark worm-like objects are vortex clusters as in

(a). All objects are attached to the wall, and have maximum heights between y+ = 100 and y/δ = 0.2. Channel at δ+ = 2003.

The flow is from left to right in (a) and (b).
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FIG. 8. (a) Probability density function of the vertical dimension, �y = ymax − ymin, of: ◦, vortex clusters, and △, ejections

and sweeps (Q2 and Q4, H = 1.75). ——, ymax/δ = 0.3 ± 0.02; – – –, ymax/δ = 0.7 ± 0.03. Symbols mark ymin = 0. The

dotted line is proportional to y−2. (b) Joint p.d.f. of the logarithms of the sizes of the parallelepiped circumscribing attached

ejections (solid lines), and vortex clusters (dashed). The contours contain 50% and 98% of the p.d.f. The dashed diagonal is

�x = 3�y, the dashed horizontal line is �y = δ, and the top of the plot is the full channel height. Figure 8(b) is adapted from

Ref. 103. Both figures are for a numerical channel at δ+ = 2003.33

of the shear stress.110–113 Every point in the flow is classified in terms of its location in the parameter

plane of streamwise and wall-normal velocity fluctuations. Objects with ṽ > 0, ũ < 0 when S > 0

are ejections (second-quadrant, Q2) and those with ṽ < 0, ũ > 0 are sweeps (Q4). Both quadrants

transport streamwise momentum in the direction of increasing mean velocity, because τ = −ũṽ > 0.

Points in the other two quadrants (Q1 and Q3, τ < 0) transport momentum against the shear, but

it is known that the pro-shear quadrants predominate.110 Connected objects with τ > Hu′v′ are

defined as eddies responsible for strong momentum transfer. Earlier experimental experience with

one-dimensional signals suggests using H ≈ 1.75,114 which approximately agrees with the perco-

lation threshold of the three-dimensional objects.103 An example of a group of large sweeps and

ejections is Figure 7(b), which also includes vortex clusters in the same range of sizes. Sweeps and

ejections have slightly fuller shapes than vortex clusters, with DF ≈ 2.25. They have been described

as sponges of flakes, while the vortex clusters are sponges of strings.103

Both vortex clusters and Q’s can be classified into families of wall-attached and wall-detached

structures, where the former are defined as objects whose lowest point is y+
min < 20.95, 103 Most

structures of both kinds are detached, as seen in Figure 8(a), which shows probability density

functions (p.d.f.’s) of the vertical dimensions of structures whose tops, ymax, are in two narrow bands

of wall distance. All the p.d.f.’s peak at size �y = ymax − ymin ≈ 15η, where the Kolmogorov scale

is measured at ymax. That is approximately the diameter of individual small-scale vortices.101 In this

representation, it is difficult to see the signature of attached vortex clusters, but the attached Q’s are

clearly revealed by the sharp rise of their p.d.f.’s at �y ≈ ymax (ymin ≈ 0). Even if the attached eddies

are relatively few, they are large enough to be important. For intense tall objects with H = 1.75 and

y+
max > 100, the attached Q2’s and Q4’s represent 15% of the total number of sweeps and ejections,

but they account for 82% of the total volume occupied by the Q2’s and Q4’s, and for 60% of the

total tangential Reynolds stress. Attached clusters are less dominant: their equivalent percentages

are 3% and 8%. It was shown by Lozano-Durán, Flores, and Jiménez103 that detached Q’s carry

relatively little net Reynolds stresses because the detached Q1’s and Q3’s cancel the contributions

of the detached Q2’s and Q4’s. In fact, detached Q’s seem to be a feature of all turbulent flows,

and their size distribution agrees well with the Reynolds-stress fluctuations in free-shear flows at

high Reynolds numbers, including the centerline of jets in which the shear and the net tangential

Reynolds stress vanish.103 A typical size distribution for those statistically isotropic Reynolds-stress

fluctuations is included as a dotted line in Figure 8(a), for comparison. Only when the roots of those

eddies approach the wall is their statistical isotropy broken, most probably by the strong shear.

Attached Q’s and clusters form geometrically self-similar families, with lengths and widths

proportional to their heights, �x ≈ 3�y and �z ≈ �y (see Figure 8(b)). The largest ejections

extend from the buffer layer to the opposite wall of the channel. Sweeps are somewhat lower than
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ejections, but their number decays at a similar rate with the distance to the wall, and they also

exist for all heights. On the other hand, the number of attached clusters decays faster than the Q’s,

and they essentially disappear for y+ > 800 at all the Reynolds numbers investigated.103 Note that

Figure 8(b) does not represent the position of the eddies with respect to the wall, but their size,

and that all the objects in the figure are attached. The figure is the equivalent of the spectra of

Figure 4, and confirms that the attached spectra are due, at least in part, to individual attached

structures.

The existence of attached sweeps, ejections, and vortex clusters appears to contradict the

detached nature of the Reynolds-stress and vorticity spectra, but that is not the case. The cospectrum

describes the structure of the Reynolds stress at a given height, but does not tell whether two objects

that appear separated near the wall are parts of a connected single object further up. The conceptual

model for a large attached ejection or sweep is a detached core with a self-similar fractal forest of

“legs” reaching down to the wall. This can be checked directly by examining wall parallel sections

of attached three-dimensional objects.

Sweeps, ejections, and clusters are not randomly distributed across the flow. It was shown

by Lozano-Durán, Flores, and Jiménez103 that, if the flow is conditioned to the position of a Q2,

the most probable location of the next closest Q2 is either immediately ahead or behind it, in the

streamwise direction. The same is true for the Q4’s and for the clusters, all of which are aligned

streamwise. On the other hand, Q2’s and Q4’s are located side by side in the spanwise direction,

forming pairs. On average, the clusters are located between the two Q’s, but closer to the ejection.

Because of the right-left symmetry of the flow, the p.d.f. of the relative positions of two different

kinds of structures is always statistically symmetric in the spanwise direction, independently of the

symmetry of the individual groups of eddies. The latter can be tested by looking at the probability

distribution of the location of the second-closest Q4 after orienting the frame of reference of each

individual Q-pair so that the closest Q4 is always to the left of the Q2. If the individual groups were

symmetric triples, as in a hairpin, the result would be a strong secondary probability peak in the

side opposite to the primary one. What is found is that the secondary peak is weak or nonexistent,

showing that the predominant structure is a single large-scale streamwise roller, rather than a more

symmetric hairpin.103

The average structure of the composite object is shown in Figure 9(a), which displays isosurfaces

of the p.d.f.’s of finding points belonging to the three kinds of objects. It is a self-similar statistical

construct compiled from objects of different sizes in the logarithmic region (y+
max > 100), in the

spirit of the VITA115 and VISA116 techniques in which bursts are rescaled according to their sizes.

Before being added to the p.d.f., the coordinates of each object are centered at the center of gravity

of the Q-pair, and scaled with the distance of that point to the wall, in such a way that the center of

gravity of the pair is always at y = 0, and the wall is at y = −1. The pairs are then reoriented spanwise

to a common polarity, as explained above. Figure 9(b) shows that, when a conditional velocity field

is computed around these Q-cluster groups, they are found to sit at the boundary between a high-

and a low-speed streak, with the ejection on the low-speed side, and the sweep on the high-speed

one. Figure 9(c) represents the conditional vorticity, defined as the curl of the conditional velocity

in Figure 9(b). In agreement with the discussion in the previous paragraph, it shows a single strong

roller sitting between the sweep and the ejection, roughly coinciding with the mean location of the

vortex cluster. The counterrotating vortices that flank it are much weaker and disorganized. The

intensity of the main conditional roller, O(uτ /ycg), is of the same order as the mean shear at the

center of gravity of the eddy, uτ /κycg, although, as we saw in Figure 2, it is much weaker than the

characteristic vorticity of the individual vortices that form the cluster.

The location of the conditional roller in Figure 9(c), as well as the previously mentioned

observation that the attached vortex clusters tend to be found only close to the wall, suggests that

they are formed by random vortex debris advected by the ejection from the buffer layer into the

outer flow, where they eventually dissipate.95, 103 On the other hand, Figure 9(c) also shows that the

vorticity in the cluster retains enough organization to induce a large-scale circulation that appears to

be responsible for the sweep-ejection pair. Since velocity and vorticity are kinematically related, the

two observations are not incompatible, and reinforce the conclusion that the three objects are parts

of a single composite structure.
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FIG. 9. (a) P.d.f.’s of the points belonging to the Q2 (yellow, front), Q4 (gray, back), and clusters (red, middle). The

isosurfaces plotted are 0.75 times the maximum value of the p.d.f.’s for the Q’s, and 0.85 for the cluster. Flow is from left

to right, and coordinates are centered at the center of gravity of the sweep-ejection pair, and scaled with its distance to the

wall. (b) Cross section of the conditional velocity field at x = 0 for the object in (a). The arrows are the cross-flow velocity

(v, w), and the shaded map is the streamwise fluctuation velocity. The dark area to the right is ũ < 0, and the larger one

to the left is ũ > 0. The white dotted lines are 0.75 times the maximum value of the p.d.f. of the points belonging to the

Q’s, and the white solid line is 0.85 times the maximum value of the p.d.f. of the points belonging to the cluster. Figures

9(a) and 9(b) are adapted from Ref. 103. (c) Cross section of the conditional streamwise vorticity field corresponding to the

cross-flow velocities in (b). Color map and black contours are: ——, counter-clockwise vorticity, ωxycg/uτ = 0.5(0.5)1.5;

– – –, clockwise, ωxycg/uτ = −0.5. The white contours are as in (b). Channel at δ+ = 2003,33 including only structures taller

than y+ = 100.

Figure 9 is the best approximation that we have up to now of the mean physical structure of the

attached Townsend88 Reynolds-stress eddies discussed in Secs. II and III A.

IV. DYNAMICS

A. The buffer layer

Because of the strongest shear is concentrated near the wall, implying faster evolution times

and higher energy production and dissipation, the dynamics of the buffer and logarithmic layers

can be treated as relatively independent from the rest of the flow. We summarize first our current

understanding of the dynamics of the buffer region, leaving the discussion of the logarithmic layer

for a later section.

Soon after they were discovered,7 it was proposed that the streaks and the vortices of the buffer

layer are involved in a regeneration cycle in which the vortices are the results of an instability of

the streaks,117 and the streaks are created by the wall-normal advection of the streamwise velocity

by the vortices.118 Both processes have been documented and sharpened by numerical experiments.

For example, Jiménez and Pinelli12 showed that disturbing the streaks inhibits the formation of new

vortices, while the existing ones decay at a rate consistent with the viscous damping of passive

structures. This only works if it is done between y+ ≈ 10 and y+ ≈ 60, suggesting that the
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primary regeneration cycle of the buffer layer works predominantly between those limits. There is a

substantial body of numerical71, 119, 120 and analytic121, 122 work on the linear instability of sufficiently

strong model streaks. The inflection points of their distorted velocity profiles are unstable to sinuous

perturbations, and the eigenfunctions resemble the shape and location of the observed vortices. The

model implied is a cycle in which streaks and vortices are created, grow, generate each other, and

eventually decay. Additional references can be found in Ref. 12.

On the other hand, different explanations have been proposed, particularly for the instability

of the streaks. It was shown by Schoppa and Hussain71 that most streaks in the buffer layer are

too weak to be unstable to the inflectional mechanism mentioned above, and, although the simplest

explanation of that observation could be that unstable streaks are not observed because they have

been destroyed by their instability, the question remains of precisely what is the energy source for

the generation of the observed vortices, and of how do streaks retain their long streamwise coherence

after breaking down to generate the vortices. Schoppa and Hussain71 also remarked that the growth

of the quasi-streamwise vortices in the buffer layer can be equally explained by the transient

growth of structures in a shear123, 124 as by inflectionally unstable eigenfunctions, and Butler and

Farrell,125 and later del Álamo and Jiménez126 showed that many aspects of the velocity spectrum

in channels can be reproduced by the temporal evolution of the most amplified perturbations of a

suitably constrained linear model of the mean velocity profile. Similar results have been obtained for

boundary layers,127 and for the continuous random forcing of the mean flow.128, 129 Those models

do not require preexisting streaks, except perhaps as infinitesimal seed perturbations. Although the

stability of a sheared streak may be difficult to tell apart from transient growth in a shear, the main

difference between the two models is that the energy required to create the vortices is drawn from the

streak in the first case, and directly from the much larger reservoir of the velocity difference across

the mean shear in the second one. The difference is substantial. Even in the buffer layer, where the

fluctuations are particularly strong, u′2+ ≈ 10, the kinetic energy stored in the velocity differences

across the mean profile is U2+ ≈ 100. We will come back to this point when discussing the dynamics

of the logarithmic layer.

An interesting observation is that, although the buffer layer is disorganized and chaotic,14 the

spatial chaos is not required to reproduce the turbulence statistics. Jiménez and Moin130 performed

simulations in which the near-wall region was substituted by an ordered “crystal” of surprisingly

small identical “minimal” units, of approximate size 500 × 100 wall units in the streamwise

and spanwise directions. Those are the dimensions of the small rectangle circled in Figure 3,

which was identified in the discussion of that figure as the elemental structural unit of the buffer

layer. Each minimal unit contains a single streamwise streak that crosses the box (and is therefore

essentially infinite), and, on average, a pair of staggered quasi-streamwise vortices, in spite of which

it reproduces fairly well the statistics of the full flow. Moreover, the dynamics of the layer below y+

≈ 60 is autonomous, in the sense that the streaks and the vortices continue regenerating each other

after the flow above them is artificially removed. That purely local cycle, with no forcing from the

outer flow, also results in approximately correct statistics,12 even in minimal computational boxes.131

Even further removed from the real flow, but also resulting in approximately correct statistics,

are the three-dimensional nonlinear unstable traveling waves or weakly cyclical solutions of the

Navier–Stokes equations, first obtained numerically for Couette flow at about the same time as the

minimal unit just mentioned,132 and later in many other situations.25, 27, 133 Their dimensions are

similar as those of the minimal units.

B. Bursting in the buffer layer

Notwithstanding the observation that the statistics of the flow are well approximated by steady

or quasi-steady solutions, the flow is not steady. The time evolution of the near-wall structures is most

easily studied in minimal boxes, because each box contains only a few structures whose evolution

can be traced by analyzing the temporal behavior of the different quantities integrated over the whole

minimal box. All those quantities “burst” quasi-periodically over time, with periods of the order of

T + = T u2
τ/ν ≈ 400.58, 119, 130, 133 An example is given in Figure 10, which depicts the rising phase

of a burst. As the streak becomes wavy and the streamwise vorticity fluctuations grow, Figure 10(a)
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FIG. 10. Evolution of a minimal channel flow during a bursting event. L+
x × δ+ × L+

z = 460 × 180 × 125. (a) Evolution

of the instantaneous: ——, box-averaged velocity gradient at the lower wall; – – –, box-averaged squared value of the

streamwise-mean value of v, representing the instantaneous strength of the mean streamwise roller. Both quantities are

normalized with their long-time mean. The symbols correspond to the snapshots on the right. (b) The top frames are

isosurfaces u+ = 8, colored by the distance to the wall, up to y+ = 30 (dark to light). The bottom ones are ω+
x = 0.2 (darker),

and −0.2 (lighter). The flow is from bottom-left to top-right, and time marches towards the right. The top of the boxes is y+

= 60, and the axes move with velocity U+
a = 7.6.

shows that the wall friction increases sharply, and so does the intensity of the wall-normal velocity.

All quantities collapse rapidly after the burst.

Although the temporal bursting is clear in minimal boxes, whether full flows also burst needs to

be proved. Bursting was originally introduced to describe the fluid eruptions observed near the wall

in the early visualizations of turbulent boundary layers.7, 8, 134 It was initially hypothesized that those

bursts were due to the intermittent breakup of the near-wall streaks, but even the original authors later

acknowledged that their visualizations could be consistent with permanent advecting objects,135 and

the term eventually became associated with the sweeps and ejections observed by stationary velocity

probes. With the advent of numerical simulations, it became clear that the streaks are long-lived

streamwise velocity structures, and that the ejections observed in single-point measurements were

mostly due to the passing of groups of shorter quasi-streamwise vortices, intermittent in space but not

necessarily in time.136 The question of whether the observed temporally intermittent sublayer events

were visualization artifacts or really existed in the near-wall layer was bypassed by this explanation.

To avoid confusion with the notation current at the time, the evidence of temporal intermittency in

minimal boxes was originally described as “blooming,”130 but the term did not catch. More recently,

as new experiments and simulations have eroded the reliance of turbulence research on one-point

measurements, the need for a special name for vortex passing has become less pressing, and “burst-

ing” has been used again for temporally transient energetic events in shear turbulence.24, 25, 133, 137, 138

It is in that sense that we use it here.

Of course, semantics says little about whether bursting in minimal boxes represents the behavior

of full flows. Following the temporal evolution of individual structures in real flows has only recently

been possible. Results are just beginning to appear,10, 11 and some of them will be briefly summarized

below. In the mean time, the best evidence for intermittent bursting in full flows is that the temporal

variability of the statistics compiled in minimal boxes agrees well with the spatial variability of

statistics compiled in randomly distributed sub-boxes of minimal size in full flows,133 strongly

suggesting that the bursting of the minimal boxes is indeed representative of the real flow.

The quasi-periodic bursting of the minimal boxes is most probably an artifact of the spatial

periodicity, since the streaks in real flows move away from the location where they are created

before they burst again. In a minimal periodic flow, the spatial periodicity brings the streak back

into the simulation box but, in a real one, bursts would most likely be more or less independent from

one another. All that probably remains is the average time elapsed from the moment in which the

wall-normal velocity begins to strengthen and creates a new streak, until the streak erupts into a new

burst.
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If we define the burst by the behavior of either the streamwise vortices or of the wall-normal

velocity, the bursting period given above is longer than the survival time of individual vortices,

which decay viscously in T+ ≈ 60 when their production is artificially inhibited.12 A similar time

scale, T+ ≈ 50, can be extracted from the space-time spectra of the wall-normal velocity in flows

not limited by their computational boxes.95 The discrepancy between the vortex lifetimes and the

longer bursting period in minimal boxes suggests that the regeneration cycle consists of relatively

quiescent phases followed by shorter eruptions. Jiménez et al.133 analyzed several minimal flows,

and concluded that the bursting phase takes about one-third of the cycle, T+ ≈ 100, half of which is

taken by the growth of the burst, and the other half by its decay.

Note that the bursting times just described are unrelated to the Eulerian bursting frequencies

discussed in earlier papers in which sweeps and ejections were identified as they were advected past

stationary probes.139, 140 Those results, most of which referred to events in the viscous near-wall layer,

are essentially measures of the length and separation of the structures, and have been superseded by

the spatial spectra discussed in Sec. III. Some of the early controversies about their Reynolds number

scaling141 can probably be traced to the multi-scale nature of the near-wall velocity spectrum, or

even to instrumental limitations.139

In the inflectional-instability model, the growth time of the burst is presumably related to the

internal velocity gradient of the streak, which is of the order of uτ /�z. The implied growth time,

T+ = O(�z+), is about a hundred wall units, compatible with the bursting times mentioned above.

Unfortunately, this agreement cannot be used to discriminate between the inflectional-instability and

transient-growth models for streak breakdown. In the transient-growth scenario, the characteristic

deformation time of a structure of height y+ ≈ 50 would be of the order of its streamline wavelength,

λ+
x ≈ 500, divided by the velocity difference between the wall and the top of the perturbation, U+

≈ 10. The result, λ+
x /U+ ≈ 50, is also of the right order of magnitude.

In summary, our best current understanding of the viscous and buffer layers is that the

peak of the energy spectrum, at λ+
x × λ+

z ≈ 500 × 100, is associated with structures that can be

approximated by steady or weakly oscillating unstable traveling-wave solutions of the Navier-

Stokes equations,25, 27, 133 but which in reality undergo strong quasi-periodic bursting. As seen in

Figure 10(b), and in related time histories in Refs. 12 and 130, the bursts create new vortices that

in turn deform the streamwise velocity gradient into elemental streaks with lengths of the order of

500–1000 wall units. Those short segments subsequently aggregate into the longer objects observed

in the sublayer,27 although the details of the aggregation process are unclear. The regeneration cycle

acts predominantly below y+ � 60, and is able to run autonomously below that wall distance without

input from the rest of the flow, even in minimal boxes. Although a similar cycle will be documented

in Sec. IV C for the logarithmic layer, the results in the buffer region appear to be slightly different,

presumably because of the influence of viscosity. For example, the low-velocity streaks are much

longer than the high-speed ones below y+ ≈ 50, but the two velocity signs are roughly symmetric

above that level.27

C. Bursting in the logarithmic layer

Minimal flow units are not restricted to the buffer layer, although the structures isolated by

larger minimal boxes are not single streaks and vortices, but the complex structures described in

Sec. III B. The key condition seems to be that the spanwise dimension of the simulation box is able

to contain the wall-normal velocity spectrum. This is shown in Figure 11(a), which displays spectra

of a large numerical box and of a smaller one, and shows that the latter develops correctly below

the height at which it collides with the box dimensions. In fact, minimal boxes are only minimal

over a slab of wall distances, centered around y ≈ Lz/3, in which the wall-normal-velocity spectrum

just fits into the box. The approximate limits of the minimal slab for the smaller box are marked in

Figure 11(a). Below the bottom of the slab, turbulence does not feel the box, and develops with

essentially correct statistics. Above the top, the spectrum is artificially constrained and the flow is

disrupted.138 In the minimal boxes discussed in Sec. IV B for the buffer layer, the minimal slab

reaches from the wall to the top of the buffer layer, but bigger boxes have wall-detached minimal

slabs.



101302-19 Javier Jiménez Phys. Fluids 25, 101302 (2013)

10
2

10
3

10
4

10
2

10
3

λ+
z

y
+

(a)

0 20 40

uτ t/δ

(b)

FIG. 11. (a) Premultiplied spectrum of the wall-normal velocity, as a function of the spanwise wavelength and of y. The

shaded contours are a large channel at δ+ = 2003.33 The line contours are a small box at δ+ = 1850, Lx × Lz = πδ/2

× πδ/4.138 The vertical dashed line is the small-box Lz, and the two horizontal ones are the approximate limits of the minimal

slab. (b) Temporal evolution of u2 (top) and v2 (bottom) integrated over the minimal slab of the small-channel simulation in

(a). Each quantity is normalized with its long-time mean, and oscillates by about ±20%.

Minimal boxes are conceptually important for several reasons. First, they show that the log-

arithmic layer is relatively independent of the flow above it, as was the case for the buffer layer,

because the minimal slab develops normally even when the flow above it is constrained. Second,

also as in the buffer layer, minimal boxes provide a convenient means to study in relative isolation

the temporal evolution of the structures of the logarithmic layer, because the minimal slab contains

a single large structure that can be studied by the evolution of slab-wide averages. Note that the

spanwise dimensions involved, Lz = 3y are an order of magnitude larger than the Corrsin scale, Lc

= 0.3y, described in Sec. II A, so that minimal boxes are large enough to accommodate most of the

anisotropic large scales responsible for the energy interactions with the mean shear.

It is interesting to note that the logarithmic layer is also essentially independent of the flow

closer to the wall. The simplest evidence comes from the effect of rough walls, which destroy the

dynamics of the buffer layer discussed above, and substitute it by the very different turbulence due

to the wakes of the roughness elements. The properties of the logarithmic layer are only minimally

modified by that substitution.86, 88, 109, 142, 143 An even more direct test was performed by Mizuno and

Jiménez,144 who eliminated the buffer layer altogether, and substituted it by a synthetic boundary

condition enforcing the velocity difference across the logarithmic layer, and mimicking the linear

dependence of the length scale with the wall distance. Although the resulting flow was not ideal, it

was close enough to a natural one to suggest that those are the only ingredients that the logarithmic

layer draws from the wall. The strong suggestion from this apparent independence from the flow

above and below it is that the logarithmic layer is basically a local shear flow, only weakly influenced

by the neighborhood of the wall. The approximate agreement of the flow isotropy parameters in

Figures 2(a) and 2(b) with other shear flows supports that conclusion.

The main result from minimal boxes in the logarithmic layer is that this part of the flow

also bursts, and that the bursting process is very similar to that in the buffer layer.138 This is

shown in Figure 11(b), which displays the evolution of u2 and v2 integrated over the minimal slab,

y/δ = 0.1–0.25 (y/Lz = 0.13–0.3). Both quantities oscillate strongly, and the two histories are

correlated enough to suggest that the oscillation is not random, but the effect of some common

underlying process. The same is true for other variable pairs, involving in some cases a temporal delay.

In the particular case of Figure 11(b), the correlation coefficient at zero-time delay is approximately

0.5, and reaches a maximum of about 0.6, with v2 leading u2 by about an eddy turnover time.58 The

evolution during a burst is shown in Figure 12, which should be compared to Figure 10. In both

cases, a streak begins to bend while all the quantities in the box grow. Although not shown in the

figure, the process is accompanied by the generation of copious small-scale vorticity. Eventually,

as the streak breaks down, the burst collapses. The difference between Figures 10 and 12 is mainly

one of scale. The latter is 15 times wider than the former, the streak is a turbulent object instead of

a smooth one, and the time scale is about 10 times longer.
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FIG. 12. Evolution of a logarithmic-layer minimal channel flow during a bursting event. (a) Evolution of: ——, v2; – – –,

enstrophy, both integrated over the slab y/δ = 0.1–0.25, and normalized with their long-time mean. The symbols correspond

to the snapshots below. (b) and (c) Isosurfaces u+ = 15, colored by the distance to the wall, at the two moments marked by

symbols in (a). Time increases from left to right. Box size is L+
x × L+

z = 2900 × 1450, and δ+ = 1900. Dark shades are

close to the wall, and lighter ones are y/δ ≈ 0.35. Flow is from bottom left to top right. Adapted from Ref. 138.

The dynamics of bursting can be studied in more detail by examining the temporal correlation

functions of slab-integrated quantities in minimal boxes.58 Some examples of the autocorrelation

function of v2 are given in Figure 13(a), which can be used to define a bursting time scale from the

width of the correlation at Cvv = 0.5. Other examples can be found in Ref. 58.

It turns out that the width of the autocorrelation is of the order of SmT ≈ 8, inversely proportional

to the mean shear, Sm, at the center of the minimal slab.58, 138 For the logarithmic-layer structures in

Figure 12 that is equivalent to T+ ≈ 1000, while for the buffer-layer ones in Figure 10, it is about

T+ ≈ 150 if we take y+ = 40. Because the shear in the logarithmic layer is inversely proportional

to y, that rule implies that not only are all the dimensions of the structures in the logarithmic layer

proportional to their height, but so is their bursting period.

The periods defined in this way are given in Figure 13(b) for three different small boxes at two

Reynolds numbers, each of them measured for several bands of y. They collapse well, even if the

mean shear differs between the different cases by factors of 2–4.

D. Full simulation boxes

Figure 13(b) also includes data from other sources. The two contours are p.d.f.’s of the lifetimes

of individually tracked ejections in large computational boxes that do not artificially constrain the

flow.10 We have already mentioned that it has recently become feasible to compile databases of flow

fields in computational boxes that are resolved both in space and in time, a possibility that had been

previously prevented by the required storage. Lozano-Durán and Jiménez10 used that opportunity to

individually track in full-sized channels the Q’s and vortex clusters described above. This was done

in the range δ+ = 1000–4000, for enough eddy turnovers to compile statistics of several tens of
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FIG. 13. (a) Temporal autocorrelation function of the slab-integrated v2 in several minimal boxes. ——, Lz = π /4, δ+

= 1850; – · – · –, Lz = π /8, δ+ = 1850; – – –, Lz = π /4, δ+ = 950; – ◦ –, linearized solution for an Orr burst, described

in Sec. IV E. Adapted from Ref. 58. (b) Bursting periods in several flows, measured at Cvv = 0.5. Lines as function of y are

as in (a). The horizontal solid line is from Cvv in a statistically stationary homogeneous shear flow.56 The dashed horizontal

line is from linearized homogeneous shear flow. Contours are lifetimes from direct tracking of ejections.10 ——, δ+ = 950;

– – –, δ+ = 2000. Each contour contains 80% of the cases. Times are normalized with the shear at the center of gravity of

the perturbations at maximum intensity.

thousands of complete life histories. The full results will be reported elsewhere, but we summarize

here the aspects related to bursting.

Individual vortex clusters and Q’s are identified at each time step as in Ref. 103, and objects of

the same kind that overlap sufficiently between consecutive time frames are identified as being part of

the same life history. Histories interact continuously, with objects merging and splitting often. Most

of these interactions involve the gain or loss of small fragments of the order of a few Kolmogorov

scales, some of which are subsequently re-absorbed or lost again, but these interactions contribute

relatively little to the growth or decay of the structures. Mergers and splits involving objects of

comparable sizes can be considered events of a cascade, and account for a substantial part of the

growth and decay of individual structures. The rest is due to the general continuous intensification

or weakening of the eddy. During cascade events, it is usually possible to identify a largest object

that can be defined as representing the main “branch,” and branches constructed in this way can be

tracked from birth to death.

Branches are not born at any particular distance from the wall, and most of them stay small,

decay quickly, and move relatively little in height during their lives. However, some of them grow

larger before decaying, and most of those which grow to be large enough, become attached to the

wall at some point in their lives. Generally speaking, ejections move away from the wall, and so

do clusters, but sweeps move towards it. The vertical migration speed of their center of gravity is

approximately uτ , in agreement with earlier results obtained in minimal boxes.138 Note that, although

the direction of these motions is not surprising, neither is it trivial. Sweeps and ejections are defined

in terms of the velocities that they contain, not in terms of their movements as they migrate across

the flow. For example, if a hairpin, carrying an ejection between its legs and two sweeps outside,

were to rise from the wall, both the sweeps and the ejection would rise with it. The observation about

the wall-normal migration of the Q’s is therefore consistent with the single-roller model discussed

at several points of this review.

Large structures spend about 2/3 of their lives attached to the wall, towards the end of their lives

in sweeps, and towards the beginning in ejections. Clusters are intermediate between the two. As

could be expected, the structures are sheared by the mean flow, which eventually destroys them. The

advection velocity of each horizontal section of the structures is roughly the local mean velocity. Each

branch can be given a characteristic height, such as the distance to the wall of its center of gravity at

the moment in which its size is maximum, and it turns out that their lifetime is proportional to that

height. As noted above, that can be interpreted as being inversely proportional to the local shear,

which would agree with the interpretation that an important effect in determining their lifetimes is
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their deformation by the mean velocity profile. The probability density functions of the lifetimes of

ejections have been added to Figure 13(b). Considering that they refer to a different quantity than in

the minimal boxes, and that they are obtained by a very different technique, they agree reasonably

well.

Two more data sets are included in Figure 13. The first one is bursting in homogeneous shear

turbulence. We have already mentioned that homogeneous turbulence bursts quasi-periodically when

confined to finite computational boxes.55, 56 Although the bursting period depends somewhat on the

geometrical aspect ratios of the box, there is a range of aspect ratios in which it only depends on

the applied shear, and in which the integral parameters of the resulting turbulence agree well with

those in channels.56 The bursting period of that flow, computed by the temporal correlation method

mentioned above, has been included as a horizontal line in Figure 13(b), and again agrees well with

the other data.

E. Linearized models

The final data point added to Figure 13 is a linearized approximation to the evolution of the

bursts. There is no argument that turbulence requires the nonlinearity of the Navier-Stokes equations.

Neither multiscale cascades4 nor the characteristic sensitivity to initial conditions14 can exist in a

statistically steady linear system. Nevertheless, there is also clear evidence that some aspects of

shear turbulence are controlled by linear processes, especially in the energy-injection range. The

best-known examples are the inflection-point linearized instabilities of the mean velocity profile,6

which represent well many of the properties of the large-scale structures in fully nonlinear free-

shear flows, especially forced ones.145 The mean profiles of wall-bounded turbulence are known to

be linearly stable,146, 147 but we have already mentioned that the larger scales in the flow interact

strongly with the shear, at least near the wall. This has always been recognized, and there have been

repeated attempts to relate the dynamics of those scales to linearized instabilities.125–127, 148 The

general idea is that the ultimate energy source for turbulent fluctuations in a shear flow is the velocity

difference across the mean profile, and that the main energy-production mechanism, the deformation

of the profile by cross-shear velocities, is contained in the linearized equations. A key breakthrough

took place when it was realized in the early 1990s that even linearly stable perturbations could

grow substantially by extracting energy from the mean flow. For a review of such “transient-growth”

mechanisms, see Ref. 124.

The agreement found in Figure 13(b) between the time scales of very different flows, with

or without walls, and with uniform or inhomogeneous shear, suggests a common mechanism, and

Jiménez58 proposed that the common thread could be the transient mechanism proposed by Orr149

for the amplification of the fluctuations of the vertical velocity in a shear. Briefly, Orr’s mechanism

is the response of continuity to the tilting of the structures by the mean flow. The vertical velocity is

inhibited when the structures are closely stacked by tilting, and enhanced when they are deformed
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FIG. 14. (a) Evolution of nearly inviscid linearized v perturbations on the mean velocity profile of turbulent Poiseuille

flow at δ+ = 2000.58 The perturbation wavelength is λx/δ = 0.49, and the five snapshots correspond to the symbols in (b).

(b) L2 norm of v as a function of time for the case in (a). The time is normalized with the shear at the center of gravity of the

perturbation at t = 0.
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into being normal to the flow direction. The mechanism is essentially inviscid, with characteristic

times that scale with the shear, and results in a transient growth and decay closely resembling a

model “burst.” Although the cross-shear velocity of an Orr149 burst eventually decays, it can create

a streak of u that does not disappear when v does. Therefore, it can act as a mechanism to extract

energy directly from the mean shear to the turbulent fluctuations, and has been discussed often in that

connection. More references can be found in Ref. 58, and an example of its application to a turbulent

channel profile is given in Figure 14. The temporal correlation Cvv of an Orr burst corresponding to

the wavelength of the minimal boxes has been added to Figure 13(a), and the width of the resulting

correlation has been added to Figure 13(b). Considering the simplifications involved, both of them

agree surprisingly well with the real flow.

V. CONCLUSIONS

We have briefly reviewed the current status of our knowledge about wall-bounded turbulent

flows, with special emphasis on the structural aspects, and on the layers near the wall where shear

is dominant. These are the buffer and logarithmic layers, in which the Corrsin57 shear parameter

is S∗ ≫ 1. We have been especially interested in the logarithmic layer, about which less has been

known until recently. In that layer, S∗ ≈ 10, and the shear interacts strongly with scales whose size is

larger than about y/3. Smaller structures, and in particular the vorticity, decouple from the shear and

become roughly isotropic away from the wall. The same is probably true for most structures above

y/δ ≈ 0.6, where S∗ approaches zero. Perhaps the most interesting conclusion from this part of the

review is that, except possibly for the largest of the anisotropic scales, wall-bounded turbulence is

mostly sheared turbulence, and is influenced relatively little by the presence of the wall. This agrees

with evidence from numerical and laboratory experiments, such as roughness, that the statistics of

the logarithmic layer are essentially independent of the flow above and below it.

We have reviewed the kinematics of the structures found in the shear-dominated layers. Near

the wall, there is a single length scale, and structures are smooth. The important structures in

this region are the well-known streamwise-velocity streaks and the quasi-streamwise vortices. The

streaks contain most of the kinetic energy, and the vortices organize both the energy dissipation

and the Reynolds stresses. These small-scale structures, of the order of a few hundreds wall units,

are overlaid by much larger motions coming from the logarithmic and outer layers, but the scale

difference is so large that most small scales live their whole life within a single large scale, which

acts for them as a local boundary layer with its own friction velocity. Thus, during a typical lifetime

of t+ ≈ 400, a sublayer streak moves with respect to the outer flow by about �x+ = 3000. Depending

on the Reynolds number, this is typically much shorter than the large outer structures, which have

sizes of the order of λx = 10δ.

Above the buffer layer, the energy stays organized in streaks, although internally turbulent ones

of much larger size than in the buffer layer, with spacings of the order of 2y. On their part, the vortices

lose the role of organizing the Reynolds stresses, which is taken over by turbulent eddies whose

size is also O(y). We have studied two kinds of eddies: vortex clusters and intense Reynolds stresses

(ejections and sweeps). Both can be classified into a detached background and geometrically self-

similar wall-attached families, whose lengths, widths, and lifetimes are proportional to their heights.

The attached eddies are responsible for most of the momentum transfer, and associate themselves

into groups formed by a sweep, an ejection to one side of it, and a vortex cluster loosely associated

with the ejection. These groups sit in the interface between low- and high-velocity streaks, and are the

best currently available model for the self-similar attached eddies hypothesized by Townsend.88 The

structure of these groups is compatible with a single streamwise large-scale roller, rather than with the

twin legs of a hairpin. Their length is only O(3y), but they tend to align themselves downstream from

each other, resulting in an effectively much longer composite structure. The alignment mechanism

is unknown.

The detached component appears to be common to other turbulent flows, is roughly isotropic,

and contributes little to the net momentum transfer, because, although the individual eddies are as

strong as the attached ones, and exist at all scales, their contributions cancel on average.
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We have used a variety of techniques, including temporal correlations in minimal boxes and

direct tracking of the structures in full-sized simulations, to show that an important characteristic

of wall-bounded turbulence is temporally intermittent bursting at all distances from the wall. In

particular, we have shown that the time scale of bursting in minimal boxes is a few shear times

(ST ≈ 5 − 10) when the shear is measured at the height of the bursting structure. We have shown

that those times agree with the lifetimes of sweeps, ejections, and vortex clusters directly tracked

in large numerical boxes for which the box size is not an issue. We have also shown that the self-

similar attached structures are sheared by the mean velocity profile, with advection velocities that

are approximately equal to the mean velocity at each wall distance.150 Since this shearing distorts

the structures in a few shear times, the strong suggestion is that it is responsible for limiting their

lifetimes. This conclusion is reinforced by the observation that bursting in wall-bounded turbulence

has a similar time scale to bursting in other shear flows, and in particular in uniformly sheared

turbulence that cannot be influenced by a wall. The implied model is largely linear, with bursting

controlled by the interaction of the eddies with the mean flow, rather than by nonlinear interactions

with each other, and we have proposed that the underlying mechanism is the, possibly nonlinear,

transient amplification by shear of the vertical velocity, as proposed by Orr.149 The time scales

involved are correct.58

A final observation regards the very large scales beyond the self-similar regime just discussed.

The eddy dimensions in Figure 8(b) are consistent with the linear scaling of the length scales in

the logarithmic layer, but the proportionality ceases to hold above y = δ. That part of the p.d.f.

represents very large objects that span both halves of the channel, and are thus very far from being

linked to the logarithmic layer. Their true length is unknown, because results such as those in

Figure 8(b) are limited by the length of the simulation box. The same is true of most experiments.

Note also that, because the advection velocity of very large scales is approximately constant across

the channel, instead of changing with the distance to the wall,150 the lifetime of these structures need

not be limited by the shearing effect discussed above. Examination of their temporal behavior in

simulations shows that they are extremely persistent.

Experimental temporal spectra at very high Reynolds numbers suggests that the longest struc-

tures in Figure 8(b), Lx ≈ 20δ, may be close to their maximum real length,79 but, from the point of

view of the other structures in the flow, they are infinitely long in the same way that the sublayer

streaks are much longer than their associated vortices. They have been variously described as global

modes31, 102 or very large scales,22, 23 and their possible origin has been the subject of a fair amount

of speculation. In many of those discussions, they are treated as structures of the streamwise velocity

with little Reynolds stress,79 but the eddies in Figure 8(b) are Reynolds-stress structures, and are

therefore active in momentum transfer.151 That issue is beyond the scope of this paper, but some

recent work suggests that there may be a quasi-two-dimensional mechanism for the maintenance of

turbulence whose result would be essentially infinite rolls.129, 152 Paradoxically, the older simulations

in Ref. 153 of channels with very short streamwise dimensions may also point to a different, but

also quasi-two-dimensional, turbulence dynamics in the cross plane.
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12 J. Jiménez and A. Pinelli, “The autonomous cycle of near wall turbulence,” J. Fluid Mech. 389, 335–359 (1999).
13 H. Tennekes and J. L. Lumley, A First Course in Turbulence (MIT Press, 1972).
14 L. Keefe, P. Moin, and J. Kim, “The dimension of attractors underlying periodic turbulent poiseuille flow,” J. Fluid Mech.

242, 1–29 (1992).
15 R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, 2nd ed. (SIAM, 1995).
16 R. H. Kraichnan, “Inertial range transfer in two- and three-dimensional turbulence,” J. Fluid Mech. 47, 525–535

(1971).
17 M. Lesieur, Turbulence in Fluids, 4th ed. (Springer, 2008), Chap. 10.
18 G. Kawahara, “Laminarization of minimal plane Couette flow: Going beyond the basin of attraction of turbulence,” Phys.

Fluids 17, 041702 (2005).
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